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Abstract
Bayesian mixture models are widely used for clustering of high-dimensional data with appropri-
ate uncertainty quantification. However, as the dimension of the observations increases, posterior
inference often tends to favor too many or too few clusters. This article explains this behavior by
studying the random partition posterior in a non-standard setting with a fixed sample size and in-
creasing data dimensionality. We provide conditions under which the finite sample posterior tends
to either assign every observation to a different cluster or all observations to the same cluster as
the dimension grows. Interestingly, the conditions do not depend on the choice of clustering prior,
as long as all possible partitions of observations into clusters have positive prior probabilities, and
hold irrespective of the true data-generating model. We then propose a class of latent mixtures for
Bayesian clustering (Lamb) on a set of low-dimensional latent variables inducing a partition on
the observed data. The model is amenable to scalable posterior inference and we show that it can
avoid the pitfalls of high-dimensionality under mild assumptions. The proposed approach is shown
to have good performance in simulation studies and an application to inferring cell types based on
scRNAseq.
Keywords: Big data; Clustering; Dirichlet process; Exchangeable partition probability function;
High dimensional; Latent variables; Mixture model.

1. Introduction

High-dimensional data yi = (yi1, . . . , yip)
T for i = 1, . . . , n, with p � n, have become com-

monplace, and there is routinely interest in clustering observations {1, . . . , n} into groups. As an
illustrative application, we consider single-cell RNA sequencing (scRNASeq) data; clustering of
the cells based on their high-dimensional gene expression profiles produces potential cell types and
provides information on heterogeneous cell populations of potential utility in disentangling carcino-
genic processes. RNAseq data is an exemplary setting in which p is massive and clustering is crucial
due to interest in inferring cell types. Although there are a variety of alternatives in the literature (see
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Kiselev et al., 2019, for a review), we are particularly motivated to consider a Bayesian approach
due to the potential for propagating uncertainty in inferring cell types. Additionally hierarchical
Bayes models allow for borrowing of information in a principled manner in complicated scenarios.

Bayesian clustering is typically based on mixture models of the form:

yi
iid∼ f, f(y) =

k∑
h=1

πhK(y; θh), (1)

where f(·) is the marginal density of the data, k is the number of components, π = (π1, . . . , πk)
T

are probability weights, K(y; θh) is the density of the data within component h, and the number
of clusters in data y1, . . . , yn corresponds to the number of occupied components kn ≤ k. When
p is large and yi ∈ Rp, a typical approach chooses K(y; θh) as a multivariate Gaussian density
with a constrained and parsimonious covariance (see Bouveyron and Brunet-Saumard, 2014, for a
review). Examples include matrices that are diagonal (Banfield and Raftery, 1993), block diagonal
(Galimberti and Soffritti, 2013) or have a factor analytic representation (Ghahramani et al., 1996).

To avoid sensitivity to a pre-specified k, one can place a prior on k to induce a mixture of
finite mixture model (Miller and Harrison, 2018; Frühwirth-Schnatter et al., 2021). Alternatively, a
Bayesian nonparametric approach lets k = ∞, which allows kn to increase without a bound as n
increases. Under a Dirichlet process (Ferguson, 1973) kn increases at a log rate in n, while for a
Pitman-Yor process (Pitman and Yor, 1997) the rate is a power law.

Notably, Bayesian approaches can be used to intrinsically regularize the model complexity, as
discussed by Jefferys and Berger (1992) exploiting the idea of a ‘Bayesian Ockham razor’. While
in many circumstances relying on the Bayesian Ockham razor is sufficient to choose the appropriate
compromise between extremes, e.g. too many or too few clusters, in what follows we will argue
that this is not the case in high-dimensional clustering. Indeed, when p is very large, the posterior
distribution of kn can concentrate on large values (Celeux et al., 2018); often the posterior mode
of kn is even equal to n so that each subject is assigned to its own singleton cluster. Consider, for
example, the right panel of Figure S.1 in the supplementary materials, which displays the distri-
bution of the mean number of clusters in 100 replicates of a simple simulation example where we
generate samples of size n = 10 from a p = 20 variate normal distribution with mean zero and iden-
tity covariance. The boxplot, obtained running a standard Dirichlet process mixture, clearly shows
how kn is concentrated near n even for this moderate value of p. Celeux et al. (2018) conjectured
that this aberrant behavior is mainly due to slow mixing of Markov chain Monte Carlo samplers.
Frühwirth-Schnatter (2006) combat this problem with a specific prior elicitation criterion; this can
be successful for p ≈ 100, but calibration of hyperparameters is a delicate issue and scaling to
p > 1, 000 is problematic. Alternatively, one may attempt to cluster in lower dimensions via vari-
able selection in clustering (Tadesse et al., 2005; Kim et al., 2006) or by introducing both global
and variable-specific clustering indices for each subject, so that only certain variables inform global
cluster allocation (Dunson, 2009).

However, we find these approaches complicated and to not address the fundamental question of
what is causing the poor performance of Bayesian clustering for large p. To fill this gap, we provide
theory showing that, as p → ∞ with n fixed, the posterior can assign probability one to a trivial
clustering - either with kn = 1 and all subjects in one cluster or with kn = n and every subject in a
different cluster. We further show that the conditions under which these degenerate limiting behav-
iors occur are satisfied for seemingly standard priors and multivariate Gaussian kernels. In a related
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result for classification, Bickel and Levina (2004) showed that when p increases at a faster rate than
n, the Fisher’s linear discriminant rule is equivalent to randomly assigning future observations to
the existing classes.

Our result has no relationship with the literature studying the posterior behavior of kn as n→∞
for nonparametric Bayes procedures (Miller and Harrison, 2014; Cai et al., 2020; Ascolani et al.,
2022). Indeed, our result holds for finite n regardless of the true data generating model, and has
fundamentally different implications—in particular, that one needs to be extremely careful in spec-
ifying the kernel K(y; θ) and prior for θ in the large p context. Otherwise, the true posterior can
produce degenerate clustering results that have nothing to do with true structure in the data.

A key question is whether it is possible to define models that can circumvent this pitfall? We
show that the answer is yes if clustering is conducted on the level of low-dimensional latent variables
ηi underlying yi. When the dimension of ηi is small relative to p, yi provides abundant information
about the lower-dimensional ηi even in low signal-to-noise settings in which each individual yij
contributes very little information on its own. Hence, the curse of dimensionality can be turned
into a blessing. This motivates a novel notion of a Bayesian oracle for clustering. The oracle has
knowledge of the latent ηis and defines a Bayesian mixture model for clustering based on the ηis;
the resulting oracle clustering posterior is thus free of the curse of dimensionality. We propose a
particular latent mixture model structure, which can be shown to satisfy this oracle property and
additionally leads to straightforward computation.

The article is organized as follows. Section 2 gives details on the limiting behavior of usual
clustering methods based on (1). Section 3 introduces our mixture model on the latent variable level
with prior specifications and posterior computation strategies. In Section 4, we introduce a Bayesian
oracle clustering rule and show that our model achieves this oracle property as the dimension grows
to infinity. Section 5 shows simulation studies illustrating how our proposed model learns the latent
space with increasing dimensions and compares our method with some popular clustering methods.
Section 6 considers an application to scRNASeq data, and Section 7 discusses the results. Proofs of
the main results are included in the Appendix while additional technical results, simulation studies,
and MCMC convergence diagnostics are reported in the supplementary materials.

2. Limiting Behavior of High-Dimensional Bayesian Clustering

Under a general Bayesian framework, model (1) becomes

yi ∼ f, f(y) =
∑
h≥1

πhK (y; θh) , θh
iid∼ P0, {πh} ∼ Q0, (2)

where {πh} ∼ Q0 denotes a suitable prior for the mixture weights. Examples include stick-breaking
(Sethuraman, 1994) constructions or a k-dimensional Dirichlet distribution with the dimension k
given a prior following a mixture of finite mixtures (MFMs) approach.

Let ci ∈ {1, . . . ,∞} denote the cluster label for subject i (for i = 1, . . . , n), with kn =
#{c1, . . . , cn} denoting the number of clusters represented in the sample. Conditionally on ci =
h, we can write yi | ci = h ∼ K (yi; θh). Assume that nj is the size of the jth cluster with∑k

j=1 nj = n. The posterior probability of observing the partition Ψ induced by the clusters
c1, . . . , cn conditionally on the data Y = {y1, . . . , yn} is

Π(Ψ | Y) =
Π(Ψ)×

∏
h≥1

∫ ∏
i:ci=h

K (yi; θ) dP0(θ)∑
Ψ′∈P Π(Ψ′)×

∏
h≥1

∫ ∏
i:ci=h

K (yi; θ) dP0(θ)
, (3)
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where P is the space of all possible partitions of n data points into clusters. The numerator of (3) is
the product of the prior probability of Ψ multiplied by a product of the marginal likelihoods of the
observations within each cluster. The denominator is a normalizing constant consisting of an enor-
mous sum over P . Assuming exchangeability, the prior probability of any partition of n subjects
into kn groups depends only on n1, . . . , nkn and kn through an exchangeable partition probability
function (EPPF). The latter is available in closed form for popular choices of Q0, including the
Dirichlet process, Pitman-Yor process and certain MFMs.

The posterior (3) forms the basis for Bayesian inferences on clusterings in the data, while pro-
viding a characterization of uncertainty. We are particularly interested in how this posterior behaves
in the case in which yi = (yi1, . . . , yip)

T are high-dimensional so that p is very large. To study this
behavior theoretically, we consider the limiting case as p→∞ while keeping n fixed. This setting
is quite appropriate in our motivating applications to genomics, as there is essentially no limit to the
number of variables one can measure on each study subject, while the number of study subjects is
often small to moderate.

In such settings with enormous p and modest n, we would like the true posterior distribution
in (3) to provide a realistic characterization of clusters in the data. However, this is commonly not
the case and as p increases the posterior distribution can have one of two trivial degenerate limits.
In particular, depending on the choice of kernel density K(·; θ) and the base measure P0 for the
θh’s, the posterior assigns probability one to either the kn = 1 clustering that places all subjects in
the same cluster or the kn = n clustering that places all subjects in different clusters. We derive
sufficient conditions behind such aberrant behaviors as formalized in the following theorem.

Theorem 1 Let y1, . . . , yn denote p-variate random vectors with joint probability measure Pp0. Let
Ψ denote the partition induced by the cluster labels c1, . . . , cn, and let c′1, . . . , c

′
n denote a new

set of cluster labels obtained from c1, . . . , cn by merging an arbitrary pair of clusters, with Ψ′ the
related partition. Assume Q0(πh > 0 for all h = 1, . . . , n) > 0. If

lim sup
p→∞

∏
h≥1

∫ ∏
i:ci=h

K (yi; θ) dP0(θ)∏
h≥1

∫ ∏
i:c′i=h

K (yi; θ) dP0(θ)
= 0

in Pp0-probability, then limp→∞Π(c1 = · · · = cn | Y) = 1 in Pp0-probability. Else if

lim inf
p→∞

∏
h≥1

∫ ∏
i:ci=h

K (yi; θ) dP0(θ)∏
h≥1

∫ ∏
i:c′i=h

K (yi; θ) dP0(θ)
=∞

in Pp0-probability, then limp→∞Π(c1 6= · · · 6= cn | Y) = 1 in Pp0-probability.

The condition on Q0 is equivalent to saying kn has positive prior mass on 1, . . . , n, which is
extremely mild and holds for essentially any prior in the literature, including the Dirichlet process,
Pitman-Yor process and suitable MFMs that do not pre-specify k < n. Changing the condition to
Q0(πh > 0 for all h = 1, . . . , k) > 0 with k < n, i.e. using a finite mixture model, leads to similar
results. Specifically, if the first condition in Theorem 1 holds, then also for finite mixtures we will
have a single occupied cluster comprising all samples. If the opposite condition holds, instead, then
all of the k mixture components will be occupied. Both results are trivial modifications of the proof
of Theorem 1.
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Theorem 1 has disturbing implications in terms of the behavior of posterior distributions for
Bayesian clustering in large p settings. Notably, the theorem is stated for very general kernel density
K and base measure P0, and the behavior is controlled by the induced marginal likelihoods obtained
in integrating out the kernel parameter θ with respect to P0. Clearly it is the joint effect of K and
P0 that leads to the two limiting results and thus it is not immediate to convert the statement of
the theorem to simple conditions on K and P0. However, as we will discuss in detail, we can
argue that these conditions are related to the two extreme situations of complex over-parametrized
models having insufficiently informative priors and simpler models equipped with more informative
priors. To be more precise, consider the important and widely used special case corresponding to a
location-scale mixture of multivariate Gaussian kernels:

yi
iid∼ f, f(y) =

∑
h≥1

πhNp(y;µh,Σh), (µh,Σh)
iid∼ P0, (4)

where Np(µ,Σ) denotes the p-dimensional multivariate normal density with mean µ and covari-
ance matrix Σ. We give two practical examples of Theorem 1 in Corollary 2 and 3. Let λmin(A)
and λmax(A) be the smallest and largest eigenvalues of a positive definite matrix A and Y =
[y1, . . . , yn]T be the complete n × p data matrix. Assume, for the true data generating distribu-
tion on the data Y ,

(A0) lim infp→∞ λmin(Y Y T)/p > 0 in Pp0-probability and ‖yi‖2 ≤ Kp for some K > 0 in
Pp0-probability.

