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Abstract

Online optimization has witnessed a massive surge of research attention in recent years.
In this paper, we propose online gradient descent and online bandit algorithms over Rie-
mannian manifolds in full information and bandit feedback settings respectively, for both
geodesically convex and strongly geodesically convex functions. We establish a series of up-
per bounds on the regrets for the proposed algorithms over Hadamard manifolds. We also
find a universal lower bound for achievable regret on Hadamard manifolds. Our analysis
shows how time horizon, dimension, and sectional curvature bounds have impact on the
regret bounds. When the manifold permits positive sectional curvature, we prove similar
regret bound can be established by handling non-constrictive project maps. In addition,
numerical studies on problems defined on symmetric positive definite matrix manifold, hy-
perbolic spaces, and Grassmann manifolds are provided to validate our theoretical findings,
using synthetic and real-world data.
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1. Introduction

The online optimization has been widely studied in the past decades in online routing, spam
filtering, and machine learning (Agmon, 1954; Hazan, 2016; Arnold et al., 2019). Without a
prior knowledge of loss functions, an online convex optimization algorithm predicts solutions
before loss functions are revealed.

In this paper, we consider the following Riemannian online convex optimization (R-
OCO) problem,

min
xt∈K⊂M

ft(xt), t = 1, 2, . . . , T, (1)

where M is a complete Riemannian manifold equipped with a Riemannian metric g and
K is a geodesically convex (g-convex) subset of M. Here, {ft}t=1,2,...,T is a sequence of un-
known loss functions and every ft is a geodesically convex (g-convex) function with sufficient
smoothness. The R-OCO problem (1) extends the online convex optimization in Euclidean
spaces with potential applications in machine learning, such as online principal component
analysis (PCA), dictionary learning, and neural networks (Lee and Kriegman, 2005; Feng
et al., 2013; Hu et al., 2020).

The R-OCO problem (1) can be understood as a learning process of T rounds. At each
round t = 1, 2, 3, . . . , T , an online learner chooses a strategy xt from the g-convex subset
K. Later or simultaneously, the adversary (or nature) produces a g-convex loss function
ft : K → R of which the learner has no prior knowledge. Finally, the learner receives the
feedback and suffers the loss ft(xt). Generally, there are two types of information feedback.
One is the full information feedback, where the entire function ft is revealed to the learner;
the other is the bandit feedback, where only the value ft(xt) is revealed. The goal of the
R-OCO is to minimize the regret, defined as

Reg(T ) =
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x),

which measures the difference between the cost by {xt}t=1,...,T and the best-fixed point
chosen in hindsight. An algorithm is termed no-regret (Srinivas et al., 2010), if the regret
of the algorithm goes sublinearly with the time horizon T .

For carrying out optimization over a manifold, some classical methods treat the manifold
as a subset of an ambient Euclidean space and employ Euclidean constrained optimization
techniques. For instance, Nie et al. (2016) presented an online PCA algorithm, where the
variables were updated in an embedding Euclidean space and then projected onto a man-
ifold. However, in practical applications, the dimension of an embedding Euclidean space
can be too high (e.g., the Grassmann manifold, Boumal and Absil, 2015), and the projec-
tion can be expensive to compute (e.g., the manifold of symmetric positive definite (SPD)
matrices, Zhang et al., 2018). An alternative approach termed Riemannian optimization
makes use of intrinsic geometry of manifolds so that it can optimize directly on manifolds
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as an unconstrained problem, and thus avoiding high dimension embedding and high com-
puting cost for the projection. Furthermore, this viewpoint has shown benefits from the
g-convexity, by which a nonconvex optimization problem can be converted into a g-convex
one (Allen-Zhu et al., 2018). Consequently, it is important to take a Riemannian approach
in our problem (1).

Although there were many existing algorithms for offline manifold optimization problems
(Absil et al., 2009; Ring and Wirth, 2012; Ahn and Sra, 2020), very few results were obtained
about the Riemannian online optimization problem. Tupker et al. (2021) proposed an
online algorithm for estimating hidden Markov chains on Hadamard homogeneous spaces;
Becigneul et al. (2019) analyzed Riemannian adaptive methods on product manifolds in the
regret sense. More recently, Maass et al. (2022) studied a zeroth-order online optimization
problem on Hadamard manifolds and achieved no-regret bound with a sublinear assumption.

Contribution This paper aims to design no-regret algorithms for the R-OCO problem
in both full information feedback and bandit feedback. The contribution of this paper is
summarized as follows:

• We propose a Riemannian online gradient descent algorithm (R-OGD) for the R-
OCO problem in the full information feedback, and then establish the regret bounds
on Hadamard manifolds for g-convex and strongly g-convex functions. In addition,
we present a universal lower regret bound which matches the regret bound achieved
by R-OGD in g-convex setting.

• We introduce a Riemannian bandit algorithm (R-BAN) and construct regret bounds
for g-convex and strongly g-convex functions with the one-point bandit feedback.
We also proposed a Riemannian two-point bandit algorithm (R-2-BAN) with the
two-point bandit feedback, of which regret bounds can be improved to resemble the
bounds in full information cases. Moreover, we develop a key technique to analyze
the derivative of a local integration on homogeneous manifolds, which can be applied
to estimate gradients in Riemannian optimization and beyond.

• We generalize the R-OGD, R-BAN and R-2-BAN algorithms to non-Hadamard man-
ifolds. We overcome the challenge of non-constrictive projection maps and derive
regret bounds of the same order in time horizon compared to those in Hadamard
cases.

The established lower and upper bounds on the achievable bounds of the R-OCO match
their counterparts for Euclidean online convex optimization (Zinkevich, 2003; Hazan et al.,
2006; Flaxman et al., 2005; Abernethy et al., 2008; Agarwal et al., 2010). Please see Table
1 for the detail.

Some preliminary results of the paper are scheduled for presentation at NeurIPS-2021
(Wang et al., 2021). Compared to the conference version, we have expanded the theoretical
study considerably into two-point bandit algorithm and regret analysis for non-Hadamard
manifolds, and presented a comprehensive set of numerical tests on both synthetic and
real-world data.
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Related Work The Euclidean online convex optimization was introduced by Zinkevich
(2003). Inspired by the gradient descent method, Zinkevich (2003) proposed the online
gradient descent algorithm (OGD) of which the regret bound was proven to be O

(√
T
)
.

Then Hazan et al. (2006) proceeded with the study of the OGD algorithm and established a
regret bound O

(
log T

)
for strongly convex functions. In addition, Abernethy et al. (2008)

gave a universal lower bound of O
(√
T
)

for online algorithms, which indicated that the
bounds in Zinkevich (2003) and Hazan et al. (2006) are essentially optimal. In the bandit
setting, Flaxman et al. (2005) provided a detailed exposition of a one-point bandit algorithm.
By modifying the gradient in the OGD algorithm to a randomized estimator, the regret
bounds attained O

(
nT

3
4

)
and O

(
n

2
3 (1 + log T )

1
3T

2
3

)
for convex loss functions and strongly

convex loss functions, respectively. By extending the one-point bandit algorithm, Agarwal
et al. (2010) developed a multi-point bandit algorithm and presented regret boundsO

(
n
√
T
)

and O
(
n2(1+log T )

)
for convex and strongly convex loss functions. The Riemannian online

algorithms proposed in this paper in the full information feedback and the bandit feedback
settings are extensions of the Euclidean online algorithms to Riemannian manifolds.

Riemannian optimization has drawn much research attention in the past decades. Many
basic algorithms in Euclidean spaces such as the gradient descent method, Newton’s method,
and trust-region methods have been adapted into a Riemannian setting (see Fiori, 2005;
Absil et al., 2009; Ahn and Sra, 2020; Ring and Wirth, 2012; Koudounas and Fiori, 2020).
Some research of Riemannian stochastic optimization (R-SO) was intended to deal with
time-varying optimization problems (Bonnabel, 2013; Zhang and Sra, 2016; Zhang et al.,
2018; Tupker et al., 2021). Among them, Zhang and Sra (2016) provided the first global com-
plexity analysis for the R-SGD algorithm on geodesically convex problems over Hadamard
manifolds, and Tupker et al. (2021) proposed an online algorithm to deal with hidden
Markov chains on Hadamard homogeneous spaces. When loss functions are arrived in batch,
R-SO methods are actually to minimize the average regret in the case of knowing the prior
distribution of loss functions. In this case, the R-SO can be viewed as a kind of R-OCO
problems and R-OCO algorithms can handle broader settings without prior knowledge.

The results about the R-OCO problem are fairly limited. Antonakopoulos et al. (2020)
proposed regularized online optimization methods via a Riemann–Lipschitz continuity con-
dition, which focused on convex functions and vector addition from an ambient Euclidean
space. In the full information setting, Becigneul et al. (2019) proposed the Riemannian
versions of ADAGRAD and ADAM algorithms, which depended on a product manifold
structure. In addition, Becigneul et al. (2019) constructed O

(√
T
)

regret bounds of both
ADAGARD and ADAM algorithms for g-convex functions. When the form of losses is not
available, Maass et al. (2022) proposed a Riemannian online zeroth-order (R-OZO) algo-
rithm for strongly g-convex functions. The R-OZO generated a random Gaussian vector ut
in an ambient embedding Euclidean space, and then used a two-point difference to present
a descent along the projection of ut on the tangent space of the manifold. For g-strongly
convex functions on Hadamard manifolds, Maass et al. (2022) derived asymptotic tracking
error and a O

(√
T +VT

)
dynamic regret bound of the R-OZO, where VT is the accumulated

distance between two consecutive minimizers. In contrast, the regret bounds established
for our online gradient-based/bandit Riemannian optimization algorithms are sublinear for
any time, matching those for Euclidean online optimization.

A detailed comparison of our results with the existing works is summarized in Table 1.
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Feedback setting G-convex Strongly g-convex

Full information

Our work O
(
ζ

1
2

√
T
)

O
(
ζ log T

)
Previous Work

O
(√
T
)

(Product space)
–

(Becigneul et al., 2019)

Euclidean
O
(√
T
)

O
(

log T
)

(Zinkevich, 2003) (Hazan et al., 2006)

One-point bandit

Our work O
(
nζ

1
2T

3
4

)
O
(
n

2
3 ζ(1 + log T )

1
3T

2
3

)
Previous Work – –

Euclidean
O
(
nT

3
4

)
O
(
n

2
3 (1 + log T )

1
3T

2
3

)
(Flaxman et al., 2005) (Flaxman et al., 2005)

Two-point bandit

Our work O
(
nζ

1
2

√
T
)

O
(
n2ζ(1 + log T )

)
Previous Work –

O
(√
T + VT

)
(Dynamic regret)

(Maass et al., 2022)

Euclidean
O
(
n
√
T
)

O
(
n2(1 + log T )

)
(Agarwal et al., 2010) (Agarwal et al., 2010)

Universal

Our work Ω(
√
T ) –

Previous Work – –

lower bound
Euclidean

Ω(
√
T ) Ω(log T )

(Agarwal et al., 2010) (Agarwal et al., 2010)

Table 1: Comparison of regret among our work, previous Riemannian online optimization,
and corresponding results in Euclidean spaces. T : the time horizon; D: the
diameter of the feasible set; n: the dimension of the manifold; ζ: a constant
related to the sectional curvature bound κ; VT : the accumulated distance between
two consecutive minimizers.

2. Preliminaries

In this section, we present a brief review on the Riemannian manifold and introduce basic
functions classes for Riemannian optimization. We refer readers to the following textbooks
and tutorial papers (do Carmo, 1992; Chern et al., 1999; Berestovskii and Nikonorov, 2020;
Ghomi and Spruck, 2019; Fiori, 2021) for more details.

Riemannian manifolds An n-dimensional manifold M is a topological space locally
diffeomorphic to the vector space Rn. The tangent space TxM is a linearization of the
manifoldM at a point x. A Riemannian manifold is a smooth manifoldM equipped with
a metric tensor g (called Riemannian metric), which defines an inner product

gx : TxM× TxM→ R
gx(X,Y ) = 〈X,Y 〉x
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in every tangent space TxM of x ∈M. The Riemannian metric g gives us a way to measure
the length of curves, bringing a metric space structure to M with distance function

d(x, y) = inf
γ
{Length(γ)|γ is a curve connecting x and y}.

A curve is a geodesic if it locally minimizes the length, which is an analog of a straight
line in Euclidean spaces. On Riemannian manifolds, a geodesic is uniquely determined by its
starting point and initial tangent vector. In this way, the exponential map expx : TxM→M
is defined by mapping a vector X ∈ TpM to γ(1) ∈M for the geodesic γ such that γ(0) = x
and γ̇(0) = X. A set K is termed geodesically convex (g-convex) if, for any points x, y ∈ K,
there admits a geodesic γ ⊂ K connecting x and y. Moreover, if the γ is unique, the set K is
termed uniquely geodesically convex (uniquely g-convex). It is shown that the exponential
map expx is locally a diffeomorphism and consequently has an inverse exp−1

x (·) on a uniquely
g-convex set.

Curvature reflects the geometry of manifolds. We focus on sectional curvature, which is
the Gauss curvature of a two-dimensional submanifold. Following Zhang and Sra (2016),
we mainly consider the Hadamard manifold, which is a simply connected and complete
manifold with non-positive sectional curvature. The Cartan-Hadamard theorem (Berger,
2009) shows that the Hadamard manifold is uniquely g-convex so that the exponential map
expx has an global inverse exp−1

x (·) on Hadamard manifolds. In this way, the distance
d(x, y) can be expressed as ‖ exp−1

x (y)‖x.

Isometries of Riemannian manifolds have been widely studied in differential geometry
(Berger, 2009; Berestovskii and Nikonorov, 2020). An isometry φ : M → M is a diffeo-
morphism preserving distance, i.e., d(x, y) = d(φ(x), φ(y)) for all x, y ∈ M. It is remarked
that all isometries of a Riemannian manifold form a Lie group G. A Riemannian manifold
is a homogeneous manifold if the group of isometries G acts onM transitively, i.e., for any
points x, y ∈ M there exists an isometry such that φ(x) = y. A Riemannian manifold is a
symmetric manifold if for any x ∈ M, there exists a symmetry sx ∈ G such that x is an
isolated fixed point of sx.

Vector fields and Their flows A vector field X is a map that assigns every point x ∈M
to a tangent vector X(x) ∈ TxM. Let X(M) denote the set of all vector fields. A vector
field X can be also viewed as a differential operator over smooth functions on M, i.e., the
operation X(f) gives a function on M, defined as

X(f)(x) = lim
t→0

1

t
(f(ξ(t))− f(x)),

where ξ is a curve that starts at x with the tangent vector X(x).

The Levi-Civita connection ∇ is an analogue of the differential operator over vector
fields in Euclidean spaces and uniquely determined by properties{

X〈Y, Z〉 = 〈∇XY,Z〉+ 〈Y,∇XZ〉
∇XY −∇YX = XY − Y X

for all X,Y, Z ∈ X(M).
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The infinitesimal variation of a geodesic is described by the Jacobi field. A vector field
η along a geodesic γ is a Jacobi field if it satisfies the Jacobi equation

∇γ̇∇γ̇η +R(γ̇, η)γ̇ = 0.

A vector η is a Killing field if it satisfies for all X,Y ∈ X(M)

〈∇Xη, Y 〉+ 〈X,∇Y η〉 = 0.

We follow the same idea in Euclidean spaces to define the flow of a vector field. Suppose
thatM is a smooth manifold and X ∈ X(M). Let there be a smooth map φ : R×M→M.
Denote φt(p) = φ(t, p), for any (t, p) ∈ R × M, such that the following conditions are
satisfied:

1) φ0(p) = p;

2) φs ◦ φt = φs+t for any real numbers s, t;

3) X(p) = ∂φt(p)
∂t |t=0.

Then we call φt the flow (or the one-parameter group of diffeomorphism) of X, and term
X the infinitesimal transformation of φt.

Function Classes A function f : K → R is called geodesically convex (or g-convex) if for
any geodesic γ : [0, 1]→M,

f(γ(t)) ≤ (1− t)f(γ(0)) + tf(γ(1)).

The g-convexity has some equivalent conditions. When f is differentiable, which means that
there exists a gradient vector field ∇f such that 〈∇f(x), X〉 = X(f)(x) for every vector field
X ∈ X(M), the g-convexity is equivalent to the following condition

f(y) ≥ f(x) + 〈∇f(x), exp−1
x (y)〉, ∀x, y ∈M.

Furthermore, if f is twice differentiable, the g-convexity is equivalent to

∇2f(X,X) := 〈∇X∇f , X〉 = X(X(f))−∇XX(f) ≥ 0

for any X ∈ X(M).
A differentiable function f : M → R is geodesically µ-strongly convex (or µ-strongly

g-convex) if there exists a constant µ > 0 such that for any x, y ∈M, there holds

f(y) ≥ f(x) + 〈∇f(x), exp−1
x (y)〉+

µ

2
d2(x, y).

We term a function to be geodesically L-Lipschitz (or g-L-Lipschitz) if there exists a
constant L > 0 such that, for any x, y ∈M,

|f(y)− f(x)| ≤ L · d(x, y),

which is equivalent to
‖∇f(x)‖ ≤ L,∀x ∈M,

if f is differentiable.
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Algorithm 1: Riemannian Online Gradient Descent Algorithm (R-OGD)

Input: Manifold M, time T , step sizes (or schedule) {αt}
Output: {xt}t=1,...,T

for t = 1 to T do
Play xt and observe the function ft;
Update xt+1 with {

x̃t+1 = expxt(−αt∇ft(xt))

xt+1 = PK(x̃t+1),

where PK is the Riemannian projection mapping of x onto K, i.e.,

PK(x) := arg min
y∈K

d(x, y);

Return xt+1, and suffer the loss ft(xt);
end

3. R-OCO with Full Information Feedback

This section is devoted to the study of the R-OCO problem in the full information feedback.
We first propose our R-OGD algorithm and then analyze the upper regret bounds of the
R-OGD for both g-convex and strongly g-convex functions. In addition, a universal lower
regret bound in the g-convex case is presented to illustrate that the regret bound of the
R-OGD algorithm is tight up to a constant.

3.1 Riemannian Online Gradient Algorithm

In the full information setting, we consider the following assumptions, which were standard
in the literature of Euclidean online convex optimization and Riemannian optimization
(Zinkevich, 2003; Ahn and Sra, 2020; Huang et al., 2015).

Assumption 1 There exists a x? ∈M such that x? = arg min
∑T

t=1 ft(x).

Assumption 2 (M, g) is a Hadamard manifold with the sectional curvature lower bounded
by a constant κ.

Note that the Hadamard manifold plays an important role in Riemannian geometry (see
Ghomi and Spruck, 2019). Some well-known spaces, such as the Euclidean space Rn, the
hyperbolic space Hn, and the manifold of SPD matrices, are all Hadamard manifolds (Ahn
and Sra, 2020; Huang et al., 2015).

