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Abstract

This paper studies accelerated gradient methods for nonconvex optimization with Lipschitz
continuous gradient and Hessian. We propose two simple accelerated gradient methods,
restarted accelerated gradient descent (AGD) and restarted heavy ball (HB) method, and
establish that our methods achieve an ε-approximate first-order stationary point within
O(ε−7/4) number of gradient evaluations by elementary proofs. Theoretically, our complexity
does not hide any polylogarithmic factors, and thus it improves over the best known one
by the O(log 1

ε ) factor. Our algorithms are simple in the sense that they only consist of
Nesterov’s classical AGD or Polyak’s HB iterations, as well as a restart mechanism. They
do not invoke negative curvature exploitation or minimization of regularized surrogate
functions as the subroutines. In contrast with existing analysis, our elementary proofs use
less advanced techniques and do not invoke the analysis of strongly convex AGD or HB.

Keywords: accelerated gradient descent, heavy ball method, restart, nonconvex optimiza-
tion, first-order stationary point

1. Introduction

Nonconvex optimization has become the foundation of training machine learning models and
emerging machine learning tasks can be modeled as nonconvex problems. Typical examples
include matrix completion (Hardt, 2014), one bit matrix completion (Davenport et al., 2014),
robust PCA (Netrapalli et al., 2014), phase retrieval (Candès et al., 2015), and deep learning
(LeCun et al., 2015). In this paper, we consider the following general nonconvex problem:

min
x∈Rd

f(x), (1)

where f(x) has Lipschitz continuous gradient and Hessian and it is bounded from below.
Our goal is to find an ε-approximate first-order stationary point, defined as

‖∇f(x)‖ ≤ ε.

1. Parts of this work appeared in ICML 2022 (Li and Lin, 2022). Corresponding author: Zhouchen Lin.
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Gradient descent, a fundamental algorithm in machine learning, is commonly used due to
its simplicity and practical efficiency. Theoretically, gradient descent is the optimal method
among the first-order algorithms for nonconvex optimization under the assumption that
the gradient is Lipschitz (Carmon et al., 2020), which means that we cannot find a first-
order method with theoretically faster convergence rate under these conditions. When we
assume additional structure, such as the Hessian Lipschitz geometry, improvement is possible.
On the other hand, for convex optimization, gradient descent is known to be suboptimal
and several accelerated gradient methods with theoretically faster convergence rate were
proposed. Typical examples include Polyak’s heavy ball (HB) method (Polyak, 1964) and
Nesterov’s accelerated gradient descent (AGD) (Nesterov, 1983, 1988, 2005). Motivated by
the theoretical optimality and practical efficiency of convex AGD and HB, AGD and HB
have been extended to nonconvex optimization (Carmon et al., 2018, 2017; Agarwal et al.,
2017; Jin et al., 2018). But there are still some issues, such as the suboptimal convergence
rate and complex algorithms and proofs. In this paper, we study the restarted AGD and
HB method, variants of the original AGD and HB by employing a restart mechanism. Our
aim is to establish a slightly faster convergence rate than the state-of-the-art accelerated
methods by elementary analysis for the two simple methods.

1.1 Literature Review

In this section, we briefly review the convergence rates of gradient descent, accelerated
gradient descent, and the heavy ball method for convex optimization, as well as the state-of-
the-art accelerated methods for nonconvex optimization.

1.1.1 Accelerated Gradient Methods for Convex Optimization

For convex problems, gradient descent is known to converge to an ε-optimal solution
within O(Lε ) and O(Lµ log 1

ε ) iterations for L-smooth convex problems and µ-strongly convex
problems, respectively (Nesterov, 2004). Polyak’s heavy ball method (Polyak, 1964) was the

first accelerated first-order method, which finds an ε-optimal solution in O(
√

L
µ log 1

ε ) steps

when the objective function is twice continuously differentiable, L-smooth, µ-strongly convex,
and the initializer is close enough to the minimum. Recently, Wang et al. (2022) extended