Condition (A0) is extremely mild ensuring that the data are non-atomic and is satisfied for any
continuous distribution with finite second order moments. Letting IW(ν,Λ) denote an inverse-
Wishart distribution with degrees of freedom ν and scale matrix Λ, we have the following:

Corollary 2 Assume that the model (4) is used to cluster Y with Σh
iid∼ IW(ν0,Λ0) and µh | Σh

ind∼
Np(µ0, κ

−1
0 Σh), with ‖µ0‖2 = O(p), κ0 = O(1), ν0 = p + c for some fixed constant c ≥ 0,

‖Λ0‖2 = O(1) and ‖Λ0‖2/λmin(Λ0) = O(1). Under (A0) on the data Y , Π(c1 = · · · = cn | Y)→
1 in Pp0-probability.

Corollary 3 Assume that the model (4) is used to cluster Y with Σh = Σ across all clusters, and
let Σ ∼ IW(ν0,Λ0) and µh | Σ

iid∼ Np(µ0, κ
−1
0 Σ), with ‖µ0‖2 = O(p), κ0 = O(1), ν0 > p − 1

such that limp→∞ ν0/p > 1, and ‖Λ0‖2 = O(1) with ‖Λ0‖2/λmin(Λ0) = O(1). Under (A0) on the
data Y , Π(c1 6= · · · 6= cn | Y)→ 1 in Pp0-probability.

Bayesian model-based clustering routinely uses these setups for the kernel parameters and priors
(Fruhwirth-Schnatter et al., 2019). The conditions on µ0 and κ0 ensure that the Euclidean norm of
the prior mean grows with p in the same order as the data {yi}, and the conditions on the scale matrix
Λ0 imply that the second moments of the location components are a priori bounded away from 0
while being finite; similar assumptions appear in Yao et al. (2022) in a study on high-dimensional
Gaussian location mixture models. In terms of the degrees of freedom parameter ν0, in Corollary
2 the ratio ν0/p is 1 in the limit inducing a heavy tailed prior predictive distribution, whereas in
Corollary 3 a thinner tailed prior predictive is induced. Corollaries 2 and 3 show that, for mixtures
of Gaussians, we can obtain directly opposite aberrant limiting behavior of the posterior depending
on the kernel and prior for the kernel parameters but not on the clustering prior Q0.
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Corollary 2 considers the case in which we allow flexible cluster-specific means and disper-
sion matrices, under typical conjugate multivariate normal IW priors. This case can be viewed
as a complex over-parametrized model as p increases and to combat this complexity the Bayesian
Ockham razor (Jefferys and Berger, 1992) automatically assigns probability one to grouping all n
individuals into the same cluster effectively simplifying the model. At the other extreme, covered
by Corollary 3, we assume an under-parametrized relatively simplistic model structure in which
all the mixture components have a common covariance. In this case, due perhaps to the relatively
concentrated prior predictive distribution, there is not enough penalty for introducing new clusters,
and all individuals are assigned to their own singleton cluster. These results hold regardless of the
true data-generating model, and in particular the true clustering structure.

These theoretical results demonstrate that in high dimensions it is crucial to choose a good
compromise between parsimony and flexibility in Bayesian model-based clustering. Otherwise, the
true posterior distribution of clusterings in the data can have effectively no relationship whatsoever
with true clustering structure in the data. Although we focus on the limiting case as p → ∞, we
conjecture that this behavior can ‘kick in’ quickly as p increases, based on intuition built through
our proofs and through comprehensive simulation experiments.

3. Latent Factor Mixture

To overcome the problems discussed in Section 2, we propose a general class of latent factor mixture
models defined as

yi ∼ f(yi; ηi, ψ), ηi ∼
∞∑
h=1

πhK(ηi; θh), (5)

where ηi = (ηi1, . . . , ηid)
T are d-dimensional latent variables, d < n is fixed and not growing with

p, f(·; ηi, ψ) is the density of the observed data conditional on the latent variables and measurement
parameters ψ and K(·; θ) is a d-dimensional kernel density.

Under (5), the high dimensional data being collected are assumed to provide error-prone mea-
surements of an unobserved lower-dimensional set of latent variables ηi on subject i. As a canonical
example, we focus on a linear Gaussian measurement model with a mixture of Gaussians for the
latent factors:

yi ∼ Np(Ληi,Σ), ηi ∼
∞∑
h=1

πhNd(µh,∆h), {πh} ∼ Q0, (6)

where Σ = diag(σ2
1, . . . , σ

2
p) is a p× p diagonal matrix, and Λ is a p× d matrix of factor loadings.

The key idea is to incorporate all the cluster-specific parameters at the latent data level instead of the
observed data level to favor parsimony. The latent variables are supported on a lower-dimensional
hyperplane, and we map from this hyperplane to the observed data level through multiplication by
a factor loadings matrix and then adding Gaussian noise. We could further simplify the model by
assuming Σ = σ2Ip instead of Σ diagonal; we find it appealing to allow the different yijs to have
varying measurement error variances and hence focus mainly on the unconstrained diagonal case.
We refer to model (6) as a LAtent Mixture for Bayesian (Lamb) clustering. The model is highly
flexible at the latent variable level, allowing differences across clusters in the mean through µh and
the shape, size, and orientation through ∆h.

With different motivations, Galimberti et al. (2009); Baek et al. (2010); Montanari and Vi-
roli (2010) proposed similar latent factor mixture models as (6) albeit with additional constraints.
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Moreover, they fixed the number of clusters, used EM algorithms for model fitting and assessed
goodness-of-fit via information criteria.

The proposed Lamb model has fundamentally different implications from the popular mixture
of factor analyzers of Ghahramani et al. (1996), which defines a mixture of multivariate Gaussians at
the p-dimensional observed data level having cluster-specific means and covariance matrices, with
the dimension of the covariances reduced via a factor model. In contrast, we are effectively learning
a common affine space within which we can define a simple location-scale mixture of Gaussians.
Our approach not only massively reduces the effective number of parameters for large p, but also
provides a successful compromise between the two extreme cases of Section 2.

3.1 Prior Specifications

In order to accommodate very high-dimensional data, with p � n, it is important to reduce the
effective number of parameters in the p × d loadings matrix Λ. There is a rich literature on sparse
factor modeling using a variety of shrinkage or sparsity priors for Λ; for example, refer to Bhat-
tacharya and Dunson (2011) and the references therein. Although a wide variety of shrinkage priors
for Λ are appropriate, we focus on a Dirichlet-Laplace prior (Bhattacharya et al., 2015), as it is con-
venient both computationally and theoretically. On a p-dimensional vector θ, the Dirichlet-Laplace
prior with parameter a, denoted by DL(a), can be specified in the following hierarchical manner

θj | φ, τ
ind∼ N(0, ψjφ

2
jτ

2), ψj
iid∼ Exp(1/2), φ ∼ Dir(a, . . . , a), τ ∼ Ga(pa, 1/2), (7)

where θj is the j-th element of θ, φ is a vector of the same length as θ, Exp(a) is an exponential dis-
tribution with mean 1/a, Dir(a1, . . . , ap) is the p-dimensional Dirichlet distribution, and Ga(a, b)
is the gamma distribution with mean a/b and variance a/b2. To impose shrinkage uniformly on its
elements a priori, we let vec(Λ) ∼ DL(a) where vec(Λ) denotes the vectorization of Λ. We then

choose inverse-gamma priors for the residual variances, σ−2
j

iid∼ Ga(aσ, bσ).
For the prior Q0 on the cluster weights {πh}, for convenience in computation, we use a stick-

breaking prior (Ishwaran and James, 2001) derived from a Dirichlet process, which has concen-
tration parameter α impacting the induced prior on the number of clusters. To allow greater data
adaptivity, we choose a Ga(aα, bα) prior for α. We assign the cluster-specific means and covari-
ances {µh,∆h} independent multivariate normal inverse-Wishart priors with location µ0, precision
parameter κ0, inverse scale matrix ∆0 and degrees of freedom ν0. Our hierarchical Bayesian model
for the ηis can be equivalently represented as

ηi | µi,∆i
ind∼ Nd(µi,∆i), µi,∆i | G

iid∼ G, G ∼ DP(α,G0), α ∼ Ga(aα, bα), (8)

where G0 = NIW(µ0,∆0, κ0, ν0). The gamma prior on the concentration parameter α is com-
monly adopted in many applications motivated by Escobar and West (1995). The role of this hyper-
prior and the elicitation of its hyperparameters has been carefully studied by Frühwirth-Schnatter
and Malsiner-Walli (2019), and Ascolani et al. (2022) recently showed the prior to have a crucial
impact on consistency in estimating the number of clusters.

In practice, the latent variable dimension d is unknown. Potentially we could put a prior on d
and implement a reversible-jump type (Richardson and Green, 1997) Markov chain Monte Carlo
(MCMC) algorithm, which may lead to inefficient and expensive computation. Instead we adopt a
principal component analysis (PCA) based empirical Bayes type approach (Bai and Ng, 2008) to set
d to a large value learned from the data and let the prior shrink the extra columns on Λ. We use the
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augmented implicitly restarted Lanczos bidiagonalization algorithm (Baglama and Reichel, 2005)
to obtain approximate singular values and eigenvectors, and choose the smallest d̂ explaining at
least 95% of the variability in the data. This strategy substantially simplifies the computation. The
left and right singular values are used to initialize the Λ and ηi’s in our MCMC implementation. We
initialize our cluster membership indicators using k-means.

For all the simulation experiments of the next section and the application, we choose µ0 = 0 and
∆0 = ξ2Id for a scalar ξ2 > 0. To specify weakly informative priors, we set ξ2 = 20, κ0 = 0.001,
ν0 = d̂+ 50, aα = bα = 0.1 as the hyper-parameters of the DP mixture prior; aσ = 1, bσ = 0.3 as
the hyper-parameters of the prior on the residual variances. We set a = 0.5 as the Dirichlet-Laplace
parameter following the recommendation of Bhattacharya et al. (2015).

3.2 Posterior Sampling

For posterior computation we use a Gibbs sampler defined by the following steps.

Step 1 Letting λT
j denote the jth row of Λ, η = [η1, . . . , ηn]T, Dj = τ2diag(ψj1φ

2
j1, . . . , ψjdφ

2
jd)

and y(j) = (y1j , . . . , ynj)
T, for j = 1, . . . , p sample

(λj | −) ∼ Nd

{
(D−1

j + σ−2
j ηTη)−1ηTσ−2

j y(j), (D−1
j + σ−2

j ηTη)−1
}
.

Step 2 Update the ∆h’s from the inverse-Wishart distributions IW
(
ψ̂h, ν̂h

)
where

η̄h = 1
nh

∑
i:ci=h

ηi, ν̂h = ν0 + nh,

ψ̂h = ξ2Id +
∑

i:ci=h
(ηi − η̄h)(ηi − η̄h)T + κ0nh

κ0+nh
η̄hη̄

T
h .

Due to conjugacy, the location parameters µh’s can be integrated out of the model.

Step 3 Sample the latent factors, for i = 1, . . . , n, from

(ηi | −) ∼ Nd

{
Ωhρh,Ωh + Ωh(κ̂h,−i∆h)−1Ωh

}
,

where nh,−i =
∑

j 6=i 1(cj = h), κ̂h,−i = κ0 + nh,−i, η̄h,−i = 1
nh,−i

∑
j:cj=h,j 6=i ηi, µ̂h,−i =

nh,−iη̄h,−i
nh,−i+κ0

, ρh = ΛTΣ−1Yi + ∆−1
h µ̂h,−i and Ω−1

h = ΛTΣ−1Λ + ∆−1
h .

Step 4 Sample the cluster indicator variables c1, . . . , cn with probabilities

Π(ci = h | −) ∝

{
nh,−i

∫
Nd(ηi;µh,∆h)dΠ(µh,∆h | c−i, η−i) for h ∈ c−i,

α
∫

Nd(ηi;µh,∆h)dΠ(µh,∆h) for h /∈ c−i.
(9)

where η−i = {ηj : j 6= i} and c−i = {cj : j 6= i}. Due to conjugacy the above integrals are
analytically available.

Step 5 Let r be the number of unique ci’s. Following West (1992), first generate ϕ ∼ Beta(α +
1, n), evaluate π/(1− π) = (aα + r − 1)/ {n(bα − logϕ)} and generate

α | ϕ, r ∼

{
Ga(α+ r, bα − logϕ) with probability π,
Ga(α+ r − 1, bα − logϕ) with probability 1− π.
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Step 6 For j = 1, . . . , p sample σ2
j from Ga

{
aσ + n/2, bσ +

∑n
i=1(yij − λT

j ηi)
2/2
}

.

