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Abstract
We introduce a metric space of clusterings, where clusterings are described by a binary
vector indexed by the vertex-pairs. We extend this geometry to a hypersphere and prove
that maximizing modularity is equivalent to minimizing the angular distance to some mod-
ularity vector over the set of clustering vectors. In that sense, modularity-based community
detection methods can be seen as a subclass of a more general class of projection methods,
which we define as the community detection methods that adhere to the following two-step
procedure: first, mapping the network to a point on the hypersphere; second, projecting
this point to the set of clustering vectors. We show that this class of projection methods
contains many interesting community detection methods. Many of these new methods can-
not be described in terms of null models and resolution parameters, as is customary for
modularity-based methods. We provide a new characterization of such methods in terms
of meridians and latitudes of the hypersphere. In addition, by relating the modularity
resolution parameter to the latitude of the corresponding modularity vector, we obtain a
new interpretation of the resolution limit that modularity maximization is known to suffer
from.
Keywords: Community detection, Louvain algorithm, modularity, clustering, resolution
limit

1. Introduction

Complex networks often contain groups of nodes that are more connected internally than
externally. In network science, such groups are referred to as communities. Community
detection is the task of detecting such groups in a network. Numerous algorithms have been
developed for this task and its variants (Fortunato, 2010; Fortunato and Hric, 2016; Rosvall
et al., 2019). In this work, we consider detecting non-overlapping communities, so that a
community structure is represented by a partition of the network nodes into communities.
We refer to such partitions as clusterings. We define a hyperspherical geometry on such clus-
terings that allows for a natural interpretation of widely-used community detection methods
in terms of projections. This geometrical interpretation has several interesting consequences,
and opens the door for designing new community detection methods.
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In the remainder of this section we explain our main contributions and innovations. In
order to do so, we start by introducing basic notations and key notions from the literature
that we build upon in this work. We consider a simple undirected graph G with vertex-set
[n] = {1, . . . , n}. For a vertex i ∈ [n], we denote its degree by d

(G)
i and denote the total

number of edges by mG = 1
2

∑
i∈[n] d

(G)
i . We use the letters C and T to denote clusterings.

Granularity. We denote the number of clusters that a clustering consists of by |C|, while
mC denotes the number of intra-cluster vertex-pairs, which is an integer in between 0 (when
|C| = n) and the total number of vertex-pairs N =

(
n
2

)
(when |C| = 1). The extent to

which a clustering resembles the former or latter of these extremes is often referred to as
the granularity of a clustering: fine-grained clusterings consist of many small clusters, while
coarse-grained clusterings consist of a few large clusters. Granularity is an important notion
in this paper, and we use the number of intra-cluster pairs mC as a measure of the granularity.
Alternatively, some works simply quantify granularity by the number of clusters |C|, but
this has the drawback of being insensitive to the cluster sizes. In other works (Romano
et al., 2016; Vinh et al., 2009, 2010), Shannon entropy is used as a measure of granularity. A
generalization of Shannon entropy has been shown to be related to mC (Romano et al., 2016).
Simpson’s index is another measure of granularity that is widely used in ecology Hunter
and Gaston (1988). Simpson’s index is related to the number of intra-cluster pairs by
S(C) = mC/N .

Validation indices. When the ground truth community structure is available, the per-
formance of a community detection method can be evaluated by comparing the obtained
candidate clustering to the ground truth. In this work, we denote the ground truth clus-
tering by T , while we denote other (candidate) clusterings by C. Functions that quantify
similarity between C and T are referred to as validation indices. There exist many different
validation indices (Vinh et al., 2010; Lei et al., 2017), and which one is most suitable depends
on the context of the application (Gösgens et al., 2021).

One popular class of validation indices are pair-counting functions. Given clusterings T
and C, these indices can be expressed as functions of the following four variables: the number
of intra-cluster pairs mT ,mC of T and C, respectively; the number of vertex-pairs mTC that
are intra-cluster pairs of both T and C; and the total number of vertex-pairs N . Examples
of such pair-counting indices are the Rand index (Rand, 1971), the Jaccard index (Jaccard,
1912), the Hubert Index (Hubert, 1977) and the Correlation Coefficient (Gösgens et al.,
2021). Many of these indices are known to be biased towards either clusterings of fine or
coarse granularity (Albatineh et al., 2006; Romano et al., 2016; Gösgens et al., 2021; Lei
et al., 2017). The Jaccard index is known to be biased towards coarse-grained clusterings
while the bias of Rand depends on the granularity of the ground truth (Lei et al., 2017).
The Correlation Coefficient does not suffer from this bias and additionally satisfies many
other desirable properties (Gösgens et al., 2021). This correlation coefficient is given by

CC(T,C) =
mTC ·N −mT ·mC√

mT · (N −mT ) ·mC · (N −mC)
. (1)

One of the desirable properties of the correlation coefficient that we make grateful use of
is that it can be transformed to a metric distance by taking its arccosine (Gösgens et al.,
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2021). This Correlation Distance plays a central role in this work and is used as the main
validation index throughout this paper.

Modularity. One of the most popular ways to detect communities is by maximizing a
quantity called modularity (Newman and Girvan, 2004; Reichardt and Bornholdt, 2006).
Modularity is based on the paradigm that a graph with community structure has many
more intra-communities edges than it would have if one were to rewire the edges at random.

Given a clustering C and a graph G, modularity measures the difference between the
number of intra-cluster edges that are present in G and the expected number of intra-cluster
edges if G were to be rewired according to some random graph model without community
structure. Such a random graph model is usually referred to as a null model. While it
is theoretically possible to use any random graph model as a null model, the null models
that are commonly used in the literature are the Erdős-Rényi (ER) model and Configuration
Model (CM). The main result of this paper in Theorem 2 establishes the equivalence between
modularity maximization and a nearest-neighbor search in hyperspherical geometry.

The resolution limit. In large graphs, modularity maximization is known to be unable
to detect communities below a given size. This resolution limit (Fortunato and Barthélemy,
2007; Kumpula et al., 2007; Lancichinetti and Fortunato, 2011) is a serious drawback of
modularity-based methods. Basically, it means that modularity maximization is implic-
itly tuned to detect clusterings of a certain granularity. Modularity is often extended to
include a resolution parameter to alleviate this problem (Reichardt and Bornholdt, 2006;
Kumpula et al., 2007). However, this resolution parameter merely allows one to tune the
detection method to a different granularity (Arenas et al., 2008), and does not address
the fundamental problem that modularity implicitly has a bias towards clusterings of some
granularity (Kumpula et al., 2007; Traag et al., 2011). Furthermore, it is nontrivial to
find a resolution parameter value so that modularity optimization is tuned to the desired
granularity in a given setting (Arenas et al., 2008; Prokhorenkova, 2019). Recently, modu-
larity optimization has been shown to be equivalent to likelihood maximization (Newman,
2016): for a particular value of the resolution parameter, ER modularity is equivalent to
the likelihood function of a Planted Partition Model, while CM modularity is equivalent
to the likelihood of a Degree-Corrected Planted Partition Model. While this provides a
mathematically principled approach to choosing the resolution parameter (Prokhorenkova
and Tikhonov, 2019), it does require making assumptions about the distribution that the
network was drawn from and knowledge of its parameters.

The Louvain algorithm. Despite its shortcomings, modularity maximization remains
one of the most popular approaches for community detection. In applications, an additional
difficulty arises from the fact that modularity maximization is NP-hard (Brandes et al.,
2007), which makes its exact maximization infeasible for large graphs. Therefore, practi-
tioners often resort to approximate optimization algorithms, the most popular being the
so-called Louvain algorithm (Blondel et al., 2008). This algorithm is known to find an ap-
proximate modularity maximum in roughly log-linear time. The Louvain algorithm is also
known to efficiently optimize other partition-based functions (Prokhorenkova and Tikhonov,
2019).
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Other modularity maximization algorithms. Early algorithms optimized modular-
ity by greedily merging communities together (Clauset et al., 2004; Wakita and Tsurumi,
2007). The Louvain algorithm offered a significant improvement: it could achieve higher val-
ues of modularity at a significantly lower computational cost (Blondel et al., 2008). Recent
improvements to the Louvain algorithm have similar running time, and reach better local
maxima (Traag et al., 2019). However, they are not easily modified to optimize the other
partition-based functions that we consider in this paper. Algorithms based on Linear Pro-
gramming (Agarwal and Kempe, 2008) or Simulated Annealing (Guimera and Nunes Ama-
ral, 2005; Lee et al., 2012) are also known to result in better modularity optima than the
Louvain algorithm, but these algorithms are usually several orders of magnitude slower. We
emphasize that any algorithm that maximizes modularity fits our geometric framework and
that our theoretical results apply to each of them. We choose to use the Louvain algorithm
throughout the paper because it is the most well-known algorithm, and because it is easily
modified to optimize other partition-based functions.

Main innovations in this paper. The central idea of this paper is to describe a hy-
perspherical geometry on the set of clusterings. Our main result is that in terms of this
geometry, maximizing modularity is equivalent to minimizing the angular distance to some
point on the hypersphere that we call the modularity vector, over the set of clusterings. In
this geometric viewpoint, modularity can be seen as a class of mappings (parametrized by
the null model and resolution parameter) from the set of networks to points on the hy-
persphere. Then, any algorithm that maximizes modularity (e.g., the well-known Louvain
algorithm) can be seen as an (approximate) nearest-neighbor search, finding the clustering
that minimizes the distance to the modularity vector. By allowing for different ways of
mapping networks to points on the hypersphere, we obtain a general class of community
detection methods that we refer to as projection methods, as the network is first mapped to
a point on the hypersphere and then projected to a clustering vector. We show that many
interesting projection methods exist that lie outside the class of modularity-based methods.