Assumption 3 The set K is a bounded and g-convex set with diameter D, i.e.,

d(x, y) ≤ D,∀x, y ∈ K.

It is worth emphasizing that the Cartan-Hadamard theorem indicates that any g-convex
set on Hadamard manifolds is uniquely g-convex. Consequently, we can define the inverse
exponential map exp−1

x (·) for any point x ∈ K (do Carmo, 1992).
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Assumption 4 For any t = 1, . . . , T , ft is differentiable and g-L-Lipschitz.

We now propose our Riemannian online gradient descent algorithm (R-OGD) in Algo-
rithm 1, where the exponential map replaces the vector addition in the Euclidean online
gradient descent (Zinkevich, 2003).

3.2 Regret Upper Bounds

In Theorems 5 and 6 we present upper regret bounds of the R-OGD algorithm for g-convex
loss functions and strongly g-convex functions, respectively. Take

ζ(κ, d) =


√
|κ|·d

tanh
(√
|κ|·d
) , κ < 0

1, κ ≥ 0.

By direct observation, ζ decreases with respect to κ, and increases with respect to d.

Theorem 5 (Convex Case) Suppose that Assumptions 1-4 hold, and ft is g-convex for
any t = 1, . . . , T . Then the R-OGD algorithm with step sizes {αt = D

L
√
ζ(κ,D)t

} guarantees

the following regret bound for all T ≥ 1:

Reg(T ) ≤ 3

2
DL
√
ζ(κ,D) · T .

Theorem 6 (Strongly-convex Case) Suppose that Assumptions 1-4 hold, and that ft
is µ-strongly g-convex for any t = 1, . . . , T . Then the R-OGD algorithm with step sizes
{αt = 1

µt} guarantees the following regret bound for all T ≥ 1:

Reg(T ) ≤ L2ζ(κ,D)

2µ
(1 + log T ).

The proofs of Theorems 5 and 6 are in Appendix B. A major challenge in proving Theo-
rems 5 and 6 is that there is no vector space structure on Riemannian manifolds. Thanks to
the trigonometric distance bound proposed in Zhang and Sra (2016), we manage to obtain
the regrets O

(√
T
)

and O
(

log T
)

for g-convex and strongly g-convex loss functions, respec-
tively. By gradually moving κ to zero, the results recover the regret bounds of Euclidean
gradient descent of Zinkevich (2003) and Hazan et al. (2006).

Theorems 5 and 6 also reveal the influence of curvature on the regret bounds. Since
ζ(κ, d) is an increasing function of κ, the upper regret bounds in the R-OGD algorithm are
greater than those in Euclidean spaces and the increase of κ raises the upper regret bounds.
Therefore, a proper Riemannian metric should be chosen in the optimization to avert high
sectional curvature bounds.

3.3 Regret Lower Bound

This section is intended to answer the question of whether there exists an algorithm that
attains a tighter regret bound than O

(√
T
)

for g-convex functions. Theorem 7 provides a
negative answer.
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Theorem 7 Suppose that Assumptions 1-4 hold. Then for any Hadamard manifold M,
the Riemannian online convex optimization incurs the regret Ω(DL

√
T ) for any possible

strategy in the worst case.

The proof of Theorem 7 is in Appendix C. The result illustrates that, as in Euclidean spaces,
the regret of a Riemannian online convex algorithm can not be less than Ω(

√
T ) in the worst

case. Moreover, Theorem 7 shows that the regret of the R-OGD algorithm in Theorem 5 is
tight up to a constant.

4. R-OCO with One-Point Bandit Feedback

In this section, we consider the Riemannian online convex optimization with the one-point
bandit feedback. We first present the Riemannian bandit algorithm (R-BAN) on Hadamard
homogeneous manifolds and then analyze (expected) regret bounds for the R-BAN. Here
and subsequently, we denote by Bδ(x) the ball centered at x with radius δ and by Sδ(x) the
sphere centered at x with radius δ.

4.1 Riemannian Bandit Algorithm

In the bandit setting, Assumptions 2-4 are slightly modified as follows.

Assumption 8 M is an n-dimensional homogeneous Hadamard manifold with the sec-
tional curvature lower bounded by a constant κ.

The homogeneous Hadamard manifold has been widely studied in differential geometry
(Berestovskii and Nikonorov, 2020; Berger, 2009). The homogeneity has received much
attention in machine learning (Tang et al., 2020; Tupker et al., 2021; Bronstein et al., 2021).
It has been seen that many manifolds often considered in Riemannian optimization, such as
the Euclidean space Rn, the Hyperbolic space Hn, and the manifold of SPD matrices, are
Hadamard homogeneous manifolds. Note that on homogeneous manifolds, the volume and
surface area of a ball are only related to the radius but not to the center of the ball. Thus,
we denote by Vδ the volume of Bδ(x) and Sδ as the surface area of Sδ(x) for all points x
over the homogeneous manifold M.

Assumption 9 There exists an interior point p ∈ K such that the set K contains a ball
with radius r centered at p, and K is also contained in a ball with radius D, i.e.,

Br(p) ⊂ K ⊂ BD(p).

Assumption 10 For any t = 1, . . . , T , ft is differentiable, g-L-Lipschitz and the function
value of ft is bounded by C.

Inspired by the Euclidean bandit algorithm, we replace the gradient ∇ft(xt) with a ran-
domized estimator gt and propose our R-BAN in Algorithm 2 over Hadamard homogeneous
manifolds.
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Algorithm 2: Riemannian Bandit Algorithm (R-BAN)

Input: Manifold M, time T , step sizes (or schedule) αt, parameters δ, τ .
Output: Sequence {xt}t=1,...,T

for t = 1 to T do
Choose xt uniformly from Sδ(yt) and play xt;
Observe the loss ft(xt) and compute

gt = ft(xt)
exp−1

yt (xt)

‖ exp−1
yt (xt)‖

;

Update yt+1 with {
ỹt+1 = expyt(−αtgt)
yt+1 = P(1−τ)K

(
PK(ỹt+1)

)
,

where the symbols PK and P(1−τ)K represent the projection mappings onto
the feasible set K and the shrinking set
(1− τ)K = {expp((1− τ)u)|u = exp−1

p (x), x ∈ K}, respectively.
Return xt and suffer the loss ft(xt);

end

4.2 Challenge from Geometry

Since Algorithm 2 is an extension of the Euclidean bandit algorithm by Flaxman et al.
(2005), it is worth reviewing the analysis in the work by Flaxman et al. (2005). In the
Euclidean setting, we uniformly choose xt on the Sδ(yt) and update yt by the rule{

gEt = f(xt)
xt−yt
‖xt−yt‖ ,

yt+1 = P(1−τ)K(yt − αgEt ).
(2)

The basic idea for the analysis is to introduce the smoothed loss function (Flaxman
et al., 2005)

f̂Et (x) = Eu∈Bδ(x)[ft(u)] =
1

Vδ

∫
Bδ(x)

ft(u)du,

where f̂Et is a convex approximation of ft when δ is small. It is shown that n
δ gEt is an

unbiased estimator of the gradient ∇f̂Et (yt), hence the bandit algorithm is actually an
expected gradient descent method (Flaxman et al., 2005) with the loss function f̂Et . In this
way, an Euclidean regret bound of the bandit algorithm is established by Flaxman et al.
(2005).

Back to the Riemannian case, we attempt to generalize the analysis of Flaxman et al.
(2005) in parallel by defining the “Riemannian version” of the smoothed loss function,

f̂t(x) = Eu∈Bδ(x)[ft(u)] =
1

Vδ

∫
Bδ(x)

ft(u)ω,

11
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where ω is the volume element with the respect to the metric g. Analyzing the smoothed
loss function in the Riemannian space, however, is fundamentally challenging due to the
following difficulties.

The gradient is hard to estimate. Estimating the gradient of f̂t is quite different from
that in Euclidean spaces, due to absence of the commutativity of the derivative operator
∇ and the integration operator

∫
Bδ(yt). In Euclidean spaces, the derivative operator ∇

commutes with the integration operator
∫
Bδ(yt). Accordingly, for the Euclidean smoothed

loss function f̂Et , there holds

∇f̂Et (yt) =
1

Vδ
∇
∫
Bδ(yt)

ft(u)du =
1

Vδ

∫
Bδ(yt)

∇ft(u)du, (3)

which implies n
δE[gEt ] = ∇f̂Et (yt). However, on Riemannian manifolds the derivative oper-

ator ∇ does not commute with the integration operator
∫
Bδ(yt). Consequently, the equation

(3) fails to hold for functions on Riemannian manifolds.

The convexity may be lost. Another essential challenge for regret analysis is the con-
vexity of f̂t. In Euclidean spaces, one can easily conclude the convexity of f̂Et . However, the
convexity may not hold for Riemannian manifolds. Through calculation, the Hessian of f̂t
on a Riemannian manifold is

∇2(f̂t)(X,X) =
1

Vδ

∫
Bδ(x)

(∇2(ft)(η, η)(u) + 〈∇ηη,∇ft(u)〉)ω,

where η is a Killing field with η(x) = X. Since the quadratic form ∇2(ft)(η, η)(x) +
〈∇ηη,∇ft(x)〉 can be negative at some η ∈ TpM, the g-convexity of f̂t is violated for some
small δ.

4.3 Gradient Bound and Approximate G-convexity

We first propose a key technique to analyze the derivative of local integration by introducing
the Killing vector field. With the help of this technique, we manage to estimate the gradient
of f̂t = 1

Vδ

∫
Bδ(x) ft(u)ω in Lemma 11.

Lemma 11 Suppose M is a homogeneous Hadamard manifold, f is a C1 function on M
with bound C, and x ∈M. Denote

g(u) = f(u)
exp−1

x (u)

‖ exp−1
x (u)‖

.

Then for a fixed δ > 0, the following statements hold.

(i) If u is uniformly chosen from Sδ(x), then Sδ
Vδ

g(u) is an unbiased estimator of ∇f̂(x),
i.e.,

Eu∈Sδ(x)

[Sδ
Vδ

g(u)
∣∣∣x] =

1

Vδ

∫
Sδ(x)

f(u)
exp−1

x (u)

‖ exp−1
x (u)‖

ωSδ(x) = ∇f̂(x), ∀x ∈M;

12
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(ii) If the sectional curvature of M is bounded lower by κ, then the estimator Sδ
Vδ

g(u) is
bounded, i.e.,

Eu∈Sδ(x)

[∥∥Sδ
Vδ

g
∥∥∣∣∣x] ≤ Sδ

Vδ
C ≤ (

n

δ
+ n|κ′|δ)C,

where κ′ = min{κ, 0}.

The proof of Lemma 11 can be found in Appendix D. The first part of the lemma
establishes a gradient estimator of f̂t(x), while the second part gives us an easy-to-compute
bound of the gradient. In the proof, we develop a technique that transforms a derivation
of an integration on Bδ(x) to an integration of a derivative of corresponding Killing vector
field on Bδ(x), i.e.,

X
( ∫
Bδ(x)

f(u)ω
)

=

∫
Bδ(x)

η(f(u))ω, (4)

where η is a Killing field such that η(x) = X. This technique does not rely on the curvature
and other specific manifold structures.

We also notice that although the function f̂t may not be g-convex, it is very close to be
g-convex. We introduce the following definition.

Definition 12 A function f : K ⊂M→ R is called to be

(i) λ-sub g-convex if there exists a constant λ ≥ 0 such that for any x, y ∈M

f(y)− f(x)− 〈∇f(x), exp−1
x (y)〉 ≥ −λ.

(ii) µ-strongly λ-sub g-convex if there exist two constants λ, µ ≥ 0 such that for any
x, y ∈M

f(y)− f(x)− 〈∇f(x), exp−1
x (y)〉 − µ

2
d2(x, y) ≥ −λ.

Lemma 13 Suppose that (M, g) is a Hadamard homogeneous manifold. If K is a g-convex
and bounded set of M, then there exists a constant ρ ≥ 0 depending only on the set K such
that, the following statements hold.

(i) For any g-convex and g-L-Lipschitz function f , the smoothed function f̂ is 2ρδL-sub
g-convex.

(ii) For any µ-strongly g-convex and g-L-Lipschitz function f , the smoothed function f̂ is
µ-strongly 2(ρδL+ µDδ)-sub g-convex.

The proof of Lemma 13 is in Appendix D. It is worth mentioning that the constant ρ
describes how close a smoothed function is to being g-convex. Notice that

ρ = sup
x,y,u∈K

| 1√
G

∂

∂xi

(√
G exp−1

u φ(u)
)i| s.t. φ(x) = y

does not depend on the function f̂t, and the time T . Moreover, for a given manifold M,
once the set K is fixed and the explicit expression of φ is given, we can compute the constant
ρ as a finite number. We briefly list the bound of φ in the following two types of manifolds.

13
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(i) Let manifold M be a Euclidean space. We can find the isometry φ(z) = z + y − x.
Hence we can conclude that ρ = 0 and f̂ is convex, which coincides with the result in
Euclidean spaces.

(ii) Let M be a 2-dimensional Poincaré disk. Then the isometry φ from x to y has the
closed form of

φ = φx ◦ φy,

where φx(z) = x−z
1−x̄z and φy(z) = y−z

1−ȳz . Therefore, if K has a diameter D, we can
figure out a bound of ρ in

ρ ≤ 16
1 + tanh(D/2)

1− tanh(D/2)
(

1

1− tanh(2D)2
+

D

tanh(D/2)
),

which implies that ρ may grow exponentially with respect to D.

Although the value of ρ is generally difficult to calculate, our algorithm analysis and pa-
rameter selection do not depend on the specific value of ρ (see Theorems 14 and 15).

4.4 Regret Bounds

With the above effort, we now carry out the analysis of the expected regret bounds of
Algorithm 2. Denote B = n

δ + n|κ|.

Theorem 14 (Convex Cases) Suppose that Assumptions 1, 8, 9 and 10 hold, and ft

is g-convex for any t = 1, . . . , T . If we take δ = T−
1
4 , θ =

√
κ(D+r)

sinh
√
κ(D+r)

, τ = δ
rθ , and

αt = D

C
√
ζ(κ,D)T

, then the expected regret of Algorithm 2 is upper bounded by

E[Reg(T )] ≤ n|κ|DC
√
ζ(κ,D)T

1
4 +

(
nD
√
ζ(κ,D) +

2D2

rθ
+ (3 +

D

rθ
+ 2ρ)L

)
T

3
4 .

Theorem 15 (Strongly Convex Cases) Suppose that Assumptions 1, 8, 9 and 10 hold,

and ft is µ-strongly g-convex for any t = 1, . . . , T . If we take δ =
3

√
n2C2(1+log T )

T , θ =
√
κ(D+r)

sinh
√
κ(D+r)

, τ = δ
rθ , and αt = B

µt , then the expected regret of Algorithm 2 is upper bounded

by

E[Reg(T )] ≤ 2n
8
3C

8
3Dκ2ζ(κ,D)

µ

+ n
2
3C

2
3

(ζ(κ,D)

µ
+ 3L+

2D2

rθ
+
DL

rθ
+ 2ρL+ 2Dµ

)
(1 + log T )

1
3T

2
3 .

The proofs of Theorems 14 and 15 can be seen in Appendix E. Theorems 14 and 15 show
that the regrets of the Riemannian bandit algorithm achieveO

(
T

3
4

)
andO

(
T

2
3

)
for g-convex

loss functions and strongly g-convex functions on homogeneous Hadamard manifolds, which
are same as the regret bounds in Euclidean spaces (Flaxman et al., 2005).

We also note that, different from bandit algorithms in the Euclidean space, Theorems
14 and 15 introduce the parameter θ in the selection of τ = δ

rθ to ensure that the ball

14
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Bδ(yt) = Bθ·τr(yt) always remains within the feasible set K, thereby ensuring the feasibility
of the algorithm (see Lemma 45 for details). Because the value of θ in Theorems 14 and 15
is chosen to ensure the feasibility for all possible subsets K, we may find that the chosen
value of θ is too small and conservative in practical situations. This may lead to an over-
shrinkage of the set (1−τ)K. However, we would like to point out that, for a specific subset
K, as long as the value of θ satisfies the feasibility requirement of Bδ(yt), the same regrets
result as Theorems 14 and 15 can be obtained. This means that we can choose a much
larger value of θ specifically tailored to the subset K to achieve better practical application
results.

5. R-OCO with Two Point Bandit Feedback

In this section, we consider the Riemannian online convex optimization with the two-point
bandit feedback. We first propose a Riemannian two-point bandit algorithm (R-2-BAN),
which estimates the gradient of ft(yt) with two queries of values around yt, and then analyze
regret bounds for g-convex and strongly g-convex functions.

5.1 Riemannian Two-point Bandit Algorithm

In this subsection, we propose our R-2-BAN algorithm in Algorithm 3 with an additional
assumption.

Assumption 16 M is an n-dimensional symmetric Hadamard manifold with the sectional
curvature lower bounded by a constant κ.

The assumption of symmetry is important in the two-point bandit feedback setting.
From symmetry, it is shown that for any y ∈M, the “minus” map

−x := expy(− exp−1
y (x))

defines a isometry in M. The result implies that the uniform distribution on the geodesic
sphere Sδ(y) is symmetric, which is key insight in the Euclidean two bandit algorithm (Agar-
wal et al., 2010), as well as in our R-2-BAN analysis. The symmetric Hadamard manifold
is widely studied in differential geometry (Berestovskii and Nikonorov, 2020; Berger, 2009).
Moreover, many manifolds with great practical value are symmetric manifolds, such as the
Euclidean space Rn, the Hyperbolic space Hn, and the manifold of SPD matrices.

5.2 Regret Bound

This subsection studies the regret of the R-2-BAN, which is defined as

Reg(T ) =

T∑
t=1

1

2
(ft(xt,1) + ft(xt,2))−min

x∈K

T∑
t=1

ft(x)

Since the uniform distribution on geodesic spheres is symmetric, we derive that the two-point
estimator Sδ

Vδ
g̃ is also unbiased and bounded gradient estimator of the smoothed function

f̂(x) = 1
Vδ

∫
Bδ(x) fω.
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Algorithm 3: Riemannian Two-point Bandit Algorithm (R-2-BAN)

Input: Manifold M, time T , step size (or schedule) αt, parameter δ, τ .
Output: Sequence {xt}t=1,...,T

for t = 1 to T do do
Pick xt,1 uniformly from Sδ(yt) and set xt,2 = −xt,1;
Play xt,1 and xt,2, then observe ft(xt,1) and ft(xt,2);
Compute

g̃t =
1

2

(
ft(xt,1)− ft(xt,2)

) exp−1
yt (xt,1)

‖ exp−1
yt (xt,1)‖

Update yt+1 with {
ỹt+1 = expyt(−αtg̃t)
yt+1 = P(1−τ)K

(
PK(ỹt+1)

)
,

where the symbols PK and P(1−τ)K represent the projection mappings onto
the feasible set K and the shrinking set
(1− τ)K = {expp((1− τ)u)|u = exp−1

p (x), x ∈ K}, respectively.

