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Abstract

Algorithms involving Gaussian processes or determinantal point processes typically require
computing the determinant of a kernel matrix. Frequently, the latter is computed from the
Cholesky decomposition, an algorithm of cubic complexity in the size of the matrix. We
show that, under mild assumptions, it is possible to estimate the determinant from only a
sub-matrix, with probabilistic guarantee on the relative error. We present an augmentation
of the Cholesky decomposition that stops under certain conditions before processing the
whole matrix. Experiments demonstrate that this can save a considerable amount of time
while rarely exceeding an overhead of more than 5% when not stopping early. More generally,
we present a probabilistic stopping strategy for the approximation of a sum of known length
where addends are revealed sequentially. We do not assume independence between addends,
only that they are bounded from below and decrease in conditional expectation.

Keywords: Gaussian Processes, Optimal Stopping, Kernel Methods, Kriging
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Eq. (8)

1. Introduction

Gaussian processes are a popular probabilistic model in the machine learning community,
and a core element of many other methods such as Bayesian optimization (Močkus, 1975),
Bayesian quadrature (Diaconis, 1988), probabilistic numerics (Hennig et al., 2015) or the
Automatic Statistician (Steinruecken et al., 2019). Typically, inference with a Gaussian
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Figure 1: Estimating the log-determinant of a kernel matrix (Section 3). While sequentially
processing the dataset, our approach is to monitor upper and lower bounds on the
log-determinant, and to stop the computation when they are sufficiently close. In
this example, less than half of the dataset is sufficient for the estimate to be within
one order of magnitude (10% relative error) of the exact solution. Main strength
of our approach: unprocessed datapoints remain untouched—we achieve sub-linear
complexity. This speed-gain is obtained in exchange for a certain, controllable
failure probability of the bounds, assuming that datapoints are i.i.d.

process requires the computation of a Cholesky decomposition of a kernel matrix. For most
datasets, this is computationally feasible despite the cubic worst-case complexity of the
Cholesky decomposition in the number of samples. Nevertheless, when this computation
has to performed often, e.g., to optimize kernel parameters, the computational cost of this
decomposition becomes paramount.

When a kernel’s parameters do not fit well with the data, our observation is that the
log-determinant of the kernel matrix can often be predicted from a subset. This situation
frequently occurs in particular at the beginning of the kernel-parameter optimization process.
In the following, we will demonstrate that it is possible (i) to recognize this situation while
computing the Cholesky decomposition, and (ii) to stop the computation prematurely, which
can save a considerable amount of time. When we are not in a situation that justifies
stopping the computation early, we propose to simply continue the computation of the
log-determinant until the end. Thus the additional computational cost of our method is just
that of keeping track of some simple numerical indicators. The main benefit of our method
is that it provides an “almost-free lunch” since the overhead when not stopping early
is relatively small (on average less than five percent). To make this idea practical, we
modified the OpenBLAS (Wang et al., 2013) implementation and made our code1 available.

More generally, we will see that our optional stopping strategy can be used to estimate
a sum of random variables that are decreasing in expectation. In this general setting, we

1. https://github.com/SimonBartels/pac_kernel_matrix_determinant_estimation
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prove that our stopped Cholesky decomposition returns an estimate of a desired relative
error r with respect to the full computation, with probability 1− δ, where δ is a user-defined
probability threshold. Under the assumption that the dataset inputs are independent and
identically distributed, the probability threshold δ refers to the distribution of the inputs.
For a given level of accuracy that is satisfactory for the problem at hand, the user can then
pick a level of confidence in the result and obtain a gain in computational cost with provable
guarantees. The level of confidence is the only parameter of our method.

2. Problem Setup, Related Work and Background

2.1 Problem setup

Given a σ2 ∈ R+, a set of inputs x1, . . . ,xN ∈ X and a kernel function k : X× X→ R, we
define the kernel matrix A := KN + σ2IN , where

KN :=


k(x1,x1) k(x1,x2) . . . k(x1,xN )

k(x2,x1) k(x2,x2)
...

...
. . .

k(xN ,x1) . . . k(xN ,xN )

 .
The main focus of this article is the efficient computation of log det (A), which is typically
achieved via Cholesky decomposition of A, if N is not too large. That is, find the unique,
lower triangular matrix L ∈ RN×N satisfying LLᵀ = A. Given the Cholesky decomposition
of A, one subsequently computes the log-determinant using the formula

log det (A) = 2
N∑
n=1

logLnn .

2.2 Related work

Approximation methods for the log-determinant have been studied extensively—often the
more general case of symmetric and positive definite matrices (Skilling, 1989; Seeger, 2000;
Dorn and Enßlin, 2015; Ubaru et al., 2017; Fitzsimons et al., 2017a,b; Saibaba et al., 2017;
Boutsidis et al., 2017; Dong et al., 2017; Gardner et al., 2018). All of the aforementioned
methods are conceptually similar in that they rely on stochastic trace estimators: the kernel
matrix is multiplied with random (probe) vectors and the inner products of the results are
used to construct an estimate for the log-determinant. The theoretical performance analysis
of these methods often requires knowledge or an upper bound on expensive-to-compute
quantities such as the largest eigenvalue, the condition number or eigenvalue gaps of A
(Ubaru et al., 2017; Boutsidis et al., 2017; Saibaba et al., 2017; Gardner et al., 2018). An
advantage of our approach is that we only require knowledge of the largest diagonal entry
on A and a lower bound on the smallest eigenvalue which is given by σ2.

Most related to our work are Ubaru et al. (2017); Boutsidis et al. (2017); Gardner et al.
(2018) in the sense that for a desired relative error and confidence, they prove how to set the
parameters of their algorithms accordingly. Though, a noteworthy distinction to our work is
the choice of the probability measure which the desired confidence refers to. In our case,

3



Bartels, Boomsma, Frellsen and Garreau

this probability measure is the law of the inputs xi. For the stochastic trace estimators the
confidence refers to the source of randomness of the probe vectors. For the problems we
consider in our experiments in Section 5, none of the theorems by Boutsidis et al. (2017);
Ubaru et al. (2017); Gardner et al. (2018) that guarantee relative error are applicable.
Lemma 8 by Boutsidis et al. (2017) assumes that all eigenvalues are bounded from above
by 1. This assumption can be established by dividing A by trace[A], but this would no
longer provide a relative approximation error guarantee on log det (A). Theorem 4.1 by
Ubaru et al. (2017) is not applicable, since the log of the eigenvalues of the kernel matrix
can be of different sign. Theorem 2 by Gardner et al. (2018) is a consequence of Theorem 4.1
by Ubaru et al. (2017) and therefore also not applicable. Gardner et al. (2018) recommend
certain default parameter values, though we observed experimentally that this configuration
yields estimates whose relative errors are more often than not worse than 0.1 and may vary
over two orders of magnitude (see Fig. 12 in Appendix E). We therefore did not compare
our approach to their method. To nevertheless allow the reader to assess the difficulty of
the numerical problems considered in Section 5, we compare our method to the pivoted
Cholesky decomposition of Harbrecht et al. (2012) (see Section 5.3).

Most related to our Theorem 2 is the work by Mnih et al. (2008) and references therein.
They propose an algorithm called EBStop that returns an estimate of the mean of a sum of
i.i.d. random variables. Theorem 2 is more general and assumes only a (non-strict) decrease
in conditional expectation. Their approach is in a sense more sophisticated as they also
monitor the empirical variance of the addends, which is also an interesting future direction
for our approach.

2.3 Cholesky decomposition

In the following, we will focus on an implementation of the Cholesky decomposition that
proceeds row-wise over the elements of the matrix, Algorithm 1. As opposed to a column-wise
or submatrix implementation, the number of floating operations increases with each iteration
of the outer loop (George et al., 1986). Hence, this version can benefit the most from early
stopping. Algorithm 1 is useful to express and motivate our idea. To exploit blocking and
parallel computation resources requires some modifications which we describe in Appendix A.
Note that computing Ljj requires access only to the first x1, . . . ,xj datapoints.

3. Stopped Cholesky Decomposition

This section is a high-level description of our algorithm. The formal proof of our claims is
deferred to Section 4 and the supplementary material. The main idea of the algorithm is the
following: each time a new diagonal element of the Cholesky decomposition is computed,
we compute an upper bound and a lower bound of log det (A). If the two bounds are
sufficiently close to each other and sufficiently far away from zero, a certain relative error
can be guaranteed. We first introduce the bounds used by our algorithm, and then define
more precisely what we mean by “close.”

Denote by n the number of diagonal elements that have been computed so far. Define
Dn := 2

∑n
j=1 logLjj which is the log-determinant of the principal sub-matrix of A up to

index n and observe that log det (A) = DN = Dn + 2
∑N

j=n+1 logLjj for any n. We will use
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Algorithm 1 Augmented row-wise Cholesky decomposition with optional stopping.
Highlighted are our modifications to the original algorithm. See Algorithm 3 on page 19
for a practical implementation.