Other geometric approaches. We emphasize that in the geometry that we consider here,
the graph as a whole is represented by a single point in space. This is in contrast to other ap-
proaches where individual vertices are mapped to points in space by, e.g., node2vec (Grover
and Leskovec, 2016) or other node embedding procedures (Cui et al., 2018; Gu et al., 2018).
For example, it is known that modularity maximization can be approximated by a vec-
tor partitioning problem where each vertex is mapped to a vector in some low-dimensional
space (Newman, 2006a; Zhang and Newman, 2015). A similar vector-partitioning approach
is employed by Liu and Barahona (2018) to optimize the Markov stability of a random
walk defined on the graph. This Markov-stability approach to community detection had
previously been related to modularity optimization by Delvenne et al. (2010), who showed
that modularity corresponds to a linearization of Markov stability. Schaub et al. (2019)
describe a different method for mapping graph vertices to vectors based on random-walk
dynamics. Their approach has the advantage that it is also able to detect disassortative com-
munities, in contrast to the previously mentioned Markov-stability approach. The mapping
that they employ is related to diffusion maps (Coifman et al., 2005; Lafon and Lee, 2006;
Fanuel et al., 2022), a non-linear dimensionality-reduction method that embeds vertices
to a lower-dimensional Euclidean space via a diffusion process. Finally, spectral cluster-
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ing (Von Luxburg, 2007; Jain, 2010) is a popular clustering method that maps vertices to
points in space based on the leading eigenvectors of the Laplacian matrix and then applies
K-means on the resulting set of points. The spatial community detection methods described
above have in common that they map graph vertices to vectors in order to cluster these
vectors using a spatial method (e.g., K-means or vector partitioning). In contrast, our work
aims to better understand modularity maximization, its limitations, and its extensions by
considering clustering and graphs as objects residing in the same hyperspherical geometry.
This geometry is separate from any geometry of the graph vertices: even if the vertices have
a natural embedding in a hyperbolic or any other geometry, then modularity still has the
hyperspherical geometrical structure that we describe in this paper.

Data clustering. Note that community detection is closely related to the more general
field of data clustering, as we are essentially clustering the network nodes based on network
topology. While the focus of the present paper is community detection in networks, the
proposed method is not limited to networks alone and is able to cluster any pair-wise
similarity data, such as the upper or lower triangle of any affinity matrix. For a more
general overview of data clustering, we refer to Jain (2010).

Organisation of this paper. This paper is organised as follows. In Section 2, we describe
the hyperspherical geometry on the set of clusters. In Section 3, we show that maximizing
modularity is equivalent to minimizing the angular distance to a modularity vector. The
consequences of this equivalence are discussed in Section 4, while Section 5 explores the
projection methods that lie outside the class of modularity-based methods. Finally, in
Section 6, we compare a number of projection methods on real-world networks and interpret
the results in our geometric framework.

2. The Hyperspherical Geometry of Clustering

For a given clustering C, we define b(C) as the binary N -dimensional vector indexed by the
vertex-pairs, where b(C)ij equals +1 if i and j are assigned the same cluster in C and −1
otherwise. In this work, binary vectors have entries +1 and −1. In some particular cases, we
need binary vectors with values 1 and 0, which are obtained by the transformation 1

2(b+1),
where 1 denotes the vector where all entries equal 1. Note that not all ±1 binary vectors
correspond to clusterings, since the vector needs to satisfy transitivity. That is, for vertices
i, j, k, it must hold that b(C)ik = 1 if b(C)ij = b(C)jk = 1. Furthermore, every binary
vector that does satisfy this transitivity condition corresponds to precisely one clustering
C. Importantly, note that all binary vectors have equal (Euclidean) length

√
N , hence, all

clustering vectors lie on a hypersphere with radius
√
N centered around the origin.

For clusterings C1, C2, the angular distance between their binary vectors is given by

da(b(C1), b(C2)) = arccos

(
⟨b(C1), b(C2)⟩

N

)
, (2)

where ⟨·, ·⟩ denotes the standard inner product. We can easily extend this metric space to
the full hypersphere to allow for non-binary vectors. For x,y ∈ RN , the angular distance is

da(x,y) = arccos

(
⟨x,y⟩

∥x∥ · ∥y∥

)
,
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where ∥x∥ =
√
⟨x,x⟩ denotes the Euclidean norm. Furthermore, the correlation distance,

which is defined as the arccosine of the correlation coefficient as given in (1), can similarly
be extended to the full hypersphere by

dCC(x,y) = arccos

(
⟨x,y⟩ − ⟨x,1⟩ · ⟨y,1⟩/N√

∥x∥2 − ⟨x,1⟩2/N
√
∥y∥2 − ⟨y,1⟩2/N

)
. (3)

The above expression is undefined when x or y is a constant vector, i.e., when x = c1
for some c. Similarly to Gösgens et al. (2021), we resolve this by the convention that the
correlation between a constant and a nonconstant vector is 0, while the correlation between
two constant vectors is 1 when their signs are equal and −1 otherwise, leading to correlation
distances arccos(0) = 1

2π, arccos(1) = 0 and arccos(−1) = π for these cases, respectively.
We note that the length of a vector has no meaning in these metric spaces. That is,

scaling a vector by a positive scalar does not affect the (angular or correlation) distance
to any other vector. This introduces an equivalence relation among vectors, where each
equivalence class corresponds to a direction, the representative element of each of these
classes is the vector that is on the surface of the hypersphere, given by the hypersphere
projection

H(x) =

√
N

∥x∥
x.

All the definitions in the remainder of this section are invariant under this hypersphere
projection.

Hyperspherical geometry. The angular distance defines a geometry on our hypersphere.
We now introduce some basic hyperspherical geometry theory that will be needed later on.
These hyperspherical results are direct analogues of their spherical counterparts. We refer
to Todhunter (1863) and Donnay (2011) for a more complete overview of spherical geometry
and trigonometry.

For any two-dimensional plane that contains the origin, its intersection with the hy-
persphere corresponds to a great circle (e.g., the equator of a globe), which is the closest
hyperspherical analogue to an infinite straight line in Euclidean geometry. Therefore, we
refer to segments of a great circle as hyperspherical straight lines. The length of a hy-
perspherical straight line between two points corresponds to the angular distance between
its endpoints. The definition of a hyperspherical angle (the angle that two hyperspherical
straight lines make on the hypersphere) is less straightforward: given three distinct points
x,y, z on the hypersphere, the hyperspherical angle ∠(x,y, z) that the line from x to y
makes with the line from z to y at y is given by the hyperspherical cosine rule:

cos∠(x,y, z) =
cos da(x, z)− cos da(x,y) cos da(y, z)

sin da(x,y) sin da(y, z)
. (4)

This angle is obtained by projecting x and z on the tangent plane of y on the hypersphere
and then simply computing the angle for these projected points via the (Euclidean) cosine
rule, as illustrated in Figure 1. Later in this section, we show that the Correlation Distance
is a hyperspherical angle.
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Tangent plane of y

0

ẑ
x̂

y

z

x

∠(x,y, z)

Figure 1: Illustration of the hyperspherical angle ∠(x,y, z) in the three-dimensional sub-
space spanned by x,y, z. The solid arcs are on the visible side of the sphere while the dashed
arcs are on the back side. The vectors x̂ and ẑ are the projections of x, z respectively to
the tangent plane of y. For y = −1, we have ∠(x,−1, z) = dCC(x, z).

Poles. In the metric space described previously, the all-one vector 1 corresponds to the
clustering where all items are put in the same cluster, while the vector −1 corresponds to
the clustering where each item is placed in its own separate cluster. These two points form
opposite poles on our hypersphere. Clusterings lying close to 1 correspond to clusterings of
coarse granularity (i.e., consisting of relatively few and large clusters), while clusters close
to −1 correspond to clusterings of fine granularity. Therefore, we refer to 1 as the coarse
pole while we refer to −1 as the fine pole.

Latitude and granularity. In analogy to the terminology used for globes, we refer to the
angular distance to the fine pole as the latitude of a vector.1 We thus define the latitude of
a vector x by

ℓ(x) = da(x,−1) = arccos
( −⟨x,1⟩√

N · ∥x∥

)
. (5)

If x is a binary vector, then (5) depends only on the number of +1’s in x. Therefore, for a
clustering C with mC intra-cluster pairs, the latitude is given by

ℓ(b(C)) = arccos

(
−mC + (N −mC)√

N ·
√
N

)
= arccos

(
1− 2mC

N

)
. (6)

As mentioned previously, mC is a measure of the granularity of the clustering C. Since
ℓ(b(C)) is a monotonous transformation of mC , it can equivalently be viewed as a mea-
sure of granularity. Furthermore, note that the latitude is related to Simpson’s index by
cos ℓ(b(C)) = 1− 2S(C).

We refer to the equator as the set of points at equal distance to both poles, that is,
with latitude π/2, or equivalently, the set of vectors x with ⟨x,1⟩ = 0. This contains the

1. Note that this slightly differs from the definition used in geography, where the latitude is the signed
angular distance to the equator.
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clustering vectors for clusterings that have an equal number of inter- and intra-cluster pairs.
From (6) we see that ℓ(b(C)) > π/2 occurs only when C has more intra-cluster pairs than
inter-cluster pairs. Moreover, it can be shown that any clustering with ℓ(b(C)) > π/2 has a
cluster of size larger than n/2, which is usually not the case when clustering into more than
two clusters. This tells us that clusterings generally lie on the fine hemisphere. Furthermore,
let n → ∞ and suppose that the expected community size of a randomly chosen vertex is s
and does not depend on n, then the latitude of a ground truth community structure shrinks
like

arccos

(
1− 2

s− 1

n− 1

)
= 2

√
s− 1

n− 1
+ o(n−1), (7)

so that for large n, clusterings are concentrated around the fine pole.