Return xt and suffer the loss 1
2

(
ft(xt,1) + ft(xt,2)

)
;

end

Lemma 17 Suppose M is a symmertic Hadamard manifold and f is a g-L-Lipschitz func-
tion on M. Then for a fixed δ > 0 the gradient estimator

Sδ
Vδ

g̃ =
Sδ
2Vδ

(
f(u)− f(−u)

) exp−1
x (u)

‖ exp−1
x (u)‖

satisfies the following.

(i) Eu∈Sδ(x)

[
Sδ
Vδ

g̃
∣∣∣x] = ∇f̂(x), ∀x ∈M;

(ii) Eu∈Sδ(x)

[
‖SδVδ g̃‖

∣∣∣x] ≤ Sδ
Vδ
δL ≤ nL(1 + κδ2).

Then we carry out the regret analysis in Theorem 18 and Theorem 19. Notice that B =
n
δ + n|κ|δ and ρ is the constant in Lemma 13 that only depends on K.

Theorem 18 (Convex Cases) Suppose that Assumptions 1, 8, 9, 10 and 16 hold, and

ft is g-convex for any t = 1, . . . , T . If we take δ = 1√
T

, θ =
√
κ(D+r)

sinh
√
κ(D+r)

, τ = δ
rθ , and

αt = n

δL
√
ζ(κ,D)T

, then the expected regret of Algorithm 3 is upper bounded by

E[Reg(T )] ≤ nκDL
√
ζ(κ,D)

1√
T

+
(
nDL

√
ζ(κ,D) +

2D2

rθ
+ (3 +

D

rθ
+ 2ρ)L

)√
T .

Theorem 19 (Strongly Convex Cases) Suppose that Assumptions 1, 8, 9, 10 and 16
hold, and ft is µ-strongly g-convex for any t = 1, . . . , T . If we take δ = 1+log T

T , θ =
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√
κ(D+r)

sinh
√
κ(D+r)

, τ = δ
rθ , and αt = B

µt , then the expected regret of Algorithm 3 is upper bounded

by

E[Reg(T )] ≤ 3n2C2κ2ζ(κ,D)

2µ

+
(ζ(κ,D)n2L2

µ
+

2D2

rθ
+ (3 +

D

rθ
+ 2ρ)L+ 2µD

)
(1 + log T ).

The proofs of Theorems 18 and 19 can be seen in Appendix F. Theorems 18 and 19 show
that regrets of the Riemannian two-point bandit algorithm achieve O

(√
T
)

and O
(

log T
)

for g-convex and strongly g-convex functions on symmetric Hadamard manifolds, which im-
proves the regret bounds of the Riemannian one point bandit algorithm. Such improvement
is consistent with the results in Euclidean spaces (Agarwal et al., 2010).

6. Generalizing to Non-Hadamard Cases

In this section, we generalize the R-OGD, R-BAN and R-2-BAN algorithms to a man-
ifold M with sectional curvature lower bounded by κ and upper bounded by K > 0.
However, positive sectional curvature can make projection maps no longer constrictive so
that a straightforward generalization may fail to be no-regret. We demonstrate how the
non-Hadamard structure affects the property of projection maps and how non-constrictive
projection maps cause trouble in regret analysis. Furthermore, we try to address the dif-
ficulty withour assuming the invariance condition adopted in the previous work (Ahn and
Sra, 2020; Alimisis et al., 2021), and then construct no-regret bounds of Algorithm 1, 2 and
3.

6.1 Impact of Positive Curvature in Regret Analysis

The projection map can be non-constrictive for non-Hadamard manifolds, since the positive
sectional curvature affects the g-convexity of the norm of Jacobi fields. The following
example provides an illustration.

Example 1 Suppose that M is a manifold with positive sectional curvature, and K is a
geodesic ξ(s) : [0, 1]→M. Let U(s) be a parallel vector field on ξ that is normal to ξ. Then
we consider the following variation

γs(t) : [0, 1]× [0, δ]→M
(s, t)→ expξ(s)(tU(s)).

For a sufficiently small δ1 we have,

PK(γs(t)) = ξ(s), ∀t ≤ δ1.

In addition, we notice that derivatives of the length of the s−curve, namely L(t), are char-
acterized by the first and second variation formula (do Carmo, 1992),

L′(0) = 〈U(b), ξ(b)〉 − 〈U(a), ξ(a)〉 = 0

L′′(0) =

∫ 1

0
|∇γU |2 −R(U, ξ̇, U, ξ̇)ds =

∫ 1

0
−R(U, ξ̇, U, ξ̇)ds
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Because the sectional curvature is positive, we found L′′(0) < 0, which means that L(0)
is a local maximum. As a result, we can take a sufficiently small δ2 > 0 such that

L(t) < L(0) = d(ξ(a), ξ(b)), t ≤ δ2.

Take δ3 = min{δ1, δ2}, p = γ0(δ3) and q = γ1(δ3) we have

d(p, q) ≤ L(δ3) < L(0) = d(ξ(a), ξ(b)) = d(PK(p),PK(q)),

which indicates the non-expansiveness of the projection map PK fails to hold. �

x1

y1

(a) Minimal geodesics are not unique

x2

y2

(b) Geodesics are loops

Figure 1: Examples in S2

One may try to sidestep the projection map by assuming compactness ofM and K =M.
However, these assumptions do not work as g-convexity on non-Hadamard manifolds only
holds locally. On one hand, positive sectional curvature admits conjugate points, where
the connecting geodesic is not unique, leading K no longer to be uniquely g-convex. On
the other hand, global g-convex functions may not exist on compact manifolds. From the
study by Yau (1974), the existence of nontrivial global g-convex functions implies infinity
of volume. As a result, there is no global g-convex function apart from constant functions
on compact Riemannian manifolds.

We take examples on the sphere S2 to illustrate the above points.

Example 2 (i) Let x1, y1 be the north pole and the south pole of the sphere S2 (see
Figure 1 (a)). Then every arc connecting x and y is a geodesic. Therefore S2 is not
uniquely g-convex.

(ii) Suppose that f is a g-convex function. Since for any x2, y2 in S2, the geodesic is the
great circle connecting x2, y2 (see Figure 1 (b)), we can choose a geodesic loop which
starts at x2 and ends at x2. By g-convexity, we have

f(y2) ≤ (1− t)f(x2) + tf(x2) = f(x2).

Choosing the geodesic loop that starts at y2, we can obtain f(x2) ≤ f(y2). Therefore
there must hold f(x2) = f(y2), which indicates that f is actually a constant.
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Our regret analysis of Algorithms 1, 2 and 3 on Hadamard manifolds greatly depends
on non-expansiveness of projection maps. During the analysis, we use Lemma 35 to bound
the loss ft(xt)− ft(x

∗) with

ft(xt)− ft(x
∗) ≤ 〈−∇ft(xt), exp−1

xt (x∗)〉

≤ 1

2αt
(d2(xt, x

∗)− d2(expxt(−αt∇ft(xt), x
∗)) +

1

2
ζ(κ, d(xt, x))αt‖∇ft(xt)‖2.

(5)

Denote the intermediate point x̃t+1 = expxt(−αt∇ft(xt)). Applying non-expansiveness of
the projection map PK, we have

d(xt+1, x
∗) = d(PK(x̃t+1), x∗) ≤ d(expxt(x̃t+1, x

∗)). (6)

Combing (5) and (6) we get

ft(xt)− ft(x
∗) ≤ 1

2αt
(d2(xt, x

∗)− d2(xt+1, x
∗)) +

1

2
ζ(κ, d(xt, x))αt‖∇ft(xt)‖2, (7)

which is a key step to get sublinear regrets, as we can rearrange the summation and cancel
term by term. Unfortunately, when it turns to non-Hadamard manifolds, equations (6) and
(7) no longer hold. Thus the loss ft(xt)− ft(x

∗) can be only bounded with

ft(xt)− ft(x
∗) ≤ 1

2αt
(d2(xt, x

∗)− d2(x̃t+1, x
∗)) +

1

2
ζ(κ, d(xt, x))αt‖∇ft(xt)‖2,

≤ 1

2αt
(d2(xt, x

∗)− d2(xt+1, x
2)) +

1

2
ζ(κ, d(xt, x))αt‖∇ft(xt)‖2

+
1

2αt
(d2(xt+1, x

∗)− d2(expxt(x̃t+1, x
∗)),

and there is an additional projection error term

T∑
t=1

1

2αt
(d2(xt+1, x

∗)− d2(expxt(x̃t+1, x
∗)) (8)

in the final regret, which is not clear to be sublinear.

6.2 Dealing with Projection Error and Regret Analysis

An approach in recent research to deal with non-constrictive projection maps on non-
Hadamard manifolds is to omit projections by an invariant condition. The invariant con-
dition assumes that all iterations of the algorithm remain in the unique g-convex feasible
set K (Zhang and Sra, 2018; Ahn and Sra, 2020; Alimisis et al., 2021). In this section, we
try to remove the invariant condition assumption by developing analysis on the projection
error term (8) with control of the step size αt.

First, we require the feasible set K to be bounded with the respect to the positive
curvature bound K.

Assumption 20 The diameter D of the g-convex subset K is less than π
2
√
K

.
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Assumption 20 is a standard condition in the literature (e.g., Zhang and Sra, 2018;
Ahn and Sra, 2020; Alimisis et al., 2021). From the conjugate point theorem (Lemma 31),
Assumption 20 guarantees that there is no pair of conjugate points on K, thus K is uniquely
g-convex and the inverse exponential map exp−1

x (·) can be defined throughout K (even in
the area that slightly deviates from K). Moreover, the Hessian comparison theorem (Lemma
33) shows that when the diameter of K is greater than π√

K
, the subset K may be “infinitely

curved”, i.e., the Hessian of the distance function d(x, ·) reaches the infinity. Consequently,
Assumption 20 is essential to establish theoretical regret bounds.

In practical applications, the feasible set K depends on the prior knowledge, physical
constraints, or even artificial tuning. Assumption 20 indicates that, in order to have guaran-
teed regret bounds, the choice of K should rely on the curvature bound K for non-Hadamard
cases. Besides, our experiments (see Subsection 7.3) indicate that a feasible set K with a
much larger diameter than π

2
√
K

does not inherently impact the performance of the proposed

algorithms.

Under Assumption 20, projection error term (8) can be fixed by Lemma 21. Let we
denote

σ(K, d) =

{
0, π

2
√
K
< d ≤ π√

K
or K ≤ 0

−
√
Kd cot(

√
Kd), d ≤ π

2
√
K

and K > 0.

Lemma 21 Suppose K ⊂ M with the radius D < π
2
√
K

. Assume that the iteration is as

follows with ‖αtgt‖ ≤ D, {
x̃t+1 = expxt(αtgt)

xt+1 = PK(x̃t+1)

Then it holds that

T∑
t=1

1

2αt
(d2(xt+1, x

∗)− d2(x̃t+1, x
∗)) ≤ σ(K, 2D)

T∑
t=1

1

2
αt‖gt‖2 (9)

Now we look back on the R-OGD (Algorithm 1), the R-BAN (Algorithm 2) and the
R-2-BAN (Algorithm 3). For g-convex cases, the condition (9) is generally fulfilled as

‖αt∇f(xt)‖ ≤ D

L
√
ζ(κ,D)T

L ≤ D, (R-OGD)

‖αtgt‖ ≤ D

C
√
ζ(κ,D)T

C ≤ D, (R-BAN)

‖αtg̃t‖ ≤ D

δL
√
ζ(κ,D)T

(1
22δL) ≤ D. (R-2-BAN)

Furthermore, the summation
∑T

t=1 αt‖gt‖2 is O
(√
T
)

for g-convex cases in Algorithms 1, 2
and 3. Consequently, sublinear regret bounds of Algorithms 1, 2 and 3 can be achieved.

On the other hand, the condition (9) does not hold for strongly g-convex cases, since
the strong convexity coefficient µ can be arbitrary. In these cases, we may set a sufficiently
large constant c0 to the step size αt = 1

µ(t+c0) (or αt = B
µ(t+c0) in bandit settings) such that
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‖αt∇f(xt)‖ (or ‖αtgt‖, ‖αtg̃t‖) is small enough and thus ensure our Algorithms 1, 2 and 3
continue to be no-regret.

In the following, we formally state our results of Algorithms 1, 2 and 3 over non-
Hadamard cases under Assumptions 20, along with a modified lemma for the constants
in sub g-convexity. The analysis is quite similar to that in Hadamard cases, so we only
present the proof of strong g-convex cases in Appendix G.

Lemma 22 (modification of Lemma 13) Suppose that (M, g) is a Riemannian mani-
fold whose sectional curvature is bounded above by K and below by κ. Let K be a g-convex

set of M with diameter D. Denote κ′ = min{κ, 0} and ι = 2s(κ′,D)
s(K,D) (see (10)). Then there

exists a constant ρ ≥ 0 depending only on the set K such that, the following statements
hold.

(i) For any g-convex and g-L-Lipschitz function f , the smoothed function f̂ is
(
2ρδL +

(n+ n|κ′|δ2)π2ιLδ
)
-sub g-convex.

(ii) For any µ-strongly g-convex and g-L-Lipschitz function f , the smoothed function f̂ is
µ-strongly

(
2ρδL+ 2µDδ + (n+ n|κ′|δ2)π2ιLδ

)
-sub g-convex.

Theorem 23 Suppose that the sectional curvature M is lower bounded by κ and upper
bounded by K. Assume that the previous assumptions for the R-OGD, R-BAN, R-2-BAN

and Assumption 20 hold. Denote κ′ = min{κ, 0}, ι = 2s(κ′,D)
s(K,D) and θ = s(κ′,D+r)

s(K,D+r) . Then for
g-convex loss functions on non-Hadamard manifolds, the following statements hold.

(i) Setting step size αt = D

L
√
ζ(κ,D)t

, the R-OGD algorithm achieves regret

Reg(T ) ≤ 3

2
DL
√
ζ(κ,D)T +

DLσ(K, 2D)

2
√
ζ(κ,D)

√
T .

(ii) Setting τ = δ
rθ , αt = D

C
√
ζ(κ,D)T

and δ = T−
1
4 , the R-BAN algorithm achieves regret

E[Reg(T )] ≤
(
n|κ′|DC

(√
(ζ(κ,D) +

σ(K, 2D)

2
√
ζ(κ,D)

)
)

+ n|κ′|π2ιL
)
T

1
4

+
(
nDC

√
(ζ(κ,D) +

σ(K, 2D)

2
√
ζ(κ,D)

+ 3L

+
DL+ 2D2

rθ
+ 2ρL+ nπ2ιL

)
T

3
4 .

(iii) Setting τ = δ
rθ , αt = D

δL
√
ζ(κ,D)T

and δ = T−
1
2 , the R-2-BAN algorithm achieves regret

E[Reg(T )] ≤ (n|κ′|DL(
√

(ζ(κ,D) +
σ(K, 2D)

2
√
ζ(κ,D)

) + n|κ′|π2ιL)T−
1
2

+
(
nDL(

√
(ζ(κ,D) +

σ(K, 2D)

2
√
ζ(κ,D)

) + 3L

+
DL+ 2D2

rθ
+ 2ρL+ nπ2ιL

)√
T .
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Theorem 24 Suppose that the sectional curvature M is lower bounded by κ and upper
bounded by K. Assume that the previous assumptions for the R-OGD, R-BAN, R-2-BAN,

and Assumptions 20 hold. Denote κ′ = min{κ, 0}, B = n
δ + n|κ′|δ, ι = 2s(κ′,D)

s(K,D) an and

θ = s(κ′,D+r)
s(K,D+r) . Then for µ-strongly g-convex loss fucntions on non-Hadamard manifolds, the

following statements hold.

(i) Setting c0 ≥ L
µD and step size αt = 1

µ(t+c0) , the R-OGD algorithm achieves regret

Reg(T ) ≤ D2µc0

2
+

1

2
(ζ(κ,D) + σ(K, 2D))G2

(
1 + log(T + c0)

)
.

(ii) Setting c0 ≥ BC
µD , τ = δ

rθ , αt = B
µ(t+c0) and δ = 3

√
nC(1+log(T+c0))

T , the R-BAN algo-
rithm achieves regret

E[Reg(T )] ≤ D2µc0

2
+

4(c0 + 1)

µ
(ζ(κ,D) + σ(K, 2D))C

8
3n

8
3κ′2D

+

((ζ(κ,D) + σ(K, 2D)

µ
+ |κ′|D2π2ι

)
n

4
3C

4
3

+
(
nπ2ι+ 2ρL+ 3L+

DL+ 2D2

rθ
+ 2µD

)
n

1
3C

1
3

)
(1 + log(T + c0))

1
3T

2
3 .

(iii) Setting c0 ≥ BδL
µD , τ = δ

rθ , αt = B
µ(t+c0) and δ = 1+log(T+c0)

T , the R-2-BAN algorithm
achieves regret

E[Reg(T )] ≤ D2µc0

2
+ 3(c0 + 1)n2κ′

2
L2 ζ(κ,D) + σ(K, 2D)

2µ
+

3(c0 + 1)n|κ′|π2ιL

2

+
(ζ(κ,D) + σ(K, 2D)n2L2

µ
+ 3L+

DL+ 2D2

rθ
+ 2ρL+ 2µD

)
(1 + log(T + c0)).

In Theorem 24, a regret bound of O
(
n

4
3 (1 + log T )

1
3T

2
3

)
has been established on the

R-BAN algorithm for strongly g-convex functions. In contrast, for online optimization over
Hadamard manifolds or in Euclidean spaces, such regret bound with strongly g-convex losses
is of the order O

(
n

2
3 (1 + log T )

1
3T

2
3

)
.

7. Numerical Experiment

In this section, we validate the findings of the proposed R-OGD, R-BAN and R-2-BAN
algorithms over a number of tasks. We also compare our algorithms with the Riemannian
online zeroth optimization (R-OZO) algorithm by Maass et al. (2022). The code is built with
the help of the Pymanopt package (Townsend et al., 2016) and all experiments are performed
in Python 3.8 on a 3.4 GHz AMD Ryzen5 machine with 16GB RAM. For reproduction of
the results, all the source codes are accessible online1.

1. https://github.com/RiemannianOCO/experiments
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Figure 2: Algorithm performance on hyperbolic Fréchet mean problem

7.1 Fréchet Mean on the Hyperbolic Space

The Fréchet mean problem is known as finding the Riemannian centroid of a set of points
on a manifold. The Fréchet mean problem has many applications, such as diffusion tensor
magnetic resonance imaging (DT-MRI) (Cheng et al., 2012; Rathi et al., 2007), radar signal
processing (Lapuyade-Lahorgue and Barbaresco, 2008), and batch normalization (Brooks
et al., 2019). In the following, we study an online version of the Fréchet mean problem,
which attempts to average a set of N time-variant points in a hyperbolic space.