Input A: matrix for which to compute the log-determinant
Input N : matrix size
Input r : desired relative error

Input δ : desired confidence

Input σ2 : lower bound on minj Ajj

Input C+ : upper bound on log (maxj Ajj)

1: D^ 0, cδ ^(C+ − log(σ2))H−1N (δ/2) constant described in Section 3

2: for j = 1, . . . , N do
3: for i = 1, . . . , j − 1 do
4: for k = 1, . . . , j − 1 do
5: Aij ^Aij −AikAjk

6: end for
7: Aij ^Aij/Ajj now Aij = Lij
8: end for
9: for k = 1, . . . , j − 1 do

10: Ajj ^Ajj −AjkAjk

11: end for
12: Ajj ^

√
Ajj now Ajj = Ljj

13: D^D + 2 · log(Ajj) track log-determinant of the submatrix up to index n

14: D̂^ EvaluateConditionsAndEstimator(r,N, n,D, σ2, C+, cδ)

15: if D̂ 6= 0 then

16: return D̂ bounds are close enough, return estimate for log-determinant
17: end if
18: end for
19: return D Now the lower-triangular part of A contains L.
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in the following that for kernel matrices, one can write (Lemma 5)

L2
nn = k(xn,xn) + σ2 − kᵀ

n(Kn−1 + σ2In−1)
−1
kn , (1)

where kᵀ
n := [k(xn,x1), . . . , k(xn,xn−1)]ᵀ ∈ Rn−1, that is: the diagonal elements of the

Cholesky, squared, correspond to the posterior variance of a Gaussian process given observa-
tions disturbed by Gaussian noise (see Rasmussen and Williams (2006, p. 16)).

Our lower bound Ln is deterministic. It is simply the sum of log of the elements computed
so far plus a linear extrapolation in σ2. That is,

Ln := Dn + (N − n) log σ2 ,

which uses that Eq. (1) is bounded from below by σ2.
On the other hand, the upper bound is probabilistic. We show in Section 4 how we

can achieve the control of the failure probability. The key observation is that the diagonal
elements of the Cholesky decrease in (conditional) expectation, under the assumption
that x1, . . . ,xN are independent and identically distributed. (This assumption is not always
fulfilled, e.g. when the inputs are sorted. However, in practice, the assumption can be
considered established, after a random shuffle of the dataset.) With increasing n, this
variance can only decrease (see Rasmussen and Williams (2006, Question 2.9.4) or the proof
of Theorem 7). Thus, the mean of all Lnn is likely to be an overestimate of the expected
value of Ln+1,n+1. Therefore, we use as an upper bound, the sum of the elements computed
so far, plus a linear extrapolation of their mean:

U ′n := Dn + (N − n)
Dn + cδ

n
+ cδ ,

where cδ := (log(σ2 +maxj∈{1,...,N} k(xj ,xj))− log σ2)H−1N (δ/2) and HN (δ) is defined later in

Eq. (9). We defer the motivation of cδ to Section 4. The constant H−1N (δ) can be found with
negligible overhead, for example using the SciPy method minimize scalar(F, bounds=[0,
1], method=’bounded’) where F (x) = (HN (x)−HN (δ))2.

A deterministic upper bound to log det (A) is

U ′′n := Dn + (N − n) log

(
σ2 + max

j∈{1,...,N}
k(xj ,xj)

)
which is a consequence of Lemma 6. To make sure that our bound is never worse than this
deterministic bound we set

Un := min(U ′n,U ′′n) . (2)

Fig. 1 shows a visualization of our bounds using an RBF kernel (Eq. (13) with θ = 1 and
` = exp(−1)) for ten random permutation of the TAMILNADU dataset (see Table 1).

Now we are nearly ready to write our algorithm. The only missing piece is to decide
whether Un and Ln are close enough. Suppose we believe that log det (A) ∈ [Ln,Un], then
D̂n := 1

2(Un + Ln) is a natural estimate. We will show (Lemma 15) that it is possible to
guarantee the relative error ∣∣∣∣∣ log det (A)− D̂n

log det (A)

∣∣∣∣∣ ≤ r , (3)
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when log det (A) cannot be zero, and

Un − Ln
2 min(|Un| , |Ln|)

≤ r. (4)

To exclude log det (A) = 0, we check in addition that

sign(Ln) = sign(Un) 6= 0 . (5)

Algorithm 2 describes above elaborations in pseudo code. Algorithm 1 shows our modifica-
tions to a Cholesky decomposition algorithm with new statements highlighted. Importantly,
the computation of the bounds and checks are inexpensive in comparison to an outer-loop
iteration of the Cholesky decomposition. Figs. 2 and 3 show the left-hand side of Eq. (4)
for two examples. Note that when X is bounded and the kernel is differentiable, with a
sufficient amount of data, the upper bound gets arbitrarily close to the lower bound.

Algorithm 2 EvaluateConditionsAndEstimator. At a given step, this routine computes
the lower and upper bounds, and proceeds to check if they are close enough.

Input r: desired relative error
Input N : matrix size
Input n: size of the processed subset
Input Dn: sum of the log diagonal elements up to index n
Input σ2: lower bound on minj Ajj

Input C+: upper bound on log (maxj Ajj)
Input cδ = H−1N (δ/2)(C+ − log(σ2)): constant described in Section 3

1: Ln ^Dn + (N − n) log σ2 lower bound estimate
2: Un ^ min(Dn + (N − n)Dn+cδn + cδ, Dn + (N − n)C+ upper bound estimate
3: if sign(Un) = sign(Ln) 6= 0 and Un − Ln < 2rmin(|Un| , |Ln|) then
4: return 1

2(Un + Ln) bounds are close enough, return estimate
5: end if
6: return 0 bounds are not close enough

4. Theoretical Justification

We now turn to the theoretical analysis of our algorithm. Our main goal in this section is
to explain how the expressions of the lower and upper bounds are obtained. Note that we
consider, in fact, a more general problem: stopping the computation of a sum of random
variables that decrease in expectation. To the best of our knowledge, this is the first result
obtained in this setting, where the addends are not independent and identically distributed
(the xi are not the addends). Theorem 2 states that the stopping condition described in
the following is a solution to this problem, and Theorem 4 states that Theorem 2 can be
applied to estimate determinants of kernel matrices.
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Figure 2: An early stopping scenario. We compute the log-determinant of a kernel matrix
using the RBF kernel (with θ = 1, ` = exp(−1) in Eq. (13)) for ten random
permutations of the TAMILNADU dataset (see Table 1) using our algorithm ( )
and Cholesky decomposition with pivoting ( , see Section 5.3).
The y-axis represents the relative error each algorithm can guarantee for (left
panel) number of (fully) processed datapoints or (right panel) a given computation
time. Even for such a short length-scale ` and a desired relative error r = 0.1, our
algorithm touches only half the dataset before stopping with a confidence of 90%
(δ = 0.1) with respect to the data distribution.
Left panel: the solid, green lines show the relative error our algorithm can
guarantee. At the same time these lines display our stopping condition Eq. (4).
The variance between repetitions is so small such that only one line is visible to
the eye. The horizontal lines ( ) mark the mean relative error corresponding to
an absolute approximation error on the diagonal elements (denoted with d, see
Eq. (15)) which is the pivoted Cholesky’s stopping criterion. The singularity in
the beginning of the stopping condition stems from the denominator crossing 0
which demonstrates the necessity of the second stopping condition Eq. (5). The
reason for the slope changes are switches from the deterministic bound U ′′n to U ′n
and back in Eq. (2).
Right panel: for each repetition, fraction of both algorithm’s CPU time over the
mean time of the default Cholesky. Since S steps of the approximate Cholesky
with pivoting cost O(NS2) operations, it stops earlier in the left panel, but our
algorithm ( ) scaling as O(S3) is faster in practice.
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probabilistic pivoting diagonal precision 5% overhead
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Figure 3: A disadvantageous scenario. We compute the log-determinant of a kernel matrix
using the OU kernel (θ = 1, ` = exp(1) in Eq. (14)) on the BANK dataset for ten
random permutations.
Left panel: same setup as in Fig. 2. On this dataset, even using a long length-
scale, requires processing more than 90% of the data to achieve a relative error r
of at least 0.1.
Right panel: same setup as in Fig. 2. When our algorithm is not stopping early,
that is, it returns the result of the default Cholesky, the overhead is on average
less than 5%. The Cholesky with pivoting on the other hand may require more
than 150% of the time of the default Cholesky. The extreme difference in absolute
runtime between this figure and Fig. 2 is investigated in Section 5.5.
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4.1 Notation

Since we are considering an optional stopping problem, we use the terminology of stochastic
processes. This section is a quick reminder of the most important concepts, we refer to
Grimmett and Stirzaker (2001), and Davidson (1994) for a more thorough introduction. For a
monotonically increasing function f : R→ R and δ ∈ R, define f−1(δ) := arg supε∈R{f(ε) ≤
δ}. A filtration is a sequence (Fj)j∈N of increasing σ-algebras, i.e., Fj ⊆ Fj+1 for all j ∈ N.
For random variables X1, . . . , XN , we denote by σ(X1, . . . , XN ) the σ-algebra generated by
(X1, . . . , XN ). A sequence of random variables (Xj)j∈N is called adapted to a filtration, if
Xj is Fj-measurable for all j ∈ N. A random variable τ is called a stopping time (w.r.t. a
filtration), if it takes values in N and {τ = j} ∈ Fj for all j ∈ N.

4.2 Problem Setting

Let (Ω,F ,P) be a probability space and (Fj)j∈{1,...,N} be a filtration. Furthermore, let
(fj)j∈{1,...,N} ∈ [C−, C+] be a sequence of random variables such that for j ∈ {1, . . . , N −1} :
fj is Fj-measurable and the conditional expectation is decreasing, formally:

E[fj+1 | Fj ] ≤ E[fj | Fj−1] , (∗)

with F0 := {∅,R}. For this sequence, we want to estimate its sum

DN :=
N∑
j=1

fj .