Meridians and parallels. In the same geographic analogy as above, a meridian is a
hyperspherical straight line between the poles, while a parallel is a hypersurface of con-
stant latitude. Note, however, that in the three-dimensional real world, a parallel is a
one-dimensional object while in our case it has dimension N − 2.

For every vector x that is not a multiple of 1, there is precisely one meridian running
through its hypersphere projection. Similarly, every vector x lies on exactly one parallel,
namely the parallel with latitude ℓ(x). Therefore, each point on the hypersphere is uniquely
defined by a meridian and a latitude. The point that lies on the meridian of x and has
latitude λ is equal to the projection of x onto the parallel with latitude λ. This parallel
projection is given by

Pλ(x) = sin(λ)H
(
x− ⟨x,1⟩

N
1

)
− cos(λ)1. (8)

Since the equator corresponds to the parallel with latitude π/2, the projection to the equator
is given by Pπ/2(x).

All meridians meet at both poles. Given two meridians that run through x and y
respectively, we can compute the hyperspherical angle that they make at the fine pole. We
refer to this as the meridian angle between x and y. For x,y with latitudes in (0, π), the
meridian angle can be computed via the hyperspherical cosine rule (4) and is given by

MeridianAngle(x,y) = ∠(x,−1,y) = arccos

(
cos da(x,y)− cos ℓ(x) cos ℓ(y)

sin ℓ(x) sin ℓ(y)

)
. (9)

Alternatively, this meridian angle can be written as da(Pπ/2(x),Pπ/2(y)). By convention,
we define this angle to be zero when both vectors are on the same pole, π when both vectors
are on opposite poles and π/2 when one vector is on a pole while the other is not. We prove
the following result:

Theorem 1 For all x,y ∈ RN , we have MeridianAngle(x,y) = dCC(x,y). That is, the
meridian angle coincides with the correlation distance.

Proof We prove the theorem by showing that the cosine of the meridian angle in (9) and
the cosine of the correlation distance (3) are the same. From (9) we directly get

cos(MeridianAngle(x,y)) =
cos da(x,y)− cos ℓ(x) · cos ℓ(y)√
1− cos2 ℓ(x) ·

√
1− cos2 ℓ(y)

.
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Next, we multiply both numerator and denominator by ∥x∥ · ∥y∥ to obtain

∥x∥ · ∥y∥ cos da(x,y)− ∥x∥ cos ℓ(x) · ∥y∥ cos ℓ(y)√
∥x∥2 − (∥x∥ cos ℓ(x))2 ·

√
∥y∥2 − (∥y∥ cos ℓ(y))2

.

After substituting ∥x∥ · ∥y∥ cos da(x,y) = ⟨x,y⟩, ∥x∥ cos ℓ(x) = −⟨x,1⟩/
√
N (see Equa-

tion 5) and similarly ∥y∥ cos ℓ(y) = −⟨y,1⟩/
√
N , the resulting expression is the same as the

argument of the arccosine in the right-hand side of (3).
We next check the boundary cases, where x or y are poles: The case where both x and

y are on the same pole corresponds to comparing two constant vectors of the same sign,
which gives correlation 1 and thus results in a correlation distance of 0, which is equal to
the meridian angle by our definition. Similarly, when both vectors are on different poles,
they are constant vectors of different signs, hence, the correlation coefficient is −1, and the
correlation distance again equals the meridian angle π. Finally, when one vector is on the
pole and the other is not, (3) gives dCC(x,y) = π/2, again in accordance with our definition
of the meridian angle.

Theorem 1 provides a new geometric interpretation for the correlation distance. Fur-
thermore, since the correlation distance defines a distance on the set of clustering vectors, it
can be zero only when clusterings are equal. This implies that all clustering vectors, except
the poles, lie on different meridians. To avoid using two different notations for the same
quantity, from now on we denote the meridian angle by dCC and refer to it as the correlation
distance in the remainder of this paper. As mentioned in Section 1, we use the correlation
distance as validation measure in this paper. That is, if T is the ground truth clustering of
our network while C is the clustering obtained by some community detection method, then
we quantify the performance of that method on that network by dCC(b(T ), b(C)).

Other pair-counting distance metrics. The correlation distance is not the only pair-
counting validation index that is related to this hyperspherical geometry: the cosine of the
angular distance da is equal to the Hubert index (Hubert, 1977). This Hubert index is
related to the Rand index by Hubert(C1, C2) = 2Rand(C1, C2)− 1, while the Rand index is
related to the Euclidean distance dE by

Rand(C1, C2) = 1− dE(b(C1), b(C2))
2

4N
.

These two relations are relevant because modularity can be related to both Euclidean and
angular distance, as we will prove in Section 3.

3. Modularity as a Distance

In the previous section, we have shown how clusterings are mapped to binary vectors in RN

in a meaningful way by the mapping b(·). In the present section, we discuss how we can
similarly map graphs to this same space. This is the next step in our methodology that
formalizes community detection methods as algorithms that find a candidate community
structure C by minimizing the distance between its binary vector b(C) and the query vector
q(G) that the graph is mapped to. Here, the function q(·) maps graphs of size n to vectors
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in RN , and we refer to q(·) as a query mapping. Among others, we will prove that this setup
generalizes modularity-based community detection methods.

Query vectors versus affinity matrices. When performing community detection, we
want to find q(G) such that the nearest clustering vector is close to the ‘true’ clustering
T . Therefore, q(G) should ideally be chosen in such a way that b(T ) is one of its nearest
clustering vectors. To achieve this, we wish q(G)ij to be positive whenever ij is an intra-
community pair of T and negative otherwise. In that sense, query vectors are related to
the notion of an affinity matrix that is used throughout the clustering literature (Xu and
Wunsch, 2005; Filippone et al., 2008), where the pairwise similarities are summarized by
an n× n symmetric matrix. Existing clustering algorithms use this matrix in various ways
to cluster the elements. For example, the popular Spectral Clustering algorithm computes
the leading eigenvectors of the affinity matrix and then clusters the items based on these
vectors (Filippone et al., 2008). In our context, the

(
n
2

)
= N entries of a pair-wise vector

correspond to the entries of the upper (or lower) triangle of this affinity matrix. While for
many operations, such as computing eigenvectors, a matrix representation of similarity is
natural, we find that in our geometric setting, a vector representation is more convenient
because we heavily rely on inner products.

The simplest way to map a graph G to a vector is by a binary edge-connectivity vector
e(G), where e(G)ij equals +1 if vertices i and j are connected by an edge and −1 otherwise.
We note that this mapping e(·) forms a bijection between the set of simple undirected graphs
of n vertices and the set of binary vectors. However, there are many more ways in which a
graph can be mapped to RN . In Theorem 2 below, we show that maximizing modularity
MN (C,G; γ), for any null-model N and resolution parameter γ, is equivalent to minimizing
the distance between the clustering vector b(C) and the modularity vector q(G) = qNM (G; γ)
that we define now. Let the N -dimensional vector pN (G) denote the expected number of
edges that each vertex-pair of G has when the edges are rewired according to a null-model
N . This vector is non-negative and its entries sum to the total number of edges mG as the
rewiring keeps the total number of edges unchanged. We then define the modularity vector
with respect to the null model N and resolution parameter γ as

qNM (G; γ) = 1+ e(G)− 2γpN (G). (10)

When γ = 1, we may sometimes write qNM (G) instead of qNM (G; 1) for brevity. For an Erdős-
Rényi null model, the expected number of edges is given by pER(G) = mG

N 1, while for the
Configuration Model, it is given by

pCM(G)ij =
d
(G)
i d

(G)
j

2m̃G
, (11)

where m̃G is given by

m̃G = mG −

∑
i∈[n]

(
d
(G)
i

)2
4mG

.

In other works, the denominator 2m̃G is usually replaced by 2mG for simplicity. In our
setting, we need to use 2m̃G to ensure that the expectations sum to mG. Note that in the
large-graph limit, both options are equivalent, since lim

n→∞
m̃G
mG

= 1. We now present the main
result of this paper:

10
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Theorem 2 For a null model N and resolution parameter γ, maximizing modularity MN (C,G; γ)
over all clusterings C is equivalent to minimizing either

(i) the Euclidean distance dE(b(C), qNM (G; γ)) over all clusterings C; or

(ii) the angular distance da(b(C), qNM (G; γ)) over all clusterings C.

Theorem 2 thus gives a geometric interpretation of modularity maximization. We will see
that this geometric interpretation is useful. For example, it paves the way for a generalization
of modularity-based community detection methods and provides a new interpretation of the
resolution parameter γ, as we explain in more detail in Section 4.

To prove Theorem 2, we rely on the following lemma:

Lemma 3 Minimizing the Euclidean distance to some v over the set of ±1 binary vectors
b is equivalent to minimizing the angular distance between b and v.

Proof The result follows after we relate the square of the Euclidean distance to the cosine
of the angular distance, and then use the fact that any binary vector b has length

√
N :

dE(b,v)
2 = ∥b∥2 + ∥v∥2 − 2⟨b,v⟩

= N + ∥v∥2 − 2∥v∥
√
N cos da(b,v).

Now N and ∥v∥ are constant w.r.t. b and can thus be ignored. This tells us that minimizing
the Euclidean distance is equivalent to maximizing the cosine of the angular distance, or
equivalently, minimizing the angular distance. This completes the proof.