HB to the case without the locality condition. However, the O(
√

L
µ log 1

ε ) complexity only

holds after O(Lµ ) iterations. When strong convexity is absent, currently, only the O(Lε )
complexity is proved for smooth convex problems (Ghadimi et al., 2015), which is the same
as gradient descent. In a series of celebrated works (Nesterov, 1983, 1988, 2005), Nesterov

proposed several accelerated gradient descent methods. The same O(
√

L
µ log 1

ε ) complexity

is established for strongly convex problems without the twice continuous differentiability
and locality assumptions. Moreover, when the objective is L-smooth and convex, Nesterov’s

accelerated methods find an ε-optimal solution in O(
√

L
ε ) iterations, which is faster than

gradient descent and the heavy ball method in theory. Nesterov’s accelerated methods are
proven to be optimal among the first-order methods for convex optimization (Nesterov,
2004). For more topics on accelerated methods for convex optimization, interested readers
can refer to the survey paper (Li et al., 2020), for example.
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1.1.2 Accelerated Gradient Methods to Achieve Nonconvex First-order
Stationary Point

For nonconvex problems, gradient descent finds an ε-approximate first-order stationary point
of problem (1) in O(ε−2) iterations (Nesterov, 2004). Enormous amount of effort has been
spent on speeding up gradient descent in the last decade. Zavriev and Kostyuk (1993); Ochs
et al. (2014); Ochs (2018); Liang et al. (2016) studied the convergence of the HB method,
while Ghadimi and Lan (2016); Li and Lin (2015); Li et al. (2017) studied AGD. The practical
efficiency is verified empirically and there is no theoretical speedup under the assumption of
Lipschitz gradient. With the additional Lipschitz Hessian assumption, Carmon et al. (2017)
proposed a “convex until proven guilty” mechanism with nested-loop, which converges to
an ε-approximate first-order stationary point within O(ε−7/4 log 1

ε ) gradient and function
evaluations. Their method alternates between negative curvature exploitation and inexact
minimization of a regularized surrogate function, where in the latter subroutine, Carmon
et al. (2017) add a proximal term to reduce the nonconvex subproblem to a convex one and
use the convex AGD to minimize it until the function is “guilty” of being nonconvex. When
the third-order derivative of the objective is Lipschitz, the O(ε−5/3 log 1

ε ) complexity can be
obtained (Carmon et al., 2017).

1.1.3 Accelerated Gradient Methods to Achieve Nonconvex Second-order
Stationary Point

When studying nonconvex accelerated methods, most works concentrate on the second-order
stationary point (see definition in (5)). Carmon et al. (2018) combined the Lanczos method
and regularized accelerated gradient descent, where the former is used to compute the
eigenvector corresponding to the smallest negative eigenvalue to search descent directions of
negative curvature. Agarwal et al. (2017) implemented the cubic regularized Newton method
(Nesterov and Polyak, 2006) carefully and computed the descent direction using accelerated
method for fast approximate matrix inversion, while Carmon and Duchi (2020, 2018)
employed the Krylov subspace method to solve the cubic regularized Newton subproblems.
The above methods find an ε-approximate second-order stationary point with probability at
least 1− δ in O(ε−7/4 log d

εδ ) gradient and Hessian-vector product evaluations1, where d is
the dimension of x in problem (1). To avoid the Hessian-vector products, Xu et al. (2018)
and Allen-Zhu and Li (2018) proposed the NEON and NEON2 first-order procedures to
extract directions of negative curvature from the Hessian, respectively, which can be used to
turn a first-order stationary point finding algorithm into a second-order stationary point
finding one. Other typical algorithms include the Newton-conjugate gradient (Royer et al.,
2020) and the second-order line-search method (Royer and Wright, 2018), which are beyond
the class of accelerated methods.

The above methods are nested-loop algorithms, where the outer loop needs to call a
serious of subroutines such as negative curvature exploitation, minimization of regularized
surrogate functions using convex AGD (Carmon et al., 2018, 2017), or computation of cubic
regularized Newton directions (Agarwal et al., 2017; Carmon and Duchi, 2020, 2018). Jin et al.
(2018) proposed the first single-loop accelerated method, which also finds an ε-approximate
second-order stationary point in O(ε−7/4 log d

εδ ) gradient and function computations with

1. Carmon et al. (2018) use ∇2f(x)v = limh→0
∇f(x+hv)−∇f(x)

h
to approximate the Hessian-vector product.
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probability at least 1− δ. The algorithm in (Jin et al., 2018) runs the classical AGD until
the function becomes “too nonconvex” locally, then it calls negative curvature exploitation.
To the best of our knowledge, it is the simplest method among the nonconvex accelerated
algorithms with fast rate guarantees.