Given a desired upper bound on the relative error r ∈ (0, 1) and a probability of failure
δ ∈ (0, 1), our goal is to device a strategy that, being presented sequentially with the
f1, f2, . . ., decides in each step whether to continue or to stop, and if stopping, provides an
estimator D̂τ , such that its relative error is less than r with probability 1− δ. Formally, the
goal is to device a stopping time τ and an estimator D̂τ , such that,

P

(∣∣∣∣∣DN − D̂τ

DN

∣∣∣∣∣ > r

)
≤ δ .

Remark 1 A trivial solution is to define τ := N and D̂τ := DN , which simply consists in
doing the whole computation.

4.3 Stopping Condition

We now define precisely the quantities introduced in Section 3: the lower bounds Ln and
the upper bounds Un. Recall that the lower bounds Ln are deterministic, whereas DN ≤ Un
holds only with a certain probability. The stopping time τ will monitor these bounds and
stop if they are large in magnitude (away from zero) and close enough that the relative error
cannot exceed the desired tolerance r ∈ (0, 1).

As in Section 3, set

Ln := Dn + (N − n)C−, (6)

10
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Figure 4: Visualization of the function HN from Eq. (9). With growing dataset size N , the
error guarding constant cδ grows too, yet at a lower rate. For our experiments in
Section 5, we consider datasets of roughly 50000 datapoints and a failure tolerance
of δ := 0.1/2, which corresponds to a constant of approximately 547.3.

Un := Dn + min

(
cδ + (N − n)

Dn + cδ
n

, (N − n)C+

)
, (7)

D̂n :=
1

2
(Ln + Un), (8)

where cδ := (C+ − C−)HN
−1(δ/2) and

HN (x) := 1{x≤N}

√(
N

N + x

)N+x( N

N − x

)N−x
. (9)

The function HN is derived from a theorem by Fan et al. (2012) which our proofs rely on.
Fig. 4 shows visualizations of that function.

Finally, we define the stopping time as

τ = min{N} ∪
{
n < N s.t. Csn and Cpn hold

}
, (10)

where Csn is the sign condition

Csn true if sign(Un) = sign(Ln) 6= 0 , (11)

and Cpn is the relative error condition

Cpn true if
Un − Ln

2 min(|Un| , |Ln|)
≤ r . (12)

Note that the quantities in the stopping conditions are all Fn-measurable, thus τ is indeed a
stopping time. We can now state our main result.

Theorem 2 Assume that DN is a sum of random variables decreasing conditionally in
expectation as in Section 4.2. Then, for any r, δ ∈ (0, 1), the relative error of the estimator
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D̂τ defined by Eqs. (6), (7) and (10) to (12) is bounded by r with probability at least 1− δ,
formally:

P

(∣∣∣∣∣DN − D̂τ

DN

∣∣∣∣∣ > r

)
≤ δ .

Intuitively, Theorem 2 guarantees that stopping early in the computation makes sense for
any given r and δ. The less precision is required (corresponding to larger r) the easier the
second stopping condition in Eq. (12) can be satisfied. The less confidence is necessary
(corresponding to larger δ), the smaller the term cδ in Eq. (7), which also increases chances
to satisfy Eq. (12) earlier. On the other hand, when r = 0, Eq. (7) can only be true, if
upper and lower bounds coincide. The latter can only be the case if cδ = 0 (requires δ = 2)
and Dn = nC−. This means: if we were to desire absolute precision, the theorem would
recommend to compute the full sum.

The proof of Theorem 2, and the proof the following lemma are part of the supplementary
material. Let us give a sketch of the proof. The design of the stopping condition is based on
the following Lemma 3.

Lemma 3 Let D ∈ [L,U ], and assume sign(L) = sign(U) 6= 0. Then

|D − (U + L)/2|
|D| ≤ U − L

2 min(|L| , |U|) .

The proof of Theorem 2 first bounds P
(∣∣∣DN−D̂τDN

∣∣∣ > r
)

by P
(∣∣∣DN−D̂τDN

∣∣∣ > r,DN ≤ Uτ
)

+

P (DN > Uτ ). By using Lemma 3 and the stopping conditions, we can show that the
probability of the left addend is 0. Finally, we bound P (DN > Uτ ) by applying Fan et al.
(2012)’s Hoeffding’s inequality for martingales twice. Once, to show that DN is probably
not much larger than its expected value, and a second time, to show that Uτ is probably not
much smaller.

4.4 Application to Kernel-Matrix Determinant Estimation

We now specialize Theorem 2 to the situation at hand.

Theorem 4 Assume x1, . . . ,xN ∈ X are independent and identically distributed. Denote
with P the law of the x1, . . . ,xN and with C the Cholesky decomposition of A. Define the
probability space (X, σ(x1, . . . ,xN ),P) and the canonical filtration Fj := σ(x1, . . . ,xj) for
j = 1, . . . , N . Further, define

fj := 2 logCjj ,

C− := log σ2 ,

and assume there exists a constant C+ such that

max
j=1,...,N

log(k(xj ,xj) + σ2) ≤ C+ almost surely. .

12
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Then, using the definitions of Theorem 2,

P


∣∣∣log det (A)− D̂τ

∣∣∣
|log det (A)| > r

 ≤ δ .
As stated before, the i.i.d. assumption is not too stringent. Finding the deterministic

upper bound C+ is also a given in most use-cases, for example when X is bounded, or when
the kernel is normalized or stationary. For instance, C+ = θ in the case of the RBF and OU
kernels in Eqs. (13) and (14) respectively.

The proof of Theorem 4 is part of the supplementary material. Essentially, to apply
Theorem 2 for the estimation of kernel-matrix determinants, one has to show that the
summands are decreasing in expectation. As stated before, the key observation is that the
diagonal elements of the Cholesky correspond to the posterior variance of a Gaussian process
given observations disturbed by independent Gaussian noise. With each observation, the
posterior variance can only decrease, which in turn allows to show that the diagonal elements
of the Cholesky decrease conditionally in expectation.

5. Experiments

5.1 Intuition on the stopping strategy

One application of our implementation is to probe bad kernel parameters quickly. For
example, consider the case of a kernel matrix generated from a radial basis function (RBF)
kernel

kRBF (x, z) := θ exp

(
−‖x− z‖2

2`2

)
(13)

with a lengthscale ` far too large with respect to the data. In that case, the diagonal
elements of the Cholesky then come quickly close to σ2, which implies that upper and lower
bounds become close enough to stop the computation earlier. We examine this hypothesis
for the RBF on different datasets increasing the length scale exponentially. Furthermore,
to also explore the limitations of our approach, we run the same experiments for the
Ornstein-Uhlenbeck (OU) kernel

kOU (x, z) := θ exp

(
−‖x− z‖

`

)
. (14)

Both kernels are (in the limit) members of the Matérn class of covariance functions (Ras-
mussen and Williams, 2006, p. 85). Whereas samples from a Gaussian process with RBF
covariance are the smoothest in this class, samples from the OU are the roughest. It is
therefore not a surprise that our approach is less successful when using the OU kernel.
Hence, one advantage of our approach is that one can qualitatively distinguish settings in
which stopping occurs earlier or later. Furthermore, the overhead compared to the exact
computation is negligible when not stopping.

The other parameters, σ2 and θ, influence stopping primarily via the error guarding
constant cδ ∝ log(σ2 + θ) − log σ2 in Eq. (7) (see Theorem 4). A smaller σ2 results in a

13
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Key N D Source & URL

BANK 45211 51 Moro et al. (2014)
Bank+Marketing

METRO 48204 66 no citation request
Metro+Interstate+Traffic+Volume

PM2.5 43824 79 Liang et al. (2015)
Beijing+PM2.5+Data

PROTEIN 45730 9 no citation request
Physicochemical+Properties+of+Protein+Tertiary+

Structure

PUMADYN 8192 32 Snelson and Ghahramani (2006)
www.cs.toronto.edu/~delve/data/pumadyn/desc.html

TAMILNADU2 45781 53 no citation request
Tamilnadu+Electricity+Board+Hourly+Readings

Table 1: Overview over all datasets used for the experiments in Section 5. Key refers to
the title, we gave a dataset in this article. The letter N refers to the number of
instances (training and testing) and D refers to the dimensionality after one-hot
encoding. The URL is a suffix for http://archive.ics.uci.edu/ml/datasets/.
The reference in Source acknowledges a citation request, if any.

smaller deterministic lower-bound Ln and a larger cδ, both factors potentially preventing
early stopping. On the other hand, we will see that a smaller σ2 also implies smaller addends
logLjj , such that the exact log-determinant is further away from zero which allows faster
stopping. In our case, where σ2 = 10−3, θ = 1, δ = 0.1, and dataset size N ≈ 50000, one can
infer with Fig. 4 that cδ is approximately 7 · 600 = 4200 which is negligible in comparison to
the determinants in the following which are of order 107.

5.2 Experiment setup

From the UCI machine learning repository (Dua and Graff, 2019), we took all multivariate
datasets in matrix format with 40000 to 50000 instances without missing values. Furthermore,
we included the frequently used PUMADYN dataset (Snelson and Ghahramani, 2006) as a
small-scale example of only 8000 instances. Categorical variables where one-hot encoded
and each dataset was then standardized. Table 1 provides an overview of all the datasets
that we use.

