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Abstract

We prove concentration inequalities and associated PAC bounds for both continuous- and
discrete-time additive functionals for possibly unbounded functions of multivariate, nonre-
versible diffusion processes. Our analysis relies on an approach via the Poisson equation
allowing us to consider a very broad class of subexponentially ergodic, multivariate diffusion
processes. These results add to existing concentration inequalities for additive functionals
of diffusion processes which have so far been only available for either bounded functions or
for unbounded functions of processes from a significantly smaller class. We demonstrate the
power of these exponential inequalities by two examples of very different areas. Considering
a possibly high-dimensional, parametric, nonlinear drift model under sparsity constraints
we apply the continuous-time concentration results to validate the restricted eigenvalue
condition for Lasso estimation, which is fundamental for the derivation of oracle inequal-
ities. The results for discrete additive functionals are applied for an investigation of the
unadjusted Langevin MCMC algorithm for sampling of moderately heavy tailed densities
π. In particular, we provide PAC bounds for the sample Monte Carlo estimator of integrals
π(f) for polynomially growing functions f that quantify sufficient sample and step sizes for
approximation within a prescribed margin with high probability.

Keywords: Concentration inequality, elliptic diffusions, Lasso estimation, MCMC, PAC
bounds

1. Introduction

Concentration inequalities for additive functionals belong to the fundamental probabilistic
tools in statistics and related areas such as statistical learning and reinforcement learning
since they allow exact quantification of the deviation of estimators from a given target. In
particular, concentration inequalities for independent data such as Hoeffding, Bernstein and
McDiarmid inequalities are of central importance for deriving PAC guarantees in classifi-
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cation and regression contexts (see, e.g., Devroye et al. (1996); Wainwright (2019)). While
such questions have been well understood for decades in classical settings for independent
or strongly mixing data—see also the recent investigations of Bernstein and Hoeffding in-
equalities and related applications in statistical learning for Markov chains with spectral
gap in Jiang et al. (2018); Fan et al. (2021)—the general picture for additive functionals
of diffusion processes is less clear. Particularly when it comes to unbounded functionals,
whose deviation properties around their ergodic mean are fundamentally important in a
multitude of applications, useful results are rather scarce. Important achievements in this
direction can be found in Cattiaux and Guillin (2008); Gao et al. (2014), where for a re-
stricted class of reversible diffusion processes exponential inequalities are derived by means
of functional inequalities. While these results are mathematically elegant and explicitly
quantify the contribution of the asymptotic variance, they come at the price of structural
constraints on the diffusion coefficients which are hard to verify and often inappropriate for
specific applications.

The goal of this paper is therefore to derive usable exponential concentration inequalities
for unbounded functionals, both for continuous as well as discrete multivariate diffusion
data, under comparatively weak assumptions on the coefficients and the speed of ergodicity.
With our particular focus on applications, we translate these inequalities into PAC bounds
for the approximation task and demonstrate their usefulness in specific high-dimensional
applications to (i) penalized drift estimation under sparsity constraints, where we extend
results for the classical Ornstein–Uhlenbeck model in Gäıffas and Matulewicz (2019); Cio lek
et al. (2020) to more flexible parametrized models with relaxed ergodicity assumptions, and
(ii) performance guarantees for unadjusted Langevin MCMC algorithms for heavy-tailed
target sampling, which is a setting that substantially differs from the related pioneering work
Dalalyan (2017); Durmus and Moulines (2017) for strongly log-concave targets. Here, for a
given quantity of interest π and a sample based estimator π̂t with t ∈ T —where T = [0,∞)
or T = ∆N0 for some sampling distance ∆ > 0, depending on whether continuous or discrete
data is available—, we say that π̂t satisfies an (ε, δ)-PAC bound for t ≥ T (ε, δ) ∈ T, given
ε > 0, δ ∈ (0, 1), if

∀t ≥ T (ε, δ), P
(
|π̂t − π| ≤ ε

)
≥ 1− δ,

i.e., given a sample length of at least T (ε, δ), π̂t approximates the target π within an ε-
margin with probability at least 1 − δ. Such results are statistically much more insightful
than upper bounds on the mean deviation, which do not reveal detailed information on the
distribution of the loss.

In our particular context, the objectives are exponential inequalities and associated PAC
bounds of sample mean estimators of the quantity π = µ(f) :=

∫
f(x)µ(dx), where µ is

the stationary distribution of a subexponentially ergodic elliptic diffusion X and f is a
polynomially growing function. That is, we provide an in-depth analysis of the deviations
around π of π̂t = t−1/2Gt(f), where

Gt(f) :=
1√
t

∫ t

0
f(Xs) ds, (1)
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given continuous data (Xs)0≤s≤t, and of π̂n∆ = (n∆)−1/2Gn,∆(f), where

Gn,∆(f) :=
1√
n∆

n∑
k=1

f(Xk∆)∆, (2)

given discrete data (Xk∆)k=1,...,n, as well as their burned-in versions. Since our specific
framework is what sets this paper apart from related studies such as Gao et al. (2014), we
will now introduce both the class of processes we are working with as well as the Poisson
equation and its solution studied in Pardoux and Veretennikov (2001), which is at the heart
of our theoretical analysis based on martingale approximation.

Basic framework Consider a d-dimensional elliptic diffusion that is given as the weak
solution to the SDE

dXt = b(Xt) dt+ σ(Xt) dWt, (3)

where b : Rd → Rd is a locally Lipschitz drift vector such that ‖b(x)‖ . 1 + ‖x‖q′ for
some q′ ≥ 0 and σ : Rd → Rd×d is a uniformly continuous, bounded and locally Lipschitz
d× d-matrix-valued function such that a := σσ> is uniformly elliptic, i.e.,

〈a(x)η/‖η‖, η/‖η‖〉 ≥ λ, x ∈ Rd, η ∈ Rd \ {0},

for some constant λ > 0. We denote by (X, (Px)x∈Rd) the Markovian weak solution of (3)
such that under Px the process X solves (3) with initial condition X0 = x and has continuous
paths almost surely. Note that X has the Feller property, cf. (Stroock and Varadhan, 2006,
Corollary 11.1.5), and is therefore Borel right such that it falls into the general framework
for stability of Markov processes. Without loss of generality, we may assume that there
exists a family of shift operators (θt)t≥0 for X, that is, Xt ◦ θs = Xt+s for any s, t ≥ 0. Let
λ−, λ+,Λ be the tightest constants such that, for any x 6= 0,

0 < λ− ≤ 〈a(x)x/‖x‖, x/‖x‖〉 ≤ λ+, tr(a(x))/d ≤ Λ,

where our assumptions guarantee that such constants always exist since we may always
choose Λ = d−1 supx∈Rd tr(a(x)) <∞, λ− = λ and λ+ = supx∈Rd‖σ(x)‖2 <∞.

Our subsequent analysis substantially relies on the following growth condition on the
drift,

(A (q)) if ‖x‖ ≥M0, then 〈b(x), x/‖x‖〉 ≤ −r‖x‖−q,

where q ∈ [−1, 1),M0 ≥ 0, r > 0. For q = 0, this condition equals the standard ergodicity
condition in many recent investigations of multivariate diffusion processes exploiting the
exponential β-mixing property. As will be discussed in Section 2, the case q > 0 corresponds
to a subexponential ergodic behaviour of the diffusion.

Our approach to deviation inequalities is driven by the martingale approximation tech-
nique, which has been employed for the same purpose in the literature under more restrictive
structural assumptions. Aeckerle-Willems and Strauch (2021) study concentration inequal-
ities in the context of scalar exponentially ergodic diffusions in the regime q = 0 with
polynomially growing drift, and in Nickl and Ray (2020), multivariate diffusions with unit
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diffusion matrix and periodic Lipschitz drift are considered. Galtchouk and Pergamen-
shchikov (2007) essentially treat the scalar dissipative case with q = −1. All of these papers
put a special emphasis on uniformicity of the concentration inequalities with respect to the
diffusion coefficients in order to apply them to statistical minimax estimation problems.
Moreover, the martingale approximation is employed in Mattingly et al. (2010) for provid-
ing L2 convergence guarantees of Monte Carlo estimators for well-behaved SDEs on the
torus based on samples obtained by numerical approximation schemes.

Central to the martingale approximation technique is the existence of a solution to the
Poisson equation

Lu = f, (4)

for appropriate functions f where, given u ∈ L1
loc(Rd) having weak partial derivatives up to

second order belonging to L1
loc(Rd),

Lu(x) = 〈b(x),∇u(x)〉+
1

2
tr
(
a(x)D2u(x)

)
, x ∈ Rd,

is a second order local operator. Note that, on the domain C2
0(Rd), L is the infinitesimal

generator of the diffusion process. In the scalar case, (4) has an explicit C2-solution, which
is used in Aeckerle-Willems and Strauch (2021) to obtain sup-norm moment bounds for
empirical processes that are uniform over a class of SDE coefficients. Such results can then
be employed for minimax optimal sup-norm adaptive drift estimation as demonstrated in
Aeckerle-Willems and Strauch (2022).

For multivariate diffusions, such explicit solutions are not obtainable in general such that
one needs to deal with the Poisson equation in a more abstract manner. In Pardoux and
Veretennikov (2001), the authors demonstrate that in our framework, for any f : Rd → R
such that |f(x)| ≤ L(1+‖x‖η) for some finite constants L > 0, η ≥ 0, there exists a solution
u[f ] ∈

⋂
p>1W

2,p
loc (Rd) that is unique in the local Sobolev space W2,p

loc (Rd) for any p > d.
This solution is given as

u[f ](x) =

∫ ∞
0

Ex[−f(Xt)] dt, x ∈ Rd,

i.e., u[f ](x) is expressed as the potential of −f under Px. Therefore, for such f we denote

L−1[f ](x) :=

∫ ∞
0

Ex[−f(Xt)] dt, x ∈ Rd,

such that LL−1[f ] = f , λ-a.e., where λ denotes the Lebesgue measure on Rd. The Sobolev
regularity of L−1[f ] is an essential property for our purposes, since it allows us to apply the
Itō–Krylov formula for martingale approximation. This approach will enable us to conclude
the desired deviation inequalities from moment bounds for the martingale approximation.

Outline and main results In Section 2, we collect some essential known facts on the
subexponentially ergodic nature of the diffusion X implied by the drift condition (A (q))
and put them into a form suited to our needs. In Section 3.1, we present our first main
result, the concentration inequality for the continuous-time scaled additive functional Gt(f)
for polynomially growing f (Theorem 3) which is based on our derivation of the martingale
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approximation Gt(f) and bounds on the solution to the Poisson equation and its gradient
going back to Pardoux and Veretennikov (2001). We translate these inequalities into sta-
tionary and non-stationary PAC bounds in Corollary 8 and 9, respectively. In Section 3.2,
we then proceed to derive explicit deviation bounds in terms of the sampling frequency ∆
and number of observations n for the discrete scaled additive functional Gn,∆(f) by com-
bining Theorem 3 with an approximation argument, see Theorem 11. As for the continuous
data, we use this result to infer PAC bounds for the sample mean estimator and its burn-in
version. In Section 4.1, we apply the continuous-time results to the problem of estimating
the coefficients in a possibly high-dimensional drift model of the form bθ0 =

∑N
j=1 θjψj ,

θ0 = (θ1, ..., θN ) ∈ RN , given a dictionary (ψj)1≤j≤N of Lipschitz continuous functions
ψj : Rd → Rd under sparsity constraints on the coefficients via a Lasso approach. Our con-
centration inequality is the key to showing that the central restricted eigenvalue condition
is in place, which then in turn yields oracle inequalities in line with those well known in the
classical regression context. Finally, Section 4.2 is devoted to an application of our discrete
deviation results, where we study the convergence properties of the unadjusted Langevin
algorithm for moderately heavy-tailed target distributions π, in terms of sufficient sample
and step size conditions for sampling within an ε-margin in total variation as well as for
ensuring an (ε, δ)-PAC bound of the sample Monte Carlo estimator of a given target integral
π(f), again for polynomially bounded functions f .

2. Subexponential ergodicity of the diffusion

We now give an exact quantification of the stability of X, which underlies the arguments
from Pardoux and Veretennikov (2001) and also plays the central technical role in our
approach. For details on terms from Markov stability theory such as petite sets or Harris
recurrence, we refer to Douc et al. (2009).