Although achieving second-order stationary point guarantees the method to escape strict
saddle points, some researchers show that gradient descent and its accelerated variants that
converge to first-order stationary point always converge to local minimum. Lee et al. (2016)
proved that gradient descent converges to a local minimizer almost surely with random
initialization. Sun et al. (2019) gave the similar result for the heavy ball method. O’Neill
and Wright (2019) examined the behavior of HB and AGD near strict saddle points and
proved that both methods diverge from these points more rapidly than gradient descent for
specific quadratic functions.

1.1.4 Lower Bound for Second-order Smooth Nonconvex Problems

Carmon et al. (2021) studied the lower bounds for finding stationary point using first-
order methods. For nonconvex functions with Lipschitz continuous gradient and Hessian,
they established that deterministic first-order methods cannot find ε-approximate first-
order stationary points in less than O(ε−12/7) gradient evaluations. There exists a gap of
O(ε−1/28 log 1

ε ) between this lower bound and the best known upper bound (Carmon et al.,
2017). It remains an open problem of how to close this gap. It is also unclear which of the
upper bound and lower bound is tight (Carmon et al., 2021, Section 7).

1.2 Contribution

All the above accelerated algorithms (Carmon et al., 2017, 2018; Agarwal et al., 2017; Carmon
and Duchi, 2020; Jin et al., 2018) share the state-of-the-art O(ε−7/4 log 1

ε ) complexity, which
has a O(log 1

ε ) factor. As far as we know, even when we apply the methods designed to
find second-order stationary point to the easier problem of finding first-order stationary
one, we still cannot remove the O(log 1

ε ) factor. On the other hand, almost all the existing
accelerated methods need to call additional subroutines and thus they are complex with
nested loops. Even the single-loop method proposed in (Jin et al., 2018) requires negative
curvature exploitation.

In this paper, we propose two simple accelerated methods, restarted AGD and restarted
HB, which have the following three advantages:

1. Our algorithms find an ε-approximate first-order stationary point within O(ε−7/4)
number of gradient evaluations under the conditions that both the gradient and Hessian
are Lipschitz continuous. We do not hide any polylogarithmic factors in our complexity,
and thus it improves over the best known one by the O(log 1

ε ) factor.

2. Our algorithms are simple in the sense that they only consist of Nesterov’s classical
AGD or Polyak’s HB iterations, as well as a restart mechanism. They do not invoke
negative curvature exploitation or minimization of regularized surrogate functions or
computation of cubic regularized Newton directions as the subroutines.
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3. Technically, our elementary proofs use less advanced techniques compared with existing
works. Especially, it is irrelevant to the analysis of strongly convex AGD or HB, which
is crucial to cancel the O(log 1

ε ) factor.

1.3 Difference from Our Conference Paper

This paper extends our conference paper (Li and Lin, 2022) and we have rewritten the
contents. The major difference is that we have added a new algorithm, the restarted heavy
ball method, in this version. In contrast, our conference version only focused on the restarted
AGD. Although we use the same proof framework for the two algorithms, the details are
different, and it is not a parallel extension of our conference version. Specifically, see the
proofs of Lemmas 11 and 19, as well as the comparison in Remark 20. Empirically, the
HB-style momentum is more commonly used in the deep learning literature (Sutskever et al.,
2013), and it is verified to outperform the AGD-style momentum in our experiments.

1.4 Notations and Assumptions

We use lowercase bold letters to represent vectors, uppercase bold letters for matrices, and
non-bold (both lowercase and uppercase) letters for scalars. Denote xj and ∇jf(x) as
the jth element of x and ∇f(x), respectively. For the vectors produced in the iterative
algorithms, for example, x, denote xk to be the value at the kth iteration. We denote ‖ · ‖ to
be the `2 Euclidean norm for vectors, ‖ · ‖2 as the spectral norm and ‖ · ‖F as the Frobenius
norm for matrices. We make the following standard assumptions in this paper.

Assumption 1 1. f(x) is L-gradient Lipschitz: ‖∇f(x)−∇f(y)‖≤L‖x−y‖,∀x,y ∈
Rd,

2. f(x) is ρ-Hessian Lipschitz: ‖∇2f(x)−∇2f(y)‖2 ≤ ρ‖x− y‖,∀x,y ∈ Rd,

which yield the following two well-known inequalities:

|f(y)− f(x)− 〈∇f(x),y − x〉| ≤ L
2 ‖y − x‖2, (2)∣∣f(y)− f(x)− 〈∇f(x),y − x〉 − (y − x)T∇2f(x)(y − x)

∣∣ ≤ ρ
6‖y − x‖3. (3)

We also assume that the objective function is lower bounded, that is, minx f(x) > −∞.