All large-scale experiments (≥ 40000 datapoints) were executed on machines running
Ubuntu 18.04 with 32 Gigabytes of RAM and two Intel Xeon E5-2670 v2 CPUs. The
experiments for the PUMADYN dataset were run on a laptop running Ubuntu 20.04 with
16 Gigabytes of RAM and an Intel i7-8665U CPU, to demonstrate the usefulness of our
approach on more standard hardware. We remark again that we do not use Algorithm 1 but
Algorithm 3 in Appendix A which is a more practical implementation capable of exploiting
blocking and parallelization.
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5.3 Baseline

As described in Section 2.2, none of the referenced stochastic trace estimators can guarantee
a desired relative error, and they are therefore not included in the following comparison.
The performance for the algorithm by Gardner et al. (2018) is shown in Fig. 12 when using
the RBF kernel. As baseline, we compare against the Cholesky decomposition with full
pivoting (Harbrecht et al., 2012). Denote with Ln the N × n matrix for the intermediate
approximation of the Cholesky decomposition in step n. In each step n, the algorithm keeps
track of the approximation error of all remaining diagonal elements i—that is how much
Kii differs from [LnL

ᵀ
n]ii—and processes the element inducing the most error next. The

algorithm stops when an absolute error tolerance on the diagonal elements, denoted with d,
can be guaranteed, that is when

d ≥ max
i
|Kii − [LnL

ᵀ
n]ii| . (15)

Note that S iterations of the pivoted Cholesky require O(NS2) operations whereas Algo-
rithm 1 scales as O(S3). For this algorithm, we can set3

UPn := Dn +
N∑

j=n+1

log(Kjj − [LnL
ᵀ
n]jj) (16)

and LPn := Ln, and apply the same stopping strategy which allows to compare this algorithm
with our proposed approach. In the next paragraph, we describe how to compare both
algorithms without modifying the Fortran implementation of the Cholesky with pivoting.

5.4 Parameters and performance metric

We set σ2 := 0.001 and θ := 1, and increased the lengthscale as ` := exp(i) for i =
−1, . . . , 3. In the appendix we report results where we set ` := 1 and θ := 1, and vary
the observation noise as σ2 := exp(i) for i = −4, . . . , 0. The Cholesky decomposition with
full pivoting takes as input parameter a desired relative error on the diagonal elements d
(instead of a relative error on the log-determinant, see Eq. (15)). We ran this algorithm
for d ∈ {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. After the pivoted Cholesky stopped, we computed
the relative error on the log-determinant that this algorithm could guarantee in that step.
Then we ran our algorithm trying to achieve the same error for δ = 0.1. Occasionally, the
desired relative error is larger than 1. In that case, D̂N := 0 is an estimator satisfying this
requirement which would allow stopping before even starting. However, we did not check for
this condition, to instead observe when the algorithm would stop in such situations. We
repeated each configuration for ten random permutations of the dataset. We measured the
performance of our method in terms of CPU time t saved over the average CPU time used
for the default Cholesky tdefault:

m :=
t

mean(tdefault)
.

Thus, small values of m are better.

3. One can show that Kjj − [LnL
ᵀ
n]jj is the posterior variance of a GP in xj conditioned on the first n

datapoints. The claim follows from Rasmussen and Williams (2006, Question 2.9.4).
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5.5 Results

As an example, Fig. 5 shows our results for the PM2.5 dataset. For all other datasets, similar
figures (Figs. 6 to 9 and 11) can be found in Appendix E. In all experiments, the returned
estimate of our modified Cholesky decomposition had indeed the desired error.

For the easy cases, our algorithm needs less than 10% of the average time of the default
Cholesky. Here, with easy cases we mean that the relative error can be larger than 0.1
and using an RBF kernel with ` ≥ exp(1) (there is one exception: the BANK dataset and
` = exp(1)). The Cholesky decomposition with pivoting also saves time in these settings, yet
less. The difference between the algorithms becomes more apparent the harder the problem.
Except for three cases, which we will elaborate below, our algorithm needs never longer than
105% of the time of the default Cholesky. In contrast, the Cholesky with pivoting may take
more than twice as long.

In three cases our approach crosses the 105% mark: using an RBF kernel with ` = 1
on PM2.5 and METRO, and ` = exp (1) on METRO. In these scenarios, the kernel matrix
contains many extremely small entries of less than 10−65. Floating-point multiplication is not
a constant-time operation and we observed that a large number of such entries significantly
prolongs the runtime of our experiments. It is the reason why for ` = exp(−1), the run time
for the default Cholesky can take up to ten times longer than for larger length-scales. Our
row-wise implementation of the Cholesky decomposition suffers more from this phenomenon
than the original OpenBLAS version. One can circumvent this problem by eliminating such
small entries or by increasing the block-size in Algorithm 3. However, we deliberately did not
apply these strategies to showcase possible downsides of this implementation. Furthermore,
note that the absolute overhead is less than 30s for these three cases and that the effect
becomes more negligible the longer the absolute running time. Importantly, the additional
run-time does not stem from checking our stopping conditions which can be seen in Fig. 17
where we also compare to the original BLAS implementation endowed with our stopping
condition. The take-away is that the row-wise Cholesky implementation allows higher
speed gains but may sometimes induce more than 5% overhead. In future work, we aim to
investigate middle-grounds between these two Cholesky implementations.

For the experiments where we varied σ2 the results are similar. The plots can be found
in Appendix E.3. The smaller σ2, the further is the exact log-determinant away from zero,
which allows to stop earlier. An additional problem with larger σ2 is that our deterministic
lower bound is too conservative. This can be seen in Appendix E.5 where we show case the
development of the bounds for both experiments. That a better lower bound is conceivable
is demonstrated by Artemev et al. (2021); Bartels et al. (2023).

6. Conclusion

6.1 Summary

We presented a stopping strategy for the Cholesky decomposition that allows to obtain
estimates for the log-determinant of a kernel matrix of desired error r, before completing the
decomposition. The stopping strategy has only one parameter: a failure probability δ. We
showed that the returned estimate indeed has the desired error with probability 1− δ, under
the mild assumptions that the dataset inputs are independent and identically distributed
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probabilistic pivoting default 5% overhead

RBF Eq. (13) OU Eq. (14)
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Figure 5: Relative execution times to compute the log-determinant using RBF (left panel)
and OU (right panel) kernels on the PM2.5 dataset for θ = 1, log ` = −1, . . . , 3
and δ = 0.1 for ten repetitions. The number next to one on the y-axis displays the
absolute execution times of the default Cholesky. The solid, horizontal, orange
line ( ) visualizes the 105% mark. The x-axis displays a desired absolute error
on the diagonal elements d (top) and the average corresponding desired relative
error r (bottom) on the log-determinant. The longer the length-scale, the earlier it
is possible to stop and the higher the speed-up. The speed-up is generally higher
for the RBF than for the OU. Even though the Cholesky decomposition with
pivoting ( ) needs to compute less diagonal elements (see Figs. 2 and 3) compared
with our methods it is slower in practice and may even take more than twice as
long as simply running the default Cholesky decomposition ( ). Our method ( )
on the other hand is faster, and when approximation is hard, the overhead is
negligible. One exception can be seen for the RBF kernel and using a length-scale
of ` = 1. The reason for this exception is described in Section 5.5.
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and a boundedness assumption that is met if the kernel or the domain is bounded. We
demonstrated that there exists settings in which it is possible to save considerable amounts
of time when stopping the Cholesky decomposition before completion. Importantly, when
not stopping early, the induced overhead is less than five percent on average.

As part of their concluding remarks, Chalupka et al. (2013) wrote that

...the results presented above point to the very simple Subset of
Data method (or the Hybrid variant) as being the leading contender.
We hope this will act as a rallying cry to those working on GP approx-
imations to beat this “dumb” method.

In essence, the presented idea makes a virtue of necessity. Algorithm 2 can be viewed as an
estimate for how much data is necessary to identify a kernel model for a particular dataset
distribution. The claim that kernel machines do not scale well with large datasets becomes
brittle, when the overall dataset size matters little.

6.2 Future work

Early stopping for lower error values r, closer to numerical precision would be desirable. One
way to achieve this goal could be to find a less conservative, probabilistic lower bound on the
log determinant. A direction to investigate are concentration inequalities for self-bounding
functions (Boucheron et al., 2013, p. 60). Some concentration inequalities for self-bounding
functions allow to reason about the probability of the function falling below its expectation.
One can show, that the log-determinant of a kernel matrix is such a function (Bartels, 2020,
Lemma 33, p. 94).

In the long run, we hope to lift our experiments to hyper-parameter optimization for
Gaussian processes. For that, our analysis needs to be extended to the term yᵀA−1y. This
analysis is similar, but not trivial (Bartels et al., 2023). Furthermore, we will then require
an extension of our approach to control the quality of the gradient approximation, since it
can be quite different from the accuracy of the function approximation.
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Algorithm 3 Blocked and recursive formulation of Algorithm 1. Highlighted are our
modifications to the original algorithm.