Define q+ = q ∨ 0. For q ∈ (0, 1), choose ι = ι(q) > 0 small enough such that r >
ιλ+(1−q)/2. In this framework, it was shown in (Douc et al., 2009, Proposition 5.1, Theorem
5.4) as a refinement of results in Malyshkin (2000) that X possesses a unique invariant
distribution µ and that there exists some constant C(q) such that, for Vq(x) := exp(ι‖x‖1−q),
we have ∥∥Px(Xt ∈ ·)− µ

∥∥
TV
≤ C(q)Vq(x)(1 + t)

2q
1+q e−(ι′t)(1−q)/(1+q)

, x ∈ Rd, t ≥ 0, (5)

with ι′ = ι′(q) := ι(1+q)/(1−q)(1 + q)(r − λ+ι(1 − q)/2) and ‖ν‖TV := sup‖f‖∞≤1|ν(f)| for
a signed finite measure ν. Thus, for q ∈ (0, 1), X is subexponentially ergodic. In case
q ∈ [−1, 0], X is exponentially ergodic, i.e., for some constants C(0), ι and ι′ (not explicitly
related to the constants C(q), ι(q), ι′(q) from above),∥∥Px(Xt ∈ ·)− µ

∥∥
TV
≤ C(0)eι‖x‖e−ι

′t, x ∈ Rd, t ≥ 0, (6)

cf. (Pardoux and Veretennikov, 2001, Proposition 1). Moreover, (Douc et al., 2009, Theorem
5.3) and (Pardoux and Veretennikov, 2001, Proposition 1) establish that Vq+ ∈ L1(µ) (here,
V0(·) = exp(ι‖·‖)), i.e.,

Eµ[Vq+(X0)] =

∫
Rd

exp(ι‖x‖1−q+)µ(dx) <∞. (7)
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It will be central for us to trade off subexponential ergodicity at a slower temporal rate
with a less punishing penalty function. Let Ṽα(x) := 1 + ‖x‖α for α ≥ 0. Then, for ζ > 0
and γ > 2(1 + ζ), Proposition 1 in Pardoux and Veretennikov (2001) demonstrates that∥∥Px(Xt ∈ ·)− µ

∥∥
TV
≤ C(γ, ζ)Ṽγ(x)(1 + t)−(1+ζ), x ∈ Rd, t ≥ 0,

i.e., polynomial convergence with polynomial penalty function whose degree depends on
the degree of the temporal rate that can be freely chosen. We will need to make use of
polynomial convergence with respect to a stronger norm than the total variation norm
considered above. To this end, let H1, H2 be a pair of Young functions on R+, which are in
particular invertible and satisfy

xy ≤ H1(x) +H2(y), x, y ≥ 0, (8)

and let I be the family of pairs of inverse Young functions augmented by (1, Id) and (Id,1).
The prototypical example for such pairs are H1(x) = xp/p,H2(x) = xq/q with p, q conjugate
Hölder exponents such that 1/p + 1/q = 1, in which case (8) is simply Young’s inequality.
More generally, one may pair any convex function with its Legendre transform to obtain
(8).

Following earlier work on discrete and continuous-time Markov models Douc et al. (2004,
2008); Jarner and Roberts (2002); Tuominen and Tweedie (1994); Fort and Roberts (2005),
such inverse Young functions are used in Douc et al. (2009) for subgeometrically ergodic
Markov models to quantify the trade-off between speed of convergence and strength of the
underlying f -norm, which we introduce next. For a measurable function f ≥ 1 and a signed
measure ν on (Rd,B(Rd)), its f -norm is defined by

‖ν‖f := sup
|g|≤f
|ν(g)|.

In particular, ‖·‖TV = ‖·‖1. Let us also define the δ-delayed first hitting time of a set
B ∈ B(Rd) by τB(δ) = inf{t ≥ δ : Xt ∈ B}, for δ ≥ 0, with τB = τB(0). Moreover, we say
that B with µ(B) > 0 is accessible, since µ is a maximal irreducibility measure of X. Also
note that µ as the invariant distribution of a Feller process is maximal Harris, such that in
particular for any accessible set B we have Px(τB(δ) <∞) = 1 for any x ∈ Rd, δ ≥ 0.

With the techniques from Douc et al. (2009), we obtain the following result on poly-
nomial f -norm convergence and modulated moments, whose proof is given in Appendix
A. This explicit ergodicity result is central both for our derivation of the concentration in-
equality for continuous data and for its subsequent discrete extension. It will turn out that
appropriate choices for the pairing of Young functions to optimize the trade-off between
convergence rate and strength of the f -norm will be essential when dealing with polynomi-
ally bounded test functions. We therefore truly need the full generality of the statement,
which underlines the power of the approach in Douc et al. (2009) for concrete applications.

Proposition 1 Let γ ≥ 1 + q and q ∈ (−1, 1). Then, there exist functions rγ,q(t) ∼
(1 + t)(γ−(1+q))/(1+q) and fγ,q ∼ Ṽγ−(1+q) such that, for any pair of inverse Young functions
Ψ = (Ψ1,Ψ2) ∈ I and some constant C(Ψ), we have

(Ψ1(rγ,q(t)) ∨ 1)‖Px(Xt ∈ ·)− µ‖1∨Ψ2◦fγ,q ≤ C(Ψ)Ṽγ(x), x ∈ Rd, t ≥ 0, (9)
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and, for any accessible set B ∈ B(Rd) and any δ > 0, there exists a constant c(Ψ) > 0 such
that

Ex
[ ∫ τB(δ)

0
Ψ1(rγ,q(t))Ψ2(fγ,q(Xt)) dt

]
≤ c(Ψ)Ṽγ(x), x ∈ Rd. (10)

Moreover, if q = −1 and γ > 0, then, for any α ∈ (0, rγ), there exist a function rα(t) ∼
exp(−αt) and fγ ∼ Ṽγ such that (1) and (9) are true with fγ,q and rγ,q replaced by fγ and
rα, respectively.

Let us note that, for any η ≥ 0,

sup
t≥0

Ex
[
‖X̃t‖η

]
≤ c(η)

(
1 + ‖x‖η

)
, x ∈ Rd,

where X̃t = Xτ−1(t) for the time change τ(t) :=
∫ t

0‖σ
>(Xs)Xs/‖Xs‖‖2 ds, cf. (Pardoux and

Veretennikov, 2001, Proposition 1). Setting Ψ1 = 1 and Ψ2 = Id in (9), it follows for the
process on its unchanged time scale that, for any η > 0,

sup
t≥0

Ex
[
‖Xt‖η

]
≤ C(η)(1 + ‖x‖η+1+q), x ∈ Rd. (11)

3. Concentration of additive diffusion functionals

Recall the definition of the scaled additive functionals Gt(f) and Gn,∆(f) from (1) and
(2), respectively. Motivated by the existence of a regular solution to the Poisson equation
for polynomially bounded functions, we study deviations of Gt(f) and its discrete version
Gn,∆(f) for functions f belonging to the function class F(η,L) given by

F(η,L) :=
{
f̃ − µ(f̃) : f̃ ∈ G(η,L)

}
,

for
G(η,L) :=

{
f : Rd → R : |f(x)| ≤ L(1 + ‖x‖η), x ∈ Rd},

for some finite constant L > 0, η ≥ 0.
There is a vast amount of literature on concentration inequalities for path integrals of

general Markov processes. The most powerful results are generally established under the
assumption of functional inequalities such as Poincaré or log-Sobolev. However, the elliptic
diffusions considered in this paper generally do not satisfy such rather strong functional
inequalities. In this regard, Cattiaux and Guillin (2008) establish concentration inequalities
for bounded functionals under a so-called weak Poincaré inequality, which is demonstrated
to be equivalent to an α-mixing assumption on the process, cf. (Cattiaux and Guillin, 2008,
Proposition 3.4). Recall that a stationary Markov process (Yt)t≥0 with natural filtration
(Ft)t≥0 and initial distribution ν is said to be α-mixing if the mixing coefficient αν(t) :=
sups≥0 supA∈Fs,B∈Fs+t |P

ν(A∩B)−Pν(A)Pν(B)| tends to zero as t→∞. It follows from (5),
(6) and (7) that the stationary β-mixing coefficient β(t) :=

∫
Rd‖P

x(Xt ∈ ·)− µ‖TV µ(dx) of
our diffusion process satisfies

β(t) ≤ c exp
(
− ι′′t(1−q+)/(1+q+)

)
,

for any ι′′ ∈ (0, ι′) and some constant c depending on ι′′, i.e., the stationary diffusion X
is subexponentially β-mixing. Consequently, using the well-known fact that αµ(t) ≤ β(t),
(Cattiaux and Guillin, 2008, Proposition 3.9) yields the following result for bounded f .
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Theorem 2 (Cattiaux and Guillin, 2008, Proposition 3.9) For ι′′ ∈ (0, ι′), define

c(q, ι′′) :=
1

2

(
1 + q+

1− q+

)1/(1−q+)((1− q+)ι′′

1 + q+

)(1+q+)/(2(1−q+))

. (12)

For any such ι′′, there exists a constant c > 0 such that, for all f ∈ F(0,L) and (u, t) ∈ R2
+

such that

c(1 + q+)(1− q+)−(1−q+)/2 ≤ u <
(
c(q, ι′′)btc/

√
t
)1−q+ , (13)

it holds

Pµ
(
|Gt(f)| > 2L

(
c(q, ι′′)−1u

1
1−q+ + t−1/2

))
≤ 2e−u.

In the above result, the restriction on u in (13) is explained by the proof technique that
makes use of general moment bounds for discrete α-mixing sequences from Rio (2017). This
approach requires the integral to be divided into a finite number of blocks with a carefully
chosen length that determines the degree of mixing of the block sequence.

In the following, we add to this result by allowing polynomially growing integrands f . It
is well-known that dropping the boundedness assumption poses major challenges in deriving
concentration inequalities, some of which have been elegantly solved in Gao et al. (2014)
for symmetric Markov processes satisfying (strong) functional inequalities. It should also
be noted that in (Cattiaux and Guillin, 2008, Section 3.2) some arguments are provided
how conclusions for unbounded integrands f can be drawn from Theorem 2 by employing a
truncation technique. However, there appears to be a gap in the proposed strategy, which
prevents it from being applicable for u > 0 such that u/

√
t is small. Since our ultimate

focus is on applications of our concentration inequalities to the inference of PAC bounds for
t−1/2Gt(f), we do not further pursue an approach relying on discrete mixing results, but
employ a different technique that is embedded more naturally in the continuous framework.

3.1 Continuous observations

Our main result for continuous observations is the following exponential concentration
bound for polynomially bounded functions.

Theorem 3 There exists a constant W, depending on q, η and the diffusion coefficients b
and σ, such that, for any p ≥ 2, t > 0 and f ∈ F(η,L), we have

‖Gt(f)‖Lp(Pµ) ≤ LWp
1
2

+ η+q′+q+1
1−q+ . (14)

As a consequence, for any t > 0,

Pµ
(
|Gt(f)| > eLWu

1
2

+ η+q′+q+1
1−q+

)
≤ e−u, u ≥ 2. (15)

The proof will be given by combining a sequence of technical lemmas that we develop
in the following. An interpretation of the result will be stated later in Remark 7 since this
requires making explicit reference to the proof. The first result that we need are bounds on
the Lp-norms of the invariant measure µ which are implied by its subexponential tails.
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Lemma 4 For all p ≥ 1, it holds

Eµ
[
‖X0‖p

]1/p ≤ cq+p1/(1−q+),

where

cq+ = ee/2+(1−q+)/12((1− q+)ιe)−1/(1−q+)

√
2π

1− q+
Eµ[Vq+(X0)].

Proof Let aq+ = ((1− q+)ιe)−1/(1−q+). Using Markov’s inequality, it follows that, for any
u ≥ 1,

Pµ
(
‖X0‖ ≥ e1/(1−q+)aq+u

)
≤ Eµ[Vq+(X0)] exp

(
− u1−q+/(1− q+)

)
,

with Eµ[Vq+(X0)] < ∞ due to (7). The assertion now follows from (Foucart and Rauhut,
2013, Proposition 7.13).

Next, we state the martingale approximation of the additive functional Gt(f) for poly-
nomially bounded f with the help of the Itō–Krylov formula, which extends the usual Itō
formula for diffusion processes from functions with C2-regularity to functions with slightly
weaker Sobolev regularity. This is necessary in light of the regularity of the solution to the
Poisson equation that we described in Section 2.

Lemma 5 For any f ∈ F(η,L), we have a decomposition

Gt(f) =
1√
t
Mt(f) +

1√
t
Rt(f),

where (Mt(f))t≥0 is a continuous square-integrable Pµ-martingale and both f 7→M·(f) and
f 7→ R·(f) are linear. Moreover, there exists a global constant c ≥ 1 such that, for any
p ≥ 1, t ≥ 0

Eµ
[
|Mt(f)|p

]1/p ≤ cλ1/2
+ p1/2

√
t
∥∥‖∇L−1[f ]‖

∥∥
Lp∨2(µ)

, (16)

and
Eµ
[
|Rt(f)|p

]1/p ≤ 2‖L−1[f ]‖Lp(µ). (17)

Proof For any p ≥ 1, L−1[f ] ∈ W2,p
loc (Rd), the coefficients b, σ are locally bounded, σσ>

is uniformly positive definite and (7) guarantees Eµ[
∫ t

0‖b(Xs)‖2 ds] < ∞ since ‖b‖ . Ṽq′ .
Thus, we can apply the Itō–Krylov formula (cf. (Krylov, 2009, Theorem 2.10.1)) to obtain
the Pµ-a.s. identities

L−1[f ](Xt) = L−1[f ](X0) +

∫ t

0

(
∇L−1[f ](Xs)

)>
σ(Xs) dWs +

∫ t

0
LL−1[f ](Xs) ds

= L−1[f ](X0) +

∫ t

0

(
∇L−1[f ](Xs)

)>
σ(Xs) dWs +

∫ t

0
f(Xs) ds, t ≥ 0.