Denote by 〈·, ·〉M the Minkowski dot product

〈x, y〉M =

n∑
i=1

xiyi − xn+1yn+1.

The hyperbolic space can be modeled as

Hn = {x ∈ Rn+1|〈x, x〉M = −1},

with the metric gx(u, v) = 〈u, v〉M . A hyperbolic space has constant curvature −1 and thus
is a Hadamard manifold (Lee, 2018). Given points {At,1, At,2, . . . , At,N} in a hyperbolic
space, the loss function ft of the online Fréchet mean problem is

ft(xt) =
1

2N

N∑
i=1

d2(xt, At,i) =
1

2N

N∑
i=1

cosh−1(−〈xt, At,i〉M )2

The loss function ft, yet is not convex in the Euclidean view, is 1-strongly g-convex (da
Silva Alves et al., 2021) so that we can apply Algorithms 1, 2 and 3 to the problem.

We consider the online Fréchet mean problem where [n,N, T ] = [100, 10, 10000]. The
first n indices of At,i are generated by an Gaussian distribution with the covariance matrix
diag(

√
n, . . . ,

√
n) and the last index is calculated by the equation 〈At,i, At,i〉M = −1. We

examine Algorithms 1, 2 and 3 for strongly g-convex cases with µ = 1. Additionally, we
discuss the choice of δ, αt and τ in the R-BAN and the R-2-BAN algorithms as follows.

• Since the value of a point grows exponentially with its length in hyperbolic spaces, a
large step size αt in the R-BAN and the R-2-BAN algorithms may cause numerical
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overflows. Consequently, we set αt = B
µ(t+C0) for some C0 ∈ N, which means to start

the optimization at the time C0. We take C0 = 2125 for the R-BAN algorithm and
C0 = 170 for the R-2-BAN algorithm in the experiment, in case of the numerical
stability.

• For the R-BAN algorithm, the theoretical δ turns out too conservative and not prac-

tical. In the experiment, we set δ = 7 3

√
1+log T

T instead.

• In this experiment, the feasible set K is a geodesic ball. Thus, we find that θ = 1 is
sufficient to guarantee feasibility. As a result, we opted to use τ = δ

r in our experiment.

Figure 2 shows the performance of the average regret Reg(T )
T versus the number of learning

rounds and the running time. The expected average regrets of the R-BAN and the R-2-BAN
are performed in the average of 100 random runs with error bars. Figure 2 indicates that the
regrets of all three algorithms go sublinearly with the number of learning rounds T . As seen,
the one-point bandit algorithm performs most poorly among the three algorithms, while
the two-bandit algorithm achieves a comparable regret bound with the R-OGD algorithm
in the full information feedback setting, which is consistent with our theoretical findings
and also matches the empirical performance in Euclidean spaces (Lei et al., 2020).

We also compare our bandit algorithms (Algorithms 2 and 3) with the Riemannian
online zeroth algorithm (R-OZO) by Maass et al. (2022). We observe that in this case our
R-BAN and R-2-BAN algorithms perform better regrets with less or equal information,
since the R-OZO needs function values of two points.

7.2 Operator Scaling on SPD Matrices

The operator scaling problem is an example of g-convex but not strongly g-convex Rieman-
nian optimization, which is defined on the manifold of SPD matrices

{X ∈ Rn×n|XT = X,X � 0},

with the metric
gX(U, V ) = Tr(X−1UX−1V ).

Given a tuple of n × n matrices (A1, A2, . . . , AN ), the operator scaling attempts to find
X,Y ∈ Rn×n such that Âi = Y −1AiX is doubly stochastic for all i = 1, 2, 3, . . . , N . The
operator scaling problem has drawn abundant interest in many areas, such as computing
non-commutative rank (Ivanov et al., 2017) and computing Brascamp-Lieb constants (Garg
et al., 2018). In this subsection, we study an online form of the operator scaling problem,
which is to find Xi and Yi for time-varying matrices (At,1, . . . , At,N ). The problem can be

formulated in terms of minimizing the log capacity of the operator Tt(X) =
∑N

i=1At,iXA
T
t,i,

that is
ft(Xt) = log det(T (Xt))− log det(Xt), t = 1, 2, . . . , T.

The loss function ft is g-convex, but not strongly g-convex.
We test Algorithms 1, 2, 3 and the R-OZO for the case [n,N, T ] = [5, 2, 50000] by taking

D = 5, L = 2, and C = 7. For the R-BAN algorithm, we set the parameter δ = 0.67, which
is 10 times as the theoretical value and also set τ = δ

r . In addition, since the R-OZO
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Figure 3: Algorithm performance on operator scaling problem

is designed for σ-strongly g-convex functions and requires a nonzero σ to set up the step
size, we take σ = 0.001 in the R-OZO. The remaining parameters of the R-OZO are set as
L̃ = 1 (smooth coefficient) and V = 9. Figure 3 again shows that the (expected) regrets
of Algorithms 1, 2 and 3 are sublinear with T . The R-2-BAN reaches a comparable bound
under the full information setting in the online operator scaling problem and the R-OZO
presents a regret bound comparable to that of the R-BAN. The above results showcase the
applicability for our Algorithms 1, 2 and 3 in g-convex settings.

7.3 Principal Component Analysis on Grassmann Manifolds

At last, we test the effectiveness of Algorithms 1, 2 and 3 on manifolds with positive cur-
vature. An important instance is the principal component analysis (PCA) on Grassmann
manifolds. Given a set of data points {A1, . . . , AN} in Rn, the PCA problem is to learn
an orthogonal projector X ∈ Rn×r that minimizes the sum of the squared residual errors
between the projected data points and the original data points, which is a significant di-
mensionality reduction issue when handling high-dimensional data in the real world (Anzai,
2012).

In this subsection, we consider an online PCA problem, where the loss at the time t is

ft(Xt) =
1

2N

N∑
i=1

‖At,i −XtX
T
t At,i‖22,

where {At,1, . . . At,N} is a batch of N data points, and Xt is a point on the Stiefel manifold
St(d, n), which is formed by d× n matrices with orthogonal columns.

data set class sample feature experimental parameters

iris 3 4 150 [n,N, T, d, µ, θ] = [4, 1, 150, 2, 2, 1]
egg-eye-state 2 14 14980 [n,N, T, d, µ, θ] = [14, 1, 14000, 3, 0.1, 1]

waveform-5000 3 40 5000 [n,N, T, d, µ, θ] = [40, 5, 1000, 10, 5, 1]

Table 2: Descriptions and settings of testing data sets for online PCA
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Figure 4: Algorithm performance on the iris and waveform data set.

Since the group action X → XY does not change the value of ft(xt) for any orthogonal
matrices Y ∈ O(d), we view ft as a function on the quotient Grassmann manifold

Gr(d, n) = St(d, n)/O(d)

with the metric gX(U, V ) = Tr(UTV ). Then the online problem is equivalent to find

min ft(Xt) = − 1

2N

N∑
i=1

ATt,iXtX
T
t At,i, Xt ∈ Gr(d, n).

The Grassmann manifold is homogeneous and symmetric, and the sectional curvature of
Grassmann manifolds takes value in [0, 2]. Consequently, we can apply Algorithms 1, 2 and
3 to the online PCA problem.

We examine Algorithms 1, 2, 3 and the R-OZO on three real-world data sets from the
openml database2, including iris, eeg-eye-state and waveform-5000. All the data sets are
normalized, and the eeg-eye-state data set is randomly shuffled and excludes outliers.

Figure 4 and Figure 5(a) show the average regret Reg(T )
T in the three real-world data

sets. All the R-BAN, R-2-BAN and R-OZO are conducted for 100 random runs and ploted
with error bars. In the R-BAN and R-2-BAN algorithms, the step size αt and δ are taken
referring to the theoretical values. For the R-OZO algorithm, we set σ = µ, L̃ = 1 (smooth
coefficient) and V = 2. As shown, the R-2-BAN performs comparably with the R-OGD,
and the performance of the R-OZO is between that of the R-BAN algorithm and that of the
R-2-BAN algorithm. Besides, All of our algorithms achieve sublinear regret. The results in
PCA analysis demonstrate the effectiveness of our algorithms in non-Hadamard cases.

At last, we test the eeg-eye-state data set for the situation when the diameter D ≥ π
2
√
K

.

In particular, we test D = π
2 (the injectivity radius of the Grassmann manifold) in Figures

5(b) and (d), and D =
√
dπ2 (the diameter of the Grassmann manifold) in Figures 5(c) and

(e). The initial points in Figures 5(b) and (c) are as same as that in Figure 5(c), and are
extremely close to the boarder of the feasible set in Figures 5 (d) and (e). Figures 5(a), (b),
and (c) show that, when the initial point does not change, diameter D does not influence
the (expected) regrets of our Algorithms 1, 2 and 3. Furthermore, Figures 5(d) and (e)
show that Algorithms 1, 2 and 3 can still achieve no-regret even when Assumption 20 does

2. https://www.openml.org/
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Figure 5: Algorithm performance on the eeg-eye-state data set

not hold. The above results give evidence for our applicability of our Algorithms 1, 2 and
3 in practical scenarios.

8. Conclusion

We considered an online optimization problem on Riemannian manifolds in the full in-
formation, one-point bandit, and two-point bandit feedback settings, which extended the
Euclidean counterpart. The upper regret bounds of the R-OGD, R-BAN, and R-2-BAN
algorithm, together with a universal lower regret bound were established with the influence
of curvature clearly indicated. All of the regret bounds were consistent with their Euclidean
counterpart.

An interesting direction moving forward is to take retraction into consideration. A
retraction map is a cheap approximation of the exponential map on manifolds and is a
sensible choice in many real scenarios. In future work, we intend to design Riemannian
online optimization methods with the retraction map, so that resulting algorithms can be
more effective in large-scale optimization problems.
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Appendix A. Basic Definitions and Technical Lemmas

In this section, we recall some basic definitions and results from Riemannian geometry,
which are useful in our analysis.

Definition 25 (Divergence) For a vector field X, the divergence Div(X) is the trace of
the operator ∇X. More precisely, if {e1, . . . , en} is a normal orthogonal basis of the tangent
space TxM, the divergence of X at x can be expressed as

Div(X)(x) =
n∑
i=1

〈∇eiX(x), ei〉.

Lemma 26 (Berestovskii and Nikonorov, 2020, Prop. 3.1.6.) If η is a Killing vec-
tor field on M, then it satisfies the following.

(i) For every vector field X, 〈∇Xη,X〉 = 0. As a corollary, the divergence Div(η) ≡ 0.

(ii) For every geodesic γ, η|γ is a Jacobi field.

Lemma 27 (do Carmo, 1992, Prop. 3.6) If η is a Jacobi vector field along a geodesic
γ : [0, 1]→ R, denote η(t) = η(γ(t)), then

〈η(t), γ̇(t)〉 = 〈η(0), γ̇(t)〉+ t〈∇γ̇η(0), γ̇(t)〉

for all t ∈ [0, 1].

Lemma 28 (Nomizu, 1960) Let M be a simply connected complete Riemannian homo-
geneous manifold. Then for every x ∈M and every X ∈ TxM, there exists a Killing vector
field η such that η(x) = X. The flow of η exists and consists of a one-parameter group of
isometries.

Lemma 29 (Divergence theorem, Lee, 2018, 2-22) Let M be a Riemannian mani-
fold M with the volume form ω, K ⊂ M with the boundary ∂K, and ~n be the (outer) unit
normal vector field of ∂K. Then, for any vector field X and any differentiable function f ,∫

K
X(f)(u)ω =

∫
∂K

f(u)〈X,~n〉ω∂K −
∫
K

Div(X)f(u)ω,

where ω∂K is the volume form of ∂K induced by ω.

Lemma 30 (Jacobi Field Comparison, Lee, 2018, Thm. 11.9) Suppose thatM is a
Riemannian manifold, γ : [0, b] → M is a unit-speed geodesic segment without conjugate
points, and J is a Jacobi field along γ such that J(0) = 0. Denote

s(κ, t) =


t, if κ = 0;

1√
κ

sin(
√
κt), if κ > 0;

1√
−κ sinh(

√
−κt), if κ < 0.

(10)
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(i) If the sectional curvature of M is bounded above by a constant K > 0, then

‖J(t)‖ ≥ s(K, t)‖J̇(0)‖

for all t ∈ [0, b1], where b1 = min{b, π√
κ
}.

(ii) If the sectional curvature of M is bounded below by a constant κ < 0, then

‖J(t)‖ ≤ s(κ′, t)‖J̇(0)‖

for all t ∈ [0, b], where κ′ = min{κ, 0}.

Lemma 31 (Conjugate Theorem, Lee, 2018, Thm. 11.12) SupposeM is a Rieman-
nian manifold whose sectional curvature is bounded above by K.

(i) If K ≤ 0, then a point of M has no conjugate points along any geodesic.

(ii) If K ≥ 0, then there are no conjugate point along any geodesic segment shorter that
π√
K

.

From the Morse index theorem Lee, 2018, Thm. 10.18, the absence of conjugate points
is equivalent to the unique g-convexity, we have the following corollary.

Corollary 32 Suppose (M, g) is a Riemannian manifold whose sectional curvature is
bounded by K.

(i) If K ≤ 0, then any g-convex set in M is uniquely g-convex.

(ii) If K ≥ 0, then any g-convex set inM with diameter less than π√
K

is uniquely g-convex.

Lemma 33 (Hessian Comparison Theorem, Lee, 2018, Thm. 11.7) Suppose M
is a Riemannian manifold and x ∈M. Denote ρx(y) = d(x, y) and

c(κ, t) =


1
t , κ = 0;
1√
κ

cot(
√
κt), κ > 0;

1√
−κ coth(

√
κt), κ < 0.

(i) If the sectional curvature of M is bounded above by a constant K > 0, then the
following inequality holds in U := {y ∈M|d(x, y) < π√

K
}

∇2ρx(y) � c(K, ρx(y))Id.

(ii) If the section curvature ofM is bounded below by a constant κ ≤ 0, then the following
inequality holds in all of M

∇2ρx(y) � c(κ, ρx(y))Id.
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Lemma 34 (Volume comparison theorem, Lee, 2018, Thm. 11.19) Let M denote
an n-dimensional Riemannian manifold with sectional curvature lower bounded by κ. Given
p ∈ M, we denote by Vr the volume of the ball of radius r about p, and Vr,κ as the volume
of a ball of radius r on n-dim constant-curvature model spaces with curvature κ, that is,
the sphere Sn( 1√

κ
), the Euclidean space Rn, or the hyperbolic space Hn( 1√

−κ) when κ is

positive, zero, or negative. Then the function

g(r) =
Vr
Vr,κ

is non-increasing.

Lemma 35 (Zhang and Sra, 2016, Lemma 5) Let a, b, c be the sides (side lengths) of
a geodesic triangle on a Riemannian manifold with sectional curvature lower bounded by κ.
Let A be the angle between sides b and c. Then

a2 ≤ ζ(κ, c)b2 + c2 − 2bc cosA.

Lemma 36 (Bacák, 2014) Let (M, g) be a Hadamard manifold. Let K be a closed g-
convex set. Then the mapping PK(x) is single-valued and nonexpansive, that is, we have
for every x, y ∈M

d(PK(x),PK(y)) ≤ d(x, y).

Lemma 37 (Berestovskii and Nikonorov, 2020) For a given point x on a Rieman-
nian symmetric manifold M , the symmetry sx reverses every geodesic through the point x.
Moreover, the derivative map dsx at x is −IdTxM.

Lemma 38 (Berestovskii and Nikonorov, 2020) A Riemannian symmetric manifold
is homogeneous.

Appendix B. Proofs of Theorems 5 and 6

In this appendix, we prove Theorems 5 and 6 in Subsections B.1 and B.2, respectively.

B.1 Proof of Theorem 5

By the g-convexity, we have

ft(xt)− ft(x
∗) ≤ 〈−∇ft(xt), exp−1

xt (x∗)〉. (11)

Denote x̃t+1 = expxt(−αt∇ft(xt)). Recalling Lemma 35 in the geodesic triangle 4xtx̃t+1x
∗

gives that

〈−αt∇ft(xt), exp−1
xt (x∗)〉 ≤ 1

2
(d2(xt, x

∗)− d2(x̃t+1, x
∗)) +

1

2
ζ(κ, d(xt, x

∗))‖αt∇ft(xt)‖2.

Since xt+1 = PK(expxt(−αtgt)) = PK(x̃t+1), applying Lemma 36 we have

d(xt+1, x
∗) ≤ d(x̃t+1, x

∗).
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Therefore,

〈−αt∇ft(xt), exp−1
xt (x∗)〉 ≤ 1

2
(d2(xt, x

∗)− d2(xt+1, x
∗)) +

1

2
ζ(κ, d(xt, x

∗))‖αt∇ft(xt)‖2.
(12)

Combining (11) and (12), we get

ft(xt)− ft(x
∗) ≤ 1

2αt
(d2(xt, x

∗)− d2(xt+1, x
∗)) +

1

2
ζ
(
κ, d(xt, x

∗)
)
αt‖∇ft(xt)‖2.

With the Lipschitz constant L, we have

ft(xt)− ft(x
∗) ≤ 1

2αt
(d2(xt, x

∗)− d2(xt+1, x
∗)) +

1

2
ζ
(
κ, d(xt, x

∗)
)
L2αt. (13)

Summing (13) from 1 to T , we obtain

Reg(T ) =

T∑
t=1

ft(xt)−
T∑
t=1

ft(x
?)

≤
T∑
t=1

1

2αt

(
d2(xt, x

?)− d2(xt+1, x
?)
)

+
T∑
t=1

1

2
ζ
(
κ, d(xt, x

∗)
)
L2αt

=
T∑
t=2

d2(xt, x
?)(

1

2αt
− 1

2αt−1
) +

1

2α1
d2(x1, x

?) +
1

2
L2

T∑
t=1

ζ
(
κ, d(xt, x

∗)
)
αt.

Since the set K has diameter D, it follows immediately that d(xt, x
∗) ≤ D and

ζ
(
κ, d(xt, x

∗)
)
≤ ζ(κ,D)

for every t = 1, 2, . . . , T , which implies

Reg(T ) ≤ D2
T∑
t=2

(
1

2αt
− 1

2αt−1
) +D2 1

2α1
+

1

2
ζ(κ,D)L2

T∑
t=1

αt

= D2 1

2αt
+

1

2
ζ(κ,D)L2

T∑
t=1

αt,

Setting αt = D

L
√
ζ(κ,D)t

, we get

Reg(T ) ≤
DL
√
ζ(κ,D)

2

√
T +

1

2
ζ(κ,D)L2

T∑
t=1

αt

≤
DL
√
ζ(κ,D)

2

√
T +

1

2
ζ(κ,D)L2 2D

L
√
ζ(κ,D)

√
T

=
3

2
DL
√
ζ(κ,D)T .

The second inequality is based on the inequality
∑T

t=1
1√
t
≤ 2
√
T , and then we complete

our proof for Theorem 5. �
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B.2 Proof of Theorem 6

By the strong g-convexity, we have

ft(xt)− ft(x
∗) ≤ 〈−∇ft(xt), exp−1

xt (x∗)〉 − µ

2
d2(xt, x

∗).