Input A: matrix for which to compute the log-determinant
Input N : matrix size
Input b: block size (number of elements to process in parallel)
Input r : desired relative error

Input δ : desired confidence

Input σ2 : lower bound on minj Ajj

Input C+ : upper bound on log (maxj Ajj)

1: D^ 0, cδ ^(C+ − log(σ2))H−1N (δ/2) constant described in Section 3

2: A1:b,1:b ^ chol(A1:b,1:b)

3: D^D + 2 ·∑b
l=1 log(All) track log-determinant of the submatrix up to index b

4: D̂^ EvaluateConditionsAndEstimator(N, b,D, σ2, C+, cδ)

5: if D̂ 6= 0 then

6: return D̂
7: end if
8: i^ b+ 1, j^ min(i+ b,N)
9: while i < N do

10: Ai:j,1:i ^Ai:j,1:iA
−ᵀ
1:i,1:i

11: Ai:j,i:j ^Ai:j,i:j −Ai:j,1:iA
ᵀ
i:j,1:i

12: Ai:j,i:j ^ chol(Ai:j,i:j)

13: D^D + 2 ·∑j
l=i log(All) track log-determinant of the submatrix up to index j

14: D̂^ EvaluateConditionsAndEstimator(N, j,D, σ2, C+, cδ)

15: if D̂ 6= 0 then

16: return D̂ bounds are close enough, return estimate for log-determinant
17: end if
18: i^ i+ b, j^ min(i+ b,N)
19: end while
20: return D Now the lower-triangular part of A contains L.
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Appendix A. A practical implementation of Cholesky decomposition
with stopping

Algorithm 3 is a blocked and recursive version of Algorithm 1. Our OpenBLAS imple-
mentation uses the above algorithm with a block size of b :=#CPUS· BLOCK_SIZE, where
BLOCK_SIZE is the internal OpenBLAS block size. Furthermore, the call to chol is a call to
the default OpenBLAS Cholesky. Algorithm 3 is easy to employ in or on top of any library.

Appendix B. Proof of Theorem 4

Proof By Lemma 8: log det (A) =
∑N

j=1Ljj , and one can see that the problem already has
the right form for (main paper) Theorem 2. To apply the theorem, we need to show that for all
j = 1, . . . N , the Ljj are functions of x1, . . . ,xj (Lemma 5), that fj := 2 logLjj ∈ [C−, C+]
(Lemma 6), and that E[fj+1 | Fj ] ≤ E[fj | Fj−1] (Lemma 7).

We now proceed just as in the proof above. We are going to show that the j-th diagonal
element of the Cholesky is bounded and can be computed from x1, ..,xj only. Then, we
conclude that the elements must decrease in (conditional) expectation. To proof the following
lemmata, define

kn(x) := [k(x,x1), . . . , k(x,xn)]ᵀ ∈ Rn ,

kn+1 := kn(xn+1) ∈ Rn and

vn := k(xn,xn) + σ2 − kᵀ
n(Kn−1 + σ2In−1)

−1
kn .

The first term kn(x) denotes the covariance between an arbitrary input x and the first
n datapoints from the dataset. In particular, this definition will be used in the proof of
Lemma 7, which states the decrease in expectation. The term vn is the posterior variance
of a Gaussian process f conditioned on observations y ∈ Rn, perturbed by Gaussian white
noise4: p(y | f) = N (0, σ2I). Lemma 5 establishes a link between vn and the n-th diagonal
element of the Cholesky, which is then used in the proof of Lemma 7.

Lemma 5 (Link between the Cholesky and Gaussian process regression) Denote
with LN the Cholesky decomposition of A := KN + σ2IN , so that LNL

ᵀ
N = A. The n-th

diagonal element of LN , squared, is equivalent to vn:

[LN ]2nn = vn .

Proof By a slight abuse of notation, let us define

L1 :=
√
k(x1,x1) + σ2 , and

LN :=

[
CN−1 0

kᵀ
NL
−ᵀ
N−1

√
vN

]
.

We will show that the lower triangular matrix LN satisfies LNL
ᵀ
N = KN + σ2IN . Since

the Cholesky decomposition is unique (Golub and Van Loan, 2013, Theorem 4.2.7), LN

4. see for example Rasmussen and Williams (2006, p. 16)

20



Kernel-Matrix Determinant Estimates from stopped Cholesky Decomposition

must be the Cholesky decomposition of KN + σ2IN . Furthermore, by definition of LN ,
[LN ]2NN = vN . The statement then follows by the recursive definition of LN .

We want to show that LNL
ᵀ
N = KN + σ2IN . The proof follows by induction. To show

the beginning, note that

L1L
ᵀ
1 = k(x1,x1) + σ2 = K1 + σ2I1 .

For the induction step, let us assume that the proposition holds up to N − 1, that is,
LN−1L

ᵀ
N−1 = KN−1 + σ2IN−1, then, by definition of LN ,

LNL
ᵀ
N =

[
LN−1 0

kᵀ
NL
−ᵀ
N−1

√
vN

]
·
[
Lᵀ
N−1 L−1N−1kN
0ᵀ √

vN

]
=

[
LN−1L

ᵀ
N−1 LN−1L

−1
N−1kN

kᵀ
NL
−ᵀ
N−1L

ᵀ
N−1 kᵀ

NL
−ᵀ
N−1L

−1
N−1kN + vN

]
=

[
KN−1 + σ2IN−1 kN

kᵀ
N kᵀ

N (KN−1 + σ2I)
−1
kN + vN

]
=

[
KN−1 + σ2IN−1 kN

kᵀ
N k(xN ,xN ) + σ2

]
.

Lemma 6 (Bounding the fjs) Denote by LN the Cholesky decomposition of KN +σ2IN .
Define C− := log σ2 and take C+ ≥ maxj=1,...,N log

(
k(xj ,xj) + σ2

)
. Then, for all j ∈

{1, . . . , N},
C− ≤ fj ≤ C+ a.s. .

Proof By Lemma 5,

L2
nn = k(xn,xn) + σ2 − kᵀ

n(Kn−1 + σ2In−1)
−1
kn .

The term kᵀ
n(Kn−1 + σ2In−1)

−1
kn is always positive since (Kn−1 + σ2In−1)

−1
is a symmet-

ric positive definite matrix. Hence, k(xn,xn) + σ2 is an upper bound to L2
nn. On the other

hand, since k is a kernel, k(xn,xn)− kᵀ
n(Kn−1 + σ2In−1)

−1
kn cannot be negative and σ2

is a therefore a lower bound to L2
nn. Since both values are positive and the logarithm is an

increasing function on the positive real axis, the proof is complete.

Equipped with the link between the diagonal elements of the Cholesky and Gaussian
process regression stated in Lemma 5, we can now show that the diagonal elements of
the Cholesky must decrease in (conditional) expectation, when treating the x1, . . . ,xN as
random variables. This follows intuitively from the fact that the posterior variance of a
Gaussian process in a fixed location x∗ can only decrease with more observations.

Lemma 7 (The fjs are decreasing in expectation) Assume x1, . . . ,xN ∈ X are inde-
pendent and identically distributed. Denote with P the law of the x1, . . . ,xN and with L
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the Cholesky decomposition of A. Define the probability space (X, σ(x1, . . . ,xN ),P) and the
canonical filtration Fj := σ(x1, . . . ,xj) for j = 1, . . . , N . Then the fj decrease in conditional
expectation, that is,

E[fj+1 | σ(x1, . . . ,xj)] ≤ E[fj | σ(x1, . . . ,xj−1)] .

Proof Denote with Qj(dx) := P (dx | x1, . . . ,xj), the regular conditional probability.

Define the shorthand qj(x) := kj(x)ᵀ(Kj + σ2I)
−1
kj(x). We will show later in the proof,

in Eq. (18), that qj(x) = qj−1(x) + rj(x) where rj(x) ≥ 0. Taking Eq. (18) as granted for
now, we can show the claim as follows.

E[fj+1 | σ(x1, . . . ,xj)] = E[logL2
j+1,j+1 | σ(x1, . . . ,xj)]

(definition of fj)

=

∫
log
(
k(x,x) + σ2 − kj(x)ᵀ(Kj + σ2I)−1kj(x)

)
Qj(dx)

(property of conditional expectation)

=

∫
log
(
k(x,x) + σ2 − qj(x)

)
Qj(dx)

(definition of qj(x))

=

∫
log
(
k(x,x) + σ2 − qj−1(x)− rj(x)

)
Qj(dx)

(using Eq. (17))

≤
∫

log
(
k(x,x) + σ2 − qj−1(x)

)
Qj(dx)

(using Eq. (18) and monotonicity of the logarithm)

=

∫
log
(
k(x,x) + σ2 − qj−1(x)

)
Qj−1(dx)

(with Fubini’s theorem)

= E[logL2
jj | σ(x1, . . . ,xj−1)]

(property of conditional expectation)

= E[fj | σ(x1, . . . ,xj−1)]

(definition of fj)

It remains to show qj(x) = qj−1(x) + rj(x) where rj(x) ≥ 0. For readability, we define
vx := (Kj−1 + σ2I)−1kj−1(x) and c := v−1j . First note, that using block-matrix inversion
we can write

(Kj + σ2Ij)
−1 =

[
(Kj−1 + σ2Ij−1)−1 + vxjcv

ᵀ
xj −vxjc

−vᵀ
xjc c

]
.