Here, the second equality follows from LL−1[f ] = f , λ-a.e., and Px(Xt ∈ ·) � λ for any
(t, x) ∈ (0,∞)× Rd, which implies

Ex
[∣∣∣ ∫ t

0
LL−1[f ](Xs) ds−

∫ t

0
f(Xs) ds

∣∣∣] ≤ ∫ t

0

∫
Rd
|LL−1[f ](y)− f(y)|ps(x, y) dy ds = 0.

9
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Thus,
∫ t

0 LL
−1[f ](Xs) dt =

∫ t
0 f(Xs) ds Px-a.s. for any x ∈ Rd and hence also Pµ-a.s. follows.

Consequently,

Gt(f) =
1√
t

∫ t

0
f(Xs) ds =

1√
t
Mt(f) +

1√
t
Rt(f), t ≥ 0,

where

Mt(f) = −
∫ t

0

(
∇L−1[f ](Xs)

)>
σ(Xs) dWs, t ≥ 0,

and
Rt(f) = L−1[f ](Xt)− L−1[f ](X0), t ≥ 0.

The square-integrable martingale property of M·(f) follows from

‖∇L−1[f ](x)‖ . Ṽη+q′+q+1(x), x ∈ Rd,

which is demonstrated in the proof of Lemma 6, such that (7) implies that∫ t

0
Eµ
[∥∥(∇L−1[f ](Xs)

)>
σ(Xs)

∥∥2]
ds . tλ+µ

(
Ṽ2(η+q′+q+1)

)
<∞, t ≥ 0.

The bound (17) is now an immediate consequence of stationarity under Pµ and Minkowski’s
inequality. Moreover, using the Burkholder–Davis–Gundy inequality for continuous mar-
tingales started in 0 in the form given in (Barlow and Yor, 1982, Proposition 4.2), it follows
that, for some c ≥ 1 and any p ≥ 1,

Eµ
[
|Mt(f)|p

]
≤ cppp/2Eµ

[
〈M·(f)〉p/2t

]
= cppp/2Eµ

[( ∫ t

0
‖σ>(Xs)∇L−1[f ](Xs)‖2 ds

)p/2]
≤ cppp/2λp/2+ Eµ

[( ∫ t

0
‖∇L−1[f ](Xs)‖2 ds

)p/2]
.

(18)

Consequently, for p ≥ 2, first using Jensen’s inequality and then Fubini together with
stationarity gives

Eµ
[
|Mt(f)|p

]
≤ cppp/2λp/2+ tp/2Eµ

[1

t

∫ t

0
‖∇L−1[f ](Xs)‖p ds

]
= cppp/2λ

p/2
+ tp/2

∥∥‖∇L−1[f ]‖
∥∥p
Lp(µ)

,

and hence
Eµ
[
|Mt(f)|p

]1/p ≤ cλ1/2
+ p1/2

√
t
∥∥‖∇L−1[f ]‖

∥∥
Lp(µ)

, t ≥ 0.

In case p ∈ [1, 2), we get from (18) with another application of Jensen’s inequality and
Fubini

Eµ
[
|Mt(f)|p

]
≤ cppp/2λp/2+ Eµ

[1

t

∫ t

0

∥∥∇L−1[f ](Xs)
∥∥2

ds
]p/2

= cppp/2λ
p/2
+ tp/2

∥∥‖∇L−1[f ]‖
∥∥p
L2(µ)

.

10
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Thus, for any p ≥ 1, (16) follows.

In view of (16) and (17), to exploit the martingale approximation we need concrete
bounds on the solution of the Poisson equation L−1[f ] and its gradient ∇L−1[f ]. This is
the content of the next lemma, which can essentially be obtained from combining Lemma
4 with the Sobolev estimates from Pardoux and Veretennikov (2001) and Bogachev et al.
(2018). For later reference and some clarification concerning the role of the drift growth,
we give a full proof that simplifies some arguments from Pardoux and Veretennikov (2001)
thanks to Proposition 1.

Lemma 6 Let p ≥ 1. There exist constants U(q, η),V(q, q′, η) (independent of p) such that,
for any f = f̃ − µ(f̃) ∈ F(η,L),∥∥L−1[f ]

∥∥
Lp(µ)

≤ LU(q, η)p
η+q+1
1−q+ (19)

and ∥∥‖∇L−1[f ]‖
∥∥
Lp(µ)

≤ LV(q, q′, η)p
η+q′+q+1

1−q+ . (20)

Proof By a slight adjustment to the proof of Proposition 4.1 in Bogachev et al. (2018)1,
we obtain for any r > d∥∥∇L−1[f ](x)

∥∥ .
(
1 + sup

y∈B(x,1)
|b(y)|

)
‖L−1[f ]‖Lr(B(x,1)) + ‖f‖Lr(B(x,1)). (21)

Therefore, using Hölder’s inequality and the growth condition on the drift b,∥∥‖∇L−1[f ]‖
∥∥
Lp(µ)

. ‖(1 + ‖·‖q′)‖L2p(µ)

∥∥‖L−1[f ]‖Lr(B(·,1))

∥∥
L2p(µ)

+
∥∥‖f‖Lr(B(·,1))

∥∥
Lp(µ)

.

(22)

If q > −1, let γ > 2(1 + q). Then we can calculate as in the proof of (Pardoux and
Veretennikov, 2001, Theorem 1) to obtain

|L−1[f ](x)| ≤
∫ ∞

0

∫
Rd
|f̃(y)||pt(x, y)− ρ(y)|dy dt

≤
∫ ∞

0

(∫
Rd
|pt(x, y)− ρ(y)| dy

)1/2(∫
Rd
|f̃(y)|2(pt(x, y) + ρ(y)) dy

)1/2
dt
)

=

∫ ∞
0

(
‖Pt(x, ·)− µ‖TV

)1/2(∫
Rd
|f̃(y)|2(pt(x, y) + ρ(y)) dy

)1/2
dt
)

≤ LC ′(γ, q)(Ṽγ(x))1/2

∫ ∞
0

(1 + t)
− γ−(1+q)

1+q

(∫
Rd
Ṽη(y)2(pt(x, y) + ρ(y)) dy

)1/2
dt

≤ LC(η, γ, q)(Ṽγ(x))1/2(1 + ‖x‖η+(1+q)/2)

∫ ∞
1

t−(γ−(1+q))/(1+q) dt

= LC ′(η, γ, q)Ṽη+(1+q+γ)/2(x),

1. as the authors point out, the gradient bounds derived in (Pardoux and Veretennikov, 2001, Theorem 1)
are only valid in case of bounded drift

11
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where we used Cauchy–Schwarz for the second inequality and (9) for the third inequality.
The last inequality arises from (7) and (11). A similar calculation, using exponential er-
godicity with arbitrary polynomial penalty Ṽγ in case q = −1 with any γ > 0, shows that
the above estimate remains valid for q = −1. By the strong Markov property, we have for
any R > 0 and τR := τ

B(0,R)
,

L−1[f ](x) = Ex
[
L−1[f ](XτR)

]
+ Ex

[ ∫ τR

0
f(Xt) dt

]
.

By the above, u is locally bounded and thus the first term is bounded for any R > 0. For
the second term, we can employ the Itō formula argument from (Pardoux and Veretennikov,
2001, Theorem 2) to improve this bound to |L−1[f ]| . LṼη+1+q. Alternatively, apart from
the case η = 0, q = −1, we may simply note that, by setting Ψ1 = 1 and Ψ2 = Id, (10)
yields that for any δ > 0∣∣∣Ex[ ∫ τR

0
f(Xt) dt

]∣∣∣ ≤ Ex
[ ∫ τR(δ)

0
|f(Xt)|dt

]
≤ LC(η, q, R, δ)Ṽη+1+q(x), x ∈ Rd.

Here we used that |f | . LṼη and that B(0, R) is accessible by λ-irreducibility of X implied
by uniform positive definiteness of σσ>, cf. (Stramer and Tweedie, 1997, Theorem 2.3).
Thus,

|L−1[f ](x)| ≤ CLṼη+1+q(x), x ∈ Rd,

follows for some constant C depending on η and q. Consequently, for any p ≥ 1, Lemma 4
yields

‖L−1[f ]‖Lp(µ) ≤ CL‖Ṽη+1+q‖Lp(µ) ≤ CLcη+q+1
q p

η+q+1
1−q+ .

Using that

|Ṽη+q+1(x+y)| ≤ 2η+q(Ṽη+q+1(x)+Ṽη+q+1(y)) ≤ 2η+q(2+Ṽη+q+1(x)), x ∈ Rd, y ∈ B(0, 1),

it also follows that∥∥‖L−1[f ]‖Lr(B(·,1))

∥∥
L2p(µ)

≤ CL2η+q+1‖Ṽη+q+1‖L2p(µ) ≤ LC2η+q+1cη+q+1
q (2p)

η+q+1
1−q+ .

Moreover, |f̃(x+ y)| ≤ L2η(2 + Ṽ (x)) for y ∈ B(0, 1) implies

‖‖f‖LrB(·,1)‖Lp(µ) ≤ L2η
(
2 + (1 + λ(B(0, 1)))‖Ṽη‖Lp(µ)

)
≤ L2η(1 ∨ λ(B(0, 1)))(1 + cηq+p

η/(1−q+)),

such that (22) allows us to conclude that

∥∥‖∇L−1[f ]‖
∥∥
Lp(µ)

≤ LV(q, q′, η)p
η+q′+q+1

1−q+ .

We are now ready to infer Theorem 3 from the previous results.

12
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Proof [Proof of Theorem 3] The moment bounds (14) are an immediate consequence of
the combined statements of Lemma 5 and Lemma 6. By Markov’s inequality, (14) implies
(15).

Remark 7 It would be desirable that the concentration rate provided by Theorem 3 matches
the rate in Theorem 2 for the bounded case η = 0 and the rates for polynomially grow-
ing integrands for scalar, exponentially ergodic diffusions with at most linear drift (i.e.,
d = 1, q = 0, q′ = 1) from (Aeckerle-Willems and Strauch, 2021, Proposition 7). The reason
for the gap in the rate can be traced down to the Sobolev estimates (21), where the gradi-
ent ∇L−1[f ] is bounded in terms of L−1[f ]. In contrast, the strategy in Aeckerle-Willems
and Strauch (2021), see also Galtchouk and Pergamenshchikov (2007), works in the other
direction. That is, by exploiting the explicit solution of the Poisson equation in d = 1,
tight pointwise bounds on the gradient ∇L−1[f ] are established first, which are then used to

bound the remainder term L−1[f ](Xt)−L−1[f ](X0) =
∫ Xt
X0
∇L−1[f ](x) dx in the martingale

approximation. Such a strategy is not feasible in the multivariate setting since L−1[f ] is
not explicitly known. Improving our concentration result Theorem 3 would therefore require
tighter estimates on the solution of the Poisson equation and its gradient than those that
can be achieved with the ideas from Pardoux and Veretennikov (2001). This is a challenging
and interesting question for future research.

Stationary and non-stationary PAC bounds As an immediate consequence of The-
orem 2 and Theorem 3, we can derive the following quantitative version of the ergodic
theorem and a stationary PAC bound for (sub-) geometric diffusions. Let us define the rate
function

ς(η, q, q′) :=

{
1

1−q+ , if η = 0,
1
2 + η+q′+q+1

1−q+ , if η > 0,

and the sample length function

Ψ(ε, δ) :=


(
c(q,ι′′)−1(log(2/δ))1/(1−q+)+1

1∧ε/(2L)

)2
, if η = 0,(

eLW(log(1/δ))
1
2 +

η+q′+q+1
1−q+

ε

)2

, if η > 0,

with c(q, ι′′) defined in (12) and W denoting the constant established in Theorem 3.

Corollary 8 Let f ∈ G(η,L), ε > 0 and δ ∈ (0, 1) such that δ < 2 exp(−c(1 + q+)(1 −
q+)−(1−q+)/2) if η = 0 and δ < e−2 if η > 0. Then, for t ≥ Ψ(ε, δ), it holds

Pµ
(∣∣∣1
t

∫ t

0
f(Xs) ds− µ(f)

∣∣∣ ≤ ε) ≥ 1− δ. (23)

Moreover, for any increasing sequence (tn)n∈N ⊂ R+ with infn∈N(tn − tn−1) > 0, it holds
for any δ0 > 0

lim
n→∞

√
tn(log tn)−(ς(η,q,q′)+δ0)

∣∣∣ 1

tn

∫ tn

0
f(Xs) ds− µ(f)

∣∣∣ = 0, Pµ-a.s. (24)

13
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If f is bounded, we even have, for any q̃ ∈ (q+, 1),

lim
t→∞

√
t(log t)

− 1
1−q̃

∣∣∣1
t

∫ t

0
f(Xs) ds− µ(f)

∣∣∣ = 0, Pµ-a.s.

Proof The first two assertions immediately follow from Theorem 2 and Theorem 3. For
any ε > 0 and δ > 0, there exists t(ε) ≥ e such that, for any t ≥ t(ε), we have

L{(eW) ∨ (c(q, ι′′)−1 + 1)}(2 log t)
− δ0

1−q+ ≤ ε.