Step 7 Update the hyper-parameters of the Dirichlet-Laplace prior through:

(i) For j = 1, . . . , p and h = 1, . . . d sample ψ̃jh independently from an inverse-Gaussian
iG(τφjh/|λjh|, 1) distribution and set ψjh = 1/ψ̃jh.

(ii) Sample the full conditional posterior distribution of τ from a generalized inverse Gaussian
giG{dp(1− a), 1, 2

∑
j,h |λjh|/φjh} distribution.

(iii) To sample φ | Λ, draw Tjh independently with Tjh ∼ giG(a − 1, 1, 2|λjh|) and set φjh =
Tjh/T with T =

∑
jh Tjh.

This simple Gibbs sampler sometimes gets stuck in local modes; a key bottleneck is the explo-
ration Step 4. Therefore, we adopt the split-merge MCMC procedure proposed by Jain and Neal
(2004); the authors note that the Gibbs sampler is useful in moving singleton samples between clus-
ters while the split-merge algorithm makes major changes. Hence, we randomly switch between
Gibbs and split-merge updates. The split-merge algorithm makes smart proposals by performing
restricted Gibbs scans of the same form as in (9).

From the posterior samples of ci’s, we compute summaries following Wade and Ghahramani
(2018). Our point estimate is the partition visited by the MCMC sampler that minimizes the poste-
rior expectation of the Binder loss (Binder, 1978) exploiting the posterior similarity matrix obtained
from the different sampled partitions.

The sampling algorithm can be easily modified for other priors on Λ having a conditionally
Gaussian representation, with Step 7 modified accordingly. For example, we could use horseshoe
(Carvalho et al., 2009), increasing shrinkage priors (Bhattacharya and Dunson, 2011; Legramanti
et al., 2020; Schiavon et al., 2021), or the fast factor analysis prior (Ročková and George, 2016).
Similarly, alternative priors for {πh}, such as Pitman and Yor (1997) or Miller and Harrison (2018),
can be adopted with minor modifications in Steps 4 and 5.

4. Properties of the Latent Mixture for Bayesian Clustering Method

4.1 Bayes Oracle Clustering Rule

We first define a Bayes oracle clustering rule where the observed data follow the distribution in
model (5), that is, the high dimensional yi’s provide error-prone measurements on unobserved
lower-dimensional latent variables ηi’s on subject i, and we assume the oracle has knowledge of
the exact values of the latent variables {η0i}, where η0i’s are d-dimensional latent vectors. Given
this knowledge, the oracle can define any Bayesian mixture model to induce a posterior cluster-
ing of the data, which is not affected by the high-dimensionality of the problem. This leads to the
distribution over the space of partitions in the following definition.

Definition 4 Let η0 = {η01, . . . , η0n} be the true values of the unobserved latent variables corre-
sponding to each data point. The following mixture model is assumed to cluster η0

η0i ∼
∞∑
h=1

πhK(η0i; θh), {πh} ∼ Q0, θh
iid∼ G0.
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Then the oracle probability of clustering is defined as

Π(Ψ | η0) =
Π(Ψ)×

∫ ∏
h≥1

∏
i:ci=h

K (η0i; θh) dG0(θh)∑
Ψ′∈P Π(Ψ′)×

∫ ∏
h≥1

∏
i:c′i=h

K (η0i; θh) dG0(θh)
. (10)

Probability (10) expresses the oracles’ uncertainty in clustering if the clustering model could
have been applied on the true latent factors. This is a gold standard in being free of the curse of
dimensionality through using the oracles’ knowledge of the true latent variables, but we make no
claims about the relationship between the oracle posterior and any ‘true’ clustering. Under the
framework of Section 3, the high-dimensional measurements on each subject provide information
on these latent variables, with the clustering done on the latent variable level. Ideally, we would get
closer to the oracle partition probability under the proposed method as p increases, turning the curse
of dimensionality into a blessing. We show that this is indeed the case in Section 4.3.

To this end, we assume the oracle uses a location mixture of Gaussians with a common covari-
ance matrix. We assume the following mixture distribution on η0i’s, independent non-informative
Jeffreys prior for the common covariance and arbitrary prior Q0 on the mixture probabilities:

ηi
iid∼
∞∑
h=1

πhNd(µh,∆), µh | ∆
iid∼ Nd(0, κ

−1
0 ∆), ∆ ∝ |∆|−

d+1
2 , {πh} ∼ Q0. (11)

For d < n, the oracle rule is well defined for the Jeffreys prior on ∆. Note that the marginal Jeffrey’s
prior is free of any hyperparameter.

4.2 Assumptions on Data and Prior Specifications

In this section, we show that the posterior probability on the space of partitions induced by the
proposed model converges to the oracle probability as p → ∞ in expectation under appropriate
conditions on the data generating process and the prior. We assume that the residual error variances
σ2
j ’s are the same having true common value σ2

0 for all j = 1, . . . , p. Our result is based on the
following assumptions on Pp0, the true data-generating distribution of y1, . . . , yn:

(C1) yi
ind∼ Np(Λ0η0i, σ

2
0Ip), for each i = 1, . . . , n;

(C2) limp→∞

∥∥∥1
pΛT

0 Λ0 −M
∥∥∥

2
= 0 where M is a d× d positive-definite matrix;

(C3) σ2
L < σ2

0 < σ2
U where σ2

L and σ2
U are known constants;

(C4) ‖η0i‖ = O(1) for each i = 1, . . . , n.

Condition (C1) corresponds to the conditional likelihood of yi given ηi being correctly specified
and the data containing increasing information on the latent factors as p increases. This increasing
information assumption is extremely mild; indeed, each individual yij can be very noisy and provide
minimal information about ηi and there will still be a build up of information across j = 1, . . . , p as
long as the additional variables are not completely uncorrelated with the target latent factors. In fact,
we have a build up of information even when a proportion of the factor loadings are exactly zero, the
factor loadings are very small relative to the residual variance, and the residuals are heavy-tailed.
We illustrate this empirically with a simple simulation study in Section S.4.1 of the supplementary
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materials. Condition (C2) ensures that Λ0 is not ill-conditioned and its spectral norm does not
increase too fast with respect to p since the highest and lowest eigenvalues of ΛT

0 Λ0 grow in O(p).
Related but much stronger conditions appear in the factor modeling (Fan et al., 2008, 2011) and
massive covariance estimation literature (Pati et al., 2014). We allow the columns of Λ0 to be
non-orthogonal with varying average squared values which is expected in high-dimensional studies.
Condition (C3) bounds the variance of the observed yis and (C4) is a weak assumption ensuring
that the latent variables do not depend on n or p. Additionally, we assume that the latent dimension
d is known.

Although we use a stick-breaking prior on the mixture probabilities {πh} in Section 3.1, we
derive our results for an arbitrary prior Q0 for wider applicability. We assume the inverse-gamma
prior on residual variance σ2 to be restricted to the compact set [σ2

L, σ
2
U ].

4.3 Main Results

In Lemma 5 we derive sufficient conditions for the posterior probability on the space of partitions
to converge to the oracle probability for p→∞.

Lemma 5 Let η = [η1, . . . , ηn]T, ζ(p) =
[
ζ

(p)
1 , . . . , ζ

(p)
n

]T
= (
√
p log p)−1(ΛTΛ)1/2η and, for any

δ > 0, Bp,δ =
⋂n
i=1{Λ, ηi : (

√
p log p)−1‖Ληi − Λ0η0i‖ < δ}. Assume for any δ > 0

Π(B̄p,δ | Y)→ 0 Pp0-a.s. (12)

where B̄p,δ is the complement of Bp,δ. Let E(· | Y) denote expectation with respect to the posterior
distribution of the parameters given data Y and Π(Ψ | ζ(p)) be the conditional probability of
partition Ψ with η0 replaced by ζ(p) in (10). Then, limp→∞E

{
Π(Ψ | ζ(p)) | Y

}
= Π(Ψ | η0).

In the following theorem, we show that condition (12) holds for Lamb and hence we avoid the
large p pitfall. The proof is in the supplementary materials.

Theorem 6 Let Bp,δ be as defined in Lemma 5 and B̄p,δ be its complement set. Then, under (C1)-
(C4) and model (6), Π(B̄p,δ | Y)→ 0 Pp0-a.s. for any δ > 0.

Theorem 6 implies that our model learns the latent factors more accurately with increasing p.
In addition to the proof of Theorem 6, this result is further illustrated empirically via a simple
simulation experiment reported in Section S.4.2 of the supplementary materials.

The oracle has a slightly simpler model specification than (8) assuming common covariances
across components. This simplification is done to make the associated theory more tractable, but
the simplified location mixture case is rich enough to provide a nice test case for assessing how the
proposed approach can escape the curse of dimensionality.

As conditions (C1)-(C4) imply (A0), the clustering models in Corollaries 2 and 3 would still
lead to the two extreme partitions. The Lamb model, in learning the low-dimensional latent space
with increasing dimensions, escapes these pitfalls.

5. Simulation Study

We perform a simulation study to analyze the performance of Lamb in clustering high dimensional
data. The sampler introduced in Section 3.2 is available from the GitHub page of the first author.
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Figure 1: Comparison between our proposed Lamb and the two-stage PCA-KM approach: Distri-
butions of the adjusted Rand indices (upper plot) and estimated number of clusters (lower
plot) in 20 replicated experiments. Horizontal dashed lines denote the true number of
clusters. The simulation scenarios, reported in each row, are labeled as Lamb for the
model of Section 3, MFA for mixture of factor analyzers and SpCount for the log trans-
formed zero inflated sparse Poisson counts.

We compare with a Dirichlet process mixture of Gaussian model with diagonal covariance matrix
implemented in R package BNPmix (Corradin et al., 2021), a nonparametric mixture of infinite
factor analyzers implemented in R package IMIFA (Murphy et al., 2019), and a pragmatic two-
stage approach (PCA-KM) that performs an approximate sparse principal component analysis of
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the high dimensional data to reduce dimensionality from p to d̂—with d̂ the minimum number of
components explaining at least 95% of the variability as discussed in Section 3.1—and then applies
k-means on the principal components, with k chosen by maximizing the average silhouette width
(Rousseeuw, 1987). This same approach is used to choose d̂ in implementing Lamb.

For the high-dimensional simulation settings we considered, both the mixture of Gaussians and
the mixture of factor analyzers showed high instability, including software crashing for memory
issues, lack of convergence, and extremely long running times. For these reasons we report a com-
parison with PCA-KM approach only. To test the accuracy of the estimated clustering relative to
the true clustering, we compute the adjusted Rand index (Rand, 1971).

We generated data under: [1] Lamb, [2] mixture of sparse factor analyzers (MFA), and [3] mix-
ture of log transformed zero inflated sparse Poisson counts (SpCount) [1]-[2] have latent dimension
20, while for [3] the data are discrete and highly non-Gaussian within clusters mimicking the data
of Section 6. Details are provided in Section S.3 of the supplementary materials.

We vary true number of clusters k0 ∈ {10, 15, 25}, with the first b2k0/3c ‘main’ clusters having
the same probability and the remaining ones having together the same probability of a single main
cluster. For example if k0 = 25, we set 16 main clusters with probability 1/17 each and 9 minor
clusters of equal weights, whose total probability sums to 1/17. This is a highly challenging case,
as many methods struggle unless there are a small number of close to equal weight clusters that
are well separated. The dimension p varies in p = {1,000, 2,500} while the sample size n is n =
2,000. Data visualization plots using McInnes et al. (2018) are in Section S.4.4 of the supplementary
materials. For each configuration, we perform 20 independent replications. We run our sampler
for 6,000 iterations discarding the first 1,000 as burn in and taking one draw every five to reduce
autocorrelation. Prior elicitation follows the default specification of Section 3.1. On average, 6,000
iterations under these settings took between 40 and 50 minutes on a iMac with 4.2 GHz Quad-Core
Intel Core i7 processor and 32GB DDR4 RAM.

Figure 1 reports the distribution of the 20 replicates of the adjusted Rand index and mean es-
timated number of clusters. Our proposed Lamb is uniformly superior in each scenario obtaining
high adjusted Rand indices, accurate clustering results, and less variability across replicates. In the
MFA scenario, Lamb yields relatively lower Rand index for k0 = 25. This is not unusual due to
model misspecification and the large number of clusters.

The Lamb results do not vary much across the simulation replicates because the oracle posterior
is quite concentrated at the true clustering. Since the dimension p is in the thousands, the asymptotic
results derived in Section 4 kicked in resulting in narrow posterior credible intervals. To understand
the performance of our proposed method in smaller sample sizes, we include additional simulation
results with n = 500 in Section S.4.3 of the supplementary materials.