With the help of Lemma 35, Lemma 36 and the Lipschitz constant L, we have

ft(xt)− ft(x
∗) ≤ 1

2αt

(
d2(xt, x

∗)− d2(xt+1, x
∗)
)

+
1

2
ζ
(
κ, d(xt, x

∗)
)
L2αt −

µ

2
d2(xt, x

∗).

(14)

Summing (14) from 1 to T , we obtain

Reg(T ) =
T∑
t=1

ft(xt)−
T∑
t=1

ft(x
?)

≤
T∑
t=1

1

2αt

(
d2(xt, x

?)− d2(xt+1, x
?)
)

+
T∑
t=1

1

2
ζ(κ, d(xt, x

∗))L2αt −
T∑
t=1

µ

2
d2(xt, x

∗)

=
T∑
t=2

d2(xt, x
?)(

1

2αt
− 1

2αt−1
− µ

2
) + d2(x1, x

?)(
1

2α1
− µ

2
) +

1

2
L2

T∑
t=1

ζ(κ, d(xt, x
∗))αt.

Substituting d(xt, x
∗) ≤ D and ζ(κ, d(xt, x

∗)) ≤ ζ(κ,D) for t = 1, 2, . . . , T , we obtain

Reg(T ) ≤
T∑
t=2

D2(
1

2αt
− 1

2αt−1
− µ

2
) +D2(

1

2α1
− µ

2
) +

1

2
L2

T∑
t=1

ζ(κ, d(xt, x
∗))αt

= D2(
1

2α1
− µ

2
) +

1

2
ζ(κ,D)L2

T∑
t=1

αt.

Setting αt = 1
µt , we get

Reg(T ) ≤ 0 +
1

2
ζ(κ,D)L2

T∑
t=1

αt ≤
ζ(κ,D)L2

2µ
(1 + log T ).

We completed the proof. �

Appendix C. Proof of Theorem 7

In this appendix, we first introduce an instance of Riemannian online convex optimization
called the Riemannian online Busemann optimization (ROBO) and then prove Theorem 7
by analyzing the worst-case regret of the ROBO problem.

C.1 Riemannian Online Busemann Optimization

We first introduce the definition of Busemann functions (Ballmann, 2012), which are used
to study the large-scale geometry of Hadamard manifolds.

33



Wang, Tu, Hong, Wu, and Shi

Definition 39 (Ballmann, 2012) Let M be a Hadamard manifold and γ : [0,∞) be a
geodesic ray on M with ‖γ̇(0)‖ = 1. Then the Busemann function with γ is defined as

fγ(x) = lim
t→∞

(
d(x, γ(t))− t

)
.

Here are some properties of Busemann functions.

Lemma 40 (Ballmann, 2012) If fγ is a Busemann function, then the following proper-
ties hold.

(i) fγ is g-convex;

(ii) ∇fγ(γ(t)) = −γ̇(t) for every t ∈ [0,∞);

(iii) ‖∇fγ(x)‖ ≤ 1 for every x ∈M.

Next, we introduce some notations. Let D,L > 0 be two constants, M be a Hadamard
manifold, p ∈ M and γ : R → M be a geodesic with ‖γ̇(0)‖ = 1 and γ(0) = p. Then we
consider an instance of R-OCO problem termed Riemannian online Busemann optimization
(ROBO) on M, where the convex set K is the ball centered p with radius D, i.e.,

K = {x ∈M|d(x, p) ≤ D},

and the loss function ft is randomly and uniformly chosen in the set

{Lf+, Lf−}.

Here, f+ and f− are Busemann functions related to the geodesic rays γ+(t) = γ(t) and
γ−(t) = γ(−t). The regret of the ROBO problem is

Reg(T ) =

T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x).

In the last part of the section, we propose a lemma on the minimum of
∑T

t=1 ft(x).

Lemma 41 The minimum of af+(t) + bf−(t), (a, b ∈ N) in K is −|a− b|D.

Proof By the convexity of f+ and f−, we have

af+(x) + bf−(x) ≥ af+(p) + bf−(p) + 〈a∇f+(p) + b∇f−(p), exp−1
p (x)〉,∀x ∈ K.

Because ∇f+(p) = γ̇(0), ∇f−(p) = −γ̇(0) and f±(p) = 0, we have

af+(x) + bf−(x) ≥ 〈−(a− b)γ̇(0), exp−1
p (x)〉,∀x ∈ K.

Moreover, since ‖γ̇(0)‖ = 1 and ‖ exp−1
p (x)‖ = d(x, p) ≤ D, we have

min
x∈K

af+(x) + bf−(x) ≥ min
x∈K
〈−(a− b)γ̇(0), exp−1

p (x)〉 ≥ −|a− b|D. (15)

However, we see that af+(γ(D)) + bf−(γ(D)) = (b−a)D, and af+(γ(−D)) + bf−(γ(−D)) =
(a− b)D, which imply that

min
x∈K

af+(x) + bf−(x) ≤ min
{

(b− a)D, (a− b)D
}

= −|a− b|D. (16)

Following from (15) and (16), we complete our proof.
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C.2 Proof of Theorem 7

We begin our proof with an analysis of the worst-case regret of the ROBO problem. In the
ROBO, the expectation of the regret on loss functions {f1, f2, . . . , ft} is

Ef1,...,ft [Reg(T )] =Ef1,...,ft [
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)]

=Ef1,...,ft [

T∑
t=1

ft(xt)]− Ef1,...,ft [min
x∈K

T∑
t=1

ft(x)]. (17)

Since ft is uniformly and independently chosen in {f+, f−}, we can get

Ef1,...,ft [
T∑
t=1

ft(xt)] =
T∑
t=1

Eft [ft(xt)]

=

T∑
t=1

1

2
(Lf+(xt) + Lf−(xt))

≥ LT

2
min
x∈K

(f+(x) + f−(x)).

From Lemma 41,

Ef1,...,ft [
T∑
t=1

ft(xt)] ≥ 0. (18)

Putting (18) into (17), we obtain

Ef1,...,ft [Reg(T )] ≥ −Ef1,...,ft [min
x∈K

T∑
t=1

ft(x)].

By Lemma 41,

Ef1,...,ft [Reg(T )] ≥ −Ef1,...,ft [min
x∈K

T∑
t=1

ft(x)]

= −Ef1,...,ft

[
−DL

∣∣ ∑
ft=Lf+

1−
∑

ft=Lf−

1
∣∣]

= Eε1,...,εT

[
DL
∣∣∑
εt=1

1 +
∑
εt=−1

−1
∣∣]

= Eε1,...,εT

[
DL
∣∣ T∑
t=1

εt
∣∣],

where εt are i.i.d Rademacher variables εt = ±1 with probability 1/2. From the Khinchine’s
inequality (Cesa-Bianchi and Lugosi, 2006), we finally get

Ef1,...,ft [Reg(T )] ≥ DL√
2
Eε1,...,εT

[ T∑
t=1

ε2t

]
=
DL√

2

√
T , (19)
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which indicates that no matter how we choose strategies in the ROBO, there is a sequence of
functions {f1, . . . , ft} ∈ {Lf+, Lf−}T to make the regret not less than DL√

2

√
T . Considering

that the diameter of the set K is 2D and the Lipschitz constant of {Lf+, Lf−} is L, we
complete our proof. �

Appendix D. Proofs of Lemmas 11 and 13

In this appendix, we prove Lemmas 11 and 13 in Subsections D.1 and D.2, respectively.

D.1 Proof of Lemma 13

We initially examine the first part of the lemma. Take a vector X ∈ Mx arbitrarily. From
Lemma 28, we can find a Killing vector field η on M such that η(x) = X. The flow of η
consists of a one-parameter group of isometries {φt}t∈R. Then the directional derivative of
f̂ along X can be written as

X(f̂(x)) = lim
t→0

f̂(φt(x))− f̂(x)

t
=

1

Vδ
lim
t→0

1

t

(∫
Bδ(φt(x))

f(u)ω −
∫
Bδ(x)

f(u)ω
)
. (20)

Since φt is an isometry that preserves the distance, φt(Bδ(x)) = Bδ(φt(x)). By the
substitution rule of integration (Chern et al., 1999), we have∫

Bδ(φt(x))
f(u)ω =

∫
Bδ(x)

f(φt(u))φ∗t (ω). (21)

Because φt preserves the metric g, it preserves the volume form, i.e., φ∗t (ω) = ω, which gives∫
Bδ(φt(x))

f(u)ω =

∫
Bδ(x)

f(φt(u))ω. (22)

Combining equations (20) and (22) together, we have

X(f̂(x)) =
1

Vδ

∫
Bδ(x)

lim
t→0

f(φt(u))− f(u)

t
ω

=
1

Vδ

∫
Bδ(x)

∂φt(p)

∂t
|t=0(f)ω. (23)

By definition of the flow, ∂φt(u)
∂t |t=0 = η(u). Hence, we can rewrite (23) as

X(f̂(x)) =
1

Vδ

∫
Bδ(x)

η(f)ω.

According to Lemma 29, we have

X(f̂(x)) =
1

Vδ

∫
Sδ(x)

f(u)〈η(u), ~n(u)〉ωSδ(x) −
1

Vδ

∫
Bδ(x)

Div(η)(u)f(u)ω

=
1

Vδ

∫
Sδ(x)

f(u)〈η(u), ~n(u)〉ωSδ(x) (24)
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where ωSδ(x) is the volume form of Sδ(x) induced by ω and ~n is the (outer) unit normal
vector field of Sδ(x). The last equation is due to Div(η) ≡ 0 stated in Lemma 26.

Then we need to compute 〈η, ~n〉 for each point u ∈ Sδ(x). Since geodesics start at the
center x are vertical to the sphere Sδ(x), the outer normal vector ~n(u) can be written as
γ̇u(1)
‖γ̇u(1)‖ for the geodesic γu such that γu(0) = x and γu(1) = u. Therefore, we can write

〈η(u), ~n(u)〉 as

〈η(u), ~n(u)〉 =
1

‖γ̇u(1)‖
〈η(γu(1)), γ̇u(1)〉.

Since η is Killing, by Lemma 26, η(γu(t)) is Jacobi. By Lemma 27, we have

〈η(u), ~n(u)〉 =
1

‖γ̇u(1)‖
〈η(γu(1)), γ̇u(1)〉

=
1

‖γ̇u(1)‖

(
〈η(γu(0)), γ̇u(0)〉+ 1〈∇γ̇uη(γu(0)), γ̇u(0)〉

)
,

=
1

‖γ̇u(0)‖

(
〈η(γu(0)), γ̇u(0)〉+ 0

)
. (25)

Applying η(γu(0)) = η(x) = X and γ̇u(0) = exp−1
x (u) to (25) yields

〈η(u), ~n(u)〉 =
〈X, exp−1

x (u)〉
‖ exp−1

x (u)‖
. (26)

Substituting (26) to (24), we have

X(f̂(x)) =
1

Vδ

∫
Sδ(x)

f(u)
〈X, exp−1

x (u)〉
‖ exp−1

x (u)‖
ωSδ(x) = 〈 1

Vδ

∫
Sδ(x)

f(u)
exp−1

x (u)

‖ exp−1
x (u)‖

ωSδ(x), X〉.

Because the directional derivative X(f̂(x)) coincides with the term 〈∇f̂(x), X〉, we can
obtain

〈∇f̂(x), X〉 = 〈 1

Vδ

∫
Sδ(x)

f(u)
exp−1

x (u)

‖ exp−1
x (u)‖

ωSδ(x), X〉.

For the arbitrariness of the vector field X, we conclude that

∇f̂(x) =
1

Vδ

∫
Sδ(x)

f(u)
exp−1

x (u)

‖ exp−1
x (u)‖

ωSδ(x) =
Sδ
Vδ
Eu∈Sδ(x)

[
f(u)

exp−1
x (u)

‖ exp−1
x (u)‖

]
,

which completes the proof of the first part.
Then we examine the second part of the lemma. From the first part, it is clear to see

E[‖Sδ
Vδ

g‖] ≤ Sδ
Vδ
C.

Since the sectional curvature of M is lower bounded by κ′, from Lemma 34, the function
g(r) = Vr

Vr,κ′
is non-increasing and so does log g(r). Therefore,

d

dr
log(g(r)) =

d

dr
log Vr −

d

dr
log Vr,κ′ ≤ 0.
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Since deriving the volume of a ball along the radius gives the surface area of its sphere, we
can write

d

dr
log(g(r)) =

Sr
Vr
−
Sr,κ′

Vr,κ′
≤ 0, (27)

where Sr and Sr,κ′ are the surface area of the balls in M and the corresponding constant
curvature space, respectively.

Setting r = δ in (27), we get Sδ
Vδ
≤ Sδ,κ′

Vδ,κ′
. From calculation, it shows that

Sδ
Vδ
≤
Sδ,κ′

Vδ,κ′
=


n
δ , κ′ = 0

sinhn−1(
√
|κ′|δ)∫ δ

0 sinhn−1(
√
|κ′|t)dt

, κ′ = κ < 0

So we have completed the proof for the case κ′ = 0. Then we focus on the case that κ′ < 0.
By a change of variable u = sinh t, we find

∫ δ

0
sinhn−1(

√
|κ′|t)dt = |κ′|−1/2

∫ sinh(
√
|κ′|δ)

0
un−1(1 + u2)−1/2du

Integration by parts gives

∫ δ

0
sinhn−1(

√
|κ′|t)dt =

sinhn(
√
|κ′|δ)

n
√
|κ′| cosh(

√
|κ′|δ)

+ |κ′|−1/2

∫ sinh (
√
|κ′|δ)

0

1

n
un+1(1 + u2)−3/2du

≥
sinhn(

√
|κ′|δ)

n
√
|κ′| cosh(

√
|κ′|δ)

.

Putting it into the expression of Sδ
Vδ

, we get

Sδ
Vδ
≤ n

√
|κ′| coth(

√
|κ′|δ).

Applying the inequality coth(x) < x+ 1/x, we have

Sδ
Vδ
≤ n

δ
+ n|κ′|δ, ∀δ > 0.

Hence, for every δ > 0,

E[‖Sδ
Vδ

g‖] ≤ Sδ
Vδ
C ≤ C

(n
δ

+ n|κ′|δ
)
,

which completes our proof. �
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D.2 Proof of Lemma 11

First we examine (i). Without loss of generality, we assume f(x) = 0. By the homogeneity
of the manifold M, we can find an isometry φ such that φ(x) = y. Denote the vector field
V (u) = exp−1

u (φ(u)). Clearly, we obtain

f̂(y)− f̂(x) =
1

Vδ

(∫
Bδ(y)

f(u)ω −
∫
Bδ(x)

f(u)ω
)

=
1

Vδ

(∫
Bδ(φ(x))

f(u)ω −
∫
Bδ(x)

f(u)ω
)
.

With the method shown in (21) and (22), we obtain

f̂(y)− f̂(x) =
1

Vδ

∫
Bδ(x)

f(φ(u))− f(u)ω.

By the g-convexity of f ,

f̂(y)− f̂(x) =
1

Vδ

∫
Bδ(x)

f(φ(u))− f(u)ω

≥ 1

Vδ

∫
Bδ(x)
〈∇f(u), exp−1

u (φ(u))〉ω

=
1

Vδ

∫
Bδ(x)
〈∇f(u), V (u)〉ω

=
1

Vδ

∫
Bδ(x)

V (f(u))ω. (28)

By Lemma 29, we have∫
Bδ(x)

V (f(u))ω =

∫
Sδ(x)

f(u)〈V (u), ~n(u)〉ωSδ(x) −
∫
Bδ(x)

Div(V )f(u)ω. (29)

Hence, we rewrite (28) as

f̂(y)− f̂(x) ≥ 1

Vδ

(∫
Sδ(x)

f(u)〈V (u), ~n(u)〉ωSδ(x) −
∫
Bδ(x)

Div(V )f(u)ω
)
.

In Lemma 11, we have already shown that

〈∇f̂(x), exp−1
x (y)〉 = 〈 1

Vδ

∫
Sδ(x)

f(u)
exp−1

x (u)

‖ exp−1
x (u)‖

ωSδ(x), exp−1
x (y)〉

= 〈 1

Vδ

∫
Sδ(x)

f(u)
exp−1

x (u)

‖ exp−1
x (u)‖

ωSδ(x), V (x)〉. (30)

Denote by ~m(u) the vector exp−1
x (u)

‖ exp−1
x (u)‖ . Combining (29) and (30) gives

f̂(y)− f̂(x)− 〈∇f̂(x), exp−1
x (y)〉 ≥ 1

Vδ

(∫
Sδ(x)

f(u)
(
〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉

)
ωSδ(x)

)
− 1

Vδ

(∫
Bδ(x)

Div(V )f(u)ω
)
. (31)
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Here we claim that

〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉 ≤ 0, ∀u ∈ Sδ(x). (∗)

This claim requires many geometric details that deviates our attention from the proof, and
we will prove it afterwards. If the claim (∗) holds, then with the g-L-Lipschitzness of f and
the condition f(x) = 0, we have∫

Sδ(x)
f(u)

(
〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉

)
ωSδ(x)

≥
∫
Sδ(x)

δL
(
〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉

)
ωSδ(x)

=
(∫
Sδ(x)

δL〈V (u), ~n(u)〉ωSδ(x)

)
−
(∫
Sδ(x)

δL〈V (x), ~m(u)〉ωSδ(x)

)
. (32)

By Lemma 11, 1
Vδ

∫
Sδ(x) δL〈V (x), ~m(u)〉ωSδ(x) in (32) is the gradient of the function

ĝ(x) :=
1

Vδ

(∫
Bδ(x)

δL · ω
)
≡ δL,

and then

1

Vδ

∫
Sδ(x)

δL〈V (x), ~m(u)〉ωSδ(x) = 0. (33)

Combining (31)-(33), we have

f̂(y)− f̂(x)− 〈∇f̂(x), exp−1
x (y)〉 ≥ 1

Vδ

(∫
Sδ(x)

δL〈V (u), ~n(u)〉ωSδ(x)

)
− 1

Vδ

(∫
Bδ(x)

Div(V )f(u)ω
)
.

Applying Lemma 29 again, we obtain

1

Vδ

∫
Sδ(x)

δL〈V (u), ~n(u)〉ωSδ(x) =
1

Vδ

∫
Bδ(x)

V (δL)ω − 1

Vδ

(∫
Bδ(x)

Div(V )δLω
)

= − 1

Vδ

(∫
Bδ(x)

Div(V )δLω
)
.