2. Restarted Accelerated Gradient Descent

Nesterov’s classical AGD consists of the following iterations:

yk = xk + (1− θ)(xk − xk−1), xk+1 = yk − η∇f(yk),

where θ =
2
√
µ√

L+
√
µ

for strongly convex problems and it varies as 3
k+2 at the kth iteration for

convex problems. The term (xk−xk−1) is often regarded as momentum. When applying the
above iteration to nonconvex problems, the major challenge in faster convergence analysis
is that the objective function (even the Hamiltonian potential function used in (Jin et al.,
2018)) does not decrease monotonically, especially when we set η = O( 1

L) and θ small (for
example, of the order ε). To address this issue, Jin et al. (2018) invoke negative curvature
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Algorithm 1 Restarted AGD for Nonconvex Optimization (RAGD-NC)

1: Initialize x−1 = x0 = xint, k = 0.
2: while k < K do
3: yk = xk + (1− θ)(xk − xk−1)
4: xk+1 = yk − η∇f(yk)
5: k = k + 1
6: if k

∑k−1
t=0 ‖xt+1 − xt‖2 > B2 then

7: x−1 = x0 = xk, k = 0
8: end if
9: end while

10: K0 = argminbK
2
c≤k≤K−1 ‖x

k+1 − xk‖
11: Output ŷ = 1

K0+1

∑K0
k=0 yk

exploitation when the local objective function is very nonconvex. An open problem is asked
in Section 5 of (Jin et al., 2018) whether negative curvature exploitation is indispensable to
guarantee the fast rate. In contrast with (Jin et al., 2018), we use the restart mechanism to
ensure the decrease of the objective function, and thus avoid negative curvature exploitation.

We present our method in Algorithm 1. It runs Nesterov’s classical AGD iterations
until the “if condition” triggers. Then we reset x0 and x−1 equal to xk and continue to
the next round of AGD. The method terminates and outputs a specific average when the
“if condition” does not trigger in K iterations. To simplify the description, we define one
round of AGD between two successive restarts to be one “epoch”. The restart trick, first
proposed in (O’Donoghue and Candès, 2015), is motivated by (Fang et al., 2019), where a
ball-mechanism is proposed as the stopping criteria to analyze SGD.

Our main result is described in Theorem 1, which establishes the O(ε−7/4) complexity to
achieve an ε-approximate first-order stationary point. We defer the proofs until Section 4.1.

Theorem 1 Suppose that Assumption 1 holds. Let η = 1
4L , B =

√
ε
ρ , θ = 4(ερη2)1/4 ∈ (0, 1],

and K = 1
θ . Then Algorithm 1 terminates in at most

4fL1/2ρ1/4

ε7/4
gradient computations and

the output satisfies ‖∇f(ŷ)‖ ≤ 82ε, where 4f = f(xint)−minx f(x).

Among the existing methods, the “convex until proven guilty” method proposed in (Car-

mon et al., 2017) achieves an ε-approximate first-order stationary point inO(
4fL1/2ρ1/4

ε7/4
log

L4f
ε )

gradient and function evaluations, which is slower than our method by the O(log 1
ε ) factor.

The complexity established in other work focusing on second-order stationary point, such as
(Carmon et al., 2018; Agarwal et al., 2017; Carmon and Duchi, 2020; Jin et al., 2018), also
has the additional O(log 1

ε ) factor even when only pursuing first-order stationary point. Take
(Jin et al., 2018) as the example. Their Lemma 7 concentrates on the first-order stationary
point. They built the proofs of their Lemmas 9 and 17 upon the analysis of strongly convex

AGD, which generally requires O(
√

L
µ log 1

ε ) iterations such that the gradient norm will be

less than ε. Thus, the O(log 1
ε ) factor appears.
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Remark 2 1. The specific average on lines 10 and 11 of Algorithm 1 is the crucial
technique to remove the O(log 1

ε ) factor. See the proof of Lemma 13. This phenomenon
that some averaged iterate converges faster than the final iterate theoretically has also
been observed in other algorithms. For example, for Lipschitz and strongly convex
functions, but not necessarily differentiable, Shamir and Zhang (2013) proved the
O( log TT ) error of the final iterate of SGD while the O( 1

T ) one for the suffix averaged
iterate. Both rates are tight matching the corresponding lower bounds (Harvey et al.,
2019). For linearly constrained convex problems, Davis and Yin (2017) proved the
O( 1√

T
) rate for the final iterate of ADMM while the O( 1

T ) one for the averaged iterate.