We are now ready to prove Theorem 2:
Proof of Theorem 2 Modularity can be written as

MN (C,G; γ) =
1

mG
⟨12(1+ b(C)), 12(1+ e(G))− γpN (G)⟩. (12)

We multiply this by 4mG and subtract ⟨1,1+e(G)−2γpN (G)⟩, both of which are constant
w.r.t. C. This yields

⟨b(C),1+ e(G)− 2γpN (G)⟩ = ∥b(C)∥ · ∥qNM (G; γ)∥ cos da(b(C), qNM (G; γ)).

Finally, ∥b(C)∥ =
√
N and ∥qNM (G; γ)∥ are constant w.r.t. C. From this, we conclude that

maximizing modularity is equivalent to maximizing the cosine of the angular distance. Since
the arccosine is a strictly decreasing function on [−1, 1], it follows that maximizing modu-
larity is equivalent to minimizing the angular distance. The equivalence to the Euclidean
distance follows immediately from Lemma 3.

Theorem 2 relates modularity to a hyperspherical geometry as well as a Euclidean ge-
ometry, where the latter has one more dimension than the former. This can be explained
by the fact that rescaling the query vector does not affect the optimization, as shown in
Lemma 3. Therefore, the length of a query vector in Euclidean space has no effect on the

11
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resulting candidate clustering. Because of this, we focus on the hyperspherical geometry for
the remainder of this work.

We note that Theorem 2 can easily be extended to variants of modularity. For example,
modularity can be extended to weighted networks by replacing the positive entries of e(G)
by the edge weights and replacing di(G) by the sum of edge weights connected to vertex
i. Similarly, the equivalence can also be extended to methods with negative edge-weights
such as in Traag and Bruggeman (2009). This shows that all modularity-based methods
can be formulated in our geometrical framework. However, the class of methods that fit
our geometrical framework is not limited to modularity-based methods, as we discuss in
Section 5.

4. Consequences for Modularity-Based Methods

In this section, we discuss several consequences of the equivalence proved in Theorem 2.
In particular, we provide a geometric interpretation for the Louvain algorithm and the
resolution limit.

Louvain as an approximate nearest-neighbor search. Let us denote a clustering
vector that minimizes the angular distance to the query vector q by C(q). Possibly, there
are multiple clustering vectors at minimal distance to the query vector. In such cases, we
choose C(q) arbitrarily (but deterministically) out of them.

Note that C(q) is a nearest neighbor of the query vector q among the clustering vectors.
However, from Theorem 2 it follows that finding C(qNM (G; γ)) is equivalent to finding the
global modularity maximum, which is known to be NP-hard (Brandes et al., 2007). There-
fore, most modularity-maximizing algorithms, such as the popular Louvain algorithm (Blon-
del et al., 2008), approximately maximize modularity, resulting in an approximate nearest
neighbor of the modularity vector. Hence, the Louvain algorithm can be viewed as an
approximate nearest-neighbor search.

While the Louvain algorithm was initially introduced for CM-modularity maximization,
it is known to be able to efficiently optimize other clustering-functions as well (Traag et al.,
2011; Prokhorenkova and Tikhonov, 2019). In this work, we use the Louvain algorithm to
minimize the angular distance to a query vector. The computational cost of projecting a
query vector q via the Louvain algorithm depends on the query vector and its representa-
tion. When q is a modularity vector or any other linear combination of the vectors e(G),
1, pER(G), and pCM(G) (amongst others), our modified Louvain algorithm will have the
same computational complexity as the original Louvain modularity-maximization algorithm,
which is known to be log-linear in the number of edges (Sánchez et al., 2016). Other query
vectors may result in a higher computational cost, as will be discussed in Section 5.2.

Let L(q) denote the approximate nearest neighbor obtained by applying the Louvain
algorithm to a query vector q. Then, we expect that da(L(q), q) ≈ da(C(q), q), though
da(L(q), q) ≥ da(C(q), q) always holds since C(q) is a global minimizer.

Furthermore, because the Louvain algorithm is a greedy algorithm that is initialized at
the clustering corresponding to the fine pole −1, it follows that L(q) cannot be further from
q than −1, i.e. da(L(q), q) ≤ da(−1, q) = ℓ(q). Combining this, we get

da(L(q), q) ∈ [da(C(q), q), ℓ(q)]. (13)

12
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Projection methods. A mapping A is a projection if A(A(x)) = A(x) holds for all
x ∈ RN . It can easily be seen that the hypersphere projection H and the parallel projection
Pλ, for any λ ∈ [0, π], are indeed projections. Also, it holds that C is a projection onto the
set of clustering vectors, as C(b(C)) = b(C) holds for all clustering vectors. In Appendix A,
we furthermore prove that the Louvain algorithm is also a projection. Therefore, modularity
maximization using the Louvain algorithm belongs to the broader class of projection methods
that we define now:

Definition 4 A community detection method is a projection method if it can be described
by the following two-step approach: 1) the graph is first mapped to a query vector; and 2)
the query vector is projected to the set of clustering vectors.

In Section 5, we discuss various interesting options for the first step, while we use the
Louvain algorithm for the second step.

Resolution and latitude. The resolution parameter in the modularity function is closely
related to the latitude of the corresponding modularity vector, as described by the following
lemma:

Lemma 5 The line (H(qNM (G; γ)))γ≥0 is the (hyperspherical) straight line that starts from
H(1 + e(G)), intersects the equator at γ = 1 and ends in H(−pN (G)). The resolution
parameter relates to the latitude as

ℓ(qNM (G; γ)) = arccos

 (γ − 1)mG
√
N ·

√
(1− γ)mG + γ2 ∥pN (G)∥2 − γ⟨pN (G), e(G)⟩

 . (14)

Proof For γ = 0, the modularity vector is given by qNM (G; 0) = 1+ e(G), corresponding to
the starting point of the line. The endpoint is obtained by

lim
γ→∞

H(qNM (G; γ)) = lim
γ→∞

√
N

1+ e(G)− 2γpN (G)

∥1+ e(G)− 2γpN (G∥
= −

√
N

pN (G)

∥pN (G)∥
= H(−pN (G)).

To prove that the curve γ 7→ H(qNM (G; γ)) is a hyperspherical straight line, we must show
that it is a segment of a great circle. Note that, according to (10), the line (qNM (G; γ))γ≥0 is
contained in the 2-dimensional plane that is defined by the three vectors qNM (G; 0), qNM (G; 1)
and the origin. The intersection between this plane and the hypersphere defines a great cir-
cle. Since the projection (H(qNM (G; γ)))γ≥0 is contained in the same plane and lies on the
hypersphere, it must be a subset of the same great circle. Therefore, (H(qNM (G; γ)))γ≥0 is
a segment of a great circle, so that it is a hyperspherical straight line by definition. Finally,
(14) is obtained by substituting the modularity vector, given by (10), into the latitude ℓ as
given by (5), and using ⟨pN (G),1⟩ = mG.

In Lemma 5, we restrict to γ ≥ 0. While modularity could also be defined for negative reso-
lution parameter values, the optimization of modularity for γ < 0 always leads to clustering
all items in the same cluster (i.e., the coarse pole). Lemma 5 can easily be extended to
take these negative resolution parameters to show that (H(qNM (G; γ)))γ∈R corresponds to
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−1

1+ e(G)

qER
M (G)

qCM
M (G)

Figure 2: Illustration of the hyperspherical lines formed by varying the latitude of the
modularity vector for a null model. The ER-modularity vectors lie on a single meridian, in
contrast to the CM-modularity vectors.

the unique hyperspherical straight line from H(pN (G)) to H(−pN (G)) that passes through
H(1+ e(G)).

Figure 2 provides a three-dimensional illustration of what these modularity lines may
look like. For the ER null-model, we have H(pN (G)) = 1, so Lemma 5 tells us that the line
H(qER

M (G; γ))γ≥0 lies on a single meridian, ranging from H(1+ e(G)) to −1. The latitudes
of vectors on this meridian are given by

tan ℓ(qER
M (G; γ)) =

√
N−mG
mG

γ − 1
,

as is derived in Appendix A. For other null models such as CM, this line does not correspond
to a meridian, but passes through a range of meridians.

Already from the example of the ER and CM null models, we see that the latitude
of the modularity vector, described by (14) in Lemma 5, depends on the particular null
model. In other words, two modularity vectors with the same resolution parameter but
different null models have different latitudes. The advantage of latitude is that it puts all
these modularity and clustering vectors on the same scale, allowing for a comparison of
modularity-based methods of different null models.

The hyperspherical interpretation of the resolution limit. A well-known limita-
tion of modularity-maximizing methods is the so-called resolution limit (Fortunato and
Barthélemy, 2007). The easiest example to demonstrate this resolution limit is by a ring of
cliques (Fortunato and Barthélemy, 2007): consider a graph Gk,s that is given by a ring of
k cliques each consisting of s vertices and let each pair of neighboring cliques be connected
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by a single edge. Such a graph has a natural clustering Tk,s into its k cliques. It can be
shown that for any s > 2 and sufficiently high k, a clustering that merges two neighboring
cliques has a higher modularity value, which is clearly undesirable. While this result was
initially only given for the CM null model and γ = 1, it easily generalizes to other null
models, resolution parameter values and graph designs (Fortunato and Barthélemy, 2007;
Traag et al., 2011).

The general problem is that in large sparse graphs, the expected number of edges between
small communities is so negligibly small that the existence of any edge between them is
enough to result in a modularity-increase for merging these communities. In our geometric
framework, we will show that this resolution limit can be characterized as a discrepancy
between the latitude of the query vector and the latitude of the ground truth clustering
vector. The inverse triangle inequality allows us to bound the angular distance by

da(b(T ), q
N
M (G; γ)) ≥ |da(−1, qNM (G; γ))− da(−1, b(T ))| = |ℓ(qNM (G; γ))− ℓ(b(T ))|.