Consequently, by Theorem 2 and Theorem 3, it follows that for

Ut :=
√
t(2 log t)−(ς(η,q,q′)+δ0)

(1

t

∫ t

0
f(Xs) ds− µ(f)

)
and t ≥ t(ε) such that, in case η = 0, additionally 2 log t ≥ c(1 + q+)(1− q+)−(1−q+)/2,

Pµ(|Ut| > ε) ≤ Pµ
(
|Gt(f)| > L{(eW) ∨ (c(q, ι′′)−1 + 1)}(2 log t)ς(η,q,q

′)
)
≤ t−2.

Thus,

Pµ(|Ut| > ε) ≤ 1[0,t(ε)) + t−21[t(ε),∞) =: gε(t), t > 0.

Since gε ∈ L1(R+) and is decreasing, it follows for a := infn∈N(tn+1 − tn) > 0

∞ >

∫ ∞
tn

gε(t) dt ≥
∑
m≥n

(tm+1 − tm)gε(tm+1) ≥ a
∑

m≥n+1

gε(tm) ≥ a
∑

m≥n+1

Pµ(|Utm | > ε).

Hence, for any ε > 0,
∑

n∈N Pµ(|Utn | > ε) < ∞ such that Borel–Cantelli implies that
limn→∞ Utn = 0, Pµ-a.s., which gives (24). This argument is borrowed from the proof of
Lemma 3.1 in Bosq (1997). By the same lemma, it follows from the above that we even
have convergence along any sequence (t̃n)n∈N, Pµ-a.s., provided that the map t 7→ Ut is
uniformly continuous Pµ-a.s. This can be easily verified when f is bounded (see, e.g., the
proof of Proposition 4.3 in Bosq (1997)), which proves the last assertion.

To get a non-stationary PAC bound, we consider the burn-in sample average

Hv,t(f) :=
1√
t
Gt(f) ◦ θv =

1

t

∫ v+t

v
f(Xs) ds, t > 0, v ≥ 0,

with burn-in length v. Our naming convention follows the MCMC literature, where a stan-
dard procedure of dealing with non-stationary simulation procedures is to run the simulation
algorithm for a certain amount of time before collecting samples, which is usually referred
to as the burn-in.

Corollary 9 Let ε > 0, δ ∈ (0, 1) such that δ < 2e−2 if η > 0 and δ < 4 exp(−c(1 + q+)(1−
q+)−(1−q+)/2) if η = 0. Let also ν be some probability distribution such that Vq+ ∈ L1(ν).
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Choose some ι′′ ∈ (0, ι′), and define C := C(q+)c(ι′′)‖Vq+‖L1(ν), where c(ι′′) is some constant
such that

∀t ≥ 1 : (1 + t)
2q+

1+q+ e−(ι′t)(1−q+)/(1+q+)

≤ c(ι′′)e−(ι′′t)(1−q+)/(1+q+)

.

Then, for t ≥ Ψ(ε, δ/2) and burn-in length v ≥ 1 ∨ (log(2C/δ))(1+q+)/(1−q+)/ι′′, we have,
for any f ∈ G(η,L),

Pν(|Hv,t(f)− µ(f)| ≤ ε) ≥ 1− δ.

Proof Under the given assumptions, (5), (6) imply

‖Px(Xt ∈ ·)− µ‖TV ≤ C
Vq+(x)

‖Vq+‖L1(ν)
e−(ι′′t)(1−q+)/(1+q+)

. (25)

Define g(y) := Py(|t−1
∫ t

0 f(Xs) ds − µ(f)| > ε). By the Markov property, (25) and the
magnitude of the burn-in v, for any x ∈ Rd,∣∣∣Px(|Hv,t(f)− µ(f)| > ε)− Pµ

(∣∣∣1
t

∫ t

0
f(Xs) ds− µ(f)

∣∣∣ > ε
)∣∣∣

=
∣∣Ex[g(Xv)]− µ(g)

∣∣ ≤ ‖Px(Xv ∈ ·)− µ‖TV ≤ C
Vq+(x)

‖Vq+‖L1(ν)
e−(ι′′v)(1−q+)/(1+q+)

≤
Vq+(x)

‖Vq+‖L1(ν)

δ

2
.

Thus,∣∣∣Pν(|Hv,t(f)− µ(f)| > ε)− Pµ
(∣∣∣1
t

∫ t

0
f(Xs) ds− µ(f)

∣∣∣ > ε
)∣∣∣

≤
∫
Rd

∣∣∣Px(|Hv,t(f)− µ(f)| > ε)− Pµ
(∣∣∣1
t

∫ t

0
f(Xs) ds− µ(f)

∣∣∣ > ε
)∣∣∣ ν(dx) ≤ δ

2
.

Consequently, using t ≥ Ψ(ε, δ/2) and (23), it follows by the triangle inequality that
Pν(|Hv,t(f)− µ(f)| > ε) ≤ δ.

3.2 Discrete observations

We now derive concentration inequalities for discrete observations from our continuous
observation results by using the approximation strategy from Galtchouk and Pergamen-
shchikov (2013). In Galtchouk and Pergamenshchikov (2013), only bounded functions f
and scalar exponentially ergodic diffusions in the quite strong regime (A (q)) with q = −1
are considered, which in particular implies sub-Gaussian tails of the invariant density. We
demonstrate how this can be extended to the multivariate case for unbounded functions f
under less restrictive ergodicity assumptions. For this purpose, the following technical key
result from Galtchouk and Pergamenshchikov (2013) is of central importance.
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Lemma 10 (Galtchouk and Pergamenshchikov, 2013, Proposition A.1) Let a filtered prob-
ability space (Ω,F , (Fj)j=1,...,n,P) a random vector (Xj)j=1,...,n be given, such that for all
j ∈ {1, . . . , n}, Xj is Fj-measurable and in Lp(P) for some p ≥ 2. Then, for

bj,n(p) :=
(
E
[(
|Xj |

n∑
k=j

|E[Xk|Fj ]|
)p/2])2/p

, j = 1, . . . , n,

we have ∥∥∥ n∑
j=1

Xj
∥∥∥
Lp(P)

≤
(

2p
n∑
j=1

bj,n(p)
)1/2

.

Let ∆ = ∆n ∈ (0, 1] be some fixed sampling distance, and suppose that we have partial
observations (X∆k)k=1,...,n of the subexponentially ergodic diffusion process X satisfying
the coefficient assumptions from Section 2. Recall that

Gn,∆(f) =
1√
n∆

n∑
k=1

f(Xk∆)∆

denotes the discretized version of the scaled additive functional Gn∆(f). Then, for fixed
f = f̃ − µ(f̃), we may write

Gn,∆(f) = Gn∆(f) +
1√
n∆

An,∆, (26)

with discretization error

An,∆ :=

n∑
k=1

∫ k∆

(k−1)∆
(f̃(Xk∆)− f̃(Xt)) dt.

With our results from Section 3, it is now clear that we must analyze the concentration
of An,∆ around 0 to obtain concentration inequalities for the discrete additive functional

Gn,∆(f). To do so for unbounded functionals f̃ , we exploit polynomial f -norm convergence
from Proposition 1.

Theorem 11 Let η1, η2, η3 ≥ 0 and f̃ ∈ G(η1,L) ∩ W2,p
loc (Rd), p ≥ d, with ∇f̃ ∈ L2d

loc(Rd)
such that ‖∇f̃(x)‖ . 1 + ‖x‖η2 and, for all i, j = 1, . . . , n, |∂xi,xj f̃(x)| . 1 + ‖x‖η3. Define
α = α(q′, η2, η3) := (q′ + η2) ∨ η3. In case q > −1, let γ̃ > 1 + q, r > 1 such that
γ̃ − (1 + q) > r(α ∨ (1 + q)/(r − 1)). If q = −1, set γ̃ = α. Then, for f = f̃ − µ(f̃), there
exists a constant D that is independent of n, p,∆ such that, for any p ≥ 2,

‖Gn,∆(f)‖Lp(Pµ) ≤ D
(√

n∆3/2 + ∆p
max{(γ̃+2α+1−q+)/2,η2+1−q+}

1−q+ + p
1
2

+ η+q′+q+1
1−q+

)
=: Φ(n,∆, p).

Consequently,

Pµ(|Gn,∆(f)| > eΦ(n,∆, u)) ≤ e−u, u ≥ 2.
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Proof Let us write tk = k∆ and a . b if a ≤ Cb for some constant C independent of
p, n,∆. The Itō–Krylov formula gives for t ∈ [0, tk]

f̃(Xk∆)− f̃(Xt) =

∫ tk

t
Lf̃(Xs) ds+

∫ tk

t
∇f̃(Xs)

>σ(Xs) dWs

= µ(Lf̃)(t− tk) + Φk(t) + ωk(t),

where Φk(t) :=
∫ tk
t φ(Xs) ds for φ(y) = Lf̃(y)−µ(Lf̃) and ωk(t) :=

∫ tk
t ∇f̃(Xs)

>σ(Xs) dWs.

Thus, setting Xk =
∫ tk
tk−1

Φk(t) dt and χk =
∫ tk
tk−1

ωk(t) dt, we have

An,∆ = µ(Lf̃)
n∆2

2
+

n∑
k=1

Xk +
n∑
k=1

χk. (27)

The polynomial bounds on the gradient and the Hessian of f̃ together with supx∈Rd‖σ(x)‖ <
∞ and ‖b(x)‖ . 1 + ‖x‖q′ imply that |Lf̃(x)| . 1 + ‖x‖α for α := (q′ + η2) ∨ η3. Suppose
first q > −1, and let γ̃ > 1 + q and r > 1 such that γ̃− (1 + q) > r(α∨ (1 + q)/(r−1)). This
implies that (γ̃ − (1 + q))/r > α and (γ̃ − (1 + q))/(s(1 + q)) > 1 for s = r/(r− 1). Thus, if
we choose the inverse Young functions Ψ1(x) = (sx)1/s and Ψ2(x) = (rx)1/r, it follows for
fγ̃,q(x) = ‖x‖γ̃−(1+q) that |Lf̃ | . 1 ∨Ψ2 ◦ fγ̃,q. Proposition 1 then yields

‖Px(Xt ∈ ·)− µ‖1∨Ψ2◦fγ̃,q . Ṽγ̃(x)(1 + t)−(γ̃−(1+q))/(s(1+q)), x ∈ Rd, t ≥ 0. (28)

Let F = (Ft)t≥0 be the natural filtration of (Xt)t≥0. Then, using the Markov property and
(28), we obtain for t > u

|Eµ[φ(Xt)|Fu]| = |EXu [φ(Xt−u)]| = |EXu [Lf̃(Xt−u)]− µ(Lf̃)|

. ‖PXu(Xt−u ∈ ·)− µ‖1∨Ψ2◦fγ̃,q . Ṽγ̃(Xu)(1 + (t− u))−(γ̃−(1+q))/(s(1+q)).

For k > j, this gives

Eµ[Xk|Ftj ] . Ṽγ̃(Xtj )

∫ tk

tk−1

∫ tk

t
(1 + (u− tj))−(γ̃−(1+q))/(s(1+q)) du dt

≤ Ṽγ̃(Xtj )∆
2(1 + (k − 1− j)∆)−(γ̃−(1+q))/(s(1+q)).

Hence, for j < n,

n∑
k=j+1

|Eµ[Xk|Ftj ]| . Ṽγ̃(Xtj )∆
2

∫ ∞
0

(1 + ∆t)−(γ̃−(1+q))/(s(1+q)) dt = Ṽγ̃(Xtj )∆
s(1+q)

γ̃−(1+q)(1+s) ,

where we used that (γ̃−(1+q))/(s(1+q)) > 1. Consequently, letting bj,n(p) be the functional
from Lemma 10, it follows for j < n from the Cauchy–Schwarz inequality, stationarity and
Lemma 4

bj,n(p) ≤ ‖Xj‖2L2p(Pµ)

∥∥∥ n∑
k=j+1

|Eµ[Xk|Ftj ]|
∥∥∥
Lp(Pµ)

. ∆‖Xj‖2L2p(Pµ)‖Ṽγ̃(X0)‖Lp(Pµ)
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. ∆p
γ̃

1−q+ ‖Xj‖2Lp(Pµ).

In case q = −1, we simply observe that Proposition 1 implies that there exists β > 0 such
that ‖Px(Xt ∈ ·)−µ‖Ṽα . Ṽα(x) exp(−βt) and hence, proceeding as above, we end up with

bj,n(p) . ∆‖Xj‖2L2p(Pµ)‖Ṽα(X0)‖Lp(Pµ) . ∆p
α

1−q+ ‖Xj‖2Lp(Pµ).