Furthermore, Section S.4.1 in the supplementary materials reports two simple simulation ex-
periments showing that the degenerate clustering behavior discussed in Section 2 is evident even in
moderate dimensions of p = 20.

6. Application to ScRNASeq Cell Line Dataset

In this section, we analyze the GSE81861 cell line dataset (Li et al., 2017) to illustrate the proposed
method. The dataset profiles 630 cells from 7 cell lines using the Fluidigm based single cell RNA-
seq protocol (See et al., 2018). The dataset includes 83 A549 cells, 65 H1437 cells, 55 HCT116
cells, 23 IMR90 cells, 96 K562 cells, 134 GM12878 cells, 174 H1 cells and 57,241 genes. The cell
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types are known and hence the data provide a useful benchmark to assess performance in clustering
high-dimensional data.

Following standard practice in single cell data analysis, we apply data pre-processing. Cells
with low read counts are discarded, as we lack reliable gene expression measurements for these
cells, and data are normalized following Lun et al. (2016). We remove non-informative genes using
M3Drop (Andrews and Hemberg, 2018). After this pre-processing phase, we obtain a final dataset
with n = 531 cells and p = 7,666 genes.

Applying our empirical Bayes approach, we estimate the latent dimension as d̂ = 19. We im-
plement Lamb using our default prior, collecting 10, 000 iterations after a burn-in of 5, 000 and
keeping one draw in five. MCMC converge diagnostics are provided in Section S.5 in the supple-
mentary materials. As comparison, we apply the two stage procedure of the previous section and
the popular Seurat (Butler et al., 2018) pipeline which performs quality control, normalization, and
selects informative genes that exhibit high variation across the cells.

Graphical representations of the different clustering results are shown in Figure 2 via UMAP
projections (McInnes et al., 2018). Our proposed Lamb, the two stage approach, and Seurat achieve
adjusted Rand indices of 0.977, 0.734 and 0.805 when compared to the true cluster-configuration
and yield 12, 10, and 8 clusters, respectively. Seurat is reasonably accurate but splits the H1 cell-
type into two clusters, while the two-stage approach is dramatically worse.
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Figure 2: UMAP plots of the cell line dataset: Clusterings corresponding to the true cell-types,
Lamb estimate, PCA-KM estimate and Seurat estimate are plotted in clockwise manner.
Different panels use different color legends.
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Figure 3: Posterior similarity matrix obtained from the Markov chain Monte Carlo samples of the
Lamb method: Left panel reports the similarity matrix for the full cell line dataset along
with the dendrogram obtained using complete linkage; row names report the true cluster
names; right panel zooms the center of the left panel.

An appealing aspect of our approach is posterior uncertainty quantification. The 95% credible
interval for the adjusted Rand index is [0.900, 0.985] and the posterior probability of having between
11 and 13 clusters is 0.98. This suggests that the posterior distribution is highly concentrated,
which is consistent with our simulations. The posterior similarity matrix reported in the first panel
of Figure 3—also reporting the related dendrogram obtained by using complete linkage—clearly
shows that the majority of the observations have a high posterior probability of being assigned to
a specific cluster and negligible probability of being assigned to artifactual clusters. Figure 3 also
shows micro clusters leading to over-estimation of the number of cell types. Two cells of cluster
A549 are put in singleton clusters. Similarly cluster IMR90 is divided into two clusters of size 4
and 19 with negligible posterior probability of being merged. Finally cluster H1437 is split into four
clusters with the main one comprising 35 of 47 observations and the smallest one comprising just
one observation. Such micro-clusters have negligible impact for practical inference since Lamb does
recover the original clustering configurations for most cell-types as reflected by the high adjusted
Rand index with the true cell-types. Single-cell experiments are subject to high technical noise
(Brennecke et al., 2013) which is not possible to completely remove in pre-processing steps. Such
noise can potentially induce differences between cells that may not have any biological significance,
for example, the cells in IMR90 (split into the clusters 3 and 10, see the top panel of Figure 2 for
details) exhibit a substantial amount of variability although they are biologically of the same type.

7. Discussion

Part of the appeal of Bayesian methods is the intrinsic penalty for model complexity or ‘Bayesian
Ockham razor’ (Jefferys and Berger, 1992), which comes through integrating the likelihood over
the prior in obtaining the marginal likelihood. If one adds unnecessary parameters, then the likeli-
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hood is integrated over a larger region, which tends to reduce the marginal likelihood. In clustering
problems, one relies on the Bayesian Ockham razor to choose the appropriate compromise between
the two extremes of too many clusters and over-fitting and too few clusters and under-fitting. Of-
ten in low-dimensional problems, this razor is effective and one obtains a posterior providing a
reasonable representation of uncertainty in clustering data into groups of relatively similar observa-
tions. However, a key contribution of this article is showing that this is fundamentally not the case
in high-dimensional problems, and one can obtain nonsensical results using seemingly reasonable
priors.

Perhaps our most interesting result is the degenerate behavior in the p → ∞ case for the true
posterior on clusterings, regardless of the true data generating model. This negative result provided
motivation for our latent factor mixture model, which addresses the large p pitfall by clustering
on the latent variable level. Using a low rank factorization with appropriate shrinkage priors, the
method can also handle realistic high-dimensional problems. Another interesting theoretical result
is our notion of a Bayesian oracle for clustering; to our knowledge, there is not a similar concept in
the literature. We show that our proposed Lamb attains the oracle with increasing dimensions.

Several interesting projects stem from the proposed work, which is a first step towards address-
ing pitfalls of Bayesian approaches to high-dimensional clustering. One important thread is design-
ing faster MCMC algorithms for massive sample size exploiting parallel and distributed computing;
for example, running MCMC for different subsets of the variables in parallel and combining the
results. Some recent works in the literature discuss related approaches (Ni et al., 2020; Song et al.,
2020) but without considering the pitfalls that arise in high-dimensional data clustering. Another
thread is to develop fast approximate inference algorithms that avoid MCMC, such as variational
Bayes. In addition, it is of substantial interest to generalize the proposed approach to handle more
complex data structures; for example, involving data that are not real-valued vectors and allowing
for kernel misspecification (Miller and Dunson, 2019). In our settings d and n are fixed and not
growing with p. The study of situations in which p, d and n jointly increase—at some rate—would
be a very interesting theoretical extension of our results.

Supplementary Materials

Proofs of additional theoretical results, simulation studies and MCMC convergence diagnostics are
provided in the supplementary materials.
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Appendix

Proofs of Section 2

Proof [Theorem 1] Consider the ratio of posterior probabilities:

Π(Ψ | Y)

Π(Ψ′ | Y)
. (A.1)

If this ratio converges to zero for all c1, . . . , cn in Pp0-probability as p → ∞, then any partition
nested into another partition is more likely a posteriori implying Π(c1 = · · · = cn | Y) = 1 in
Pp0-probability so that all subjects are grouped in the same cluster with probability one. Conversely
if the ratio converges to +∞, then Π(c1 6= · · · 6= cn | Y) = 1 in Pp0-probability and each subject is
assigned to their own cluster with probability one.

Without loss of generality, assume that c1, . . . , cn define kn clusters of sizes n1, . . . , nkn and
that c′i = ci for ci ∈ {1, . . . , kn − 2} and c′i = kn − 1 for ci ∈ {kn − 1, kn}, with n′1, . . . , n

′
k′n−1

the cluster sizes under the partition induced by the c′i. In general, ratio (A.1) can be expressed as

Π(Ψ)

Π(Ψ′)
×
∏kn
h=1

∫ ∏
i:ci=h

K (yi; θ) dP0(θ)∏kn−1
h=1

∫ ∏
i:c′i=h

K (yi; θ) dP0(θ)
. (A.2)

The left hand side of (A.2) can be expressed as the ratio between the EPPFs. Since by assumption
there is a positive prior probability for any partition in P , this ratio is finite and does not depend
on p or the data generating distribution. Thus, by induction and under the assumptions on the right
factor of (A.2) we conclude the proof.

Proof [Corollary 2] Define c1, . . . , cn and c′1, . . . , c
′
n consistently with the proof of Theorem 1.

Then, consider the ratio of the marginal likelihoods

∏kn
h=1

∫ ∏
i:ci=h

Np (yi;µh,Σh) Np(µh;µ0, κ
−1
0 Σh)IW (Σh; ν0,Λ0) d(µh,Σh)∏kn−1

h=1

∫ ∏
i:c′i=h

Np (yi;µh,Σh) Np(µh;µ0, κ
−1
0 Σh)IW (Σh; ν0,Λ0) d(µh,Σh)

. (A.3)

The numerator of (A.3) is

kn∏
h=1


1

πnhp/2
Γp(

ν0+nh
2 )

Γp(
ν0
2 )

(
κ0

κ0 + nh

) p
2 |Λ0|

ν0
2∣∣∣Λ0 + SΨ

h + nhκ0
κ0+nh

(ȳΨ
h − µ0)(ȳΨ

h − µ0)T
∣∣∣ ν0+nh2

 ,

with ȳΨ
h = n−1

h

∑
i:ci=h

yi, SΨ
h =

∑
i:ci=h

(
yi − ȳΨ

h

) (
yi − ȳΨ

h

)T, and Γp(·) being the multivari-
ate gamma function. Obtaining a corresponding expression for the denominator, the ratio (A.3)
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becomes

Γp

(
ν0+nkn−1

2

)
Γp

(
ν0+nkn

2

)
Γp

(
ν0+n′kn−1

2

)
Γp
(
ν0
2

) ×
{

κ0(κ0 + n′kn−1)

(κ0 + nkn−1)(κ0 + nkn)

}p/2

×
|Λ0|

ν0
2

∣∣∣Λ0 + SΨ′
kn−1 +

n′kn−1κ0

κ0+n′kn−1
(ȳΨ′
kn−1 − µ0)(ȳΨ′

kn−1 − µ0)T
∣∣∣ ν0+n′kn−1

2

∏kn
h=kn−1

∣∣∣Λ0 + SΨ
h + nhκ0

κ0+nh
(ȳΨ
h − µ0)(ȳΨ

h − µ0)T
∣∣∣ ν0+nh2

. (A.4)

We first study the limit of the first factor of (A.4). From Lemma S.7, we have

lim
p→∞

1

p

log
Γp

(
ν0+nkn

2

)
Γp

(
ν0+n′kn−1

2

) + log
Γp

(
ν0+nkn−1

2

)
Γp
(
ν0
2

)
 = 0.

We now study the limit of the remaining part of (A.4). Note that, if we replace each observation yi
with ỹi = Λ

−1/2
0 (yi− µ0), assumption (A0) is still valid for ỹi’s. Moreover, |Λ0| terms get canceled

out from (A.4). Hence, without loss of generality we can assume µ0 = 0 and Λ0 = Ip. Without loss
of generality we can also assume that y1+

∑h−1
j=1 nj

, . . . , y∑h
j=1 nj

are in cluster h. We define

Y Ψ
(h) =

[
y1+

∑h−1
j=1 nj

, . . . , y∑h
j=1 nj

]T
,

to be the sub-data matrix corresponding to the h-th cluster in partition Ψ. Exploiting lower rank
factorization results on matrix determinants, we have∣∣∣∣Ip + SΨ

h +
nhκ0

nh + κ0
ȳΨ
h ȳ

ΨT

h

∣∣∣∣ =

∣∣∣∣Ip + Y ΨT

(h) Y
Ψ

(h) −
1

nh + κ0
Y ΨT

(h) 1nh1
T
nh
Y Ψ

(h)

∣∣∣∣
=

∣∣∣∣1− 1

nh + κ0
1T
nh
Y Ψ

(h)

{
Ip + Y ΨT

(h) Y
Ψ

(h)

}−1
Y ΨT

(h) 1nh

∣∣∣∣∣∣∣Ip + Y ΨT

(h) Y
Ψ

(h)

∣∣∣,
where the symbol |A| or |a| is to be interpreted as the determinant of the matrix A or the absolute
value of the scalar a, respectively. Then, the second factor of (A.4) simplifies to

{∣∣∣∣1− 1
n′kn−1+κ0

1T
n′kn−1

Y Ψ′

(kn−1)

(
Ip + Y Ψ′T

(kn−1)Y
Ψ′

(kn−1)

)−1
Y Ψ′T

(kn−1)1n′kn−1

∣∣∣∣∣∣∣Ip + Y Ψ′T

(kn−1)Y
Ψ′

(kn−1)

∣∣∣} ν0+n
′
kn−1
2

∏kn
h=kn−1

{∣∣∣∣1− 1
nh+κ0

1T
nh
Y Ψ

(h)

(
Ip + Y ΨT

(h) Y
Ψ

(h)

)−1
Y ΨT

(h) 1nh

∣∣∣∣∣∣∣Ip + Y ΨT

(h) Y
Ψ

(h)

∣∣∣} ν0+nh
2

.