Using above observation, we can transform qj(x).

qj(x) =
[
kj−1(x)ᵀ k(xj ,x)

]
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·
[
(Kj−1 + σ2I)−1 + vxjcv

ᵀ
xj −vxjc

−vᵀ
xjc c

]
·
[
kj−1(x)
k(xj ,x)

]
(definition of qj(x) and using above observation)

=
[
kj−1(x)ᵀ k(x,xj)

]
·
[
vx + vxjcv

ᵀ
xjkj−1(x)− vxjck(x,xj)

−vᵀ
xjkj−1(x)c+ ck(x,xj)

]
(evaluating the RHS matrix-vector multiplication)

= kj−1(x)ᵀvx + c(vᵀ
xjkj−1(x))2

− 2vᵀ
xjkj−1(x)ck(x,xj) + ck(x,xj)

2

(evaluating the vector product)

= kj−1(x)ᵀvx + c(k(x,xj)− vᵀ
xjkj−1(x))2

(rearranging terms into a quadratic)

= qj−1(x) + c(k(x,xj)− vᵀ
xjkj−1(x))2

(definition of qj−1(x))

This shows that

qj(x) = qj−1(x) + rj(x) , where (17)

rj(x) := c(k(x,xj)− vᵀ
xjkj−1(x))2 ≥ 0. (18)

The claim of Lemma 8 can for example be found in Rasmussen and Williams (2006, p. 203).

Lemma 8 (Computing the log determinant from the Cholesky decomposition)
Denote with L the Cholesky decomposition of a symmetric and positive definite matrix A.
Then

log det (A) = 2
N∑
j=1

logLjj .

Proof

log |A| = log |LLᵀ|
(using K = LLᵀ)

= log(|L| · |Lᵀ|)
(property of the determinant)

= log(|L|2)
(transposition does not affect the determinant)
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= log

 N∏
j=1

Ljj)

2

(property of triangular matrices)

= 2
N∑
j=1

logLjj

(property of the logarithm)

Appendix C. Background Material for the Proof of Theorem 2

Before we state the proof of Theorem 2, we provide here the tools that we are going to use.

Our main tool will be the following theorem by Fan et al. (2012). Essentially, this is a
generalization of Hoeffding’s inequality to martingales. It states that for a sum of random
variables that decrease in (conditional) expectation, the probability of exceeding a certain
threshold is low, when at the same time the (conditional) variance is bounded by another
constant. Importantly, this probability holds simultaneously for all partial sums starting
in 1 and ending in n = 1 to n = N .

Theorem 9 (Hoeffding’s inequality for supermartingales (Fan et al., 2012))
Assume that (ξj ,Fj)j=1,...,N are supermartingale differences satisfying ξj ≤ 1. Then, for any
x ≥ 0 and v > 0,

P
(

for some n ∈ [1, N ]

n∑
j=1

ξj ≥ x and
n∑
j=1

V[ξj | Fj−1] ≤ v
)
≤ HN (x, v),

where

HN (x, v) := 1{x≤N}

{(
v

v + x

)v+x( N

N − x

)N−x} N
N+v

.

The following theorem will give us the upper bound on the conditional variance, necessary
for Theorem 9. The theorem below applies to empirical variance estimates, but the remark
thereafter shows that it provides a bound on the true variance as well.

Theorem 10 (Popoviciu’s inequality (Popoviciu, 1935; Sharma et al., 2010)) For
a sequence of real numbers x1, . . . , xn ∈ [m,M ], define µ := 1

n

∑n
j=1 xj and σ2 := 1

n

∑N
j=1(xj−

µ)2, then

σ2 ≤ 1/4(M −m)2.
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Remark 11 Theorem 10 can be used to obtain a bound on the conditional variance as well.
Let x1, . . . , xn ∼ P (· | F) be independent. Then,

V[X | F ] = E[(X − E[X | F ])2 | F ]

(definition of conditional variance)

=
n

n− 1
E[σ2 | F ]

(using Bessel’s correction)

≤ n

4(n− 1)
(M −m)2

(by Theorem 10)

which holds for all n ∈ N. Hence, V[X | F ] ≤ 1/4(M −m)2.

The martingale differences that we will be analyzing have random indices from our stopping
time. Doob’s Optional Sampling Theorem (see for example Grimmett and Stirzaker (2001,
p. 489)) and the remark below provide us with the mathematical justification.

Theorem 12 (Doob’s Optional Sampling Theorem) Let (Xj ,Fj)j∈N be a submartin-
gale and τ1 ≤ τ2 ≤ . . . be a sequence of stopping times s.t. P (τj ≤ nj) = 1 for some
deterministic real sequence nj, then the stopped process (Xτj ,Fτj )j∈N is also a submartingale.

Remark 13 By exchanging Xj for −Xj the theorem can be shown to hold for supermartin-
gales as well.

Corollary 14 (Stopped submartingale differences) Let (ξj ,Fj)j∈N be a submartingale-
difference and let τ be a stopping time, then the stopped process (ξmin(j,τ),Fmin(j,τ))j∈N is
also a submartingale-difference.

Proof Define Xl :=
∑l

j=1 ξj and observe that this defines a submartingale. By Theorem 12
(Xmin(j,τ),Fmin(j,τ))j∈N is a submartingale. Then Xmin(j,τ) −Xmin(j,τ)−1 = ξmin(j,τ) is again
a submartingale-difference.

Appendix D. Proof of Theorem 2

The proof can be split into two parts. Lemma 16 shows by using the stopping conditions that
if the bound holds, the relative error of the estimator is indeed less than r with probability 1.
The second part is to show that P (Uτ < DN ) ≤ δ, which is the purpose of Lemma 17 and
which makes use of the assumption stated in Eq. (∗).
Proof

P

(∣∣∣∣∣DN − D̂τ

DN

∣∣∣∣∣ > r

)

= P

(
|DN − D̂τ |
|DN |

> r,DN ≤ Uτ
)

25



Bartels, Boomsma, Frellsen and Garreau

+ P

(
|DN − D̂τ |
|DN |

> r,DN > Uτ
)

(sum rule)

≤ P

(
|DN − D̂τ |
|DN |

> r,DN ≤ Uτ
)

+ P (DN > Uτ )

(upper-bounding joint by marginal)

≤ 0 + δ

(by Lemma 16 and Lemma 17)

The following lemma gives an upper bound on the relative error of an estimator in terms of
upper and lower bounds for the quantity of interest. The bound is minimized if the estimator
is chosen to be the average of upper and lower bound. The lemma can also be found in
Mnih (2008) but has been developed independently.

Lemma 15 (Bounding the relative error) Let D, D̂ ∈ [L,U ], and assume sign(L) =
sign(U) 6= 0. Then the relative error of the estimator D̂ can be bounded as

|D − D̂|
|D| ≤ max(U − D̂, D̂ − L)

min(|L| , |U|) .

Proof First observe that if DN > D̂ then |DN − D̂| = DN − D̂ ≤ U − D̂. If DN ≤ D̂, then
|DN − D̂| = D̂ −DN ≤ D̂ − L. Hence,

|DN − D̂| ≤ max(U − D̂, D̂ − L).

Case L > 0: In this case |DN | = DN ≥ L = |L|, and we obtain for the relative error:

max(U − D̂, D̂ − L)

|DN |
≤ max(U − D̂, D̂ − L)

|L| .

Case U < 0: In that case |L| ≥ |DN | ≥ |U|, and the relative error can be bounded as
follows.

max(U − D̂, D̂ − L)

|DN |
≤ max(U − D̂, D̂ − L)

|U|
Since we assumed sign(L) = sign(U) these were all cases that required consideration.
Combining all observations yields

|DN − D̂|
|DN |

≤ max(U − D̂, D̂ − L) max

(
1

|U| ,
1

|L|

)
=

max(U − D̂, D̂ − L)

min(|U|, |L|) .
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Lemma 16 (Controlling the relative error when DN ≤ Uτ) With the definitions of
Section 4.2, the probability that the relative error of the estimator is larger than some r > 0
and at the same time the bound holds, is zero. Formally,

P

(
|DN − D̂τ |
|DN |

> r,DN ≤ Uτ
)

= 0 .

Proof As a preliminary observation note that

DN =
N∑
j=1

fj

(by definition)

= Dn +
N∑

j=n+1

fj for all n = 0, . . . , N

(definition of Dn)

≥ Dn +

N∑
j=n+1

C− for all n = 0, . . . , N

(since fj ∈ [C−, C+])

= Ln for all n = 0, . . . , N (19)

(using the definition of Ln)

and hence, for all n = 0, . . . , N , Ln is an almost sure lower bound to DN .

P

(
|DN − D̂τ |
|DN |

> r,DN ≤ Uτ
)

= P

(
|DN − D̂τ |
|DN |

> r,DN ≤ Uτ , τ < N

)

+ P

(
|DN − D̂τ |
|DN |

> r,DN ≤ Uτ , τ = N

)

Recall that D̂τ = 1/2(Lτ + Uτ ). In case τ = N , we have that UN = LN = DN , and hence,

P
(
|DN−D̂τ |
|DN | > r,DN ≤ Uτ , τ = N

)
= 0.

For brevity, define the event A := {DN ≤ Uτ , τ < N}, that is, the upper bound holds
and the stopping conditions are fulfilled at a time before N .