Now, stationarity under Pµ, Hölder’s inequality together with Fubini and Lemma 4 yield

‖Xj‖pLp(µ) = Eµ
[( ∫ ∆

0

∫ ∆

t
φ(Xs) dsdt

)p]
≤ ∆2(p−1)

∫ ∆

0

∫ ∆

t
Eµ
[
|φ(Xs)|p

]
dsdt

= ∆2p‖φ(X0)‖pLp(Pµ) ≤ c
p∆2pppα/(1−q+),

for some constant c > 0. Thus, we obtain

bj,n(p) . ∆3p(γ̃+2α)/(1−q+),

and hence by Lemma 10∥∥∥ n∑
k=1

Xk
∥∥∥
Lp(Pµ)

.
√
n∆3p(γ̃+2α+1−q+)/(2(1−q)). (29)

Let us now treat
∑n

k=1 χk. As in the proof of Lemma 5, we obtain by the Burkholder–
Davis–Gundy inequality, (Barlow and Yor, 1982, Proposition 4.2) and Lemma 4 that

Eµ[|ωk|p] ≤ cppp/2λp+∆p/2‖∇f̃‖pLp(µ) ≤ C(η2)pλp+∆p/2pp/2+pη2/(1−q+).

Therefore, with Hölder’s inequality,

Eµ[|χk|p] ≤ ∆p−1

∫ tk

tk−1

Eµ[|ωk(t)|p] dt ≤ C(η2)pλp+∆3p/2pp/2+pη2/(1−q+).

Let bχn,p be the functional from Lemma 10 with respect to (χk)k=1,...,n and (Ftk)k=1,...,n, and

note that, for k > j and t ∈ [tj , tk], Eµ[ωk(t)|Ftj ] = 0 since (
∫ t

0 ∇f̃(Xs)
>σ(Xs) dWs)t≥0 is

an F-martingale. Thus,

bχj,n(p) = Eµ[|χj |p]2/p . ∆3p(2η2+(1−q+))/(1−q+).

Consequently, by Lemma 10,∥∥∥ n∑
k=1

χk

∥∥∥
Lp(Pµ)

.
√
n∆3/2p(η2+1−q+)/(1−q+). (30)

Taking into account that µ(|Lf̃ |) <∞, (27), (29) and (30) imply that∥∥∥ 1√
n∆

An∆

∥∥∥
Lp(Pµ)

.
√
n∆3/2 + ∆p

max{(γ̃+2α+1−q+)/2,η2+1−q+}
1−q+ .

Plugging this bound into (26) and using Theorem 3, it follows that there exists some constant
D that is independent of n, p,∆ such that, for p ≥ 1,∥∥∥Gn,∆(f)

∥∥∥
Lp(Pµ)

≤ D
(√

n∆3/2 + ∆p
max{(γ̃+2α+1−q+)/2,η2+1−q+}

1−q+ + p
1
2

+ η+q′+q+1
1−q+

)
.

Markov’s inequality now yields the asserted concentration inequality.
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PAC bounds Similarly to Corollary 8 and Corollary 9, we can derive PAC bounds for
the discrete ergodic average and its burn-in version. The proof is identical and therefore
omitted.

Corollary 12 Let η1, η2, η3 ≥ 0 and f ∈ G(η1,L) ∩W2,p
loc (Rd), p ≥ d, with ∇f ∈ L2d

loc(Rd)
such that ‖∇f(x)‖ . 1 + ‖x‖η2 and, for all i, j = 1, . . . , d, |∂xi,xjf(x)| . 1 + ‖x‖η3. Define
α, γ̃ as in Theorem 11, and denote

% = %(α, η2, γ̃, q) :=
max{(γ̃ + 2α+ 1− q+)/2, η2 + 1− q+}

1− q+

and

ς̃ = ς̃(η1, q, q
′) :=

1

2
+
η + q′ + q + 1

1− q+
.

For ε > 0, δ ∈ (0, e−2), suppose that ∆ < ε/(3eD) and

n ≥ Ψ(∆, ε, δ) :=
1

∆

(
3eDmax

{
∆(log(1/δ))%, (log(1/δ))ς̃

}
ε

)2

.

Then,

Pµ
(∣∣∣ 1
n

n∑
k=1

f(Xk∆)− µ(f)
∣∣∣ ≤ ε) ≥ 1− δ.

Moreover, let the discrete burn-in estimator be given by

Hm,n,∆(f) :=
1√
n∆

Gn,∆(f) ◦ θm∆ =
1

n

n+m∑
k=m+1

f(Xk∆).

Then, given the constants ι′′, C from Corollary 9 and some initial distribution ν such that

Vq+ ∈ L1(ν), for any n ≥ Ψ(∆, ε, δ/2) and burn-in length m ≥ 1∨∆−1(log(2C/δ))
1+q+
1−q+ /ι′′,

it holds

Pν
(
|Hm,n,∆(f)− µ(f)| ≤ ε

)
≥ 1− δ.

4. Applications

We now demonstrate the usefulness of our probabilistic results in two concrete applications.
While exponential inequalities are important for a multitude of statistical problems (e.g., in
the context of adaptive nonparametric estimation or for the verification of uniform conver-
gence results), we will focus in Section 4.1 on the analysis of a high-dimensional diffusion
model under sparsity constraints, which in particular necessitates the use of inequalities
for unbounded functions. Specifically, we will see that Theorem 3 allows us to derive non-
asymptotic error bounds for penalised estimators, which, to the best of our knowledge,
are so far only available for Ornstein–Uhlenbeck processes. In Section 4.2, we use our dis-
crete concentration results from Section 3.2 to derive explicit convergence guarantees for an
MCMC algorithm designed to sample from target densities with subexponential tails.
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4.1 Lasso estimation for parametrized drift coefficients

As opposed to the now very well understood high-dimensional discrete models (cf., e.g.,
Bühlmann and van de Geer (2011) or Wainwright (2019)), for which a wealth of estima-
tion algorithms including corresponding theoretical results are available, there are still few
in-depth studies of estimation problems for high-dimensional continuous-time processes.
Important references in this context are Gäıffas and Matulewicz (2019) and Cio lek et al.
(2020), who investigate drift estimation in a high-dimensional Ornstein–Uhlenbeck (OU)
model under sparsity constraints. A remarkable feature is that the restricted eigenvalue
property, which usually has to be verified explicitly in discrete models such as linear re-
gression, is already implied by the ergodicity in the specified diffusion model. This finding
is based on the use of sufficiently sharp probabilistic tools in the form of concentration in-
equalities suited to the model: while Gäıffas and Matulewicz (2019) provide a proof based
on functional inequalities allowing to cover only the reversible case, Cio lek et al. (2020) use
Malliavin calculus methods to show that the restricted eigenvalue property is satisfied in
the general ergodic OU case. At the same time, they point out (cf. their Remark 4.4) that
other mathematical methods are needed for proving such concentration phenomena in more
general diffusion models.

Motivated by the considerations in Pokern et al. (2009), we outline in this section how
our results from Section 3.1 can be used to study more general high-dimensional diffusion
models. Suppose that the data XT = (Xt)0≤t≤T has been generated by the following Itō
SDE,

dXt = b0(Xt) dt+ σ0(Xt) dWt, (31)

W = (Wt)t≥0 a standard d-dimensional Brownian motion. The diffusion matrix σ0 is
assumed to be known and we wish to estimate the drift vector b0. Suppose that both σ0

and b0 are globally Lipschitz, that σ0 is bounded, that a0 := σ0σ
>
0 is uniformly elliptic, i.e.,

∃λ−, λ+ > 0 ∀x, η ∈ Rd : λ−‖η‖2 ≤ 〈η, a0(x)η〉 ≤ λ+‖η‖2,

and that the drift condition

(L (q)) there exists M0, r > 0 such that

∀‖x‖ > M0 : 〈b0(x), x/‖x‖〉 ≤ −r‖x‖−q

is satisfied for some q ∈ [−1, 1), such that the process falls into the ergodic framework
of Section 2. Denote by µ0 and ρ0 its invariant measure and the corresponding invariant
density, respectively. We further assume that XT is the stationary solution, i.e., X0 ∼ µ0,
and denote P := Pµ.

Denote by Pb the law of Y T , where Y T = (Yt)0≤t≤T is the strong solution to the SDE
dYt = b(Yt) dt + σ0(Yt) dWt, Y0 = X0. Then, the Radon–Nikodym derivative of Pb with
respect to P0 is given as

dPb

dP0
(XT ) = exp

(
−1

2

∫ T

0
b>(Xt)a

−1
0 (Xt)b(Xt) dt+

∫ T

0
b>(Xt)a

−1
0 (Xt) dXt

)
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(see (Liptser and Shiryaev, 2001, Section 7.6.4)). Given the data XT , one can derive the
time scaled negative of the log likelihood functional for the unknown drift b. This functional
is given by

LT (b) =
1

2T

∫ T

0

(
b>(Xt)a

−1
0 (Xt)b(Xt) dt− 2b>(Xt)a

−1
0 (Xt) dXt

)
. (32)

The log likelihood function (32) for b is unbounded from below in general if the data is
finite, T <∞. However, letting T →∞, (32) tends to a functional whose unique minimizer
is b0. More precisely, it is shown in Lemma 6.1 in Pokern et al. (2009) that LT (b) converges
a.s. towards the functional

L∞(b) =

∫
Rd

(
1
2b
>(x)a−1

0 (x)(b(x)− b0(x))
)
ρ0(x) dx.

In order to regularize (32), Pokern et al. (2009) suggest to assume a parametric structure
of the drift coefficient. For the class of generalised OU processes fulfilling the linear SDE

dXt = −AXt dt+ σ dWt, t ≥ 0, (33)

A and σ some d × d-matrices and W a d-dimensional Brownian motion, this assumption
is obviously satisfied. A more general, but still treatable class of processes is obtained as
follows: Given a system (ψj)1≤j≤N of Lipschitz continuous basis functions ψj : Rd → Rd,
introduce

V :=
{
bθ(·) =

N∑
j=1

θjψj(·), θ ∈ RN
}
.

Let ψ(·) := (ψ1(·), . . . , ψN (·)) be the dictionary matrix and define for x ∈ Rd, Ψ(x) :=
(σ−1

0 (x)ψ(x))>σ−1
0 (x)ψ(x). Let us also define the matrices

ΨT :=
1

T

∫ T

0
Ψ(Xs) ds = (ψij,T )1≤i,j≤N and Ψ∞ := E[Ψ(X0)] = (ψij,∞)1≤i,j≤N

with entries

ψij,T :=
1

T

∫ T

0

〈
ψi(Xs), a

−1
0 (Xs)ψj(Xs)

〉
ds,

ψij,∞ :=

∫
Rd

〈
ψi(x), a−1

0 (x)ψj(x)
〉
ρ0(x) dx, i, j = 1, . . . , N.

We impose the following assumptions on the dictionary:

(L 1) There exist L > 0 and η ∈ [0, 1] such that the maximal eigenvalue of Ψ(x) satisfies

λmax(Ψ(x)) ≤ L(1 + ‖x‖2η), x ∈ Rd;

(L 2) the random matrix ΨT is positive definite P-a.s.
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Assumption (L 1) allows a maximal polynomial drift of order η of the basis functions,
where η ∈ [0, 1] is consistent with their assumed Lipschitz continuity. Assumption (L 2)
is a necessary technical condition on the positive semidefinite matrix ΨT that we need for
the penalized MLE to be well-defined. It can be verified given sufficient smoothness of the
dictionary, see Example 1. Moreover, since by stationarity Ψ∞ = E[ΨT ], (L 2) implies
that Ψ∞ is positive definite. Therefore, if we denote the minimal eigenvalue of Ψ∞ by
λmin(Ψ∞) =: e∞, then e∞ > 0. Let us also set D∞ := maxi=1,...,N ψii,∞.

We now give an example of a dictionary that satisfies the above assumptions and can
be used to model drifts satisfying the drift condition (L (q)).

Example 1 Let

Ei = 11+T(i−d2Ti/d2U)/dU,1+(i−1) mod d, i = 1, . . . , nd2,

where 1k,l is the d × d matrix whose (k, l)-th entry is 1 and all other entries are 0, and
TxU = max{z ∈ Z : z < x}. Set then, for q̃i ∈ [−1, 1) and α̃i > 0,

ψi(x) = Eix(α̃i + ‖x‖)−(q̃i+1), where q̃i = q̃j and α̃i = α̃j if Ti/d2U = Tj/d2U,

which is nothing else but saying that any b ∈ V can be written as

bθ(x) :=
N∑
i=1

θiψi(x) =
n∑
i=1

Ai(θ)x(αi + ‖x‖)−(qi+1), x ∈ Rd,

where N = nd2,

(Ai(θ))k,l = θ(i−1)d2+(k−1)d+l, i = 1, . . . , n and k, l = 1, . . . , d,

and qi = q̃1+d2Ti/d2U, αi = α̃1+d2Ti/d2U. Suppose that qi < qj for i > j, the matrices Ai(θ0)
corresponding to the true value θ0 are symmetric, and that there exists k0 ∈ {1, . . . , n} such
that λmax(Ak0(θ0)) < 0 and, for all k0 < k ≤ n, it holds λmax(Ak(θ0)) = 0. Then, it follows
from the Courant–Fischer theorem that, for any x 6= 0,

〈bθ0(x), x/‖x‖〉 =
n∑
i=1

‖x‖(αi + ‖x‖)−(1+qi)〈x/‖x‖, Ai(θ0)x/‖x‖〉

≤
k0∑
i=1

‖x‖(αi + ‖x‖)−(1+qi)λmax(Ai(θ0)).