Using Lemma S.9, limp→∞

∥∥∥∥Y(h)

{
Ip + Y T

(h)Y(h)

}−1
Y T

(h) − Inh

∥∥∥∥
2

= 0 in Pp0-probability and

lim
p→∞

∣∣∣∣1− 1

nh + κ0
1T
nh
Y(h)

{
Ip + Y T

(h)Y(h)

}−1
Y T

(h)1nh

∣∣∣∣ =
κ0

κ0 + nh
in Pp0-probability. (A.5)
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Taking the logarithm of the second and third factor of (A.4) and rearranging it using the previous
result

log

∣∣∣∣1− 1
n′kn−1+κ0

1T
n′kn−1

Y Ψ′

(kn−1)

{
Ip + Y Ψ′T

(kn−1)Y
Ψ′

(kn−1)

}−1
Y Ψ′T

(kn−1)1n′kn−1

∣∣∣∣
ν0+n

′
kn−1
2

∏kn
h=kn−1

∣∣∣∣1− 1
nh+κ0

1T
nh
Y Ψ

(h)

{
Ip + Y ΨT

(h) Y
Ψ

(h)

}−1
Y ΨT

(h) 1nh

∣∣∣∣
ν0+nh

2

+ log

{
κ0(κ0 + n′kn−1)

(κ0 + nkn−1)(κ0 + nkn)

}p/2
+ log

∣∣∣Ip + Y Ψ′T

(kn−1)Y
Ψ′

(kn−1)

∣∣∣ ν0+n′kn−1
2

∏kn
h=kn−1

∣∣∣Ip + Y ΨT

(h) Y
Ψ

(h)

∣∣∣ ν0+nh2

. (A.6)

Since ν0 = p+ c, in conjunction with (A.5) we have sum of the limits of the first and second terms
in (A.6) is 0 in Pp0-probability. We finally study the last summand of (A.5) and particularly

lim
p→∞

1

p
log

∣∣∣Ip + Y Ψ′T

(kn−1)Y
Ψ′

(kn−1)

∣∣∣ ν0+n′kn−1
2

∏kn
h=kn−1

∣∣∣Ip + Y ΨT

(h) Y
Ψ

(h)

∣∣∣ ν0+nh2

. (A.7)

Since
∣∣∣Ip + Y ΨT

(h) Y
Ψ

(h)

∣∣∣ =
∣∣∣Inh + Y Ψ

(h)Y
ΨT

(h)

∣∣∣ for any partition Ψ, following the same arguments of
(S.3) from Lemma S.10 in the supplementary materials, we have

∣∣∣Ip + Y Ψ′T

(kn−1)Y
Ψ′

(kn−1)

∣∣∣ =

kn∏
h=kn−1

∣∣∣Ip + Y ΨT

(h) Y
Ψ

(h)

∣∣∣ ν0+nh2 ×
∣∣Inkn−1

− ZZT
∣∣

where Z = {Inkn−1
+Y Ψ

(kn−1)Y
ΨT

(kn−1)}
−1/2Y Ψ

(kn−1)Y
ΨT

(kn){Inkn +Y Ψ
(kn)Y

ΨT

(kn)}
−1/2, and (A.7) reduces

to

nkn
2p

log
∣∣∣Inkn−1

+ Y Ψ
(kn−1)Y

ΨT

(kn−1)

∣∣∣+nkn−1

2p
log
∣∣∣Inkn + Y Ψ

(kn)Y
ΨT

(kn)

∣∣∣+ν0 + n′kn−1

2p
log
∣∣Inkn−1

− ZZT
∣∣.

From (A0), it can be deduced that the limits of the first two terms in the last expression are 0 in
Pp0-probability as p→∞. Invoking Lemma S.10 and the fact that ν0 = p+ c, we have

lim sup
p→∞

ν0 + n′kn−1

2p
log
∣∣Inkn−1

− ZZT
∣∣ < 0,

and henceforth (A.7) is negative. This leads to

lim sup
p→∞

log

∏kn
h=1

∫ ∏
i:ci=h

Np (yi;µh,Σh) Np(µh;µ0, κ
−1
0 Σh)IW (Σh; ν0,Λ0) d(µh,Σh)∏kn−1

h=1

∫ ∏
i:c′i=h

Np (yi;µh,Σh) Np(µh;µ0, κ
−1
0 Σh)IW (Σh; ν0,Λ0) d(µh,Σh)

= 0,

and hence for p→∞ all the data points are cluster together in Pp0-probability thanks to Theorem 1.
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Proof [Corollary 3] Define c1, . . . , cn and c′1, . . . , c
′
n consistently with the proof of Theorem 1.

Then, consider the ratio of the marginal likelihoods∫ ∏kn
h=1

∫ ∏
i:ci=h

Np (yi;µh,Σ) Np(µh;µ0, κ
−1
0 Σ)dµhIW (Σ; ν0,Λ0) dΣ∫ ∏kn−1

h=1

∫ ∏
i:c′i=h

Np (yi;µh,Σ) Np(µh;µ0, κ
−1
0 Σ)dµhIW (Σ; ν0,Λ0) dΣ

. (A.8)

The numerator of (A.8) is

kn∏
h=1

(
κ0

nh + κ0

) p
2

∣∣∣∣∣Λ0 +

kn∑
h=1

{
SΨ
h +

nhκ0

nh + κ0
(ȳΨ
h − µ0)(ȳΨ

h − µ0)T

}∣∣∣∣∣
− ν0+n

2

π−
np
2

Γp(
ν0+n

2 )

Γp(ν0/2)
|Λ0|

ν0
2 ,

where ȳΨ
h = 1

nh

∑
i:ci=h

yi and SΨ
h =

∑
i:ci=h

(
yi − ȳΨ

h

) (
yi − ȳΨ

h

)T. Hence, obtaining a corre-
sponding expression for the denominator, ratio (A.8) becomes

{
κ0(κ0 + n′kn−1)

(κ0 + nkn−1)(κ0 + nkn)

} p
2


∣∣∣Λ0 +
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h=1

{
SΨ′
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n′hκ0
n′h+κ0

(ȳΨ′
h − µ0)(ȳΨ′

h − µ0)T
}∣∣∣∣∣∣Λ0 +

∑kn
h=1

{
SΨ
h + nhκ0

nh+κ0
(ȳΨ
h − µ0)(ȳΨ

h − µ0)T
}∣∣∣


ν0+n

2

.

(A.9)

First note that for nkn , nkn−1 ≥ 1

κ0(κ0 + n′kn−1)

(κ0 + nkn−1)(κ0 + nkn)
< 1. (A.10)

Similar to Corollary 2, we can assume without loss of generality µ0 to be a p-dimensional vector of
zero and Λ0 = Ip. Note that,

kn∑
h=1

(
SΨ
h +

nhκ0

nh + κ0
ȳΨ
h ȳ

ΨT

h

)
=

n∑
i=1

yiy
T
i −

k∑
h=1

n2
h

nh + κ0
ȳΨ
h ȳ

ΨT

h

=
n∑
i=1

yiy
T
i −

k∑
h=1

1

nh + κ0

 ∑
i:ci=h

yi

 ∑
i:ci=h

yi

T

. (A.11)

Also, without loss of generality we can assume
{
y1+

∑h−1
j=1 nj

, . . . , y∑h
j=1 nj

}
are in cluster h of Ψ

similarly to Corollary 2. Then
∑kn

h=1

(
SΨ
h + nhκ0

nh+κ0
ȳΨ
h ȳ

ΨT

h

)
= Y T

(
In − J Ψ

n

)
Y , where J Ψ

n =

diag
(

Jn1
n1+κ0

, . . . ,
Jnkn
nkn+κ0

)
is an n×n order block diagonal matrix and Jr is the r× r order square

matrix with all elements being 1. Clearly, J Ψ
n is a positive semi-definite matrix of rank kn. Hence-

forth, exploiting the lower rank factorization structure, each determinant in (A.9) can be simplified
as ∣∣∣∣∣Ip +

kn∑
h=1

(
SΨ
h +

nhκ0

nh + κ0
ȳΨ
h ȳ

ΨT

h

)∣∣∣∣∣ =
∣∣Ip + Y T

(
In − J Ψ

n

)
Y
∣∣

=
∣∣Ip + Y TY

∣∣∣∣∣In − J Ψ1/2
n Y (Ip + Y TY )−1Y TJ Ψ1/2

n

∣∣∣.
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Hence (A.9) reduces to

{
κ0(κ0 + n′kn−1)

(κ0 + nkn−1)(κ0 + nkn)

}p/2
∣∣∣In − J Ψ′1/2

n Y (Ip + Y TY )−1Y TJ Ψ′1/2
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n

∣∣∣


ν0+n
2

. (A.12)

From Lemma S.8 in the supplementary materials, limp→∞
∥∥Y (Ip + Y TY )−1Y T − In

∥∥
2

= 0 in
Pp0-probability. Therefore, from the construction of J Ψ

n ,

lim
p→∞

∣∣∣In − J Ψ1/2
n Y (Ip + Y TY )−1Y TJ Ψ1/2

n

∣∣∣ =
∣∣In − J Ψ

n

∣∣ =

kn∏
h=1

∣∣∣∣Inh − 1

nh + κ0
Jnh

∣∣∣∣, (A.13)

in Pp0-probability. Notably Jr = 1r1
T
r where 1r is the r-dimensional vector of ones, implying that∣∣∣Ir − 1

nr+κ0
Jr

∣∣∣ = κ0
nr+κ0

for any positive integer r. Substituting this in (A.13), we have

lim
p→∞

∣∣∣In − J Ψ1/2
n Y (Ip + Y TY )−1Y TJ Ψ1/2

n

∣∣∣ =

kn∏
h=1

κ0

nh + κ0
, in Pp0-probability

and therefore,

lim
p→∞

∣∣∣In − J Ψ′1/2
n Y (Ip + Y TY )−1Y TJ Ψ′1/2

n

∣∣∣∣∣∣In − J Ψ1/2
n Y (Ip + Y TY )−1Y TJ Ψ1/2

n

∣∣∣ =
(κ0 + nkn−1)(κ0 + nkn)

κ0(κ0 + n′kn−1)
in Pp0-probability.

Thus if we take the log of (A.12) multiplied by p−1 and study its limit we have

lim inf
p→∞

1

2
log

κ0(κ0 + n′kn−1)

(κ0 + nkn−1)(κ0 + nkn)
+
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log
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=
1

2
log

κ0(κ0 + n′kn−1)

(κ0 + nkn−1)(κ0 + nkn)
×
(

1− lim sup
p→∞

n+ ν0

p

)
> 0.

Since n is fixed with p, the above limit follows from (A.10) and the assumption on ν0. Thus we
have

lim inf
p→∞

∫ ∏kn
h=1

∫ ∏
i:ci=h

Np (yi;µh,Σ) Np(µh;µ0, κ
−1
0 Σ)dµhIW (Σ; ν0,Λ0) dΣ∫ ∏kn−1

h=1

∫ ∏
i:c′i=h

Np (yi;µh,Σ) Np(µh;µ0, κ
−1
0 Σ)dµhIW (Σ; ν0,Λ0) dΣ

=∞,

and hence for p → ∞ each data point is clustered separately in Pp0-probability thanks to Theorem
1.
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Proofs of Section 4

Proof [Lemma 5] Let ζ(p)
0 = (

√
p log p)−1(ΛTΛ)−1/2ΛTΛ0η0, then Π(Ψ | η0) = Π(Ψ | ζ(p)

0 ).
Then,

1√
p log p

∥∥∥ζ(p)
i − ζ

(p)
0i

∥∥∥ ≤ ∥∥∥(ΛTΛ)−
1/2Λ

∥∥∥
2
× 1√

p log p
‖Ληi − Λ0η0i‖ ≤

1√
p log p

‖Ληi − Λ0η0i‖.
(A.14)

From (11) we see that the numerator in the right hand side of (10) can be simplified as

C ×Π(Ψ)×
kn∏
h=1

(
κ0

nh + κ0

) d
2

×
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kn∑
h=1

{
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η̄h0 η̄
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2

, (A.15)

where nh =
∑n

i=1 I(ci = h), η̄h0 = 1
nh

∑
i:ci=h

η0i, Shη0 =
∑

i:ci=h
(η0i− η̄h0 )(η0i− η̄h0 )T and C is a

positive quantity constant across all Ψ′ ∈P . Hence it is clear that Π(Ψ | η) is a continuous function
of η. Since the function is bounded (being a probability function), the continuity is also uniform.
Also note that, for the particular choice of Gaussian kernel and base measure in (11), the oracle
partition probability (10) is unchanged if η is multiplied by a full-rank square matrix and therefore
Π(Ψ | ζ(p)

0 ) = Π(Ψ | η0). Therefore, for any ε > 0 there exists δ > 0 such that
∥∥∥ζ(p)

0 − ζ(p)
∥∥∥ < δ

implies that
∣∣∣Π(Ψ | ζ(p))−Π(Ψ | ζ(p)

0 )
∣∣∣ =

∣∣Π(Ψ | ζ(p))−Π(Ψ | η0)
∣∣ < ε. Again,

E

{∣∣∣Π(Ψ | ζ(p))−Π(Ψ | η0)
∣∣∣∣∣∣∣ Y} = E

{∣∣∣Π(Ψ | ζ(p))−Π(Ψ | ζ(p)
0 )
∣∣∣∣∣∣∣ Bp,δ,Y}Π(Bp,δ | Y)

+ E

{∣∣∣Π(Ψ | ζ(p))−Π(Ψ | η0)
∣∣∣∣∣∣∣ B̄p,δ,Y}Π(B̄p,δ | Y). (A.16)

Due to continuity, δ can be chosen sufficiently small such that the term inside the first expectation in
the right hand side of (A.16) is smaller than arbitrarily small ε > 0. Now for any δ > 0, the second
term in the right hand side of (A.16) goes to 0 as Π(B̄p,δ | Y) → 0 as p → ∞ by assumption.
Therefore, for arbitrarily small ε > 0, E

{∣∣Π(Ψ | ζ(p))−Π(Ψ | η0)
∣∣ ∣∣ Y} < ε for large enough p.