P

(
|DN − D̂τ |
|DN |

> r,DN ≤ Uτ , τ < N

)

= P

(
|DN − D̂τ |
|DN |

> r,A

)
(definition of A)
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= P

(
|DN − D̂τ |
|DN |

> r,Lτ ≤ DN , A

)
(since Lτ is an almost sure lower bound to DN by Eq. (19))

≤ P

(
max(Uτ − D̂τ , D̂τ − Lτ )

min(|Lτ | , |Uτ |)
> r,Lτ ≤ DN , A

)
(by Lemma 15, using the first condition of τ , Eq. (11))

= P
( Uτ − Lτ

2 min(|Lτ | , |Uτ |)
> r,Lτ ≤ DN , A

)
(definition of D̂τ )

= 0

(by the second condition of τ , Eq. (12))

Lemma 17 (Upper bound control) With the definitions of Section 4.2, the probability
that the upper bound fails is less than δ. Formally,

P (DN > Uτ ) ≤ δ.

Proof The following parts of the proof rely on Theorem 9 by Fan et al. (2012). To apply
Theorem 9, define Z ′j := fj − E[fj | Fj−1] and Zj := Z ′τ+j .

For brevity, we define ε := (C+ − C−)H−1N (δ/2), εn := ε
(

1
N−n + 1

n

)
, and µ̂n := Dn

n + εn

such that we can write

Un = Dn + (N − n) min(µ̂n, C
+) . (20)

P (DN > Uτ )

=P

Dτ +

N∑
j=τ+1

fj > Dτ + (N − τ) min
(
µ̂τ , C

+
)

(using the definition of Dn and Eq. (20))

=P

 N∑
j=τ+1

fj > (N − τ) min
(
µ̂τ , C

+
)

(simplifying)

=P

 N∑
j=τ+1

fj > (N − τ)µ̂τ or

N∑
j=τ+1

fj > (N − τ)C+


(exchanging min for logical or)
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=P

 N∑
j=τ+1

fj > (N − τ)µ̂τ


(since fj ≤ C+)

=P

N−τ∑
j=1

[Zj + E[fτ+j | Fτ+j−1]] > (N − τ)µ̂τ


(definition of Zj)

≤P

N−τ∑
j=1

Zj +
N∑

j=τ+1

E[fj | Fj−1] > (N − τ)µ̂τ ,

N∑
j=τ+1

E[fj | Fj−1] ≤
N − τ
τ

(Dτ + ε)


+ P

 N∑
j=τ+1

E[fj | Fj−1] >
N − τ
τ

(Dτ + ε)

 (21)

(sum rule and upper-bounding joint by marginal)

Consider the first addend in Eq. (21).

P

N−τ∑
j=1

Zj +
N∑

j=τ+1

E[fj | Fj−1] > (N − τ)µ̂τ ,

N∑
j=τ+1

E[fj | Fj−1] ≤
N − τ
τ

(Dτ + ε)


≤ P

N−τ∑
j=1

Zj +
N − τ
τ

(Dτ + ε) > (N − τ)µ̂τ


(combining the two events)

= P

N−τ∑
j=1

Zj +
N − τ
τ

(Dτ + ε) >

(N − τ)

(
Dτ

τ
+ ε

(
1

N − τ +
1

τ

)))
(definition of µ̂τ and εn)

= P

N−τ∑
j=1

Zj > ε


(simplifying)
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= P

N−τ∑
j=1

Zj
C+ − C− > H−1N (δ/2)

 (22)

(definition of ε and dividing by C+ − C−)

≤ P

 n∑
j=1

Zj
C+ − C− > H−1N (δ/2)

for some n ∈ {1, . . . , N}
)

(enlarging the event)

We are now ready to use Theorem 9. Since (Z ′j ,Fj)j∈{1,...,N} is a martingale difference,(
Zmin(j,N),Fmin(τ+j,N)

)
j∈N0

is a martingale difference as well (Corollary 14). Further note, that the random variables
Zj

C+−C− are bounded from above by 1. Hence, there is only one ingredient missing to apply
Theorem 9, which is a bound on the conditional variance. To this end, we use Popoviciu’s
inequality. The latter is applicable, since the

Zj
C+−C− are also bounded from below by −1.

P

 n∑
j=1

Zj
C+ − C− > H−1N (δ/2) for some n ∈ {1, . . . , N}


= P

 n∑
j=1

Zj
C+ − C− > H−1N (δ/2),

n∑
j=1

V
[

Zj
C+ − C−

∣∣∣∣Fj−1] ≤ N
for some n ∈ {1, . . . , N}

)
(by Popoviciu’s inequality (Theorem 10))

≤ H(H−1N (δ/2), N)

(by Theorem 9, where H is defined in that theorem)

= HN (H−1N (δ/2)) ≤ δ/2.

(definition of HN)

Now we will take care of the second addend in Eq. (21), using the assumption that the
fj decrease in expectation: Eq. (∗). We will again apply Theorem 9.

P

 N∑
j=τ+1

E[fj | Fj−1] >
N − τ
τ

(Dτ + ε)
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≤ P

 N∑
j=τ+1

E[fτ+1 | Fτ ] >
N − τ
τ

(Dτ + ε)


(using Eq. (∗))

= P (τE[lτ+1 | Fτ ] > Dτ + ε)

(dividing by N − τ and multiplying by τ)

= P

 τ∑
j=1

(E[lτ+1 | Fτ ]− fj) > ε


(definition of Dτ )

≤ P

 τ∑
j=1

(E[lj+1 | Fj ]− fj) > ε


(using again Eq. (∗))

= P

 τ∑
j=1

E[lj+1 | Fj ]− fj
C+ − C− > H−1N

(
δ

2

)
(definition of ε and dividing by C+ − C−)

= P

 τ∑
j=1

−
Z ′j

C+ − C− > H−1N

(
δ

2

)
(definition of Z ′j)

Changing the sign does not change the martingale difference property and hence, (−Z ′j ,Fj)j∈{1,...,N}
is a martingale difference as well. We can apply the same argument as in Eq. (22).

P

 n∑
j=1

−
Z ′j

C+ − C− > H−1N

(
δ

2

)
≤ H

(
H−1N

(
δ

2

)
, N

)
(using the same argument as in Eq. (22))

≤ δ

2
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Appendix E. Results

This section contains the complete results from the experiments described in Section 5. In
Appendix E.1 we show the results for varying lengthscale ` in Figs. 6 to 11. Considering the
same datasets, Fig. 12 in Appendix E.2 shows the relative error when using the method of
Gardner et al. (2018) with default parameters for the RBF kernel. Appendix E.3 shows the
results for fixed lengthscale and varying observation noise in Figs. 13 to 17. Appendix E.5
shows with Figs. 23 to 27 how varying the noise affects the evolution of the bounds.
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E.1 Varying length-scale

probabilistic pivoting default 5% overhead

RBF Eq. (13) OU Eq. (14)
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Figure 6: Relative execution times to compute the log-determinant using RBF (left panel)
and OU (right panel) kernels on the PROTEIN dataset for θ = 1, log ` =
−1, . . . , 3 and δ = 0.1 for ten repetitions. The number next to one on the y-axis
displays the absolute execution times of the default Cholesky. The solid, horizontal,
orange line ( ) visualizes the 105% mark. The x-axis displays a desired absolute
precision on the diagonal elements d (top) and the average corresponding desired
relative precision r (bottom) on the log-determinant.
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probabilistic pivoting default 5% overhead

RBF Eq. (13) OU Eq. (14)
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Figure 7: Relative execution times to compute the log-determinant using RBF (left panel)
and OU (right panel) kernels on the TAMILNADU dataset for θ = 1, log ` =
−1, . . . , 3 and δ = 0.1 for ten repetitions. The number next to one on the y-axis
displays the absolute execution times of the default Cholesky. The solid, horizontal,
orange line ( ) visualizes the 105% mark. The x-axis displays a desired absolute
precision on the diagonal elements d (top) and the average corresponding desired
relative precision r (bottom) on the log-determinant.
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probabilistic pivoting default 5% overhead
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Figure 8: Relative execution times to compute the log-determinant using RBF (left panel)
and OU (right panel) kernels on the BANK dataset for θ = 1, log ` = −1, . . . , 3
and δ = 0.1 for ten repetitions. The number next to one on the y-axis displays the
absolute execution times of the default Cholesky. The solid, horizontal, orange line
( ) visualizes the 105% mark. The x-axis displays a desired absolute precision
on the diagonal elements d (top) and the average corresponding desired relative
precision r (bottom) on the log-determinant.
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Figure 9: Relative execution times to compute the log-determinant using RBF (left panel)
and OU (right panel) kernels on the METRO dataset for θ = 1, log ` = −1, . . . , 3
and δ = 0.1 for ten repetitions. The number next to one on the y-axis displays the
absolute execution times of the default Cholesky. The solid, horizontal, orange line
( ) visualizes the 105% mark. The x-axis displays a desired absolute precision
on the diagonal elements d (top) and the average corresponding desired relative
precision r (bottom) on the log-determinant.
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Figure 10: Relative execution times to compute the log-determinant using RBF (left panel)
and OU (right panel) kernels on the PM2.5 dataset for θ = 1, log ` = −1, . . . , 3
and δ = 0.1 for ten repetitions. The number next to one on the y-axis displays the
absolute execution times of the default Cholesky. The solid, horizontal, orange
line ( ) visualizes the 105% mark. The x-axis displays a desired absolute
precision on the diagonal elements d (top) and the average corresponding desired
relative precision r (bottom) on the log-determinant.
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Figure 11: Relative execution times to compute the log-determinant using RBF (left panel)
and OU (right panel) kernels on the PUMADYN dataset for θ = 1, log ` =
−1, . . . , 3 and δ = 0.1 for ten repetitions. The number next to one on the
y-axis displays the absolute execution times of the default Cholesky. The solid,
horizontal, orange line ( ) visualizes the 105% mark. The x-axis displays
a desired absolute precision on the diagonal elements d (top) and the average
corresponding desired relative precision r (bottom) on the log-determinant.
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Figure 12: The need for theoretical guarantees. Of the related work described in Section 2.2
only Gardner et al. (2018) provide publicly accessible code. The figure shows the
achieved relative error r, Eq. (3), when using default parameters, for the RBF
kernel, Eq. (13), with θ := 1 and different length-scales ` on all our considered
datasets (see Table 1). The relative error is more often than not worse than 0.1
and can differ over two orders of magnitude. Theorem 2 in Gardner et al. (2018)
which could describe how to set the parameters of their method to achieve a
desired precision is not applicable in this setting (see Section 2.2).
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Figure 13: Relative execution times to compute the log-determinant using RBF (left panel)
and OU (right panel) kernels on the PROTEIN dataset for θ = 1, ` = 1,
log10 σ