Note that for γ = 1, the modularity vector has latitude π/2 while the latitude of the
ground truth clustering vector decreases roughly as O(n−1/2), as shown in (7). Therefore,
da(b(T ), q

N
M (G; 1)) ≈ π/2 for large graphs. This means that on this hypersphere, the vectors

b(T ) and qNM (G; γ) are, in a way, half a world apart. Since modularity maximization returns
a clustering C with b(C) near qNM (G; γ), this clustering C will likely be far from the ground
truth clustering T . This characterizes the resolution limit as a discrepancy between the
latitudes of the modularity vector and ground truth clustering vector.

However, using a different choice for the query vector could avoid such a resolution limit
altogether: for the particular example of the ring of cliques Gk,s, the simple query mapping
q(G) = e(G) would have angular distance

da(b(T ), e(Gk,s)) = arccos

(
1− 2

k

N

)
≈ 2

√
k/

(
k · s
2

)
= O(k−1/2),

for k → ∞. Therefore, this query mapping overcomes the resolution limit and is thus better
than the modularity query mapping for this particular graph. We emphasize that the choice
of the query vector should depend on characteristics of the graph and community structure:
for more realistic networks with larger and less dense communities, the query mapping
q(G) = e(G) performs poorly as its latitude is small compared to that of the ground truth
clustering. We note that e(G) does lie on the same meridian as the ER-modularity vector2

while its latitude decreases as O(n−1/2), which suggests that adjusting the latitude of a
query vector is a suitable way of overcoming such resolution limits.

Based on the discussion above, we conclude that the latitude of the query vector is a more
informative quantity than the resolution parameter. Indeed, the latitude has the advantage
that it is defined for any query and clustering vector, while the resolution parameter only
tells us something about the specific query vector qNM (G; γ). Therefore, we suggest to use
the latitude of the query vector, rather than the resolution parameter, as the quantity that
regulates the granularity of the candidate clustering.

2. More precisely, e(G) = qER
M

(
G; N

2mG

)
.
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5. Beyond Modularity-Based Methods

As shown in Section 3, modularity merely corresponds to a subclass of possible query map-
pings. In this section, we discuss useful query mappings that do not fall under the classical
formulation in terms of null models and resolution parameters. We will argue that for this
wider class of projection methods, it is unnatural to think in terms of null models and reso-
lution parameters, but that these methods instead are better characterized in terms of the
meridians and latitudes of the corresponding query vectors.

5.1 Beyond Null Models

From Lemma 5, we learned that, for different null models, modularity corresponds to differ-
ent lines on the hypersphere, each starting from H(1 + e(G)) and crossing the equator at
different points. The line of ER modularity corresponds to the meridian of e(G), while the
line of CM modularity passes through a range of meridians and intersects the ER meridian
at H(1+e(G)), as illustrated by Figure 2. Therefore, linear combinations of these two mod-
ularity vectors define a two-dimensional subspace of the hypersphere. We observe that the
best-performing query vectors among this hyperplane generally do not lie on one of those
two modularity lines. As an example, we take the well-known Karate network (Zachary,
1977) and compute the performance (in terms of the correlation CC(T,C), as defined in
Equation 1) for a range of query vectors in this two-dimensional set. The results are shown
in Figure 3. We see that both ER and CM modularity perform reasonably well, but are
outperformed by other query vectors. We further see that there is a region of query vectors
above the CM-modularity line for which the true community structure is recovered. Figure 4
shows the same experiment for the Football network (Girvan and Newman, 2002), where each
vertex represents an American college football team, each edge represents a match played
between the teams, and each community corresponds to a so-called conference. Again, the
ER- and CM-modularity lines are mostly outside of the region of best performing queries.

Note the sharp transition in Figure 3, where the region of ‘good’ query vectors directly
neighbors the region of poorly performing query vectors, i.e., the query vectors that lead
to correlation 0. This is easily explained by the fact that the perfectly performing query
vectors yield candidates consisting of two communities. Therefore, increasing the query
latitude eventually leads to these two communities merging into the clustering consisting
of a single community, which has zero correlation to the true clustering. This behavior
is different when the ground truth clustering has more than two communities. Indeed,
in Figure 4, the best-performing query vectors for the Football networks do not lie right
next to poorly-performing query vectors since the ground truth clustering consists of 12
communities.

Null models. Since the query vectors from Figures 3 and 4 are linear combinations of
the ER- and CM-modularity vector, one may be tempted to think that these query vectors
themselves correspond to modularity vectors with some null model that is a mixture of ER
and CM. However, this is generally not the case. Specifically, although for each of these
query vectors q there exist γ, c1, c2 such that

q = 1+ e(G)− 2γ(c1p
ER(G) + c2p

CM(G)),
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Figure 3: Heatmap of the correlation between the ground truth and the candidate clusterings
for the Karate network. We take query vectors from the meridians that

(
qCM
M (G; γ)

)
γ∈[−1.5,2]

runs through and vary the query latitude between 1
3π and 2

3π. The horizontal coordinates
are given by sgn(γ) · dCC(q, e(G)), i.e. the (signed) correlation distance to the ER meridian.

it is not generally the case that c1 and c2 are positive. Because of this, the ‘expected number
of edges’ may be negative for certain vertex-pairs. Therefore, this linear combination does
not fit the requirements corresponding to a null model. For example, each of the perfectly-
performing query vectors of Figure 3 corresponds to negative values of c1. In Appendix B,
we show that for another network, the best-performing query vectors correspond to negative
values of c2. For this reason, it is not natural to think of these query vectors as corresponding
to some null model. Instead, they may simply be viewed as points on the hypersphere that
have a good relative position to the ground truth clustering vector.

5.2 Query Mappings Based on Common Neighbors

Similarly to how we expressed the connectivity of a graph G by the edge-connectivity query
vector e(G) in Section 3, we can express the number of common neighbors between each
pair of vertices in terms of a vector as well. We denote this vector by w(G) and refer to it
as the wedge vector, because the entry w(G)ij corresponds to the number of distinct wedges
(paths of length 2) that have the vertices i and j as endpoints. Intuitively, w(G) is closely
related to the community structure of G because disconnected vertices i and j of the same
community may have many common neighbors, which makes w(G)ij high as well, and thus
b(C) tends to be closer to w(G) when clustering C puts i and j in the same community.

To provide further motivation for the claim that this wedge vector is of interest, we relate
it to the global clustering coefficient of a graph G, which is defined as thrice the number of
triangles (i.e., complete subgraphs of size 3) divided by the number of wedges (i.e., pairs
of adjacent edges). Note that each triangle consists of three wedges, so that this quantity
equals 1 whenever the graph consists of disconnected cliques, and 0 when the graph is acyclic
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Figure 4: Heatmap of the correlation between the ground truth and the candidate
clusterings for the Football network. We take query vectors from the meridians that(
qCM
M (G; γ)

)
γ∈[−1,14]

runs through. The horizontal coordinates are given by sgn(γ) ·
dCC(q, e(G)), i.e. the (signed) correlation distance to the ER meridian.

or all cycles have length at least 4. Thus, this clustering coefficient quantifies how much the
graph resembles a clustering. We prove the following result:

Lemma 6 The global clustering coefficient of a graph G is given by

GlobalClustering(G) =
1

2

(
1− cos da(e(G),w(G))

cos ℓ(w(G))

)
.

Proof The global clustering coefficient is given by the fraction of wedges that are closed.
Since each triangle consists of three closed wedges, this coefficient is given by thrice the
number of triangles divided by the number of wedges. If there is an edge between i and
j, then this edge ij is part of exactly w(G)ij triangles. Summing w(G)ij over all edges
thus gives thrice the number of triangles, as each triangle contains three edges. In vector
notation, this is given by ⟨12(e(G)+1),w(G)⟩, where (e(G)+1)/2 is the {0, 1}-binary vector
edge-connectivity vector. The total number of wedges is given by ⟨1,w(G)⟩. Combined, this
allows us to write the clustering coefficient as

GlobalClustering(G) =
⟨12(e(G) + 1),w(G)⟩

⟨1,w(G)⟩
=

1

2

(
1 +

⟨e(G),w(G)⟩
⟨1,w(G)⟩

)
.

Finally, from the definitions of the angular distance and latitude, as given by (2) and (5), it
follows that

⟨e(G),w(G)⟩
⟨1,w(G)⟩

= −cos da(e(G),w(G))

cos ℓ(w(G))
,

which completes the proof.
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Figure 5: Comparing the performances of query vectors based on the wedge vector w(G) and
edge vector e(G) for a PPM consisting of 10 communities, each of size 100, with expected
inter- and intra-community degree 5.

Since w(G) is non-negative, by (5), its latitude is at least π/2, so we always have
cos ℓ(w(G)) ≤ 0. Then Lemma 6 tells us that the global clustering coefficient of a graph G
is high whenever the angular distance between w(G) and e(G) is low. This relation to the
global clustering coefficient shows that the wedge vector indeed contains relevant informa-
tion about our graph. However, if we would directly use the vector w(G) as a query vector,
we would run into a problem because w(G) has a latitude at least π/2, and usually much
higher than π/2, so the resulting Louvain candidate L(w(G)) groups all vertices into the
same community.

The most straightforward option is to project w(G) to the equator, resulting in the query
mapping qw(G) = Pπ/2(w(G)). The motivation for this choice is that, by Lemma 5, the
modularity vector has latitude π/2 for the default resolution parameter value γ = 1. Thus,
the projection to the equator is comparable to the most common form of modularity. Being
on the equator implies that ⟨qw(G),1⟩ = 0. Then, the positive entries of qw(G) correspond
to vertex-pairs that have more common neighbors than the graph average (over the vertex
pairs), while negative entries correspond to vertex-pairs that have less common neighbors
than average. An approximate nearest neighbor of qw(G) then corresponds to a clustering
where many of the intra-cluster pairs have more common neighbors than average, while many
of the inter-cluster pairs have fewer common neighbors than average. This wedge vector can
also be projected to other latitudes to obtain a clustering of the desired granularity.