This implies that there exists M0, c > 0 such that, for r = −cλmax(Ak0(θ0)) > 0, the drift
condition (L (q)) is satisfied for q = qk0. Let µ be the invariant distribution of the associated
diffusion X. Also note that (L 1) holds for η = (−q1)+.

To see that (L 2) is satisfied, note first that, for any θ 6= 0, there exists some j ∈
{1, . . . , d} such that x 7→ (bθ(x))j is analytic and not identical to zero on Rd \ {0}. Conse-
quently, (bθ(·)j)−1({0}) \ {0} = {x 6= 0 : (ψ(x)θ)j = 0} is contained in a countable union
of smooth manifolds of dimension d− 1, i.e., in a countable union of smooth hypersurfaces.
Assume now that ΨT is not positive definite a.s. Since θ>ΨT θ =

∫ T
0 ‖(σ

−1
0 ψ)(Xs)θ‖2 ds
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and, moreover, the matrix is positive semidefinite, the paths of X are continuous and
Pµ(X0 = 0) = 0, this implies that there exists a measurable set Ω0 ⊂ {X0 6= 0} with
Pµ(Ω0) > 0 such that, for any ω ∈ Ω0, the whole path (Xs(ω))s∈[0,T ] is contained in
(bθ(·)j)−1({0}) for some θ 6= 0 and j ∈ {1, . . . , d}. It follows from above that on Ω0,
the process stays in some smooth hypersurface for a strictly positive amount of time. Such
path behaviour is however impossible a.s. for an elliptic diffusion process. Thus, ΨT must
be positive definite P-a.s.

Note that the above example includes the OU models investigated in Gäıffas and Mat-
ulewicz (2019); Cio lek et al. (2020) as a special case. Under Pb0 , the above parametrisation
yields the functional

LT (θ)

= − 1

2T

(
2

∫ T

0

(
σ−1

0 bθ
)>

(Xt) dWt −
∫ T

0

∥∥σ−1
0 (bθ − bθ0)(Xt)

∥∥2
dt+

∫ T

0

∥∥(σ−1
0 bθ0

)
(Xt)

∥∥2
dt
)

=
1

2
θ>ΨT θ − θ>h,

h denoting the vector with components

hi =
1

T

∫ T

0

〈
ψi(Xs), a

−1
0 (Xs) dXs

〉
, i = 1, . . . , N.

Using almost sure positive definiteness of ΨT , it follows that on a set of full P-measure, the
MLE is the unique minimizer of LT (·), given by

θ̂MLE := Ψ−1
T h.

While this approach yields a well-defined estimator, the MLE will perform quite inaccurately
in high-dimensional settings.

Our concern is to investigate the estimation of bθ in the large N/large T regime. More
precisely, we want to study the statistical properties of penalized estimators θ̂T , defined as

θ̂T = arg minθ∈RN {LT (θ) + λ‖θ‖1}, (34)

λ > 0 some regularisation parameter. Strictly speaking, since positive definiteness of ΨT

holds only a.s., this estimator may only be well defined in an almost sure sense, but by an
appropriate restriction of the underlying probability space we can and will assume that it
is well-defined everywhere without loss of generality. Denote

‖θ1 − θ2‖2L2 :=
1

T

∫ T

0

∥∥σ−1
0 (bθ1 − bθ2)(Xt)

∥∥2
dt = (θ1 − θ2)>ΨT (θ1 − θ2), θ1, θ2 ∈ RN .

Then, for any θ ∈ RN ,

∥∥θ̂T − θ0

∥∥2

L2 ≤
∥∥θ − θ0

∥∥2

L2 +
2

T

∫ T

0

(
σ−1

0

(
b
θ̂T
− bθ

))>
(Xt) dWt + 2λ

(
‖θ‖1 −

∥∥θ̂T∥∥1

)
. (35)
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In order to obtain error bounds for the Lasso estimator θ̂T , the martingale part appearing
on the rhs of (35) needs to be controlled which is usually done by means of Bernstein’s
inequality for continuous martingales. Another important part of the derivation of error
bounds is the verification of the restricted eigenvalue condition which in our setting amounts
in showing that

inf
θ∈S1(s),η∈S2(s,θ)

‖θ − η‖2L2

‖θ − η‖2
is bounded away from 0 with high probability,

where, for ‖θ‖0 :=
∑

i 1{θi 6=0}, fixed c0 > 0 and Is(θ) denoting a set of coordinates of s
largest elements of θ,

C(s, c0) :=
{
ζ ∈ RN : ‖ζ‖1 ≤ (1 + c0)

∥∥ζ|Is(ζ)∥∥1

}
,

S1(s) :=
{
θ ∈ RN : ‖θ‖0 = s

}
and S2(s, θ) :=

{
η ∈ RN : θ − η ∈ C(s, c0)

}
.

To start with, we will demonstrate how our previous general developments can be used
to verify these assumptions. In fact, our error bounds for the Lasso estimator formulated
below are based on the following direct application of Theorem 3.

Lemma 13 There exists a constant W > 0 such that, for any vectors ζ ∈ RN with ‖ζ‖ ≤ 1
and R ≥ 2/

√
T ,

P
(∣∣ζ>(Ψ∞ −ΨT

)
ζ
∣∣ > R

)
≤ exp

(
−
(√

TR

eLW

)κ(q,η))
, where κ(q, η) :=

2(1− q+)

6η + 2q + 3− q+
.

(36)

Proof Observe first that it suffices to prove the lemma for ‖ζ‖ = 1. Fix any such ζ and
set f̃ζ(x) = ζ>Ψ(x)ζ and fζ = f̃ζ − µ0(f̃ζ). By assumption (L 1), we have for any x ∈ Rd

|f̃ζ(x)| = ‖σ−1
0 (x)ψ(x)ζ‖2 ≤ ‖σ−1

0 (x)ψ(x)‖2 = λmax(Ψ(x)) ≤ L(1 + ‖x‖2η).

Moreover, using ‖σ0(x)‖ = ‖σ0(x)>‖,

max
i=1,...,N

‖ψi(x)‖ ≤
√
λ+ max

i=1,...,n
‖σ−1

0 (x)ψi(x)‖ =
√
λ+ max

i=1,...,N
‖σ−1

0 (x)ψ(x)ei‖

≤
√
λ+‖σ−1

0 (x)ψ(x)‖ ≤
√
Lλ+(1 + ‖x‖η),

such that ‖bθ0(x)‖ ≤
√
Lλ+‖θ0‖1(1 + ‖x‖η) follows. Consequently, Theorem 3 implies that

there exists some constant W independent of ζ such that

P
(∣∣ζ>(Ψ∞ −ΨT

)
ζ
∣∣ > R

)
= P

(
T−1/2|GT (fζ)| > R

)
≤ exp

(
−
(√

TR

eLW

)κ(q,η))
.

We are now ready to verify the restricted eigenvalue property and state deviation bounds
for the martingale term.
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Proposition 14 (a) For any ε0 ∈ (0, 1) and ∀T ≥ T0(ε0, s, c0,LW), it holds

P
(

inf
θ∈S1(s),η∈S2(s,θ)

‖θ − η‖2L2

‖θ − η‖2
≥ e∞

2

)
≥ 1− ε0,

where

T0(ε0, s, c0, c) :=
{

log
(

212s
(
d ∧

(
ed
2s

)2s))− log ε0

} 2
κ(q,η) · 182(c0 + 2)2e2c2

e2
∞

(b) For s, c0 > 0, define the event

E (s, c0) :=

{
inf

θ−η∈C(s,c0)

‖θ − η‖2L2

‖θ − η‖2
≥ e∞

2

}
∩
{

max
i=1,...,N

ψii,T ≤ D∞ +
e∞
2

}
∩

{
sup

θ 6=η∈RN

1
T

∫ T
0

(
σ−1

0

(
bθ − bη

))>
(Xt) dWt

‖θ − η‖1
≤ λ

2

}
.

(37)

Then, for any ε0 ∈ (0, 1), T ≥ T0( ε03 , s, c0,LW) and

λ ≥

√
4(2D∞ + e∞)

T
· log

(
6N

ε0

)
,

it holds P(E (s, c0)) ≥ 1− ε0.

Proof Introduce K(s) :=
{
ζ ∈ RN \ {0} : ‖ζ‖0 ≤ s

}
. Using Lemmata F.1 and F.3 of Basu

and Michailidis (2015), it follows

sup
ζ∈C(s,c0)

ζ>
(
Ψ∞ −ΨT

)
ζ

‖ζ‖2
≤ 3(c0 + 2) sup

ζ∈K(2s)

ζ>
(
Ψ∞ −ΨT

)
ζ

‖ζ‖2

Furthermore, for any subset E ⊂ RN ,

inf
ζ∈E

‖ζ‖2L2

‖ζ‖2
= inf

ζ∈E:‖ζ‖≤1
ζ>ΨT ζ

and for ζ 6= 0,

‖ζ‖2L2

‖ζ‖2
=
ζ>Ψ∞ζ

‖ζ‖2
−
ζ>
(
Ψ∞ −ΨT

)
ζ

‖ζ‖2
≥ λmin(Ψ∞)−

ζ>
(
Ψ∞ −ΨT

)
ζ

‖ζ‖2
.

The proof of Lemma F.2 in Basu and Michailidis (2015) allows to deduce from (36) that,
for any R ≥ 2/

√
T ,

P

(
sup

ζ∈K(s),‖ζ‖≤1

∣∣ζ>(Ψ∞ −ΨT

)
ζ
∣∣ > 3R

)
≤ 21s

(
d ∧

(
ed

s

)s)
exp

(
−
(√

TR

eLW

)κ(q,η))
.
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Thus,

P
(

inf
ζ∈C(s,c0)

‖ζ‖2L2

‖ζ‖2
>

e∞
2

)
≥ P

(
sup

ζ∈C(s,c0),‖ζ‖≤1

∣∣ζ>(Ψ∞ −ΨT

)
ζ
∣∣ ≤ e∞

2

)

≥ P

(
sup

ζ∈K(2s),‖ζ‖≤1

∣∣ζ>(Ψ∞ −ΨT

)
ζ
∣∣ ≤ e∞

6(c0 + 2)

)

≥ 1− 212s

(
d ∧

(
ed

2s

)2s
)

exp

(
−
( √

T e∞
18(c0 + 2)eLW

)κ(q,η))
,

resulting in the asserted condition on the sample size T . For proving part (b), note first
that the relation{

max
i=1,...,N

∣∣ψii,T − ψii,∞∣∣ > e∞
2

}
⊂
{

sup
ζ∈C(s,c0)

∣∣ζ>(ΨT −Ψ∞
)
ζ
∣∣

‖ζ‖2
>

e∞
2

}
in particular implies that, for T ≥ T0( ε03 , s, c0,LW),

P
(

max
i=1,...,N

ψii,T > D∞ +
e∞
2

)
≤ ε0

3
.

It remains to control the deviation of the martingale term. Given θ, η ∈ RN , we write

2

T

∫ T

0

(
σ−1

0 (bθ − bη)
)>

(Xt) dWt = 2(θ − η)>(ε1,T , . . . , εN,T )>,

where

εi,T :=
1

T

∫ T

0

(
σ−1

0 ψi
)>

(Xs) dWs, i = 1, . . . , N. (38)

Note that the quadratic variation of this continuous martingale is given by

〈εi〉T =
1

T 2

∫ T

0

(
σ−1

0 ψi
)>

(Xs)
(
σ−1

0 ψi
)
(Xs) ds

=
1

T 2

∫ T

0

〈
ψi, a

−1
0 ψi

〉
(Xs) ds =

1

T
ψii,T .

Using Bernstein’s inequality for continuous martingales and taking into account the condi-
tion on λ, we thus obtain for for T ≥ T0( ε03 , s, c0,LW)

P

(
sup

θ 6=η∈RN

2
T

∫ T
0

(
σ−1

0 (bθ − bη)
)>

(Xt) dWt

‖θ − η‖1
> λ

)

≤ P

(
sup
θ 6=η

2(θ − η)>(ε1,T , . . . , εN,T )

‖θ − η‖1
> λ, max

i=1,...,N
ψii,T < D∞ +

e∞
2

)

+ P
(

max
i=1,...,N

ψii,T > D∞ +
e∞
2

)
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≤
N∑
i=1

P
(

2|εi,T | > λ, 〈2εi〉T ≤
4

T

(
D∞ +

e∞
2

))
+
ε0

3

≤ 2N exp

(
− Tλ2

8D∞ + 4e∞

)
+
ε0

3
≤ 2ε0

3
.

On the basis of the given key deviation inequalities, the machinery of high-dimensional
statistics now allows the derivation of oracle inequalities. Our proof strategy follows the
one developed in Cio lek et al. (2020).