2 = −4, . . . , 0 and δ = 0.1 for ten repetitions. The number next to one on
the y-axis displays the absolute execution times of the default Cholesky. The
solid, horizontal, orange line ( ) visualizes the 105% mark. The x-axis displays
a desired absolute precision on the diagonal elements d (top) and the average
corresponding desired relative precision r (bottom) on the log-determinant.
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Figure 14: Relative execution times to compute the log-determinant using RBF (left panel)
and OU (right panel) kernels on the TAMILNADU dataset for θ = 1, ` = 1,
log10 σ

2 = −4, . . . , 0 and δ = 0.1 for ten repetitions. The number next to one on
the y-axis displays the absolute execution times of the default Cholesky. The
solid, horizontal, orange line ( ) visualizes the 105% mark. The x-axis displays
a desired absolute precision on the diagonal elements d (top) and the average
corresponding desired relative precision r (bottom) on the log-determinant.
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Figure 15: Relative execution times to compute the log-determinant using RBF (left panel)
and OU (right panel) kernels on the METRO dataset for θ = 1, ` = 1,
log10 σ

2 = −4, . . . , 0 and δ = 0.1 for ten repetitions. The number next to one on
the y-axis displays the absolute execution times of the default Cholesky. The
solid, horizontal, orange line ( ) visualizes the 105% mark. The x-axis displays
a desired absolute precision on the diagonal elements d (top) and the average
corresponding desired relative precision r (bottom) on the log-determinant.
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Figure 16: Relative execution times to compute the log-determinant using RBF (left panel)
and OU (right panel) kernels on the BANK dataset for θ = 1, ` = 1, log10 σ

2 =
−4, . . . , 0 and δ = 0.1 for ten repetitions. The number next to one on the
y-axis displays the absolute execution times of the default Cholesky. The solid,
horizontal, orange line ( ) visualizes the 105% mark. The x-axis displays
a desired absolute precision on the diagonal elements d (top) and the average
corresponding desired relative precision r (bottom) on the log-determinant.
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Figure 17: Relative execution times to compute the log-determinant using RBF (left panel)
and OU (right panel) kernels on the PM2.5 dataset for θ = 1, ` = 1, log10 σ

2 =
−4, . . . , 0 and δ = 0.1 for ten repetitions. The number next to one on the
y-axis displays the absolute execution times of the default Cholesky. The solid,
horizontal, orange line ( ) visualizes the 105% mark. The x-axis displays
a desired absolute precision on the diagonal elements d (top) and the average
corresponding desired relative precision r (bottom) on the log-determinant.
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E.4 Bound progression for varying lengthscale

probabilistic pivoting lower bound exact

RBF Eq. (13) OU Eq. (14)

−3

−2

−1

0
·105

` = 0.37

b
ou

n
d

−3

−2

−1

0
·105

` = 0.37

−3

−2

−1

0
·105

` = 1.00

b
ou

n
d

−3

−2

−1

0
·105

` = 1.00

−3

−2

−1

0
·105

` = 2.72

b
ou

n
d

−3

−2

−1

0
·105

` = 2.72

0 1 2 3 4

·104

−3

−2

−1

0
·105

` = 7.39

processed datapoints

b
o
u
n
d

0 1 2 3 4

·104

−3

−2

−1

0
·105

` = 7.39

processed datapoints

Figure 18: Progression of the bounds from Eqs. (6), (7) and (16) over the number of
processed datapoints using RBF (left panel) and OU (right panel) kernels
on the PROTEIN dataset for σ2 = 10−3, θ = 1, log ` = −1, . . . , 3 and δ = 0.1
for ten repetitions. The variance between repetitions is so small such that only
one line is visible to the eye. For the Cholesky decomposition with pivoting ( ,
continuous data is not available. The stopping points correspond to the ones
described in Section 5.4.
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Figure 19: Progression of the bounds from Eqs. (6), (7) and (16) over the number of
processed datapoints using RBF (left panel) and OU (right panel) kernels on
the TAMILNADU dataset for σ2 = 10−3, θ = 1, log ` = −1, . . . , 3 and δ = 0.1
for ten repetitions. The variance between repetitions is so small such that only
one line is visible to the eye. For the Cholesky decomposition with pivoting ( ,
continuous data is not available. The stopping points correspond to the ones
described in Section 5.4.
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Figure 20: Progression of the bounds from Eqs. (6), (7) and (16) over the number of processed
datapoints using RBF (left panel) and OU (right panel) kernels on the BANK
dataset for σ2 = 10−3, θ = 1, log ` = −1, . . . , 3 and δ = 0.1 for ten repetitions.
The variance between repetitions is so small such that only one line is visible to
the eye. For the Cholesky decomposition with pivoting ( , continuous data is not
available. The stopping points correspond to the ones described in Section 5.4.
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Figure 21: Progression of the bounds from Eqs. (6), (7) and (16) over the number of
processed datapoints using RBF (left panel) and OU (right panel) kernels on
the METRO dataset for σ2 = 10−3, θ = 1, log ` = −1, . . . , 3 and δ = 0.1 for ten
repetitions. The variance between repetitions is so small such that only one line
is visible to the eye. For the Cholesky decomposition with pivoting ( , continuous
data is not available. The stopping points correspond to the ones described in
Section 5.4.
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Figure 22: Progression of the bounds from Eqs. (6), (7) and (16) over the number of processed
datapoints using RBF (left panel) and OU (right panel) kernels on the PM2.5
dataset for σ2 = 10−3, θ = 1, log ` = −1, . . . , 3 and δ = 0.1 for ten repetitions.
The variance between repetitions is so small such that only one line is visible to
the eye. For the Cholesky decomposition with pivoting ( , continuous data is not
available. The stopping points correspond to the ones described in Section 5.4.
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E.5 Bound progression for varying observation noise
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Figure 23: Progression of the bounds from Eqs. (6), (7) and (16) over the number of
processed datapoints using RBF (left panel) and OU (right panel) kernels
on the PROTEIN dataset for log σ2 = −4, . . . , 0, θ = 1, log ` = 0 and δ = 0.1
for ten repetitions. The variance between repetitions is so small such that only
one line is visible to the eye. For the Cholesky decomposition with pivoting ( ,
continuous data is not available. The stopping points correspond to the ones
described in Section 5.4.
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Figure 24: Progression of the bounds from Eqs. (6), (7) and (16) over the number of
processed datapoints using RBF (left panel) and OU (right panel) kernels on
the TAMILNADU dataset for log σ2 = −4, . . . , 0, θ = 1, log ` = 0 and δ = 0.1
for ten repetitions. The variance between repetitions is so small such that only
one line is visible to the eye. For the Cholesky decomposition with pivoting ( ,
continuous data is not available. The stopping points correspond to the ones
described in Section 5.4.
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Figure 25: Progression of the bounds from Eqs. (6), (7) and (16) over the number of processed
datapoints using RBF (left panel) and OU (right panel) kernels on the PM2.5
dataset for log σ2 = −4, . . . , 0, θ = 1, log ` = 0 and δ = 0.1 for ten repetitions.
The variance between repetitions is so small such that only one line is visible to
the eye. For the Cholesky decomposition with pivoting ( , continuous data is not
available. The stopping points correspond to the ones described in Section 5.4.
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Figure 26: Progression of the bounds from Eqs. (6), (7) and (16) over the number of
processed datapoints using RBF (left panel) and OU (right panel) kernels on
the METRO dataset for log σ2 = −4, . . . , 0, θ = 1, log ` = 0 and δ = 0.1 for ten
repetitions. The variance between repetitions is so small such that only one line
is visible to the eye. For the Cholesky decomposition with pivoting ( , continuous
data is not available. The stopping points correspond to the ones described in
Section 5.4.
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Figure 27: Progression of the bounds from Eqs. (6), (7) and (16) over the number of processed
datapoints using RBF (left panel) and OU (right panel) kernels on the BANK
dataset for log σ2 = −4, . . . , 0, θ = 1, log ` = 0 and δ = 0.1 for ten repetitions.
The variance between repetitions is so small such that only one line is visible to
the eye. For the Cholesky decomposition with pivoting ( , continuous data is not
available. The stopping points correspond to the ones described in Section 5.4.
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