Detecting large communities. We observe that the wedge vector is especially useful
as query vector when the community sizes are significantly larger than the average degrees,
or equivalently, when ℓ(b(T )) is significantly larger than ℓ(e(G)). In Figure 5 we compare
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wedge-based query vectors to edge-based query vectors on a Planted Partition Model3 (PPM)
with 10 communities each of size 100 and average degree 10, which gives ℓ(e(G)) = 0.064π
and ℓ(b(T )) = 0.204π. We see that, for the right query latitude, the wedge-based query
vectors result in candidates with correlation distance 0.32π to the ground truth clustering,
while the edge-based query vectors only result in candidates with correlation distance 0.44π,
which translate to correlation coefficients of 0.54 and 0.20 respectively. This significant
difference in performance may be explained by the fact that the edge vector only connects
each vertex to 5 of its 99 community members on average, while the wedge vector connects
each vector to approximately 25 community-members.

Computational cost. A practical downside of projection methods based on wedge vectors
compared to edge vectors is the higher computational cost. The Louvain algorithm is known
to run in roughly log-linear time in terms of the number of edges. When a network is sparse,
meaning that the number of edges is of the same order as the number of vertices, this results
in computation times that are log-linear in the number of vertices. Similarly, when applying
the Louvain algorithm to the wedge vector, the computational time is roughly log-linear in
the number of vertex-pairs that have wedges between them. This can be upper-bounded by
the total number of wedges, which is given by

⟨w(G),1⟩ =
∑
i∈[n]

(
d
(G)
i

2

)
.

If the degree distribution of the network has a finite second moment, then the expected value
of this sum is O(n), so that the Louvain algorithm will run in log-linear time. However,
many real-world networks are known to be scale-free (Barabási, 2013; Fortunato, 2010;
Stegehuis et al., 2016; Voitalov et al., 2019), meaning that their degree distribution has a
finite mean, but infinite variance. In such cases, the total number of wedges is O(n2/(τ−1)),
where τ ∈ (2, 3) is the power-law exponent of the degree distribution,4 leading to higher
computational costs for projection methods based on wedge vectors. We demonstrate this
by the experiment reported in Table 1. In this experiment, we generate random networks
using the LFR benchmark (Lancichinetti et al., 2008), ranging between 1,000 and 100,000
vertices. These networks have pre-defined communities, and power-law degree distributions
with exponents τ = 2.9 and τ = 4. We keep all other parameters (including the average
degree) fixed. The number of wedges grows linearly when τ = 4, and faster than linearly
when τ < 3. We then apply the projection method using the wedge vector Pπ/2(w(G))
as query vector. Table 1 shows that the computation time for the wedge vector grows
much faster for τ = 2.9 than for the exponent τ = 4. This confirms the analytical results
that a degree distribution with a heavier tail results in slower computations for wedge-
based projection methods. Table 1 also shows the computation time for the query mapping
qCM
M (G; 1), which is based on edges instead of wedges. We see that for this query mapping,

the difference in computation times between the two power-law exponent values is much
smaller, which is explained by the fact that the expected number of edges is equal in both
graphs.

3. That is, a Stochastic Block Model where the block matrix has diagonal entries pin and off-diagonal entries
pout.

4. That is, the proportion of vertices having degree k is approximately proportional to k−τ .
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LFR τ = 2.9 LFR τ = 4

n Pπ/2(w(G)) qCM
M (G; 1) Pπ/2(w(G)) qCM

M (G; 1)

1,000 112s 9s 55s 11s
2,000 269s 22s 37s 7s
5,000 794s 82s 156s 24s

10,000 2,314s 194s 349s 60s
20,000 2,080s 186s 824s 180s
50,000 8,909s 835s 2,677s 701s

100,000 25,794s 2,874s 5,685s 3,092s

Table 1: Computation times for the projection method with query mappings Pπ/2(w(G))

and qCM
M (G; 1), respectively, on LFR networks with power-law exponents τ = 2.9 and τ = 4.

These experiments also demonstrate that the projection method with the Louvain al-
gorithm is computationally feasible in large-scale networks. We emphasize that we have
implemented our modification of Louvain in Python, which is significantly slower than other
programming languages (e.g., C++) for such tasks. For example, the NetworKit (Staudt
et al., 2016) implementation of the Louvain algorithm for maximizing the Newman-Girvan
modularity on the LFR network of 100,000 vertices with τ = 4 takes only 0.46 seconds.
This task is identical to the projection method with query vector qCM

M (G; 1)), which takes
3092 seconds with our slow Python implementation. We expect that implementing the pro-
jection method for the wedge vector in a similar optimized way would result in a similar
improvement in running time.

6. Empirical Analysis of Projection Methods

In this section, we perform more experiments to demonstrate how the geometric results
reported in this paper help to interpret and understand outcomes of the projection method
for different query mappings. In Section 6.1, we illustrate some phenomena that we empiri-
cally observe for many networks and query mappings, while in Section 6.2, we compare the
performance of different query mappings on several real-world networks.

The code that was used to perform the experiments and generate the figures of this paper
is available on GitHub.5 Amongst others, this repository contains a Python implementation
of our modification of the Louvain algorithm. This implementation is able to compute the
Louvain projection for a range of query vectors, including all query vectors that are linear
combinations of 1, e(G), w(G), qCM

M (G; γ), and qER
M (G; γ).

6.1 The Louvain Candidate

In this section, we describe how several geometric quantities are affected when the query
latitude is varied. The relevant quantities are summarized in Table 2. For an illustrational
experiment, we use query vectors on the ER meridian to detect communities in a Planted
Partition Model (PPM). The ground truth clustering consists of 20 communities, each of
size 20, while the mean intra- and inter-community degrees are 6 and 4, respectively. The
four plots in Figure 6 illustrate our empirical observations, which we now explain in detail.

5. See https://github.com/MartijnGosgens/hyperspherical_community_detection.
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(a) The latitudes of the candidate and ground
truth clusterings.

(b) Angular distances from the query vector to
the ground truth and candidate clusterings.

(c) Correlation distances from the query vector
to the ground truth and candidate clusterings.

(d) The performances of the query vectors. λ′ is
the query latitude that minimizes da(q, b(T )).

Figure 6: Plot of various quantities for a PPM consisting of 20 communities each of size
20, with mean intra-community degree 6 and inter-community degree 4. The query vectors
are given by q = Pλ(e(G)), where λ is varied between 0 and π, so that these query vectors
lie on the ER meridian (see Equation 8). The candidate clusterings are obtained using the
Louvain algorithm, i.e., b(C) = L(q).
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Quantity Description

ℓ(b(C)) Latitude of the candidate clustering, measure of granularity.
ℓ(q) Latitude of the query vector. Related to the resolution parameter for

modularity vectors.
da(q, b(C)) Angular distance between the query vector and candidate clustering, the

quantity that is minimized by the Louvain algorithm.
da(q, b(T )) Angular distance between the query vector and the ground truth clustering.

dCC(q, b(C)) Correlation distance between the query vector and the candidate clustering.
dCC(q, b(T )) Correlation distance between the query vector and the ground truth

clustering, measure of how informative q is for detecting T .
dCC(b(T ), b(C)) Correlation distance between the ground truth and the candidate clusterings,

the clustering performance measure used in this article.

Table 2: Description of quantities in terms of the query vector q and the corresponding
Louvain candidate clustering b(C) = L(q).

Candidate latitude. In Figure 6a, we show how the latitude of the candidate clustering
changes with the latitude of the query vector. We see that ℓ(q) = 0 results in ℓ(b(C)) = 0.
Indeed, since P0(e(G)) = −1 is a clustering vector, it follows that the Louvain algorithm
maps this vector to itself since it is a projection onto the set of clustering vectors. Then
the latitude of the candidate gradually increases until it roughly reaches the ground truth
latitude (the dashed orange line) around the query latitude 1

3π, plateaus for a bit and then
sharply shoots up to π shortly after the candidate latitude 1

2π. The behavior outside the
plateau is exactly as one expects: in the part before the plateau, the Louvain algorithm
only clusters together the highest-density subgraphs, while after the plateau, communities
get merged. The sudden increase to π is explained by the fact that the corresponding
candidate clustering consists of a single cluster, so that the corresponding clustering vector
is 1, which has latitude π. Finally, note that before this sudden jump, the candidate latitude
is significantly smaller than the query latitude, i.e., ℓ(b(C)) < ℓ(q). In general, we observe
that in order to obtain a clustering of some specified latitude λC < 1

2π, one needs to use a
query latitude that is at least as large as λC .

Angular distances w.r.t. query vector. Figure 6b compares the angular distances
between query vector and ground truth clustering, and between query vector and candidate
clustering. The angular distance da(q, b(T ))) as a function of the query latitude ℓ(q) is
given by

cos da(q, b(T )) = cos ℓ(b(T )) cos ℓ(q) + sin ℓ(b(T )) sin ℓ(q) cos dCC(e(G), b(T )),

as proven in Lemma 9 in Appendix A. From this expression, we see that when the query
latitude equals 0, i.e., for q = −1, we have da(q, b(T )) = ℓ(b(T )). The angular distance to
the ground truth then slightly decreases before it steadily increases to π − ℓ(b(T )) at query
latitude π. The angular distance to the candidate clustering, on the other hand, starts at
0, exactly as in Figure 6a, and increases almost linearly to roughly 1

2π, before it decreases
linearly to 0. The linear decrease corresponds to the segment where ℓ(b(C)) = π, so that
da(q, b(C)) = π − ℓ(q).