Theorem 15 (oracle inequality) Assume that we are given a continuous record of ob-
servations of the solution of (31), where b0 = bθ0 ∈ V with ‖θ0‖0 ≤ s0. Fix γ > 0 and

ε0 ∈ (0, 1), and consider the Lasso estimator θ̂T introduced in (34). Then, for

λ ≥ 2

√
(2D∞ + e∞)

T
· log

(
6N

ε0

)
and T ≥ T0

(
ε0
3 , s0, 3 + 4

γ ,LW
)
, (39)

with probability at least 1− ε0, we have

∥∥θ̂T − θ0

∥∥2

L2 ≤ (1 + γ) inf
θ∈RN :‖θ‖0≤s0

{∥∥θ − θ0

∥∥2

L2 +
9(2 + γ)2

2γ(1 + γ)e∞
‖θ‖0λ2

}
. (40)

Furthermore, for any λ fulfilling (39) and T ≥ T0

(
ε0
3 , s0, 3,LW

)
, with probability at least

1− ε0, ∥∥θ̂T − θ0

∥∥2

L2 ≤ λ2 · 18s0

e∞
. (41)

By specifying λ as proposed in (39), the previous result implies that an upper bound of order
(s0 logN)/T on the squared L2 risk of the Lasso estimator θ̂T holds with high probability.
In particular, in terms of the rate of convergence, our techniques give the same results as the
concentration inequalities tailored to the specific OU model used in Gäıffas and Matulewicz
(2019) and Cio lek et al. (2020), respectively.
Proof [Proof of Theorem 15] Recall the definition of the event E (s, c0) according to (37),
and let s ≥ s0. On E (s, c0), the basic inequality (35) implies for any θ ∈ RN that∥∥θ̂T − θ0

∥∥2

L2 + λ
∥∥θ̂T − θ∥∥1

≤
∥∥θ − θ0

∥∥2

L2 + 2λ
(∥∥θ∥∥

1
−
∥∥θ̂T∥∥1

+
∥∥θ̂T − θ∥∥1

)
≤
∥∥θ − θ0

∥∥2

L2 + 4λ
∥∥θ̂T |supp(θ) − θ

∥∥
1
. (42)

Assume now that θ ∈ RN fulfills ‖θ‖0 ≤ s0, and consider the event

4λ
∥∥θ̂T |supp(θ) − θ

∥∥
1
> γ

∥∥θ − θ0

∥∥2

L2 . (43)

If this does not occur, (40) holds true since we obtain from (42) that∥∥θ̂T − θ0

∥∥2

L2 ≤ (1 + γ)
∥∥θ − θ0

∥∥2

L2 .
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Otherwise, if (43) holds, we have on E (s, c0) that

λ
∥∥θ̂T − θ∥∥1

≤
∥∥θ − θ0

∥∥2

L2 + 4λ
∥∥θ̂T |supp(θ) − θ

∥∥
1

≤ 4λ

γ

∥∥θ̂T |supp(θ) − θ
∥∥

1
+ 4λ

∥∥θ̂T |supp(θ) − θ
∥∥

1

i.e., θ̂T − θ ∈ C(s, c0) for the choice c0 = 3 + 4
γ , such that, after using Cauchy–Schwarz,

∥∥θ̂T |supp(θ) − θ
∥∥

1
≤
∥∥θ̂T − θ∥∥ ·√‖θ‖0 ≤

√
2‖θ‖0
e∞

∥∥θ̂T − θ∥∥L2 .

Summing up,

∥∥θ̂T − θ0

∥∥2

L2 ≤
∥∥θ − θ0

∥∥2

L2 + 3λ

√
2‖θ‖0
e∞

(∥∥θ̂T − θ0

∥∥
L2 +

∥∥θ − θ0

∥∥
L2

)
.

Applying the Young inequalities∥∥θ̂T − θ0

∥∥
L2 ≤

ax

2
+
∥∥θ̂T − θ0

∥∥2

L2 ·
1

2ax
,
∥∥θ − θ0

∥∥
L2 ≤

ax

2
+
∥∥θ − θ0

∥∥2

L2 ·
1

2ax
,

with a = (2 + γ)/(2γ) and x = 3λ
√

2‖θ‖0/e∞, we finally obtain

∥∥θ̂T − θ0

∥∥2

L2 ≤ (1 + γ)

(∥∥θ − θ0

∥∥2

L2 +
9(2 + γ)2

2γ(1 + γ)e∞
λ2‖θ‖0

)
.

For the proof of (41), note that, taking θ = θ0, (42) implies that, on E (s0, c0),∥∥θ̂T − θ0

∥∥2

L2 + λ
∥∥θ̂T − θ0

∥∥
1
≤ 4λ

∥∥θ̂T |supp(θ0) − θ0

∥∥
1
.

Now, since θ̂T − θ0 ∈ C(s0, 3) on E (s0, c0),

∥∥θ̂T − θ0

∥∥2

L2 ≤ 3λ
∥∥θ̂T |supp(θ0) − θ0

∥∥
1
≤ 3λ

√
2s0

e∞

∥∥θ̂T − θ0

∥∥
L2 ,

which already gives the asserted inequality.

Remark 16 While our results are non-asymptotic, we do face a restriction in that the
constant W appearing in the lower bound for the required sample size (see (39)) is not
explicit. However, it appears to be very demanding to work out explicit constants in a
general framework. In the spirit of Pokern et al. (2009), our arguments could also be
carried out for the more restricted class of reversible diffusion processes by assuming a
parametric form of the potential function and then considering a parametrized drift function
bθ(x) = 1

2 div(a0(x)) − 1
2a0(x)∇Vθ(x) for Vθ ∈ V. Although functional inequalities (e.g.,

of Poincaré-type) are applicable in this reversible framework, the control of the constants
involved still constitutes a fundamental challenge.
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We conclude this section by briefly categorising the results and sketching potential future
research. Note first that Theorem 2.7 in Dexheimer and Strauch (to appear) provides a lower
bound on the Frobenius norm for the estimation of the matrix A in the d-dimensional OU
model (33) with σ = Id over the class of s0-sparse matrices. Translating the number of
parameters into our framework, the lower bound is of order s0 log(N/s0)/T . Compared
to the upper bound of order (s0 logN)/T , there is thus only a logarithmic gap, appearing
in this very form also in Gäıffas and Matulewicz (2019) and Cio lek et al. (2020). As
demonstrated in Dexheimer and Strauch (to appear) in the context of drift estimation
for Lévy-driven OU processes, the key to eliminating the logarithmic gap lies in a refined
deviation inequality for the stochastic error (in our context specified as εi,T as defined in
(38)). In fact, the combination of concentration inequalities in the sense of Lemma 13 (which
is a rather straightforward consequence of our general Theorem 3) with the techniques from
Section 3.2 of Dexheimer and Strauch (to appear) can be expected to allow the derivation
of minimax optimal penalized estimators also for general diffusion models.

4.2 MCMC for moderately heavy-tailed targets

In general, Markov chain Monte Carlo (MCMC) is a collective term for algorithms relying
on ergodicity of Markov chains that are (i) easy to simulate and (ii) specifically designed
such that their invariant distribution approximates a given target density, for which samples
are to be obtained. These algorithms have a long and rich history. At this point, we cannot
give a detailed account of the literature which would do justice to the field, but only want
to point out its fundamental importance in connected areas such as Bayesian optimization
or inverse problems in high dimensional contexts, where the posterior distribution becomes
the target. Other than the fundamental theoretical work in Dalalyan (2017); Durmus and
Moulines (2017) that will be discussed below, we refer to Dalalyan and Karagulyan (2019);
Durmus et al. (2019); Durmus and Moulines (2019); Erdogdu et al. (2018); Erdogdu and
Hosseinzadeh (2021); Teh et al. (2016); Vollmer et al. (2016) for some recent contributions
that motivated our study. Our particular interest lies on the so called Unadjusted Langevin
Algorithm (ULA), which we describe next.

Suppose that we are given a target density π ∝ exp(−U(x)) for some continuously
differentiable function U : Rd → R, which is usually referred to as the potential. Let us
also assume that ∇U is L-Lipschitz continuous such that the (unadjusted or overdamped)
Langevin diffusion

dXt = −∇U(Xt) dt+
√

2 dWt, t ≥ 0,

has a unique strong solution, which is a Feller Markov process with invariant distribution

π(dx) =
1∫

Rd exp(−U(y)) dy
exp(−U(x)) dx, x ∈ Rd.

To obtain samples with approximate distribution π and to approximate integrals π(f) for
π-integrable functions f via the corresponding Monte Carlo estimator, in practice one needs
to discretize the SDE to make simulation procedures feasible. The ULA uses a simple Euler
discretization scheme as numerical SDE approximation, where the Euler discretization with
step size ∆ is the Markov chain given by the stochastic difference equation

ϑ
(∆)
n+1 = ϑ(∆)

n −∆∇U(ϑ(∆)
n ) +

√
2∆ξn+1, n ∈ N0, ϑ

(∆)
0

d
= X0,
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where (ξn)n∈N is a sequence of i.i.d. standard normal random variables on Rd independent

of ϑ
(∆)
0 . Sampling such a chain is computationally efficient, provided the gradient ∇U can

be cheaply evaluated. By considering the time-inhomogeneous Markov process given as the
strong solution to the SDE

dZ
(∆)
t = b(Z(∆), t) dt+

√
2 dWt, t ≥ 0, Z

(∆)
0 = X0,

with non-anticipatory drift

b(z, t) = −
∞∑
k=0

∇U(zk∆)1[k∆,(k+1)∆)(t), (z, t) ∈ C(R+,Rd)× R+,

it is straightforward to show that the laws of (ϑ
(∆)
n )n∈N0 and (Z

(∆)
n∆ )n∈N0 coincide.

It has been observed in the literature Dalalyan (2017); Durmus and Moulines (2017)
that for potentials U that are either strongly convex—i.e., π is strongly log-concave—or
that are convex and superexponential outside some ball, explicit requirements on the step
length ∆ and sample size n can be formulated to guarantee sampling with ε-precision in
total variation or Wasserstein distance. For strongly log-concave densities, the natural
connection to the gradient descent in a convex setting is pointed out in Dalalyan (2017).

We now apply our previous results to obtain PAC bounds and related suggestions for
sample size n, burn-in m and discretization step ∆ for the ULA Monte Carlo estimator of
polynomially growing functions for moderately heavy-tailed target densities π such that

∃ι > 0, q ∈ (0, 1) such that

∫
Rd

exp(ι‖x‖1−q)π(dx) <∞.

As follows from (7), this is the case if −∇U satisfies (A (q)) with q ∈ (0, 1), i.e., there exists
some M0, r > 0 such that

(U (q)) 〈∇U(x), x/‖x‖〉 ≥ r‖x‖−q, ‖x‖ ≥M0.

This setting differs substantially from the (strongly) convex setting in Dalalyan (2017); Dur-
mus and Moulines (2017), whose assumptions imply (U (q)) with q ∈ [−1, 0) and therefore,
in particular, require the targets to have exponential moments, i.e., light tails. Heavy-tailed
target densities implied by our assumption q ∈ (0, 1) become relevant, e.g., in Bayesian
inverse problems with heavy-tailed noise or prior. As the following result demonstrates,
the Euler discretized Markov chain ϑ(∆) under (U (q)) inherits the subexponential ergodic
behaviour from the original Langevin diffusion X, provided that U does not grow too fast.
The proof is a straightforward application of the results from Douc et al. (2004)—which is
the discrete-time counterpart to Douc et al. (2009)—and is postponed to Appendix A. Let
(Px)x∈Rd be a family of probability measures such that ϑ(∆) is started in x under Px.

Proposition 17 Let q ∈ (0, 1). Suppose that U satisfies (U (q)) and, moreover, for some
M1 > 0, ‖∇U(x)‖ ≤ ‖x‖β for β ≤ (1 − q)/2. Then, for any ∆ > 0 in case β < (1 − q)/2
or any ∆ ≤ r in case β = (1 − q)/2, there exists an invariant probability measure π(∆)

for the chain ϑ(∆) and there are constants c = c(q,∆) > 0 and c̃ = c̃(q,∆) such that, for
fq(x) ∼ (1 + ‖x‖)−2q exp(c̃‖x‖1−q) and rq(n) ∼ n−2q/(1+q) exp(cn(1−q)/(1+q)), we have for
any x ∈ Rd and pairs of inverse Young functions (Ψ1,Ψ2) ∈ I

lim
n→∞

Ψ1(rq(n))
∥∥Px(ϑ(∆)

n ∈ ·)− π(∆)

∥∥
Ψ2◦fq = 0.
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This convergence behaviour is in line and in fact states more precisely the findings from
(Roberts and Tweedie, 1996, Section 3) for the ULA in d = 1 for the model class of sub-
Weibull distributions. It is vital to note that π and π(∆) do not coincide, so even if the ULA
converges at subgeometric rate for fixed step size ∆, we need to choose ∆ appropriately
small to obtain useful approximations. We make this tuning parameter choice precise in
the following.

Typical potentials satisfying (U (q))—such as U(x) ∝ ‖x‖1−q outside some ball centered
around 0—are not convex, and their gradient may converge at infinity. In fact, if we have
lim‖x‖→∞‖∇U(x)‖ = 0, then (Roberts and Tweedie, 1996, Theorem 2.4) implies that the
Langevin diffusion X is not exponentially ergodic. Hence, we cannot expect π to have
exponentially decaying tails. Therefore, in contrast to the usually encountered potentials
exhibiting some degree of convexity, it is quite natural for our purposes to assume that ∇U
is bounded under (U (q)) for q ∈ (0, 1). This makes it easy to prove the following result
quantifying convergence of ULA to the target π and the performance of the ULA Monte
Carlo estimator with burn-in m,

Hϑ(∆)

m,n,∆(f) :=
1

n

m+n∑
k=m+1

f
(
ϑ

(∆)
k∆

)
,

based on our results from Section 3.2 and the Girsanov argument underlying the total
variation convergence result from Dalalyan (2017) for strongly convex potentials. Denote

by Px,n∆
X and Px,n∆

Z(∆) the laws of (Xt)t∈[0,∆n] and (Z
(∆)
t )t∈[0,n∆], respectively, under Px.