Hence the proof.
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Supplementary Materials for
Escaping the Curse of Dimensionality in

Bayesian Model-based Clustering

The supplementary materials present proofs of some theoretical results, simulation studies and
MCMC convergence diagnostics.

S.1. Additional Theoretical Results

In the supplementary materials, we denote by ‖x‖ the Euclidean norm of a vector x and by ‖X‖2
the spectral norm of a matrix X . The smallest and largest eigenvalues of the matrix (XTX)

1
2 are

denoted by smin(X) and smax(X), respectively. For a positive-definite matrix X , λmin(X) and
λmax(X) denote the smallest and largest eigenvalues, respectively.

Lemma S.7 Let Γp(·) be the multivariate gamma function, ν0 = p+c for some constant c ≥ 0, and
` andm be (not varying with p) non-negative integers. Then, limp→∞

1
p log{Γp(ν0+`

2 )/Γp(
ν0+m

2 )} =
0.

Proof Without loss of generality assuming ` > m, we have

Γp(
ν0+`

2 )

Γp(
ν0+m

2 )
=

p∏
j=1

Γ
(
ν0+`−j+1

2

)
Γ
(
ν0+m−j+1

2

) =

∏`
j=m+1 Γ

(
ν0+j

2

)
∏`
j=m Γ

(
ν0+j−p

2

) . (S.1)

Note that the denominator term in the extreme right hand of (S.1) does not depend on p as ν0 − p is
constant from assumption. Applying Stirling’s approximation on the numerator we get

Γp(
ν0+`

2 )

Γp(
ν0+m

2 )
=

1∏`
j=m Γ

(
ν0+j−p

2

) × ∏̀
j=m+1


√

2π
ν0 + j − 1

2

(
ν0 + j − 1

2e

) ν0+j−1
2

Ej


=

1∏`
j=m Γ

(
ν0+j−p

2

) × ∏̀
j=m+1

√2πe
(ν0

2e

) ν0+j+1
2

(
1 +

j − 1

ν0

) ν0+j+1
2

Ej

 ,

whereEj = O(log p) arising from the Stirling’s approximation formulae. Using the result limx→∞(1+
c/x)x = ec, it can be seen that

lim
p→∞

∏̀
j=m+1

√2πe
(ν0

2e

) ν0+j+1
2

(
1 +

j − 1

ν0

) ν0+j+1
2


= (2πe)

`−m
2 ×

(ν0

2e

) 1
4

(`−m)(2ν0+m+`+3)
× e

1
2

(`−m)(`+m−1),

which is a finite quantity. Hence the proof.
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Lemma S.8 For any n×p order matrix Y satisfying (A0), limp→∞
∥∥Y (Ip + Y TY )−1Y T − In

∥∥
2

=
0 in Pp0-probability.

Proof Letting Y = UDV , the singular value decomposition of Y , we have Y (Ip +Y TY )−1Y T =

U diag
(

d21
1+d21

, . . . , d2n
1+d2n

)
UT where d1, . . . , dn are the singular values of Y in descending order.

From (A0) we have lim infp→∞
1
pd

2
i > 0, which further implies that lim infp→∞

di
1+di

→ 1 for all

i = 1, . . . , n. As di
1+di

≤ 1, limp→∞
∥∥Y (Ip + Y TY )−1Y T − In

∥∥
2

= 0 in Pp0-probability.

Lemma S.9 Let Ỹ be an ñ × p order matrix, formed by arbitrarily selecting ñ rows from Y =

[y1, . . . , yn]T where 1 ≤ ñ ≤ n. If Y satisfies (A0), then limp→∞

∥∥∥Ỹ (Ip + Ỹ TỸ )−1Ỹ T − Iñ
∥∥∥

2
=

0 in Pp0-probability.

Proof Letting Y = UDV the singular value decomposition of Y , we have Ỹ = ŨDV where Ũ is
formed by the corresponding rows of Y which were used to form Ỹ . Using Pati et al. (2014, Lemma
1.1(iii) from the Suppplementary section), we have smin(Ỹ T) ≥ smin(V T)smin(DT)smin(ŨT) =
smin(Y T). Since smin(ŨT) = smin(UT) = 1, smin(Ỹ T) ≥ smin(Y T). Therefore, Ỹ also satisfies
(A0) if we substitute Y = Ỹ . Consequently applying Lemma S.8, we conclude the proof.

Lemma S.10 Let Y be an n× p order matrix satisfying (A0). Let Yi = [yji,1 , . . . , yji,ni ]
T, i = 1, 2

be an arbitrary partiton of the data-matrix into two sub-matrices such that n1 + n2 = n. Then
lim supp→∞ smax(Z) < 1 where Z = (In1 +Y1Y

T
1 )−1/2Y1Y

T
2 (In2 +Y2Y

T
2 )−1/2 in Pp0-probability.

Proof From (A0) we have
∥∥Y Y T

∥∥
2

= O(p) and lim inf λmin(Y Y T)/p > 0, which implies that

0 < lim inf
p→∞

∣∣(In + Y Y T)/p
∣∣ ≤ lim sup

p→∞

∣∣(In + Y Y T)/p
∣∣ = O(1) in Pp0-probability. (S.2)

Following the proof of Lemma S.9, we see that Yi also satisfies (A0), and therefore (S.2) also holds

if Y is replaced with Yi for i = 1, 2. Noting that In + Y Y T =

[
In1 + Y1Y

T
1 Y1Y

T
2

Y2Y
T

1 In2 + Y2Y
T

2

]
and

using matrix factorization results, we have∣∣∣∣1p(In + Y Y T)

∣∣∣∣ =

∣∣∣∣1p(In1 + Y1Y
T

1 )

∣∣∣∣∣∣∣∣1p(In2 + Y2Y
T

2 )

∣∣∣∣∣∣In1 − ZZT
∣∣. (S.3)

Again in Pp0-probability,

lim sup
p→∞

s2
max(Z) ≤ lim sup

p→∞

∥∥Y T
1 (In1 + Y1Y

T
1 )−1Y1

∥∥
2

∥∥Y T
2 (In2 + Y2Y

T
2 )−1Y2

∥∥
2
≤ 1. (S.4)

For (S.2) to hold, all the terms in the RHS of (S.3) must be bounded away from 0. As
∣∣In1 − ZZT

∣∣ =∏n1
j=1

∣∣∣1− s2
j (Z)

∣∣∣, the inequality on (S.4) must be strict. Thus, we conclude the proof.
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Lemma S.11 For prior (7) limp→∞
1
pλmin(ΛTΛ) = limp→∞

1
pλmax(ΛTΛ) = v1 for some v1 > 0

Π-a.s.

Proof From Bhattacharya et al. (2015, Eqn (9) and Section 2.4) we get that ΛTΛ = τ2TTT where
the (i, j)-th element of T is tij = eijφij with eij

iid∼ DE(1) where DE(b) is the double exponential
distribution with median 0 and variance 2b2. Additionally φ ∼ Dir(a, . . . , a) and τ ∼ Ga(pda, 1/2).

Now by the strong law of large numbers
∥∥∥1
p T̃

TT̃ − v1Id

∥∥∥
F
→ 0 as p → ∞ where ‖·‖F is the

Frobenius norm of a matrix and v1 = Var(eijγij). Hence, for any i = 1, . . . , p limp→∞ λi(T̃
TT̃ )p−1 =

v1. Also limp→∞ τ/(pd) = E(τij) which implies that limp→∞ (τ/Γ)2 = 1 Π-a.s. Hence the proof.

S.2. Proof of Theorem 6 and Associated Results

To prove Theorem 6, we consider an adaptation of Theorem 6.39 in Ghosal and Van Der Vaart
(2017) where instead of having an increasing sample size, we assume an increasing data dimension
with fixed sample size. This notion is consistent with the idea that more and more variables are
measured on each study subject. We introduce the following notation. Let ϑ = (Λ, η, σ) with
η = [η1, . . . , ηn]T and ϑ ∈ Θp. Let Ppϑ and Pp0 be the joint distributions of the data y1, . . . , yn given
ϑ and ϑ0, respectively, with ϑ0 = (Λ0, η0, σ0). We also denote the expectation of a function g with
respect to Pp0 and Ppϑ by Pp0g and Ppϑg respectively. Let pp0 and ppϑ be the densities of Pp0 and Ppϑ with
respect to the Lebesgue measure. Finally, define the Kullback-Leibler (KL) divergence and the r-th
order positive KL-variation between pp0 and ppϑ, respectively, as KL(Pp0,P

p
ϑ) =

∫
log

pp0
ppϑ

dPp0 and

V +
r (Pp0,P

p
ϑ) =

∫ {(
log

pp0
ppϑ
−KL

)+
}r

dPp0, where f+ denotes the positive part of a function f .

Theorem S.12 If for some r ≥ 2, c > 0 there exist measurable setsBp ⊂ Θp with lim inf Π(Bp) >
0,

(I) supϑ∈Bp
1
pKL(Pp0,P

p
ϑ) ≤ c and supϑ∈Bp

1
prV

+
r (Pp0,P

p
ϑ)→ 0.

(II) For sets Θ̃p ⊂ Θp there exists a sequence of test functions φp such that φp → 0 Pp0-a.s. and∫
Θ̃p

Ppϑ(1− φp)dΠ(ϑ) ≤ e−Cp for some C > 0.

(III) Letting Ap =

{
ϑ ∈ Θp : 1

p

∫ (
log

pp0
ppϑ
−KL(Pp0,P

p
ϑ)
)

dΠ̃p(ϑ) < ε̃

}
, with Π̃p the renormal-

ized restriction of Π to set Bp, for any ε̃ > 0, 1(Āp)→ 0 Pp0-a.s.

Then Π(Θ̃p | Y)→ 0 Pp0-a.s.

Condition (I) ensures that the assumed model is not too far from the true data-generating model.
Condition (II) controls the variability of the log-likelihood around its mean. In the Lamb model,
the number of parameters grows with p and hence the assumption on V +

r is instrumental. The
conditions on φp ensure the existence of a sequence of consistent test functions for H0 : P = Pp0
in which type-II error diminishes to 0 exponentially fast in the critical region. Condition (III) is
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a technical condition required to bound the numerator of Π(Θ̃p | Y). The proof of this theorem
follows along the lines of the proof of Theorem 6.39 of Ghosal and Van Der Vaart (2017).

Theorem S.12 is a general result stating sufficient conditions for posterior consistency as p →
∞. We use this theorem to prove Theorem 6.

Proof [Theorem 6] We verify the conditions (I)-(III) from Theorem S.12. Theorems S.13 and S.14
jointly imply that for the Lamb model there exist a sequence of sets Bp such that conditions (I) and
(III) are satisfied for any c > 0. Theorem S.15 ensures the existence of a sequence of test functions
satisfying (II), and finally Theorem S.16 proves (III). Hence the proof.

Theorem S.13 For any ε > 0 define Bε
p =

{
Θ : p−1KL(Pp0,P

p
ϑ) ≤ ε

}
. Then, under the settings of

Section 4, lim inf Π(Bε
p) > 0.

Proof Let P0 and P be p-variate multivariate normal distributions with P = Np(µ,Σ) and P0 =

Np(µ0,Σ0). Then their Kullback-Leibler divergence is KL(P0, P ) = 1
2{log |Σ||Σ0| + tr

(
Σ−1Σ0

)
+

(µ− µ0)TΣ−1(µ− µ0)− p}, which, under the settings of Section 4, simplifies to

KL(Pp0,P
p
ϑ) =

1

2

{
np log

σ2

σ2
0

+ np

(
σ2

0

σ2
− 1

)
+

1

σ2

n∑
i=1

‖µi − µ0i‖2
}
, (S.5)

where µi = Ληi and µ0i = Λ0η0i. Now,

Π
{
p−1KL(Pp0,P

p
ϑ) < ε

}
= Π

{
n log

σ2

σ2
0

+ n

(
σ2

0

σ2
− 1

)
+

1

pσ2

n∑
i=1

‖µi − µ0i‖2 < ε

}

≥ Π

{
log

σ2

σ2
0

+

(
σ2

0

σ2
− 1

)
≤ ε

2n
,

1

σ2

n∑
i=1

‖µi − µ0i‖2 <
pε

2

}
.