We observe in Figure 6b that the following two upper bounds for da(q, b(C)) hold in all
cases: firstly, the upper bound da(q, b(C)) ≤ ℓ(q) derived in (13) is confirmed. Secondly, the
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bound da(q, b(C)) ≤ da(q, b(T )) holds in all cases. That is, the candidate clustering is always
at least as close to the query vector as the ground truth clustering. Since Theorem 2 proves
that minimizing the angular distance to the present query vector is equivalent to maximizing
modularity for the ER null model, this means that the modularity of the candidate clustering
is at least as high as that of the ground-truth clustering. This behavior has previously been
observed in various real-world and synthetic networks (Prokhorenkova and Tikhonov, 2019),
and may be explained by the fact that the modularity landscape is glassy (Good et al., 2010).
That is, there are many clusterings with locally optimal modularity values very close to the
global optimum. The greedy optimization that the Louvain algorithm utilizes seems to be
quite successful in reaching one of those local optima, while the ground truth clustering is
not guaranteed to correspond to a local modularity optimum at all. This phenomenon seems
to hold even when minimizing the angular distance to other query vectors.

For query latitudes in the interval [14π,
1
2π], the inequality da(q, b(C)) ≤ da(q, b(T ))

seems to hold with equality, which suggests that there might be a corresponding lower
bound. While we were unable to formally derive such a lower bound, we do observe that for
many other networks and query mappings, there is a similar interval where da(q, b(T )) ≈
da(q, b(C)) holds quite precisely. However, the endpoints of this interval do depend on the
particular network and query mapping.

Correlation distances w.r.t. query vector. When comparing the correlation distances
from the query vector to the ground truth and candidate clusterings in Figure 6c, we observe
that dCC(q, b(C)) ≈ dCC(q, b(T )) for a large range of query latitudes. This is interesting
since the candidate clusterings in this range do have significantly different latitudes, as shown
in Figure 6a. After that, the correlation distance jumps to 1

2π and stays constant. This is
because the candidate clustering vector then corresponds to 1, which is a constant vector
so that it has correlation distance 1

2π with any nonconstant vector.

Correlation distance between clusterings. Figure 6d shows the correlation distance
between the ground truth and candidate clusterings. We use this measure to quantify the
performance of the detection algorithm. We see that when the query latitude is zero, the
correlation distance equals 1

2π, indicating that the candidate clustering is uncorrelated to the
ground truth. For higher query latitudes, this correlation distance decreases to a minimum
at query latitude 0.44π, after which it increases back to 1

2π again. The best performance is
thus obtained around a query latitude of 0.44π for this network.

If, in advance, one would guess what query latitude leads to the best performance, then
the following two guesses may come to mind: on the one hand, one may think that setting
the query latitude equal to the ground truth latitude ℓ(b(T )) would result in a candidate
clustering of a similar latitude. On the other hand, the fact that the Louvain algorithm
finds a clustering latitude close to the query vector suggests that we should place the query
vector at minimal angular distance to b(T ). Lemma 9 in Appendix A proves that the
latitude λ′ of this projection is given by tanλ′ = cos dCC(e(G), b(T )) tan ℓ(b(T )). It turns
out that both of these options perform poorly in general, as shown in Figure 6d. Instead, the
best performance seems to be achieved around the query latitude for which the candidate
latitude intersects the ground truth latitude in Figure 6a. In Figure 6a, we also saw that
the candidate latitude is generally significantly smaller than the query latitude, so that
one indeed needs query latitudes much larger than ℓ(b(T )) in order to obtain a candidate

24



The Hyperspherical Geometry of Community Detection

clustering with ℓ(b(C)) = ℓ(b(T )). This tells us that both these initial guesses are wrong,
and that instead we need to set the query latitude to some value larger than ℓ(b(T )) for the
best performance.

We generally observe that the difference between the best-performing query latitude and
the ground truth latitude is large whenever the correlation distance dCC(q, b(T )) between
the query vector and the ground truth clustering is large. Indeed, when dCC(q, b(T )) = 0
and ℓ(q) = ℓ(b(T )), it also holds that q = b(T ), so that L(q) = b(T ) follows from the fact
that the Louvain algorithm is a projection to the set of clustering vectors. Of course, in
practical applications, dCC(q, b(T )) and ℓ(b(T )) are unknown, making it difficult to know in
advance which query latitude performs best. Finding this optimal query latitude in practical
settings is beyond the scope of this paper.

6.2 Experiments on Real-World Networks

In this section, we compare the projection method for different query mappings on real-world
networks. We consider both projection methods that fall inside the class of modularity-based
methods and methods that fall outside this class. We consider four sets of query mappings,
each corresponding to a straight line on the hypersphere that is parametrized by the query
latitude. More specifically, we consider ER and CM modularity for various resolution pa-
rameters, the wedge-based query mappings from Section 5.2 for various latitudes, and the
meridian corresponding to the CM-modularity vector for resolution parameter γ = 1, which
we refer to as the CM meridian. Note that of these four lines on the hypersphere, CM
modularity is the only one that does not correspond to a meridian.

For these experiments, we consider 6 real-world networks from Prokhorenkova and Tikhonov
(2019) that have known ground truth communities. These networks are: 1) Zachary’s
well-known karate club network (Zachary, 1977); 2) Lusseau’s network of bottlenose dol-
phins (Lusseau and Newman, 2004); 3) a network of political books grouped by political
affiliation (Newman, 2006b); 4) a network of college football teams grouped by ‘confer-
ence’ (Girvan and Newman, 2002); 5) the EU-core network of European researchers linked
by email traffic and grouped by department; and 6) a network of political blogs concerning
the US presidential election of 2004, grouped by party affiliation (Adamic and Glance, 2005).
An overview of these networks is given in Table 3.

The repository of Prokhorenkova and Tikhonov (2019) also contains two other networks:
a network of Internet systems that are grouped by a geometric clustering algorithm, and a
citation network that is grouped by a text-clustering algorithm. We chose not to include
these two networks in the experiments since their corresponding ‘ground truth’ clusterings
were obtained by different clustering algorithms, so that they may best be considered can-
didate clusterings rather than ground truths. Furthermore, these networks are significantly
larger than the ones considered here (n > 20, 000), which results in long running times for
our modification6 of the Louvain algorithm, especially when using the wedge-based query
vector, as explained in Section 5.2.

The optimal query latitude. The results of the experiments can be found in Figure 7.
We use the correlation distance between the ground truth clustering and the candidate
clustering to measure the performance of the community detection method, where lower

6. We implemented our algorithm in Python, which is significantly slower than C++ for such tasks.
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values indicate better performance. By comparing the locations of the minima for different
type of query vectors (e.g., the wedges and ER meridian in Figure 7d), we see that the
optimal query latitude is dependent on the network and query type. Furthermore, while the
best-performing query vectors are often located roughly around the equator, there are many
networks where the best latitude is quite far from the equator (e.g., Figures 7a and 7d). In
Section 6.1, we have discussed that the optimal query latitude is generally larger than the
ground truth latitude ℓ(b(T )). In Figure 7, we have marked the ground truth latitudes on the
horizontal axes. It can be seen that the minima are indeed located at larger query latitudes,
with the exceptions of the Football and Political blogs networks, where some minima seem
to coincide with the ground truth latitude. Note that the exact location of these minima
can only be determined when the ground truth is known, which is generally not the case
in practice. Finding the best-performing query latitude without knowledge of the ground
truth is beyond the scope of this article. In the remainder of this section, we compare the
four methods by comparing their minima.

CM meridian versus modularity. Recall that CM modularity corresponds to a stan-
dard community detection method, while CM meridian is one of the possible alternative
community detection methods that emerge from our generalization of modularity-based
methods. Interestingly, CM meridian perfectly recovers the ground truth for Karate. In
terms of Figure 3, this means that this meridian intersects the region of perfectly-performing
query vectors. For the other networks, we see that the performances of CM meridian and
CM modularity are comparable. The only exception is the EU-core, where CM modularity
clearly outperforms CM meridian.

Correlation distance between the ground truth and query vectors. The cor-
relation distance between the query vector and ground truth clustering vector seems to
carry some information about which null model performs best: for all networks where
CM modularity or meridian outperforms ER modularity, we see that dCC(q

CM
M (G), b(T )) <

dCC(q
ER
M (G), b(T )) holds in Table 3. This suggests to use the correlation distance between

the modularity vector and the ground truth as criteria to choose a suitable null model.
However, a smaller correlation distance between the query vector and ground truth does
not guarantee better performance. For example, w(G) is closer to the ground truth for all
networks except EU-core (see Table 3), while the Football network is the only network for
which the wedge vector actually outperforms the other vectors.