Therefore, there holds

f̂(y)− f̂(x)− 〈∇f̂(x), exp−1
x (y)〉 ≥ − 1

Vδ

(∫
Bδ(x)

Div(V )(f(x) + δL)ω
)

≥ −2δL sup
u∈Bδ(x)

|Div(V (u))|. (34)

Note that V (u) = exp−1
u (φ(u)) is continuous on p and φ, and φ is continuous on x and y.

Thus, |Div(V (u))| is a continuous function of (x, y, u) ∈ K̄ × K̄ × K̄. Denote

ρ = sup
(x,y,u)∈K̄×K̄×K̄

|Div(V (u))|.
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Since the boundedness of K set yields the compactness of K̄ × K̄ × K̄, we have ρ < ∞.
Putting ρ into (34) establishes the desired result.

Then we begin to prove ii). From the strong g-convexity of f ,

f̂(y)− f̂(x) =
1

Vδ

∫
Bδ(x)

V (f(u)) +
µ

2
d2(u, φ(u))ω.

Thus it remains to prove that

1

Vδ

∫
Bδ(x)

µ

2
d2(u, φ(u))ω ≥ µ

2
d2(x, y)− 2µD,

which is obvious from the fact

|d2(u, φ(u))− d2(x, y)| = (d(u, φ(u)) + d(x, y))|(d(u, φ(u))− d(x, y))|
≤ 2D · 2δ = 4Dδ.

�

D.3 Proof of the Claim (∗)

Fix u ∈ Sδ(x) and denote by ξu(s) = expx(s~m(u)) the geodesic with the initial tangent
vector ~m(u). Consider the following rectangle map

Γu : [0, 1]× [0, δ]→M
(t, s)→ expξu(s)(tV (ξu(s))).

Set T (t, s) = ∂Γu
∂t (t, s) and S(t, s) = ∂Γu

∂s (t, s). For a fixed t, the length of the curve
γt(s) = Γu(t, s), (0 ≤ s ≤ δ) is defined as

lu(t) =

∫ δ

0

√
〈S(t, s), S(t, s)〉ds.

The first variation formula (see Lee, 2018, Theorem 6.3) gives,

l′u(0) = 〈T (0, δ), S(0, δ)〉 − 〈T (0, 0), S(0, 0)〉.

Because T (0, s) = V (ξu(s)), for all s ∈ [0, δ], S(0, 0) = ~m(u) and S(0, δ) = ~n(u), we have

l′u(0) = 〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉.

To prove (∗), it is sufficient to show that l′u(0) ≤ 0. Let us focus on the second derivative
of the function lu(t), that is,

l′′u(t) =
d2

dt2

∫ δ

0

√
〈S(t, s), S(t, s)〉ds

=

∫ δ

0

d2

dt2

√
〈S(t, s), S(t, s)〉ds

=

∫ δ

0

d

dt
(

1

‖S‖
〈∇TS, S〉)ds

=

∫ δ

0
− 1

‖S‖3
〈∇TS, S〉2 +

1

‖S‖
〈∇TS,∇TS〉+

1

‖S‖
〈∇T∇TS, S〉ds. (35)
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For every fixed s, the curve γs(t) = Γu(t, s) is a geodesic, hence S is the variation field
of the geodesic γs(t) and becomes a Jacobi field. Putting the Jacobi equation into (35), we
have

l′′u(t) =

∫ δ

0
− 1

‖S‖3
〈∇TS, S〉2 +

1

‖S‖
〈∇TS,∇TS〉+

1

‖S‖
−R(T, S, S, T )ds.

By the Cauchy–Schwarz inequality, −〈∇TS, S〉2 ≥ −‖S‖2‖∇TS‖2, which yields

l′′u(t) ≥
∫ δ

0
− 1

‖S‖3
− ‖S‖2‖∇TS‖2 +

1

‖S‖
〈∇TS,∇TS〉+

1

‖S‖
−R(T, S, S, T )ds

≥
∫ δ

0

1

‖S‖
−R(T, S, S, T )ds.

From the definition of sectional curvature, R(T, S, S, T ) = K(Π)|T ∧S|2, where K(Π) is the
sectional curvature of the two-dimensional submanifold spanned by T and S. Under the
assumption that M has nonpostive sectional curvature, we get

l′′u(t) ≥
∫ δ

0

1

‖S‖
−R(T, S, S, T )ds ≥ 0,

which means that lu(t) is convex in [0, 1].
Let us look back on the function lu(t). Note that the 0-curve is

γs(0) = ξ(s),

and the 1-curve is

γs(1) = expξ(s)(V (ξ(s))) = expξ(s)(exp−1
ξ(s)(φ(ξ(s))) = φ(ξ(s)).

Since the mapping φ is an isometry, the length of ξ(s) is equal to the length of φ(ξ(s)). As
a result, there holds

lu(0) = lu(1). (36)

The convexity of lu immediately leads that

l′u(0) ≤ 0,

which proves the claim (∗). �

Appendix E. Proofs of Theorems 14 and 15

Before the proof, we propose some lemmas about the expected online gradient descent for
λ-sub g-convex functions.

Lemma 42 (Sub-convex Cases) Suppose that S is a subset of a g-convex set K ⊆ M
with diameter D, and {ft}t=1,2,...,T be a series of λ1-sub g-convex smooth functions. If the
sequence {xt}t=1,2,...,T is generated by

xt+1 = H
(
PK

(
expxt(−αgt)

))
, (37)
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where the random vector gt satisfies that E[gt|xt] = ∇ft(xt) and E[‖gt‖] ≤ G, and for the
operator H : K → S, there exist a constant λ2 ≥ 0 satisfies

d2(H (x), y) ≤ d2(x, y) + λ2,∀x ∈ K,∀y ∈ S.

Then with α = D

G
√
ζ(κ,D)T

, we have

E
[ T∑
t=1

ft(xt)
]
−min

x∈S

T∑
t=1

ft(x) ≤ DG
√
ζ(κ,D)T + λ1T + λ2T.

Proof Let x∗ = arg minx∈S
∑T

t=1 ft(x). From λ1-sub g-convexity, the difference between
ft(xt) and ft(x

∗) is bounded by

ft(xt)− ft(x
∗) ≤ 〈∇ft(xt), exp−1

xt (x∗)〉+ λ1

= 〈E[gt|xt], exp−1
xt (x∗)〉+ λ1

= E
[
〈gt, exp−1

xt (x∗)〉|xt
]

+ λ1.

Taking the expectation on both sides yields

E[ft(xt)− ft(x
∗)] ≤ E

[
〈gt, exp−1

xt (x∗)〉
]

+ λ1.

From Lemma 35 and 36,

E[ft(xt)− ft(x
∗)] ≤ E

[ 1

2α
(d2(xt, x

∗)− d2(PK(expxt(−αtgt)), x
∗))
]

+ E
[1

2
ζ(κ, d(xt, x

∗))α‖gt‖2
]

+ λ1.

Combining with the condition E[‖gt‖] ≤ G and d2(xt, x
∗) ≤ D, we have

E[ft(xt)− ft(x
∗)] ≤ E

[ 1

2α
(d2(xt, x

∗)− d2(PK(expxt(−αgt), x
∗)))

]
+

1

2
ζ(κ,D)αG2 + λ1

≤ E
[ 1

2α
(d2(xt, x

∗)− d2
(
H
(
PK

(
expxt(−αtgt)

))
, x∗
)]

+
1

2
ζ(κ,D)αG2 + λ1 + λ2.

= E
[ 1

2α
(d2(xt, x

∗)− d2(xt+1, x
∗))
]

+
1

2
ζ(κ,D)αG2 + λ1 + λ2. (38)

Summing (38) from 1 to T , we have

T∑
t=1

E[ft(xt)− ft(x
∗)] ≤

T∑
t=1

E
[ 1

2α
(d2(xt, x

∗)− d2(xt+1, x
∗))
]

+
1

2
ζ(κ,D)αG2T + λ1T + λ2T

≤ E
[ 1

2α
d2(x1, x

∗)
]

+
1

2
ζ(κ,D)αG2T + λ1T + λ2T

≤ D2

2α
+

1

2
ζ(κ,D)αG2T + λ1T + λ2T. (39)
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Putting α = D

G
√
ζ(κ,D)T

in (39), we complete our proof.

Lemma 43 (Strongly Sub-convex Cases) Suppose that S is a subset of a g-convex set
K ⊆M with diameter D, and {ft}t=1,2,...,T be a series of µ-strongly λ1-sub g-convex smooth
functions. If the sequence {xt}t=1,2,...,T is generated by

xt+1 = H
(
PK

(
expxt(−αgt)

))
,

where the random vector gt satisfies that E[gt|xt] = ∇ft(xt), E[‖gt‖|xt] ≤ G,and the operator
H satisfies (37). Then with constant ν ≥ 1 and αt = ν

µt we have that

E
[ T∑
t=1

ft(xt)
]
−min

x∈S

T∑
t=1

ft(x) ≤ 1

2
ζ(κ,D)νG2(1 + log T ) + λ1T + λ2T.

Proof Let x∗ = arg minx∈S
∑T

t=1 ft(x). From µ-strongly λ1-sub g-convexity, the difference
between ft(xt) and ft(x

∗) is bounded by

ft(xt)− ft(x
∗) ≤ 〈∇ft(xt), exp−1

xt (x∗)〉 − µ

2
d2(xt, x

∗) + λ1

= 〈E[gt|xt], exp−1
xt (x∗)〉 − µ

2
d2(xt, x

∗) + λ1

= E
[
〈gt, exp−1

xt (x∗)〉|xt
]
− µ

2
d2(xt, x

∗) + λ1.

Taking the expectation on both sides yields

E[ft(xt)− ft(x
∗)] ≤ E

[
〈gt, exp−1

xt (x∗)〉 − µ

2
d2(xt, x

∗)
]

+ λ1.

From Lemma 35,

E[ft(xt)− ft(x
∗)] ≤ E

[ 1

2αt
(d2(xt, x

∗)− d2(PK(expxt(−αtgt))), x
∗))− µ

2
d2(xt, x

∗)
]

+ E
[1

2
ζ(κ, d(xt, x

∗))αt‖gt‖2
]

+ λ1.

≤ E
[ 1

2αt
(d2(xt, x

∗)− d2(xt+1, x
∗))− µ

2
d2(xt, x

∗)
]

+ E
[1

2
ζ(κ, d(xt, x

∗))αt‖gt‖2
]

+ λ1 + λ2

Combining with the condition E[‖gt‖] ≤ G and d2(xt, x
∗) ≤ D, we have

E[ft(xt)− ft(x
∗)] ≤ E

[ 1

2αt
(d2(xt, x

∗)− d2(xt+1, x
∗))− µ

2
d2(xt, x

∗)
]

+
1

2
ζ(κ,D)αtG

2 + λ1 + λ2. (40)

44



Online Optimization over Riemannian Manifolds

Summing (40) from 1 to T , we have

T∑
t=1

E[ft(xt)− ft(x
∗)] ≤

T∑
t=1

E
[
d2(xt, x

∗)(
1

2αt
− 1

2αt−1
− µ

2
)
]

+
1

2
ζ(κ,D)G2

T∑
t=1

αt + λ1T + λ2T. (41)

Since αt = ν
µt and ν ≥ 1,

1

2αt
− 1

2αt−1
− µ

2
=
µ

2
(
1

ν
− 1) ≤ 0.

Putting it into (41), we find

T∑
t=1

E[ft(xt)− ft(x
∗)] ≤ 1

2
ζ(κ,D)G2ν

T∑
t=1

1

µt
+ λ1T + λ2T.

≤ 1

2µ
ζ(κ,D)νG2(1 + log T ) + λ1T + λ2T,

which completes our proof.

Lemma 44 relates the gap between regret of f̂t and the real regret of ft.

Lemma 44 Suppose all ft are g-L-Lipschitz. The (expected) regret of the R-BAN algorithm
satisfies

E[Reg(T )] ≤ E
[ T∑
t=1

(f̂t(yt))
]
− min
x∈(1−τ)K

T∑
t=1

f̂t(x) + 3δLT + τDL.T

Proof Denote by x∗τ the minimizer of the problem minx∈(1−τ)K
∑T

t=1 ft(x). The expectation
can be reformulated as follows

E[Reg(T )] =
T∑
t=1

E
[
ft(xt)− ft(x

∗)
]

= E
[ T∑
t=1

(ft(xt)− ft(yt))
]

+ E
[ T∑
t=1

(ft(yt)− f̂t(yt))
]

+ E
[ T∑
t=1

(f̂t(yt)− f̂t(x
∗
τ ))
]

+ E
[ T∑
t=1

(f̂t(x
∗
τ )− ft(x

∗
τ ))
]

+ E
[ T∑
t=1

(ft(x
∗
τ )− ft(x

∗))
]
.

The Lipschitz condition leads to
ft(xt)− ft(yt) ≤ δL
ft(yt)− f̂t(yt) ≤ δL
f̂t(x

∗
τ )− ft(x

∗
τ ) ≤ δL,
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which gives us

E[Reg(T )] ≤ E
[ T∑
t=1

(f̂t(yt)− f̂t(x
∗
τ ))
]

+ E
[ T∑
t=1

(ft(x
∗
τ )− ft(x

∗))
]

+ 3δLT. (42)

Next, we notice that (1 − τ)K = {expp((1 − τ)u)|u = exp−1
p (x) ∈ K}, It is easy to check

that

min
x∈(1−τ)K

T∑
t=1

ft(x) = min
x∈K

T∑
t=1

ft

(
expp((1− τ) exp−1

p (x))
)

≤ min
x∈K

(

T∑
t=1

ft(x) + τDL)

≤ τDLT + min
x∈K

T∑
t=1

ft(x).

This forces

T∑
t=1

(ft(x
∗
τ )− ft(x

∗)) ≤ τDLT. (43)

Combining (42) and (43) together, we can conclude

E[Reg(T )] ≤ E
[ T∑
t=1

(f̂t(yt)− f̂t(x
∗
τ ))
]

+ 3δLT + τDLT.

which is the desired result.

Lemma 45 guarantees the feasibility of the proposed bandit algorithms.

Lemma 45 Let M be a Riemannian manifold with sectional curvature bounded below by a
constant κ ≤ 0 and above by a constant K ≥ 0. Suppose there exists a g-convex set K ⊆M,
a point p ∈ K, and two constants 0 < r ≤ D such that Br(p) ⊆ K ⊆ BD(p), where D ≤ π

2
√
K

if K > 0. Denote θ = s(K,D+r)
s(κ,D+r) ≤ 1. Then, for every y ∈ (1−τ)K, the geodesic ball Bθ·τr(y)

lies in K.

Proof Let x ∈ K be arbitrary and y = expp
(
(1 − τ) exp−1

p (x)
)
. For any v ∈ TyM with

‖v‖ = 1, let z = expy
(
θτr · v

)
. We will show that z ∈ K.

Denote ξ(s) to be the geodesic with ξ(0) = y and ξ(1) = z. Then we can define a
rectangle map

Γ : [0, 1/τ ]× [0, 1]→ K; (t, s) 7→ expx
(
t exp−1

x ξ(s)
)
.

Now, we have a vector field v(t, s) = ∂Γ
∂s (s, t) over the rectangle. The vector field v(t, s)

is a variation field of the geodesic γs(t) = expx
(
t exp−1

x ξ(s)
)

with v(0, s) = 0. Thus, v(s, t)
is an initial zero Jacobi field and we can apply Theorem 30 at t = 1. Since the sectional
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curvature ofM is upper bounded by K, we can use the normalization of the geodesic γs(t)
to get

θτr = ‖v(1, s)‖ ≥ s
(
K, d(x, ξ(s))

)
‖v̇(0, s)‖. (44)

Next, we apply Theorem 30 to v(s, t) at t = 1
τ . Since the sectional curvature of M is

lower bounded by κ, we can use the normalization of the geodesic γs(t) to get

‖v(1/τ, s)‖ ≤ s(κ,
d(x, ξ(s))

τ
)‖v̇(0, s)‖ (45)

Combining (44) and (45), we obtain

‖v(1/τ, s)‖ ≤
s(κ, d(x,ξ(s))

τ )

s(K, d(x, ξ(s)))
τθr.

By concavity of the function sin(x) in [0, π], we can get

sin(
√
Kd(x, ξ(s))) ≥ τ sin(

√
K
d(x, ξ(s))

τ
),

which derives
1

τ
s(K, d(x, ξ(s))) ≥ s(K,

d(x, ξ(s))

τ
)

and

‖v(1/τ, s)‖ ≤
s(κ, d(x,ξ(s))

τ )

s(K, d(x, ξ(s)))
τθr ≤

s(κ, d(x,ξ(s))
τ )

s(K, d(x,ξ(s))
τ )

θr

Since d(x, ξ(s)) ≤ d(x, y) + d(y, z) ≤ τ(D + r), we have

‖v(1/τ, s)‖ ≤ s(κ,D + r)

s(K,D + r)
θr =

s(κ,D + r)

s(K,D + r)

s(K,D + r)

s(κ,D + r)
r = r.

Hence, the length of the curve c(s) = Γ(1/τ, s) is bounded by

l(c(s)) =

∫ 1

0
‖v(1/τ, s)‖ds ≤

∫ 1

0
rds = r.

Notice that p = Γ(1/τ, 0) and denote w = Γ(1/τ, 1), we have d(p, w) ≤ l(c(s)) = r,
which means that w ∈ Br(p) ⊂ K.

Therefore, for the geodesic γ1(t), we have γ1(0) = x ∈ K and γ1(1/τ) = w ∈ K. Thus,
by g-convexity, we have z = γ1(1) ∈ K, which completes our proof.

Now we carry out the proofs of Theorems 14 and 15.
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E.1 Proof of Theorem 14

First, we focus on the update rule of yt, that is

yt+1 = P(1−τ)K ◦PK

(
expyt(αtgt)

)
= P(1−τ)K ◦PK

(
expyt

( D

C
√
ζ(κ,D)T

gt
))

= P(1−τ)K ◦PK

(
expyt

( D
Sδ
Vδ
C
√
ζ(κ,D)T

(
Sδ
Vδ

gt)
))
.