Proposition 18 Suppose that U ∈ C1(Rd) has an L-Lipschitz continuous and bounded
gradient that satisfies (U (q)) for some q ∈ (0, 1).

(i) For any ∆ ∈ (0, 1] and initial distribution ν such that Vq ∈ L1(ν), it holds for any
n ∈ N,∥∥Pν

(
ϑ(∆)
n ∈ ·

)
− π

∥∥
TV
≤ Cν(Vq) exp

(
− (ι′′n∆)(1−q)/(1+q)

)
+

√
(1 + ‖‖∇U(·)‖2∞‖∞)dL2n∆2

2
,

(44)

for some constant C > 0 and ι′′ ∈ (0, ι(1+q)/(1−q)(1 + q)(r − ι(1 − q))) for some
ι < r/(1− q).

(ii) Let η1, η2, η3 ≥ 0, f ∈ G(η1,L) ∩ W2,p
loc (Rd), p ≥ d, with ∇f ∈ L2d

loc(Rd) such that
‖∇f(x)‖ . 1 + ‖x‖η2 and for all i, j = 1, . . . , d, |∂xi,xjf(x)| . 1 + ‖x‖η3. Let also
C, ι′′, α, γ̃, ς̃ = ς̃(η1, q, 0), % = %(α, η2, γ̃, q) be the constants from Corollary 12, adapted
to the specific parameters of the Langevin diffusion. Then, for ∆ satisfying both
∆ < min{1, ε/(3eD), (log(1/δ))ς̃−%} and

∆ ≤ (δε)2

2(1 + ‖‖∇U(·)‖∞‖∞)dL2
(
(log(4/δ))2ς̃ + ε2

(
2 + (log(4C/δ))(1+q)/(1−q)/ι′′

)) ,
sample size

n = n(∆, ε, δ) =
⌈
Ψ(∆, ε, δ/4)

⌉
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and burn-in
m = m(∆, ε, δ) =

⌈
∆−1(log(4C/δ))(1+q)/(1−q)/ι′′

⌉
,

it holds for any initial distribution ν such that Vq ∈ L1(ν) that

Pν
(∣∣Hϑ(∆)

m,n,∆(f)− π(f)
∣∣ ≤ ε) ≥ 1− δ.

Proof As in the proof of Lemma 2 in Dalalyan (2017), see also Dalalyan and Tsybakov
(2012), using L-Lipschitz continuity of ∇U and Girsanov’s theorem, it follows that the
Kullback–Leibler divergence of Px,n∆

X wrt Px,n∆

Z(∆) fulfills

KL
(
Px,n∆
X

∥∥Px,n∆

Z(∆)

)
≤ L2∆3

12

n−1∑
k=0

Ex
[∥∥∇U(Z

(∆)
k∆ )

∥∥2]
+
dL2n∆2

4
.

Thus, using ‖‖∇U(·)‖‖∞ ≤
√
d‖‖∇U(·)‖∞‖∞ and Pinsker’s inequality, it follows∥∥Px(Xn∆ ∈ ·)−Px

(
ϑ(∆)
n ∈ ·

)∥∥
TV
≤
∥∥Px,n∆

X − Px,n∆

Z(∆)

∥∥
TV
≤
√

(1 + ‖‖∇U(·)‖2∞‖∞)dL2n∆2

2
.

(45)
By triangle inequality, subexponential convergence in (5) with the parameters adapted to
the Langevin diffusion and (45), we immediately obtain (44). Moreover, for ∆ given as in
part (ii), the choice n = n(∆, ε, δ) and m = m(∆, ε, δ), if we define

gε((xt)t∈[0,(n+m)∆]) = 1(ε,∞)

(∣∣∣ 1
n

n+m∑
k=m+1

(f(xk∆)− π(f))
∣∣∣),

for a path (xt)t∈[0,(n+m)∆] ∈ C([0, (n+m)∆],Rd), it follows from (45) that

|Pν(|Hm,n,∆(f)− π(f)| > ε)−Pν(|Hϑ(∆)

n,m,∆(f)− π(f)| > ε)|

=
∣∣Eν[gε((Xt)t∈[0,(n+m)∆]

)]
− Eν

[
gε
(
(Z

(∆)
t )t∈[0,(n+m)∆]

)]∣∣
≤
∫
Rd

∥∥Px,(n+m)∆
X − Px,(n+m)∆

Z(∆)

∥∥
TV

ν(dx)

≤
√

(1 + ‖‖∇U(·)‖2∞‖∞)dL2(n+m)∆2

2

≤
(

(1 + ‖‖∇U(·)‖2∞‖∞)dL2∆

2

(
2 +

(log(4/δ))2ς̃

ε2
+ (log(4C/δ))(1+q)/(1−q)/ι′′

))1/2

≤ δ/2.

Statement (ii) now follows from Corollary 12 and triangle inequality.

The above result gives lower bounds on the required step length, sample size and burn-in
for an ε-precise integral approximation of π(f) with probability at least 1−δ for polynomially
bounded f with polynomially bounded weak derivative and Hessian. These are summarized
in Table 1. An obvious application of this result are explicit finite sample guarantees for
MCMC moment approximations of the target π.
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step length ∆ sample size n burn-in m

ε-prec. sampling ε2

d(log(C/ε))(1+q)/(1−q))
d(log(C/ε))2(1+q)/(1−q)

ε2
−

(ε, δ)-PAC bound (δε)2

d(log(1/δ))2(η1+(q+3)/2)/(1−q)
dD2(log(1/δ))(4(η1+(q+3)/2))/(1−q)

δ2ε4
d(log(1/δ))2(η1+q+2)/(1−q)

(δε)2

Table 1: Order of sufficient sampling frequency ∆, sample size n and burn-in m for (ε, δ)-
PAC bounds and sampling within ε-TV margin

Remark 19 It should be noted that the exact dimensional dependence of D is not clear,
which, similarly to the previous section, is an effect of unspecified constants in the ergodicity
and Sobolev bounds used for the derivation of the concentration inequalities. Overcoming this
issue is highly non-trivial and subject of ongoing research efforts. In contrast, the convex,
respectively strongly convex, settings in Durmus and Moulines (2017); Dalalyan (2017) give
rise to Poincaré, respectively log-Sobolev, inequalities with explicit constants such that the
investigated required number of iterations for sampling within an ε-margin in total variation
can be made explicit in terms of the dimension in these papers. According to the above,
the simulation grid should be significantly finer and the sample size significantly larger to
obtain exact PAC-guarantees compared to the case when one would just be interested in
sampling with ε-precision in total variation. Here, the dependence on the level ε is a natural
correspondence to the sample sizes (and hence necessary number of gradient evaluations)
found in Dalalyan (2017); Durmus and Moulines (2017).

Our results yield explicit and useful guarantees for a sampling scenario that is quite
different from what is usually encountered in the theoretical MCMC literature. Still, we
expect that the dependence of (∆, n,m) on δ for the PAC bounds can be improved in
the sense that the δ2-dependency is likely too strict. Its occurrence is explained by our
strategy to control the total variation distance between the law of the Langevin diffusion
X and its numerical approximation Z(∆) in terms of their KL-divergence using Pinsker’s
inequality. This leads to a suboptimal bound on the total variation distance, causing the
additional dependence on δ2. We are not aware of any other approaches in the MCMC
literature to control this loss on the path level. This issue can be possibly circumvented by
deriving concentration inequalities for Hϑ(∆)

m,n,∆(f) around its mean directly and lift these to

concentration inequalities of Hϑ(∆)

m,n,∆(f) around the target π(f) by establishing appropriate
bias estimates. This is the strategy pursued in (Durmus and Moulines, 2015, Proposition
18)—an earlier preprint version of Durmus and Moulines (2017)—where the authors infer
a sufficient sample size n ∼ d log(1/δ)/ε4 and sampling frequency ∆ ∼ ε2/d for the ULA
MC estimator of the integral π(f) for a strictly log-concave density (in particular, q = −1)
and bounded f . Since we focus on applications that can be treated with our theoretical
results from Section 3.2, we do not push further the issue of improving our bounds in the
setting of a heavy-tailed target π and unbounded integrands f . Instead, we leave it open
as an interesting question for future research.
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Appendix A. Remaining proofs

Proof [Proof of Proposition 1] By (Douc et al., 2009, Proposition 1), every compact set
is petite and any skeleton chain is irreducible. Moreover, if we let V ∈ C2(Rd) such that
V = ‖x‖γ for ‖x‖ ≥M0 and V ≥ 1, and we can show that LV is locally bounded and

LV (x) . −φ ◦ V (x)(1 + o(1)), ‖x‖ ≥M0, (46)

for φ(x) = rγx(γ−(1+q))/γ which is increasing, differentiable and concave on (0,∞), it
will follow from (Douc et al., 2009, Theorem 3.4) that, for any ε ∈ (0, 1), the condition
D(Cε, V, φε, aε) is satisfied for φε = (1 − ε)φ, Cε = B(0,Mε) for Mε ≥ M0 large enough
and aε = sup‖x‖≤Mε

|LV (x) + φε ◦ V (x)|. This then implies the result using Theorem 3.2
and Proposition 4.6 from Douc et al. (2009). (Note that in the notation of Douc et al.
(2009), f∗ = φε ◦ V ∼ fγ,q, H

−1
φε

(t) = (1 + (1 + q)(1 − ε)t/γ)γ/(1+q) for q ∈ (−1, 1) and

H−1
φε

(t) = exp(−rγ(1− ε)t) for q = −1, hence r∗(t) = φε ◦H−1
φε

(t) ∼ rγ,q(t).) Since b, σ are
locally bounded and L is a local operator, it is immediate that LV is locally bounded as
well. Further, for ‖x‖ ≥M0, (A (q)) implies

〈b(x),∇V (x)〉 = γ‖x‖γ−1〈b(x), x/‖x‖〉 ≤ −rγ‖x‖γ−1−q = −φ ◦ V (x),

and the assumptions on the diffusion matrix yield

|tr
(
a(x)D2V (x)

)
| =

∣∣∣ d∑
i,j=1

ai,j(x)
(
1{i=j}γ‖x‖γ−2 + γ(γ − 2)xixj‖x‖γ−4

)∣∣∣
≤ (Λγd+ γ|γ − 2|λ+)‖x‖γ−2 = o(φ ◦ V (x)).

This gives (46) and therefore the result.

Proof [Proof of Proposition 17] Let P (∆)(x,B) = Px(ϑ
(∆)
n ∈ B), (x,B) ∈ Rd × B(Rd), be

the transition kernel of the Markov chain ϑ(∆). Since P (∆)(x, ·) = N (x − h∇U(x), 2hId),
it follows from classical Meyn–Tweedie arguments (cf. (Hansen, 2003, Theorem 3.1) for
the precise statement) that P (∆) is an aperiodic and λ-irreducible Markov kernel and that
all compact sets are small and hence petite. Let Φ(x) = x − ∆∇U(x) such that we may

write ϑ
(∆)
n+1 = Φ(ϑ

(∆)
n ) +

√
2∆ξn+1. By our assumptions on the gradient ∇U , we can choose

M ≥M0 ∨M1 ∨ 1 large enough such that, for ‖x‖ ≥M , we have

‖Φ(x)‖2 = ‖x‖2 − 2∆〈x,∇U(x)〉+ ∆2‖∇U(x)‖2

≤ ‖x‖2 − 2∆r‖x‖1−q + ∆2‖x‖2β

≤ ‖x‖2
(
1−∆r‖x‖−(1+q)

)
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≤
(
‖x‖
(
1− r∆

2 ‖x‖
−(1+q)

))2
.

Hence, Assumption 3.4 from Douc et al. (2004) is fulfilled with R0 = M,ρ = 1+q, r = r∆/2.
Moreover, since the noise (ξn)n∈N is i.i.d. Gaussian, Assumption 3.3 from Douc et al. (2004)
is satisfied for any z0 > 0 and γ0 = 1. It thus follows from (Douc et al., 2004, Theorem
3.3) that their central drift condition D(φ, V, C) holds for φ(v) = cv(1 + log v)−2q/(1−q),

V (x) = ez‖x‖
1−q

and the compact set C = B(0, M̃), for some c, z > 0 and M̃ ≥ M . Con-
sequently, for Hφ(t) =

∫ t
1 1/φ(v) dv, we have rq ∼ φ ◦H−1

φ and fq ∼ φ ◦ V for appropriate

choices of the constants c(q,∆), c̃(q,∆). Since P (∆) is irreducible and aperiodic and C is
petite, we can now apply (Douc et al., 2004, Theorem 2.8) to prove the claim.
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