Performance of the wedge vector. As discussed in Section 5.2, we expected the wedge
vector to perform well whenever the latitude of the ground truth vector is significantly larger
than the latitude of the edge vector. We do not observe this to hold in the considered real-
world networks: In Table 3, we see that for the Political blogs network, we have ℓ(b(T )) =
0.500π > 0.096π = ℓ(e(G)) so that we would expect the wedge vector to perform well, while
it performs poorly compared to the other methods. Moreover, the only network for which
the wedge vector visibly outperforms the other methods is the Football network for which
ℓ(e(G)) > ℓ(b(T )). We expect that this difference in performance between the PPM of
Section 5.2 and the real-world networks can be explained by degree-inhomogeneity: a pair
of high-degree vertices are likely to have many common neighbors, regardless of whether they
belong to the same community. This is similar to how ER modularity is known to cluster
together high-degree vertices. This suggests ‘correcting’ for this degree-inhomogeneity in
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Network n mG |T | ℓ(b(T )) ℓ(e(G)) dCC(qER
M (G), b(T )) dCC(qCM

M (G), b(T )) dCC(w(G), b(T ))

Karate club 34 78 2 0.491π 0.243π 0.400π 0.388π 0.342π
Dolphins 62 159 2 0.536π 0.187π 0.420π 0.422π 0.364π
Political books 105 441 3 0.433π 0.183π 0.413π 0.414π 0.344π
Football 115 613 12 0.181π 0.198π 0.248π 0.248π 0.186π
EU-core 1005 16706 42 0.139π 0.116π 0.411π 0.403π 0.444π
Political blogs 1224 16718 2 0.500π 0.096π 0.461π 0.458π 0.424π

Table 3: Overview of the considered real-world networks. For each network, we show the
number of vertices n, the number of edges mG and the number of ground truth communities
|T |. We also show the following angles: ℓ(b(T )), a measure of the granularity of the ground
truth clustering; ℓ(e(G)), a measure of the edge-density of the network; and dCC(q, b(T )),
the correlation distance between the ground truth clustering and the query vector, for q ∈
{qER

M (G), qCM
M (G),w(G)}, where the modularity vectors use the default resolution parameter

value γ = 1.

a similar way that CM modularity does: by subtracting a multiple of d(G)
i d

(G)
j from every

entry.

In summary, these experiments illustrate how the developed geometry helps us to inter-
pret results of community detection methods. In addition, we have demonstrated that the
class of projection methods contains several new community detection methods based on
CM meridian and the wedge vector as query mappings, which may outperform the subclass
of modularity-based methods on real-world networks. Furthermore, we see that the correla-
tion distance between the query vector and ground truth clustering can help in predicting
which projection method will perform best.

7. Discussion

In this work, we described a hyperspherical geometry on clusterings and showed how this
geometry is related to validation measures such as the correlation distance. We then ex-
tended this geometry to include vectors that do not necessarily correspond to clusterings
and proved that modularity maximization is equivalent to minimizing the distance to some
modularity vector over the set of clustering vectors. In Section 4, we discussed how this
newfound geometry sheds new light on modularity-based community detection methods: it
allows us to view the popular Louvain algorithm as a method that projects a query vector
onto the set of clustering vectors. In addition, this led to a geometric interpretation of the
resolution limit. This geometry also suggests a generalization of modularity-based commu-
nity detection methods, leading to the class of projection methods that detect communities
by first mapping the graph to a point on the hypersphere, and then projecting this point
to the set of clusterings. In Section 5, we introduced several projection methods that do
not correspond to modularity-based methods. Finally, Section 6 applied our interpretation
to real-world networks and demonstrated how our novel projection methods outperform
existing modularity-based methods on several networks.

This work opens up many avenues for future research. In the remainder of this section,
we discuss the ones that are most promising in our opinion.
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(a) Performance for Karate (b) Performance for Dolphins

(c) Performance for Political books (d) Performance for Football

(e) Performance for EU-core (f) Performance for Political blogs

Figure 7: Results of the various projection methods on the real-world networks summarized
in Table 3. The ground truth latitude is marked on the horizontal axis.
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Finding a suitable query vector. There are infinitely many possible query mappings
and finding the most suitable one is a daunting task. The described geometry allows us
to split the selection of a query vector into two subtasks: first finding a suitable meridian
and then finding a suitable latitude on that meridian. For the first problem, a reasonable
approach could be to search for the meridian that minimizes the correlation distance to the
ground truth clustering. Since the correlation distance is the angle between the meridians
(recall Theorem 1), it does not depend on the query latitude that we choose in the second
step. However, we have shown in Section 6.2 that this criterion does not always result
in better performances. The problem of finding the optimal latitude on a given meridian
seems simpler, as it is one-dimensional. We have observed in Section 6 that the optimal
query latitude is generally larger than the ground truth clustering latitude, and that the
difference between these two is larger whenever the query vector and ground truth clustering
are poorly correlated. However, in Section 6.2 we have also demonstrated that the optimal
query latitude depends on the particular query mapping, the granularity of the ground
truth clustering and properties of the network at hand. This makes it difficult to prescribe a
general formula for the query latitude that performs well across all these possible variations.
A further analysis of optimal latitudes is an interesting direction for future research.

Projections in other geometries. We have proved that maximizing modularity is equiv-
alent to minimizing the angular distance to a query vector. This begs the question whether
minimizing other distances would also give good community detection methods. In particu-
lar, it would be interesting to investigate minimizing the correlation distance instead of the
angular distance, as this distance would allow one to use the triangle inequality to bound
the correlation distance between candidate and ground truth clusterings by their correla-
tion distances to the query vector. Furthermore, since the correlation distance is a distance
between meridians (by Theorem 1), such methods would be invariant to the choice of the
query latitude.

Improved modularity optimization algorithms. Finally, as we have proven that the
Louvain algorithm is an approximate nearest-neighbor algorithm, it would be interesting
to see whether existing approximate nearest-neighbor algorithms outperform the Louvain
algorithm in terms of the obtained modularity value or in terms of running time. At any
rate, it may be worthwile to investigate whether the geometry may be utilized to improve
upon Louvain or other modularity-optimizing algorithms.
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Appendix A. Additional Proofs

Lemma 7 The latitude of the modularity vector for the Erdős-Rényi null model is given by

tan ℓ(qER
M (G; γ)) =

√
N−mG
mG

γ − 1
.
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Proof Note that pER(G) = mG
N 1, so that ∥pER(G)∥2 = m2

G
N and

⟨pER(G), e(G)⟩ = 2
m2

G

N
−mG.

We substitute these into (14) and rewrite the result to

cos ℓ(qER
M (G; γ)) =

(γ − 1)mG

√
N ·

√
(1− γ)mG + γ2

m2
G

N − γ(2
m2

G
N −mG)

=
(γ − 1)mG

N√(
(γ − 1)mG

N

)2
+ mG(N−mG)

N2

.

Therefore, the tangent is given by

tan ℓ(qER
M (G; γ)) =

√
1− cos2 ℓ(qER

M (G; γ))

cos ℓ(qER
M (G; γ))

=

√
mG(N−mG)

N2

(γ − 1)mG
N

=

√
N−mG
mG

γ − 1
,

as required.

Lemma 8 The Louvain algorithm is a projection. That is, L(L(q)) = L(q) holds for any
query vector q ∈ RN .

Proof We equivalently prove that for any clustering C, the Louvain algorithm maps the
query vector q = b(C) to itself, i.e., L(b(C)) = b(C). Recall that the Louvain algorithm
is initialized at the fine pole, i.e., the clustering consisting of n singleton clusters. Then, it
iterates through all vertices and relabels each vertex greedily. That is, a vertex is assigned to
the cluster that results in the largest decrease in the angular distance to the query vector, or
equivalently, the largest increase of ⟨b(C ′), b(C)⟩, where C ′ is the new candidate clustering
after relabeling.

Let us consider one cluster c ∈ C. The first time that the iteration of the Louvain algo-
rithm encounters a vertex i ∈ c, all of its cluster-members are assigned to singleton clusters,
so that i is relabeled to the cluster of one of its cluster-members j ∈ c\{i} arbitrarily. Then,
the next time a vertex k ∈ c \ {i, j} is encountered in the iteration, the greedy choice is to
relabel k to the cluster {i, j}, as it results in a larger increase than relabeling k to any of
the singleton clusters of c \ {i, j, k}. Similarly, all other vertices of c are relabeled to this
cluster so that the resulting Louvain candidate contains the cluster c. In the same way, all
other clusters c′ ∈ C are obtained so that indeed L(b(C)) = b(C).

Lemma 9 For a fixed vector y ∈ RN with latitude λy = ℓ(y) ∈ (0, π), another vector
x ∈ RN , at correlation distance θ = dCC(x,y) ∈ (0, 12π) and a latitude λ ∈ (0, π), the
angular distance between the parallel projection Pλ(x) and y is given by

cos da(Pλ(x),y) = cosλ cosλy + sinλ sinλy cos θ. (15)

In particular, the λ that minimizes the angular distance to y is given by

tanλ = cos θ tanλy. (16)
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Proof By the definition of the correlation distance as given in (9),

cos θ =
cos da(Pλ(x),y)− cosλ cosλy

sinλ sinλy
.

This can be rewritten to obtain (15). Taking the derivative of (15) with respect to λ, we get

d

dλ
da(Pλ(x),y) = − sinλ cosλy + cosλ sinλy cos θ.

The unique zero of this expression is given by (16), which concludes the proof.

Appendix B. Heatmap of Dolphins Network

Figure 8 shows a similar experiment as in Section 5.1 performed on Lusseau’s network of bot-
tlenose dolphins (Lusseau and Newman, 2004). Similarly to the karate network, this experi-
ment shows that there is a small region of query vectors for which perfect recovery is achieved.
This time, this region is found on meridians that correspond to CM modularity for a negative
resolution parameter: one of these query vectors is given by q = P0.58π(q

CM
M (G;−0.2)), i.e.,

CM modularity with resolution γ = −0.2 projected to the latitude 0.58π. Note that if we
were to try and interpret this query vector in terms of a null model, the expected number of
edges between two vertices i, j would be of the form c1−c2d

(G)
i dj(G) for c1, c2 > 0. For some

vertex-pairs, this value may be negative, so that it cannot be interpreted as an expected
number of edges. The reason that this query vector performs well on this network seems to
be that all high-degree vertices are part of the same community. Therefore, vertex-pairs for
which d

(G)
i d

(G)
j is high are more likely to be community members.
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