Since

gt = ft(xt)
exp−1

yt (xt)

‖ exp−1
yt (xt)‖

,

from Lemma 11 we obtain E
[
Sδ
Vδ

gt

∣∣∣yt] = ∇f̂(yt) and E
[
‖SδVδ gt‖

]
≤ Sδ

Vδ
C. Moreover, according

to Lemma 13, f̂t is 2δρL-sub g-convex. Also, for all x ∈ K and y ∈ (1− τ)K, we have

d2(P(1−τ)K(x)), y)− d2(x, y) ≤ 2D · d(P(1−τ)K(x)), x)

≤ 2D · d(expp((1− τ) exp−1
p (x)), x)

≤ (2D)(τD) = 2τD2. (46)

Thus, the update rule in Algorithm 2 is exactly the expected gradient descent in Lemma
42 with parameters S = (1− τ)K, G = Sδ

Vδ
C, λ1 = 2δρL and λ2 = 2τD2. We can get

E
[ T∑
t=1

ft(yt)
]
− min
x∈(1−τ)K

T∑
t=1

ft(x) ≤ Sδ
Vδ
DC

√
ζ(κ,D)T + 2δρLT + 2τD2T. (47)

From the inequality Sδ
Vδ
≤ n

δ + n|κ|δ in Lemma 11, we have

E
[ T∑
t=1

ft(yt)
]
− min
x∈(1−τ)K

T∑
t=1

ft(x) ≤ (
n

δ
+ n|κ|δ)DC

√
ζ(κ,D)T + 2δρLT + 2τD2T. (48)

Applying Lemma 44 in (48), we have that

E[Reg(T )] ≤ (
n

δ
+ n|κ|δ)DC

√
ζ(κ,D)T + 3δLT + τDLT + 2δρLT + 2τD2T. (49)

Finally, taking τ = δ
rθ and δ = T−

1
4 in (49), we get

E[Reg(T )] ≤ n

δ
DC

√
ζ(κ,D)T + n|κ|δDC

√
ζ(κ,D)T + 3δLT + τDLT + 2δρLT + 2τD2T

≤ nDC
√
ζ(κ,D)T

3
4 + n|κ|DC

√
ζ(κ,D)T

1
4 + (3L+

DL

rθ
+

2D2

rθ
+ 2ρL)T

3
4

≤ n|κ|DC
√
ζ(κ,D)T

1
4 +

(
nDC

√
ζ(κ,D) + 3L+

DL

rθ
+

2D2

rθ
+ 2ρL

)
T

3
4 ,

which completes our proof. �
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E.2 Proof of Theorem 15

As we have carried out in the proof of Theorem 14, we focus on the update rule of yt, that
is

yt+1 = P(1−τ)K ◦PK

(
expyt

(
αtgt

))
= P(1−τ)K ◦PK

(
expyt

(B
µt

gt
))

= P(1−τ)K ◦PK

(
expyt

( B
Sδ
Vδ
µt

Sδ
Vδ

gt
))
.

Since

gt = f(xt)
exp−1

yt (xt)

‖ exp−1
yt (xt)‖

,

from Lemma 11 we obtain E
[
Sδ
Vδ

gt

∣∣∣yt] = ∇f̂(yt) and E
[
‖SδVδ gt‖

]
≤ Sδ

Vδ
C. Additionally,

according to Lemma 13, f̂t is µ-strongly (2ρL + 2Dµ)δ-sub g-convex. Thus, the update
rule in Algorithm 2 is exactly the expected gradient descent in Lemma 43 with parameters
S = (1− τ)K, G = Sδ

Vδ
C, λ1 = (2ρL+ 2Dµ)δ, λ2 = 2τD2 and ν = BVδ

Sδ
. We can get,

E
[ T∑
t=1

ft(yt)
]
− min
x∈(1−τ)K

T∑
t=1

ft(x) ≤ 1

2µ
ζ(κ,D)(

Sδ
Vδ

)2C2BVδ
Sδ

(1 + log T )

+ (2ρL+ 2Dµ)δT + 2τD2T

≤ 1

2µ
Bζ(κ,D)

Sδ
Vδ
C2(1 + log T )

+ (2ρL+ 2Dµ)δT + 2τD2T.

From the inequality Sδ
Vδ
≤ n

δ + n|κ|δ = B in Lemma 11, we have

E
[ T∑
t=1

ft(yt)
]
− min
x∈(1−τ)K

T∑
t=1

ft(x) ≤ 1

2µ
(
n

δ
+ n|κ|δ)2ζ(κ,D)C2(1 + log T )

+ (2ρL+ 2Dµ)δT + 2τD2T

≤ n2

µ
(

1

δ2
+ κ2δ2)ζ(κ,D)C2(1 + log T )

+ (2ρL+ 2Dµ)δT + 2τD2T.

Applying Lemma 44, we have that

E[R(T )] ≤ 1

µ
(
n2

δ2
+ n2κ2δ2)ζ(κ,D)C2(1 + log T ) + (2ρL+ 2Dµ)δT

+ 3δLT + τDLT + 2τD2T. (50)
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Taking τ = δ
rθ and δ =

3

√
n2C2(1+log T )

T in (50), we get

E[Reg(T )] ≤ n
2
3C

2
3 ζ(κ,D)

µ
(1 + log T )

1
3T

2
3 +

n2C2δ2κ2ζ(κ,D)

µ
(1 + log T )

+ n
2
3C

2
3 (3L+

DL

rθ
+

2D2

rθ
+ 2ρL+ 2Dµ)(1 + log T )

1
3T

2
3

≤ n
2
3C

2
3 ζ(κ,D)

µ
(1 + log T )

1
3T

2
3 +

n
8
3C

8
3Dκ2ζ(κ,D)

µ
(1 + log T )

4
3T−

1
3

+ n
2
3C

2
3 (3L+

DL

rθ
+

2D2

rθ
+ 2ρL+ 2Dµ)(1 + log T )

1
3T

2
3

≤ 2n
8
3C

8
3Dκ2ζ(κ,D)

µ

+ n
2
3C

2
3
(ζ(κ,D)

µ
+ 3L+

DL

rθ
+

2D2

rθ
+ 2Dµ

)
(1 + log T )

1
3T

2
3 ,

where the last inequality is due to maxT≥1
3

√
(1+log T )4

T = 4
e

3
√

4 ≤ 2.Then we completes our
proof. �

Appendix F. Proofs of Theorems 18 and 19

In this section, we present proof of the regret bounds of the R-2-BAN algorithm.

F.1 Proof of Lemma 17

We first examine (i). By Lemma 38, M is homogeneous. Thus from Lemma 11 we know

∇f̂(x) =
Sδ
Vδ

Eu∈Sδ(x)

[
f(u)

exp−1
x (u)

‖ exp−1
x (u)‖

]
=

1

Vδ

∫
Sδ(x)

f(u)
exp−1

x (u)

‖ exp−1
x (u)‖

ωSδ(x). (51)

From Lemma 37, we notice that the symmetry sx maps a random variable u ∈M to

sx(u) = exp(− exp−1
x (u)) = −u.

Substituting sx(u) with u in (51) yields

∇f̂(x) =
1

Vδ

∫
Sδ(x)

f(sx(u))
exp−1

x (sx(u))

‖ exp−1
x (sx(u))‖

s∗xωSδ(x)

=
1

Vδ

∫
Sδ(x)

f(−u)
− exp−1

x (u)

‖ − exp−1
x (u)‖

s∗xωSδ(x).

Since sx is a isometry, we have s∗xωSδ(x) = ωSδ(x). Therefore,

∇f̂(x) =
1

Vδ

∫
Sδ(x)

−f(−u)
exp−1

x (u)

‖ exp−1
x (u)‖

ωSδ(x)

=
Sδ
Vδ

Eu∈Sδ(x)

[
− f(−u)

exp−1
x (u)

‖ exp−1
x (u)‖

]
. (52)

50



Online Optimization over Riemannian Manifolds

Combining (51) and (52), we have

2∇f̂(x) =
Sδ
Vδ

Eu∈Sδ(x)

[
f(u)

exp−1
x (u)

‖ exp−1
x (u)‖

]
+
Sδ
Vδ

Eu∈Sδ(x)

[
− f(−u)

exp−1
x (u)

‖ exp−1
x (u)‖

]
=
Sδ
Vδ

Eu∈Sδ(x)

[
(f(u)− f(−u))

exp−1
x (u)

‖ exp−1
x (u)‖

]
=
Sδ
Vδ

Eu∈Sδ(x)

[
g̃
]
,

which completes the proof of (i).
Then we prove (ii). Notice that

Eu∈Sδ(x)[
Sδ
Vδ
‖g̃‖] ≤ Sδ

2Vδ
|f(expx u)− f(expx−u)| ≤ Sδ

2Vδ
2Lδ. (53)

It follows from Lemma 11 that

Sδ
Vδ
≤ n

δ
+ n|κ|δ. (54)

Putting (53) and (54) together we get

Eu∈Sδ(x)[
Sδ
Vδ
‖g̃‖] ≤ 1

2
(
n

δ
+ n|κ|δ)2Lδ = nL(1 + |κ|δ2),

which completes our proof. �

F.2 Gap between Regrets

As in the one-point bandit case, we also conclude the gap between the regret of f̂t and the
real regret of ft in Lemma 46 for the two-point bandit case.

Lemma 46 Suppose all ft are g-L-Lipschitz. The (expected) regret of the R-BAN algorithm
satisfies

E[Reg(T )] ≤ E
[ T∑
t=1

(f̂t(yt))
]
− min
x∈(1−τ)K

T∑
t=1

f̂t(x) + 3δLT + τDLT.

Proof Denote by x∗τ the minimizer of the problem minx∈(1−τ)K
∑T

t=1 ft(x). The expectation
can be reformulated as follows

E[Reg(T )] =
T∑
t=1

E
[1

2
(ft(xt,1) + ft(xt,2))− ft(x

∗)
]

= E
[ T∑
t=1

(
1

2
(ft(xt,1) + ft(xt,2))− ft(yt))

]
+ E

[ T∑
t=1

(ft(yt)− f̂t(yt))
]

+ E
[ T∑
t=1

(f̂t(yt)− f̂t(x
∗
τ ))
]

+ E
[ T∑
t=1

(f̂t(x
∗
τ )− ft(x

∗
τ ))
]

+ E
[ T∑
t=1

(ft(x
∗
τ )− ft(x

∗))
]
.
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The Lipschitz condition leads to
ft(xt,1)− ft(yt) ≤ δL
ft(xt,2)− ft(yt) ≤ δL
ft(yt)− f̂t(yt) ≤ δL
f̂t(x

∗
τ )− ft(x

∗
τ ) ≤ δL.

In addition, Lemma 44 shows that

T∑
t=1

(ft(x
∗
τ )− ft(x

∗)) ≤ τDLT.

Thus, we can conclude

E[Reg(T )] ≤ E
[ T∑
t=1

(f̂t(yt)− f̂t(x
∗
τ ))
]

+ 3δLT + τDLT.

which is the desired result.

F.3 Proof of Theorem 18

Denote g̃t = Sδ
2Vδ

(
ft(expxt ut)− ft(expxt(−ut))

)
ut
‖ut‖ . The update rule of yt is

yt+1 = P(1−τ)K ◦PK
(

expyt(αtg̃t)
)

= P(1−τ)K ◦PK
(

expyt(
D

δL
√
ζ(κ,D)T

g̃t)
)

= P(1−τ)K ◦PK
(

expyt(
D

Sδ
Vδ
δL
√
ζ(κ,D)T

Sδ
Vδ

g̃t)
)
.

Since

g̃t =
1

2

(
ft(xt,1)− ft(xt,2)

) exp−1
yt (xt,1)

‖ exp−1
yt (xt,1)‖

,

from Lemma 17 we obtain E
[
Sδ
Vδ

g̃t

∣∣∣yt] = ∇f̂(yt) and E
[
‖SδVδ g̃t‖

]
≤ Sδ

Vδ
δL. Additionally,

according to Lemma 13, f̂t is 2δρL-sub g-convex. Thus, the update rule in Algorithm 2
is exactly the expected gradient descent in Lemma 42 with parameters S = (1 − τ)K,
G = Sδ

Vδ
δL, λ1 = 2δρL and λ2 = 2τD2. We can get

E
[ T∑
t=1

ft(yt)
]
− min
x∈(1−τ)K

T∑
t=1

ft(x) ≤ Sδ
Vδ
DδL

√
ζ(κ,D)T + 2δρLT + 2τD2T. (55)

From the inequality Sδ
Vδ
≤ n

δ + n|κ|δ in Lemma 11, we have

E
[ T∑
t=1

ft(yt)
]
− min
x∈(1−τ)K

T∑
t=1

ft(x) ≤ (
n

δ
+ n|κ|δ)DδL

√
ζ(κ,D)T + 2δρLT + 2τD2T. (56)
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Applying Lemma 44 in (56), we have that

E[Reg(T )] ≤ (
n

δ
+ n|κ|δ)DδL

√
ζ(κ,D)T + 3δLT + τDLT + 2δρLT + 2τD2T. (57)

Finally, taking τ = δ
rθ and δ = 1√

T
in (57), we get

E[Reg(T )] ≤ nDL
√
ζ(κ,D)T + n|κ|δ2DL

√
ζ(κ,D)T + 3δLT + τDLT + 2δρLT + 2τD2T

≤ nDL
√
ζ(κ,D)T + n|κ|DL

√
ζ(κ,D)

1√
T

+ (3L+
DL

rθ
+

2D2

rθ
+ 2ρL)

√
T

≤ n|κ|DL
√
ζ(κ,D)

1√
T

+
(
nDL

√
ζ(κ,D) + 3L+

DL

rθ
+

2D2

rθ
+ 2ρL

)√
T ,

which completes our proof. �

F.4 Proof of Theorem 19

As we do in the proof of Theorem 14, we focus on the update rule of yt, that is

yt+1 = P(1−τ)K ◦PK

(
expyt

(
αtg̃t

))
= P(1−τ)K ◦PK

(
expyt

(B
µt

g̃t
))

= P(1−τ)K ◦PK

(
expyt

( B
Sδ
Vδ
µt

Sδ
Vδ

g̃t
))
.

Since

g̃t =
Sδ
2Vδ

(
f(expxt ut)− ft(expxt(−ut))

) ut
‖ut‖

,

from Lemma 17 we obtain E
[
Sδ
Vδ

gt

∣∣∣yt] = ∇f̂(yt) and E
[
‖SδVδ gt‖

]
≤ Sδ

Vδ
δL. Additionally,

according to Lemma 13, f̂t is µ-strongly (2ρL + 2Dµ)δ-sub g-convex. Thus, the update
rule in Algorithm 2 is exactly the expected gradient descent in Lemma 43 with parameters
S = (1− τ)K, G = Sδ

Vδ
δL, λ1 = (2ρL+ 2Dµ)δ, λ2 = 2τD2 and ν = BVδ

Sδ
. We can get,

E
[ T∑
t=1

ft(yt)
]
− min
x∈(1−τ)K

T∑
t=1

ft(x) ≤ 1

2µ
ζ(κ,D)(

Sδ
Vδ

)2δ2L2BVδ
Sδ

(1 + log T )

+ (2ρL+ 2Dµ)δT + 2τD2T

≤ 1

2µ
Bζ(κ,D)

Sδ
Vδ
δ2L2(1 + log T )

+ (2ρL+ 2Dµ)δT + 2τD2T.
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From the inequality Sδ
Vδ
≤ n

δ + n|κ|δ = B in Lemma 11, we have

E
[ T∑
t=1

ft(yt)
]
− min
x∈(1−τ)K

T∑
t=1

ft(x) ≤ 1

2µ
(n+ n|κ|δ2)2ζ(κ,D)L2(1 + log T )

+ (2ρL+ 2Dµ)δT + 2τD2T

≤ n2

µ
(1 + κ2δ4)ζ(κ,D)L2(1 + log T )

+ (2ρL+ 2Dµ)δT + 2τD2T.

Applying Lemma 44, we have that

E[Reg(T )] ≤n
2

µ
(1 + κ2δ4)ζ(κ,D)L2(1 + log T ) + 3δLT + τDLT

+ (2ρL+ 2Dµ)δT+2τD2T .

Taking τ = δ
rθ and δ = 1+log T

T , we get

E[Reg(T )] ≤ n2L2ζ(κ,D)

µ
(1 + log T ) +

n2C2κ2ζ(κ,D)

µ

(1 + log T )5

T 4

+ (3L+
DL

rθ
+

2D2

rθ
+ 2ρL+ 2Dµ)(1 + log T )

≤ 3n2C2κ2ζ(κ,D)

2µ
+
(ζ(κ,D)n2L2

µ

+ 3L+
DL+ 2D2

rθ
+ 2ρL+ 2Dµ

)
(1 + log T ).

The last inequality is due to maxT≥1
(1+log T )5

T 4 = 3

√
3125
1024e ≤

3
2 . Then we completes our

proof. �

Appendix G. Proof of Statements in Section 6

G.1 Proof of Lemma 21

Lemma 47 (Walter, 1974) Set K ⊂M, then for any y ∈M \ K,

〈exp−1
PK(y)(y), exp−1

PK(y)(x)〉 ≤ 0, ∀x ∈ K.

Lemma 48 Suppose (M, g) is a Riemannian manifold whose sectional curvature is bounded
above by K > 0 and x ∈ K. Then for any y ∈ M, if there exists a geodesic γ lying in the
geodesic ball BD(x) for some D ≤ π√

K
that connects y and PK(y), then,

d2(x,PK(y))− d2(x, y) ≤ σ(κ,D)d2(y,PK(y)).

Proof Since γ ⊂ BD(x) ⊂ B π√
K

(x), we can apply Hessian comparison theorem (Theorem

33) to ρ(p) = d(x, p), which implies

∇2ρ(p) �
√
K cot(ρ(p)

√
K) ≥

√
K cot(

√
KD)Id, ∀p ∈ γ.
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Then for ρ2(p) = d2(x, p), we have

∇2ρ2(p) = ρ∇2ρ+∇ρ∇ρT �

{
0, if D ≥ π

2
√
K
,

√
KD cot(

√
KD)Id, if π

2
√
K
< D ≤ π√

K
,
∀p ∈ γ,

which means that

∇2ρ2(p) � −σ(K,D)Id, ∀p ∈ γ.

By the mean value theorem, there exist a q ∈ γ such that

ρ2(y)− ρ2(PK(y)) = 〈∇ρ2(PK(y)), exp−1
PK(y)(y)〉+∇2ρ(q)(exp−1

PK(y)(y), exp−1
PK(y)(y))

≥ −〈exp−1
PK(y)(x), exp−1

PK(y)(y)〉 − σ(κ,D)d2(y,PK(y)). (58)

Lemma (47) yields
〈exp−1

PK(y)(x), exp−1
PK(y)(y)〉 ≤ 0.

Hence,

ρ2(y)− ρ2(PK(y)) = d2(x, y)− d2(x,PK(y)) ≥ −σ(κ,D)d2(y,PK(y)),

which completes our proof.

We now carry out our proof of Lemma 21.
Proof Since xt+1 = PK(x̃t+1) ∈ K, we have

d(xt+1, x
∗) ≤ D <

π

2
√
K
. (59)

Also, we have

d(x̃t+1, xt+1) = ‖αtgt‖ ≤ D <
π

2
√
K
, (60)

which implies there is an unique geodesic γ connecting x̃t+1 and xt+1 by Lemma 31. For
any point s ∈ γ, we can find

d(x∗, s) ≤ d(x∗, xt+1) + d(xt+1, s)

≤ d(x∗, xt+1) + d(xt+1, x̃t+1)

≤ 2D <
D√
K
.