Note that for any x > 0, log x ≤ x− 1 and therefore log σ2

σ2
0

+
(
σ2
0
σ2 − 1

)
≤
(
σ0
σ −

σ
σ0

)2
implying

that

Π
{
p−1KL(Pp0,P

p
ϑ) < ε

}
≥ Π

{(
σ0

σ
− σ

σ0

)2

≤ ε

2n
,

1

σ2

n∑
i=1

‖µi − µ0i‖2 <
pε

2

}

≥ Π

{(
σ0

σ
− σ

σ0

)2

≤ ε

2n

}
Π

(
n∑
i=1

‖µi − µ0i‖2 < σL
pε

2

)
,

where the second inequality holds thanks to condition (C3). The first factor above is positive under
our proposed prior on σ. Now consider the second factor and note that for each i = 1, . . . , n,
‖µi − µ0i‖2 =

∥∥Λ(ηi − (ΛTΛ)−1ΛTΛ0η0i)
∥∥2

+ ηT
0i(Λ

T
0 Λ0 − ΛT

0 Λ(ΛTΛ)−1ΛTΛ0)η0i. By the
triangle inequality

1

p

∥∥ΛT
0 Λ0 − ΛT

0 Λ(ΛTΛ)−1ΛTΛ0

∥∥
2
≤
∥∥∥∥1

p
ΛT

0 Λ0 −M
∥∥∥∥

2

+

∥∥∥∥M − 1

p
ΛT

0 Λ(ΛTΛ)−1ΛTΛ0

∥∥∥∥
2

. (S.6)
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The first term on the right hand side of (S.6) goes to 0 as p → ∞ by (C2). Let us define the
matrix B = (ΛTΛ)−1/2ΛT, with ‖B‖2 = 1 and Λ̃0 = Λ0M

−1/2 where M 1/2 is the Cholesky
factor of M . From Vershynin (2012, Theorem 5.39) it follows that for any 0 < ε < 1 and large
enough p, 1 − ε ≤

∥∥∥ 1√
p Λ̃0

∥∥∥
2
≤ 1 + ε. Again, from Lemma 1.1 of the Supplement section of Pati

et al. (2014) we have that 1−ε ≤
∥∥∥ 1√

pBΛ̃0

∥∥∥
2
≤ 1+ε, 1−ε ≤ 1√

psmin(BΛ̃0) ≤ 1+ε. Therefore

limp→∞ λi(Λ̃
T
0 Λ(ΛTΛ)−1ΛTΛ̃0)p−1 = 1 for all i = 1, . . . , d. Now

∥∥∥M − 1
pΛT

0 Λ(ΛTΛ)−1ΛTΛ0

∥∥∥
2

=

‖M‖2
∥∥∥Id − 1

p Λ̃T
0 Λ(ΛTΛ)−1ΛTΛ̃0

∥∥∥
2

and therefore the second term on the right hand side of (S.6)

goes to 0 as p→∞. Subsequently we have limp→∞
1
pη

T
0i(Λ

T
0 Λ0−ΛT

0 Λ(ΛTΛ)−1ΛTΛ0)η0i = 0 for
all i = 1, . . . , n. Now (C2) and Lemma S.11 jointly imply that

∥∥(ΛTΛ)−1ΛTΛ0

∥∥
2

= O(1) Π-a.s.
Therefore, for standard normal priors on the latent variables, lim infp→∞Π(

∑n
i=1 ‖µi − µ0i‖2 <

σLpε) > 0. From the permanence of KL-property of mixture priors (Ghosal and Van Der Vaart,
2017, Proposition 6.28) we can conclude that the right hand side is also positive.

Theorem S.14 On the set Bε
p defined in Theorem S.13, we have V +

r (Pp0,P
p
ϑ) = o(pr) for r = 2.

Proof For r = 2, V +
r (Pp0,P

p
ϑ) ≤

∫
log2 pp0

ppϑ
dPp0 −

{∫
log

pp0
ppϑ
dPp0
}2

. Now conditionally on ϑ ∈ ϑ,
the observations y1, . . . , yn are independent. Therefore,

V +
r (Pp0,P

p
ϑ) ≤

n∑
j=1

[∫ {
log

p0j(yj)

pϑj (yj)

}2

p0j(yj)dyj −
{∫

log
p0j(yj)

pϑj (yj)
p0j(yj)dyj

}2
]

(S.7)

where p0j(yj) =
∏p
i=1 N(yji;µ0ji, σ

2
0) and pϑj (yj) =

∏p
i=1 N(yji;µji, σ

2) with µ0j = and µj =
Ληj . We first show the result for a particular term inside the summation of (S.7). Since ‖η0i‖ =
O(1) and n is fixed, the result will readily follow afterwards. For simplicity, we drop the suffix j
from the terms of (S.7) henceforth. Consider,

{
log

p0(yi)

pϑ(yi)

}2

=

[
log

σ

σ0
− 1

2

{(
yi − µ0i

σ0

)2

−
(
yi − µi
σ

)2
}]2

=
1

4

{(
yi − µ0i

σ0

)2

−
(
yi − µi
σ

)2
}2

+ log2 σ

σ0
−

{(
yi − µ0i

σ0

)2

−
(
yi − µi
σ

)2
}

log
σ

σ0
.

Note that,{(
yi − µ0i

σ0

)2

−
(
yi − µi
σ

)2
}2

=

{
z2
i

(
1− σ2

0

σ2

)
− 2zi(µ0i − µi)

σ0

σ
+

(
µi − µ0i

σ

)2
}2

= z4
i

(
1− σ2

0

σ2

)2

+ 4z2
i σ

2
0

(
µ0i − µi

σ

)2

+

(
µi − µ0i

σ

)4

− 2z3
i

(
1− σ2

0

σ2

)
σ0

σ
(µ0i − µi)

− 2ziσ0

(
µ0i − µi

σ

)3

+ 2z2
i

(
µ0i − µi

σ

)2(
1− σ2

0

σ2

)
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where zi = (yi − µ0i)/σ0 and zi
iid∼ N(0, 1). Therefore,

Eyi

{(
yi − µ0i

σ0

)2

−
(
yi − µi
σ

)2
}

=

(
1− σ2

0

σ2

)
+

(
µi − µ0i

σ

)2

and

Eyi

{(
yi − µ0i

σ0

)2

−
(
yi − µi
σ

)2
}2

= 3

(
1− σ2

0

σ2

)2

+ 4σ2
0

(
µ0i − µi

σ

)2

+

(
µi − µ0i

σ

)4

+ 2

(
µ0i − µi

σ

)2(
1− σ2

0

σ2

)
.

Hence,∫ {
log

p0(yi)

pϑ(yi)

}2

p0(yi)dyi =

(
µ0i − µi

σ

)2

×
{
σ2

0 +
1

2

(
1− σ2

0

σ2

)
− log

σ

σ0

}
− log

σ

σ0

(
1− σ2

0

σ2

)
+

1

4

(
µ0i − µi

σ

)4

+
3

4

(
1− σ2

0

σ2

)2

+ log2 σ

σ0

{∫
log

p0(yi)

pϑ(yi)
p0(yi)dyi

}2

=

{
log

σ

σ0
+
σ2

0 + (µ0i − µi)2

2σ2
− 1

2

}2

= log2 σ

σ0
+

1

4

(
1− σ2

0

σ2

)2

+
1

4

(
µ0i − µi

σ

)4

+

(
µ0i − µi

σ

)2

×
{

log
σ

σ0
− 1

2

(
1− σ2

0

σ2

)}
− log

σ

σ0

(
1− σ2

0

σ2

)
,

leading to

V +
r (Pp0,P

p
ϑ) ≤

p∑
i=1

[∫ {
log

p0(yi)

pϑ(yi)

}2

p0(yi)dyi −
{∫

log
p0(yi)

pϑ(yi)
p0(yi)dyi

}2
]

=
p

2

(
1− σ2

0

σ2

)2

+

{
σ2

0 − 2 log
σ

σ0
+

(
1− σ2

0

σ2

)}
×

p∑
i=1

(
µ0i − µi

σ

)2

. (S.8)

Note that

p∑
i=1

(µ0i − µi)2 =

p∑
i=1

(
λT

0iη0 − λT
i η
)2

= ηT
0 ΛT

0 Λ0η0 + ηTΛTΛη − 2ηT
0 ΛT

0 Λη. (S.9)

Now ηT
0 ΛT

0 Λ0η0 ≤ ‖Λ0‖22‖η0‖2 and therefore, by conditions (C2) and (C4), ηT
0 ΛT

0 Λ0η0 = O(p).
Also from Lemma S.11, 1

p‖Λ‖
2
2 ≤ c for large enough p and some c > 0 and therefore ηTΛTΛη ≤

‖Λ‖22‖η‖
2 = ‖η‖2O(p). From the proof of Theorem S.13 we can see that in the set Bε

p, ‖η‖
is bounded. We have shown that the highest powers in (S.9) and thus in (S.8) are almost surely
bounded by p for large enough p. Hence the proof.
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Theorem S.15 Let us define the test function φp = 1

{∣∣∣ 1√
npσ0
‖
∑n

i=1(yi − Λ0η0i)‖ − 1
∣∣∣ > τ

}
to

test the following hypothesisH0 : y1, . . . , yn ∼ Pp0 versusH1 : H0 is false where τ is a positive real
number. Define the set Θ̃p = B̄p,δ. Then there exists a constant C > 0 such that φp → 0 Pp0-a.s.
and

∫
Θ̃p

Ppϑ(1− φp)dΠ(ϑ) ≤ e−Cp.

Proof Let us define µi = Ληi and µ0i = Λη0i. Then underH0, 1√
nσ0

∑n
i=1(yi−Λη0i) ∼ Np(0, Ip)

and therefore 1√
npσ0

∑n
i=1(yi−Λη0i)

d
= ω/

√
pwhere ω ∼ Np(0, Ip). Then from Rudelson and Ver-

shynin (2013, Theorem 2.1) for some c > 0 and any τnp > 0 Pp0φp = Pr
( ∣∣∣ 1√

p‖ω‖ − 1
∣∣∣ > τnp

)
≤

2 exp
(
−pcτ2

np

)
. Since

∑∞
p=1 P

p
0φp <∞, by Borel-Cantelli lemma φp → 0 Pp0-a.s.

Notably when H0 is not true i.e. under Ppϑ, Yi
d
= σϕi + Ληi where ϕi

iid∼ Np(0, Ip) for some
ϑ 6= (Λ0, η0, σ0) and therefore under Ppϑ

Ppϑ(1− φp) ≤ Pr

{
1

√
pnσ0

∥∥∥∥∥
n∑
i=1

(σϕi + Ληi − Λ0η0i)

∥∥∥∥∥ < 1 + τnp

}

≤Pr

{
1

√
pnσ0

n∑
i=1

‖Ληi − Λ0η0i‖ − 1− τnp −
σ

σ0
≤ σ

σ0

(
1
√
np

n∑
i=1

‖ϕi‖ − 1

)}
. (S.10)

Notably for ϑ ∈ Θ̃p, 1√
pnσ0

∑n
i=1 ‖Ληi − Λ0η0i‖ is unbounded above for increasing p and σ

σ0

is bounded thanks to (C3). Letting Cp = 1√
pnσ0

∑n
i=1 ‖Ληi − Λ0η0i‖ − 1 − τnp − σ

σ0
we have

lim infp→∞Cp > 0. Therefore, from Rudelson and Vershynin (2013, Theorem 2.1), we have for
ϑ ∈ Θ̃p, Ppϑ(1− φp) ≤ 2 exp

(
−pncC2

p

)
. Hence the proof.

Theorem S.16 Let Π̃p be the renormalized restriction of Π to the set Bε
p defined in Theorem S.13.

Then 1{Āp} → 0 Pp0-a.s.

Proof If we can show that
∑∞

p=1 P
p
0(Āp) <∞, then by Borel-Cantelli lemma Pp0[lim sup Āp] = 0

and henceforth 1{Āp} → 0 Pp0-a.s. Now

Pp0(Āp) = Pp0

[
1

p

∫ n∑
i=1

{
1

σ2
‖yi−µi‖2 −

1

σ2
0

‖yi−µ0i‖2 −
1

σ2
‖µi−µ0i‖2 − p

(
σ2

0

σ2
−1

)}
dΠ̃p > 2ε

]
.