So γ is contained in the geodesic ball B2D(x∗) ⊂ B D√
K

(x∗), which satisfies the condition in

Lemma 48. It give us

1

2αt

(
d2(xt+1, x

∗)− d2(x̃t+1, x
∗)
)
≤ 1

2αt

(
σ(κ, 2D)d2(xt+1, x̃t+1)

)
(61)

≤ 1

2αt

(
σ(κ, 2D)d2(xt, x̃t+1)

)
(62)

≤ σ(κ, 2D)αt‖gt‖2. (63)

Summing t from 1 to T , we complete our proof.
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G.2 Proof of Lemma 22

The second part is directly from the first part of lemma. So we focus on the first part of
the lemma. By the proof of Lemma 13, we have

f̂(y)− f̂(x)− 〈∇f̂(x), exp−1
x (y)〉 ≥ 1

Vδ

(∫
Sδ(x)

f(u)
(
〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉

)
ωSδ(x)

)
− 1

Vδ

(∫
Bδ(x)

Div(V )f(u)ω
)
.

Here we change (∗) with the claim (∗∗)

〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉 − 1

2
π2ιδ ≤ 0, ∀u ∈ Sδ(x). (∗∗)

This claim requires many geometric details that deviates our attention from the proof, and
we will prove it afterwards.

If the claim (∗∗) holds, we have∫
Sδ(x)

f(u)
(
〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉

)
ωSδ(x)

≥
∫
Sδ(x)

f(u)
(
〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉 − 1

2
π2ιδ

)
+
(
f(u)

1

2
π2ιδ

)
ωSδ(x).

(64)

Then with the g-L-Lipschitz of f and the condition f(x) = 0, we have |f(u)| ≤ δL, thus∫
Sδ(x)

f(u)
(
〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉

)
ωSδ(x) (65)

≥
∫
Sδ(x)

δL
(
〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉 − 1

2
π2ιδ

)
−
(
δL

1

2
π2ιδ

)
ωSδ(x) (66)

=

∫
Sδ(x)

δL〈V (u), ~n(u)〉ωSδ(x) −
∫
Sδ(x)

δL〈V (x), ~m(u)〉ωSδ(x) − π2ιδ2LSδ. (67)

Continuing to analyze the first two terms with the method in the proof of Lemma 13, we
have

f̂(y)− f̂(x)− 〈∇f̂(x), exp−1
x (y)〉 ≥ − 1

Vδ

(∫
Bδ(x)

Div(V )(f(x) + δL)ω
)
− Sδ
Vδ
π2ιLδ2

≥ −2δL sup
u∈Bδ(x)

|Div(V (u))| − (
n

δ
+ n|κ′|δ)π2ιLδ2

= −2δL sup
u∈Bδ(x)

|Div(V (u))| − (n+ n|κ′|δ2)π2ιLδ.

Again, setting
ρ = sup

(x,y,u)∈K̄×K̄×K̄
|Div(V (u))| <∞,

we establish the
(
2ρδL+ (n+ n|κ′|δ2)π2ιLδ

)
-sub g-convexity.
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For proving (ii), It is sufficient to show

1

Vδ

∫
Bδ(x)

µ

2
d2(u, φ(u))ω ≥ µ

2
d2(x, y)− 4δD,

which is obvious from the fact d2(u, φ(u)) − d2(x, y) = (d(u, φ(u)) + d(x, y))(d(u, φ(u)) −
d(x, y)) ≤ 2D · 2δ = 4Dδ. �

G.3 Proof of the Claim (∗∗)

We use the symbol as same as those in the proof of the Claim (∗). Note that the rectangle
map Γ is defined by

Γu : [0, 1]× [0, δ]→M
(t, s)→ expξu(s)(tV (ξu(s))).

and the length of the s-curve lu(t) is described by

lu(t) =

∫ δ

0

√
〈S(t, s), S(t, s)〉ds.

We have

l′u(0) = 〈V (u), ~n(u)〉 − 〈V (x), ~m(u)〉,

and

l′′u(t) ≥
∫ δ

0

1

‖S‖
−R(T, S, S, T )ds.

The following analysis is quite different because the section curvature ofM is no longer
non positive, but bounded by K > 0. As a result, we have

l′′u(t) ≥
∫ δ

0

1

‖S‖
−R(T, S, S, T )ds

≥
∫ δ

0

1

‖S‖
−K‖T‖2‖S‖2ds

=

∫ δ

0
−K‖T‖2‖S‖dS

≥ −KD2

∫ δ

0
‖S‖dS. (68)

Then we try to estimate the norm ‖S(t, s)‖ in [0, 1]× [0, δ]. We separate the Jacobi field

S(t, s) = S0(t, s) + S1(t, s).

over the geodesic γs(t) for every t ∈ [0, 1], where Si(t, s) is also a Jacobi field with condition
Si(i, s) = S(i, s) and Si(1− i, s) = 0. We estimate ‖Si(t, s)‖ with Theorem 30. W.l.o.g., we
set i = 0.
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Since all sectional curvature of M is bounded below by κ′, we have

‖S0(t, s)‖ ≤ s(κ′, t‖T (t, s)‖)‖Ṡ0(0, s)‖. (69)

Also, since all sectional curvature of M is bounded above by K, we have

1 = ‖S0(t, s)‖ ≥ s(K, t‖T (t, s)‖)‖Ṡ0(0, s)‖. (70)

Putting (69) and (70) together, we have

‖S0(t, s)‖ ≤ s(κ′, t‖T (t, s)‖)
s(K, t‖T (t, s)‖)

.

With the condition t‖T (t, s)‖ ≤ ‖T (t, s)‖ ≤ D, we have

‖S0(t, s)‖ ≤ s(κ′, D)

s(K,D)
=

1

2
ι.

Then we finally get

‖S(t, s)‖ = ‖S0(t, s)‖+ ‖S1(t, s)‖ ≤ 1

2
ι+

1

2
ι = ι. (71)

Putting (71) into (68), we have

l′′u(t) ≥ −KD2

∫ δ

0
‖S‖dS (72)

≥ −KD2ιδ (73)

≥ −π2ιδ. (74)

Hence, by the mean value theorem there exists a t ∈ (0, 1) such that

lu(1) = lu(0) + l′u(0) +
1

2
l′′u(t) (75)

≥ lu(0) + l′u(0)− 1

2
π2ιδ. (76)

With the equality (36), we have

l′u(0) ≤ 1

2
π2ιδ, (77)

which complete our proof of claim (∗∗). �

G.4 Proof of Theorem 24

Lemma 49 Suppose that S is subset of a unique g-convex set K ⊆ M with the diameter
D ≤ π

2
√
K

, and {ft}t=1,2,...,T is a series of λ1-sub µ-strongly g-convex functions. Let the

sequence be generated by

xt+1 = H (PK(expxt(−αtgt))), (78)
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where the random vector gt satisfies that E[gt|xt] = ∇ft(xt), ‖gt‖ ≤ G and the operator H
satisfies (37). For constants ν ≥ 1 and c0 ≥ νG

µD , if the step size αt = ν
µ(t+c0) , then

E[

T∑
i=1

ft(xt)]−min
x∈S

T∑
i=1

ft(x) ≤ D2µc0

2
+ λ1T + λ2T

+
1

2
(ζ(κ,D) + σ(K, 2D))νG2(1 + log(T + c0))).

Proof By Lemma 43, we have

E[ft(xt)− ft(x
∗)] ≤ E

[
〈gt, exp−1

xt (x∗)〉 − µ

2
d2(xt, x

∗)
]

+ λ1.

Denote x̃t+1 = expxt(−αtgt). Recalling Lemma 35 in the geodesic triangle 4xtx̃t+1x
∗ gives

that

〈−αtgt, exp−1
xt (x∗)〉 ≤ 1

2
(d2(xt, x

∗)− d2(x̃t+1, x
∗)) +

1

2
ζ(κ, d(xt, x))‖αtgt‖2. (79)

Combining (11) and (12), we get

E[ft(xt)− ft(x
∗)] ≤ 1

2αt
(d2(xt, x

∗)− d2(x̃t+1, x
∗)) +

1

2
ζ
(
κ, d(xt, x

∗)
)
αt‖gt‖2

− µ

2
d2(xt, x

∗) + λ1

≤ 1

2αt
(d2(xt, x

∗)− d2(PK(x̃t+1), x∗))

+
1

2αt
(d2(PK(x̃t+1), x∗)− d2(x̃t+1, x

∗))

+
1

2
ζ
(
κ, d(xt, x

∗)
)
αtG

2 − µ

2
d2(xt, x

∗) + λ1

≤ 1

2αt
(d2(xt, x

∗)− d2(xt+1, x
∗)) +

1

2αt
(d2((PK(x̃t+1), x∗)− d2(x̃t+1, x

∗))

+
1

2
ζ
(
κ, d(xt, x

∗)
)
αtG

2 − µ

2
d2(xt, x

∗) + λ1 + λ2. (80)

Summing (80) from 1 to T , we obtain

E[
T∑
i=1

ft(xt)]−min
x∈S

T∑
i=1

ft(x)

≤
T∑
t=1

(d2(xt, x
∗)

1

2αt
− 1

2αt−1
− µ

2
) +

T∑
t=1

1

2
ζ
(
κ, d(xt, x

∗)
)
G2αt + λ1T + λ2T

+
T∑
t=1

1

2αt
(d2(PK(x̃t+1), x∗)− d2(x̃t+1, x

∗))

≤
T∑
t=1

d2(xt, x
∗)(

1

2αt
− 1

2αt−1
− µ

2
) +

1

2
ζ(κ,D)G2

T∑
t=1

αt

+
T∑
t=1

1

2αt
(d2(PK(x̃t+1), x∗)− d2(x̃t+1, x

∗)) + λ1T + λ2T.
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By Lemma 21, we have

T∑
t=1

1

2αt
(d2(PK(x̃t+1), x∗)− d2(x̃t+1, x

∗)) ≤ σ(K, 2D)
T∑
t=1

1

2
αt‖gt‖2

≤ 1

2
σ(K, 2D)G2

T∑
t=1

αt

Thus

E[

T∑
i=1

ft(xt)]−min
x∈S

T∑
i=1

ft(x) ≤
T∑
t=1

(d2(xt, x
∗)(

1

2αt
− 1

2αt−1
− µ

2
)

+
1

2µ
(ζ(κ,D) + σ(K, 2D))G2

T∑
t=1

αt + λ1T + λ2T.

Taking αt = ν
µ(t+c0) , we have

E[

T∑
i=1

ft(xt)]−min
x∈S

T∑
i=1

ft(x) ≤ d2(x1, x
∗)(

µ(c0 + 1)

2ν
− µ

2
)

+
1

2
(ζ(κ,D) + σ(K, 2D))νG2

(
1 + log(T + c0)

)
+ λ1T + λ2T

≤ D2µc0

2
+ λ1T + λ2T

+
1

2µ
(ζ(κ,D) + σ(K, 2D))νG2

(
1 + log(T + c0)

)
,

which proves Lemma 49.

We are now ready to prove Theorem 24.

Proof (i) R-OGD algorithm: The update rule in the R-OGD algorithm is actually (78)
with S = K, G = L, ν = 1 and λ1 = λ2 = 0. By Lemma 49, the regret bound of the
R-OGD is

Reg(T ) = E[

T∑
i=1

ft(xt)]−min
x∈K

T∑
i=1

ft(x)

≤ D2µc0

2
+

1

2
(ζ(κ,D) + σ(K, 2D))G2

(
1 + log(T + c0)

)
.

which completes the proof of the R-OGD algorithm.

(ii) R-BAN algorithm: It follows from Lemma 44 that

E[Reg(T )] ≤ E
[ T∑
t=1

(f̂t(yt)− f̂t(x
∗
τ ))
]

+ 3δLT + τDLT. (81)
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As shown in the proof of Theorem 14, the update rule of yt is actually (78) with parameter
S = (1−τ)K, ν = BVδ

Sδ ,G = Sδ
Vδ
C, λ1 =

(
2ρδL+2Dµδ+(n+n|κ′|δ2)π2ιLδ

)
, and λ2 = 2τD2.

By Lemma 49,

E
[ T∑
t=1

(f̂t(yt)− f̂t(x
∗
τ ))
]
≤ D2µc0

2
+

1

2µ
(ζ(κ,D) + σ(K, 2D))

BVδ
Sδ

(
Sδ
Vδ

)2C2(1 + log(T + c0))

+ 2δρLT + 2DµδT + 2τD2T + (n+ n|κ′|δ2)π2ιLδT

≤ D2µc0

2
+

1

2µ
(ζ(κ,D) + σ(K, 2D))B2C2(1 + log(T + c0))

+ 2δρLT + 2DµδT + 2τD2T + (n+ n|κ′|δ2)π2ιLδT

≤ D2µc0

2
+ 2τD2T + 2δρLT + 2DµδT + (n+ n|κ′|δ2)π2ιLδT

+
1

µ
(ζ(κ,D) + σ(K, 2D))(

n2

δ2
+ n2κ′2δ2)C2(1 + log(T + c0)).

(82)

Combining (81) and (82), we have

E[Reg(T )] ≤ D2µc0

2
+

1

µ
(ζ(κ,D) + σ(K, 2D))(

n2

δ2
+ n2κ′2δ2)C2(1 + log(T + c0))

+ 2δρLT + 2DµδT + (n+ n|κ′|δ2)π2ιLδT + 3δLT + τDLT + 2τD2T.

Taking τ = δ
rθ and δ = 3

√
nC(1+log(T+c0))

T in (49), we get

E[Reg(T )] ≤ D2µc0

2
+

1

µ
(ζ(κ,D) + σ(K, 2D))n

4
3C

4
3 (1 + log(T + c0))

1
3T

2
3

+
1

µ
(ζ(κ,D) + σ(K, 2D))C2n2κ′2δ2(1 + log(T + c0))

+
(
2ρL+ 3L+

DL

rθ
+

2D2

rθ
+ 2Dµ

)
n

1
3C

1
3 (1 + log(T + c0))

1
3T

2
3

+ (nπ2ιL+ n|κ′|δ2π2ιL)n
1
3C

1
3 (1 + log(T + c0))

1
3T

2
3

≤ D2µc0

2
+

1

µ
(ζ(κ,D) + σ(K, 2D))n

4
3C

4
3 (1 + log(T + c0))

1
3T

2
3

+
1

µ
(ζ(κ,D) + σ(K, 2D))C

8
3n

8
3κ′2D(1 + log(T + c0))

4
3T−

1
3

+
(
2ρL+ 3L+

DL

rθ
+

2D2

rθ
+ 2Dµ

)
n

1
3C

1
3 (1 + log(T + c0))

1
3T

2
3

+ (nπ2ιL+ n|κ′|δ2π2ιL)n
1
3C

1
3 (1 + log(T + c0))

1
3T

2
3 .
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Then, we have,

E[Reg(T )] ≤ D2µc0

2
+

4(c0 + 1)

µ
(ζ(κ,D) + σ(K, 2D))C

8
3n

8
3κ′2D

+
1

µ
(ζ(κ,D) + σ(K, 2D))n

4
3C

4
3 (1 + log(T + c0))

1
3T

2
3

+
(
2ρL+ 3L+

DL

rθ
+

2D2

rθ
+ 2Dµ

)
n

1
3C

1
3 (1 + log(T + c0))

1
3T

2
3

+ (n
4
3C

1
3π2ιL+ 2n

4
3C

4
3 |κ′|D2π2ι)(1 + log(T + c0))

1
3T

2
3 .

Finally, we have

E[Reg(T )] =
D2µc0

2
+

4(c0 + 1)

µ
(ζ(κ,D) + σ(K, 2D))C

8
3n

8
3κ′2D

+

(( 1

µ
(ζ(κ,D) + σ(K, 2D)) + |κ′|D2π2ι

)
n

4
3C

4
3 +

+
(
nπ2ι+ 2ρL+ 3L+

DL

rθ
+

2D2

rθ
+ 2Dµ

)
n

1
3C

1
3L

)
(1 + log(T + c0))

1
3T

2
3 .

The last inequality is due to δ < D, δL < 2C and

max
T≥1

3

√
(1 + log(T + c0))4

T
= max

T≥1

3

√
(1 + log(T + c0))4

T + c0

T + c0

T
≤ 4(c0 + 1).

Then we completes the proof of the R-BAN algorithm.

(iii) R-2-BAN algorithm: Notice that the update rule of yt is (78) with parameter
S = (1 − τ)K, ν = BVδ

Sδ , G = Sδ
Vδ
δL, λ1 =

(
2ρδL + 2Dµδ + (n + n|κ′|δ2)π2ιLδ

)
, and

λ2 = 2τD2. Hence,

E[Reg(T )] ≤ E
[ T∑
t=1

(f̂t(yt)− f̂t(x
∗
τ ))
]

+ 3δLT + τDLT

≤ D2µc0

2
+

1

2µ

(
ζ(κ,D) + σ(K, 2D)

)
B2δ2L2(1 + log(T + c0))

+ 3δLT + τDLT + 2δρLT + 2DµδT + 2τD2T + ((n+ n|κ′|δ2)π2ιLδ)T,

≤ D2µc0

2
+

1

µ

(
ζ(κ,D) + σ(K, 2D)

)
(n2 + n2κ′2δ4)L2(1 + log(T + c0))

+ 3δLT + τDLT + 2δρLT + 2DµδT + 2τD2T + ((n+ n|κ′|δ2)π2ιLδ)T.
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Taking τ = δ
rθ and δ = 1+log(T+c0)

T , we get

E[Reg(T )] ≤ D2µc0

2
+ n|κ′|π2ιL

(1 + log(T + c0))3

T 2

+
( 1

µ
(ζ(κ,D) + σ(K, 2D)

)
n2κ′

2
L2 (1 + log(T + c0))5

T 4

+
( 1

µ
(ζ(κ,D) + σ(K, 2D))n2L2

+ 3L+
2D2 +DL

rθ
+ 2ρL+ 2Dµ

)
(1 + log(T + c0))

≤ D2µc0

2
+
( 1

µ
(ζ(κ,D) + σ(K, 2D)

)3(c0 + 1)n2κ′
2
L2

2
+

3(c0 + 1)n|κ′|π2ιL

2

+
( 1

µ
(ζ(κ,D) + σ(K, 2D))n2L2

+ 3L+
DL+ 2D2

rθ
+ 2ρL+ 2Dµ

)
(1 + log(T + c0)). (83)

The last inequality is due to maxT≤1
(1+log(T+c0))5

T 4 and maxT≤1
(1+log(T+c0))3

T 2 are less than
3
2(c0 + 1). Then we complete our proof.
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