Notably under Pp0, Yi
d
= σ0ϕi + µ0i where ϕi

iid∼ Np(0, Ip). Therefore

Pp0(Āp) = Pr

[
1

p

∫ n∑
i=1

{(
σ2

0

σ2
− 1

)
(‖ϕi‖2 − p) + 2

σ0

σ2
ϕT
i (µi − µ0i)

}
dΠ̃p > 2ε̃

]

≤Pr

[
1

p

n∑
i=1

(‖ϕi‖2 − p)
∫ (

σ2
0

σ2
− 1

)
dΠ̃p > ε̃

]
+

Pr

[
2

p

∫ n∑
i=1

{σ0

σ2
ϕT
i (µi − µ0i)

}
dΠ̃p > ε̃

]
. (S.11)
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Let us consider the first term of (S.11). Notably

Pr

[
1

p

n∑
i=1

(‖ϕi‖2 − p)
∫ (

σ2
0

σ2
− 1

)
dΠ̃p > ε̃

]
≤ Pr

[
1

p

∣∣∣∣∣
n∑
i=1

(‖ϕi‖2 − p)

∣∣∣∣∣
∫ ∣∣∣∣σ2

0

σ2
− 1

∣∣∣∣dΠ̃p > ε̃

]
.

(S.12)
From (C3) we have that σ lies in a compact interval. Hence the integral in the right hand side of
(S.12) is bounded above by some positive constant, say Cσ,1. Therefore,

Pr

[
1

p

n∑
i=1

(‖ϕi‖2 − p)
∫ (

σ2
0

σ2
− 1

)
dΠ̃p > ε̃

]
≤ Pr

[
1

p

∣∣∣∣∣
n∑
i=1

(‖ϕi‖2 − p)

∣∣∣∣∣ > ε̃

Cσ,1

]
≤ 2e−pCσ,2

for some positive constant Cσ,2 > 0. The second inequality in the above equation follows from
Rudelson and Vershynin (2013, Theorem 2.1). Clearly

∞∑
p=1

Pr

[
1

p

n∑
i=1

(‖ϕi‖2 − p)
∫ (

σ2
0

σ2
− 1

)
dΠ̃p > ε̃

]
<∞. (S.13)

Now we consider the second term of (S.11). As ϕi = (ϕi1, . . . , ϕip)
T (similarly µi and µ0i are also

p-dimensional vectors) we can write

Pr

[
2

p

∫ n∑
i=1

{σ0

σ2
ϕT
i (µi − µ0i)

}
dΠ̃p > ε̃

]
= Pr

2

p

n∑
i=1

p∑
j=1

ϕij

∫ {σ0

σ2
(µij − µ0ij)

}
dΠ̃p > ε̃


≤ exp

− p2ε̃2

4σ2
0

∑n
i=1

∑p
j=1E

2
Π̃p

{
1
σ2 (µij − µ0ij)

}
 ,

whereEΠ̃p
denotes the expectation with respect to the probability measure Π̃p. The above inequality

follows from sub-Gaussian concentration bounds. Now

n∑
i=1

p∑
j=1

E2
Π̃p

{
1

σ2
(µij − µ0ij)

}
≤

n∑
i=1

EΠ̃p

1

σ4
‖µi − µ0i‖2 (by Jensen’s inequality)

=EΠ̃p

1

σ4

n∑
i=1

×EΠ̃p
‖µi − µ0i‖2. (S.14)

Since we consider independent priors on σ,Λ and ηi, (S.14) follows from its preceding step. Note
that on the set Bε

p

n log
σ2

σ2
0

+ n

(
σ2

0

σ2
− 1

)
+

1

pσ2

n∑
i=1

‖µi − µ0i‖2 < 2ε. (S.15)

From the inequality log x < x−1 we see that n log σ2

σ2
0

+n
(
σ2
0
σ2 − 1

)
> 0. Therefore for ϑ ∈ Bε

p, in

conjunction of (S.15) and (C3) we have 1
p

∑n
i=1 ‖µi − µ0i‖2 < 2εσ2

U ⇒
1
p

∑n
i=1EΠ̃p

‖µi − µ0i‖2 <
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2εσ2
U . Also thanks to (C3) EΠ̃p

1
σ4 is bounded above. Hence the term in (S.14) is bounded above

and consequently

∞∑
p=1

Pr

[
2

p

∫ n∑
i=1

{σ0

σ2
ϕT
i (µi − µ0i)

}
dΠ̃p > ε̃

]
<∞. (S.16)

Combining (S.13) and (S.16) we conclude that
∑∞

p=1 P
p
0(Āp) <∞. Hence the proof.

S.3. Details on Simulation Studies

In this section, we discuss the data-generation strategies in three simulation scenarios: [1] Lamb, [2]
mixture of sparse factor analyzers (MFA), and [3] mixture of log transformed zero inflated Poisson
counts (SpCount) considered in Section 5 of the main manuscript. The observed p-dimensional data
are y1, . . . , yn, k0 is the number mixture components in the simulation truth and π1, . . . , πk0 are the
mixture probabilities attached to each cluster such that

∑k0
h=1 πh = 1.

Lamb We let the observed data

yi = Ληi + εi, ηi
iid∼
∑k0

h=1 πhNd(µh,∆h), εi
iid∼ Np(0,Σ),

where Λ is a p × d order sparse matrix with many entries equal to zero, µh ∈ Rd, ∆h is a d × d
positive definite matrix, for all h = 1, . . . , k0 and Σ is a p × p order diagonal matrix with positive
entries.

Mixture of sparse factor analyzers (MFA) We let the observed data

yi
iid∼
∑k0

h=1 πhNp(µh,ΛhΛT
h + Σh),

where Λh is a p × d order sparse matrix with many entries equal to zero, Σh is a p × p diagonal
matrix with positive entries and µh ∈ Rp, for all h = 1, . . . , k0.

Mixture of log transformed zero inflated sparse Poisson counts (SpCount) Let {`1, . . . , `p} be
a random permutation of 1, . . . , p, r = bp/k0c and define the set Sh = {`(h−1)×r+1, . . . , `h×r} for
all h = 1, . . . , k0. Thus {S1, . . . , Sk0} can be regarded as a random partition of {1, . . . , p} where
each partition has r elements. Additionally fix k0 positive constants λ1, . . . , λk0 , and let

wij | ci = h
iid∼

{
Pois(λh) + N(0, 1) for all j ∈ Sh,
0 with probability 1 for all j /∈ Sh,

Pr(ci = h) = πh for all h = 1, . . . , k0.

where Pois(λ) is the Poisson distribution with mean λ and set yij = log(wij + 1) for all j =
1, . . . , p and i = 1, . . . , n. Thus the observed data yi’s are highly non-Gaussian within each cluster.

S.4. Additional Simulation Studies

S.4.1 Illustration of the Degenerate Clustering Behaviour

To show the degenerate clustering behavior discussed in Section 2 we performed two simple simu-
lation experiments under the settings of Corollaries 2 and 3.
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In the first experiment, we generate data from a five-component mixture model. Specifically,
we assumed five well-separated Gaussians with equal proportions. The location vector for the h-th
component is θh1p with 1p a p-dimensional vector of ones, θh ∈ R and the values of θh ranging from
-10 to +10. Each mixture component has identity covariance matrix. We fix n = 10 and p = 20.
The left panel of Figure S.1 displays the distribution of the posterior median number of clusters
in 100 replicates for a standard DP location mixture with hyperparameter specification satisfying
Corollary 2 and proposed Lamb. For the DPM, we use the implementation in the BNPmix package
(Corradin et al., 2021). Despite coming from a five-component mixture model, the data are grouped
into a single cluster for most of the simulation replicates under the DPM specification, consistent
with the limiting behavior described by Corollary 2.

In the second experiment, we assume a single p-variate normal distribution with mean zero,
and identity covariance. As before, we fix n = 10 and p = 20. The results obtained assuming a
DP mixture with the hyperparameter specification satisfying Corollary 3 and the proposed Lamb
are reported in the right panel of Figure S.1. These results clearly show that the limiting behavior
described by Corollary 3 is evident already for the moderate p = 20. Notably, the proposed Lamb
avoids these pitfalls and is associated to a median number of clusters that is centered around the true
values.
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Figure S.1: Empirical distribution of the posterior median number of clusters in 100 replicates un-
der the first (left) and second (right) simulation experiment. DPM hyperparameter spec-
ification satisfies Corollary 2 (left) and Corollary 3 (right). Vertical dashed lines repre-
sent the true number of clusters.

S.4.2 Recovering the Latent Space

To empirically illustrate the robustness of assumptions (C1) and (C2) used to prove the theory of
Section 4, we perform a simple simulation study. These conditions ensure that the data contain
increasing information on the latent factors as p increases. Increasing p means that we observe
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additional yij variables for each subject. Each of these variables can have very small correlation
with the latent factor η0i and there will still be a build-up of information.

To see this, we generate random yi for i = 1, . . . , 4 and p ∈ {20, 200, 1000}. Data are generated
as yi = Λ0η0i + εi where the factor loadings Λ0’s are generated according to

λ0jh
iid∼ πδ{0} + (1− π)δ{0.5},

where δ{a} denotes a Dirac’s delta mass at value a. The true latent factors are simulated as η0i,j ∼
N(i + j − 1, 0.052) where η0i = (η0i1, . . . , η0id)

T. We consider two error distributions ensuring
low signal-to-noise ratio, and specifically εij ∼ N(0, 25) and εij ∼ t3 where t3 denotes a central t
distribution with 3 degrees of freedom. We set π = 0.2 and the latent dimension d = 2.

To examine the level of recovery, for the m-th MCMC iteration, we regress the true factors with
their current value in them-th iteration. Specifically we stack all η0ij across i = 1, . . . , n in a vector
and use it as response variable, while using as predictor the vector containing all η(m)

ij of the m-th
iteration. We do this for each iteration after the burn-in.
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Figure S.2: Posterior distributions of the coefficient of determination R2 of the linear regressions
of the true latent factors on the associated posterior samples for two error distributions
(N(0, 25), in the upper quadrants and t3, in the bottom quadrants). The different di-
mensions p are denoted by the different colors.

Clearly, the latent factors are non-identifiable due to the well known rotational ambiguity and
thus they can be learned only up to some non-singular matrix multiplication. Hence, to quantify
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the accuracy in recovering the latent space, we consider the coefficient of determination R2 of each
fitted regression which is invariant of such identifiability issues. Figure S.2 reports the results. For
both error distributions under consideration, as p grows the posterior distributions of the coefficients
of determination concentrate near one implying that with more variables we improve on the learning
of the latent space even with low signal-to-noise ratios.

S.4.3 Small Sample Studies

In this section, we do additional simulation studies. We consider the same setups considered in
Section 5 of the main paper but take the sample size n = 500. The true number of clusters is fixed
to k0 ∈ {10, 15}. The results depicted in Figure S.3 are overall consistent with those reported in
Section 5.

Figure S.3: Comparison between our proposed Lamb and the two-stage PCA-KM approach: Distri-
butions of the adjusted Rand indices (left plot) and estimated number of clusters (right
plot) in 20 replicated experiments. Horizontal dashed lines denote the true number of
clusters. The true simulation scenarios, reported in each row, are labeled as Lamb for
the model of Section 3, MFA for mixture of factor analyzers and SpCount for the log
transformed zero inflated sparse Poisson counts.

S.4.4 Figures Associated to Section 5

Figures S.4-S.9 report the UMAP (McInnes et al., 2018) plots of the simulated datasets of Section
5, corresponding to the replicate with median adjusted Rand index (Rand, 1971). In each figure,
the upper and lower panels show the true clustering and the estimated clustering obtained by the
Lamb model, respectively. Each figure’s caption specifies the true number of clusters (k0) and the
dimension (p).

38



ESCAPING THE CURSE OF DIMENSIONALITY IN BAYESIAN MODEL-BASED CLUSTERING

Figure S.4: k0 = 10, p = 1, 000.

Figure S.5: k0 = 10, p = 2, 500
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Figure S.6: k0 = 15, p = 1, 000

Figure S.7: k0 = 15, p = 2, 500
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Figure S.8: k0 = 25, p = 1, 000

Figure S.9: k0 = 25, p = 2, 500
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S.5. MCMC Convergence Diagnostics in the Cell Line Application

In this section, we provide convergence diagnostics of the MCMC sampler discussed in Section 3.2.
Note that most of the variables that are sampled are latent objects and not identifiable. Hence we
compute the log-likelihood of y1:n | Λ, η,Σ across the MCMC samples. On these log-likelihoods,
we show traceplots and Geweke convergence diagnostics (Geweke, 1992) as implemented in the
coda R package (Plummer et al., 2006). The results are shown in Figure S.10 and they indicate
evidence towards good mixing.

Figure S.10: MCMC Convergence Diagnostics in the Cell Line Application: The joint log-
likelihoods of the y1:n | Λ, η,Σ are first calculated across the MCMC iterations. The
Geweke convergence diagnostic on the log-likelihoods is shown in the left panel and
their traceplot in the right panel.
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