The two rates are also tight (Davis and Yin, 2017).

We can extend this technical trick to the method proposed in (Jin et al., 2018) and
greatly simplify their proofs with the slightly faster O(ε−7/4) convergence rate. See the
supplementary material of our conference version (Li and Lin, 2022). On the other
hand, we can also prove that the gradient at the last iterate in our method is small
with norm being less than ε by employing the proof techniques in (Jin et al., 2018), at
the expense of introducing the additional O(log 1

ε ) factor and complicating the proofs.

2. Restart plays the role of decreasing the objective function at each epoch of AGD. See
Corollary 12. Intuitively, when the iterates are far from the local starting point x0 or
the momentum xk − xk−1 is large such that it may potentially increase the objective
function, restart cancels the effect of momentum by setting it to 0.

3. As discussed in Section 4.2, since our proofs do not invoke the analysis of strongly
convex AGD or HB, the acceleration mechanism for nonconvex optimization seems
irrelevant to the analysis of convex AGD. Our proofs show that momentum and its
parameter θ play an important role in the analysis of nonconvex acceleration mechanism.

2.1 Adaptive Implementation and Infrequent Restart

In Algorithm 1, we set B small in theory such that the method may restart frequently, making
it almost reduce to the classical gradient descent, especially for high dimensional problems.
To take advantage of the practical efficiency of AGD, we should reduce the frequency of
restart. A straightforward idea is to set a large B initially and reduce it gradually. We
present an adaptive implementation of Algorithm 1 in Algorithm 2, which relaxes the restart
condition of k

∑k−1
t=0 ‖xt+1 − xt‖2 > B2 to k

∑k−1
t=0 ‖xt+1 − xt‖2 > max{B2, B2

0}, where B0

can be initialized much larger than B and is decreased geometrically after each epoch. The
decrease condition on line 8 of Algorithm 2 comes form Corollary 12. Intuitively, when

B0 ≤ B, we always have f(xk)− f(x0) ≤ −7ε3/2

8
√
ρ from Corollary 12. That is, line 11 never

executes when B0 decreases to be smaller than B after O(logc0
1
ε ) epochs and Algorithm 2 is

equivalent to Algorithm 1 in this case. When the decrease condition on line 8 does not hold,
which indicates that the algorithm may diverge, we discard the whole iterates in this epoch
and go back to the last iterate of the previous epoch, which is stored in x0

cur. We terminate
Algorithm 2 when B0 ≤ B and k equals to K. On the other hand, we output the one of xK

and ŷ with smaller gradient norm. In practice, the last iterate always converges faster than
the averaged iterate. We describe the O(ε−7/4) complexity of Algorithm 2 in Theorem 3
and defer the proofs until Section 4.3.
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Algorithm 2 Adaptively Restarted AGD for Nonconvex Optimization (Ada-RAGD-NC)

1: Initialize x−1 = x0 = x0
cur = xint, k = 0, B0.

2: while k < K or B0 > B do
3: yk = xk + (1− θ)(xk − xk−1)
4: xk+1 = yk − η∇f(yk)
5: k = k + 1
6: if k

∑k−1
t=0 ‖xt+1 − xt‖2 > max{B2, B2

0} or k > K then
7: B0 = B0/c0

8: if f(xk)− f(x0) ≤ −γ ε3/2√ρ then

9: x−1 = x0 = xk, x0
cur = xk, k = 0

10: else
11: x−1 = x0 = x0

cur, k = 0, B0 = B0/c1
12: end if
13: end if
14: end while
15: K0 = argminbK

2
c≤k≤K−1 ‖x

k+1 − xk‖
16: ŷ = 1

K0+1

∑K0
k=0 yk

17: Output xout = argminxK ,ŷ{‖∇f(xK)‖, ‖∇f(ŷ)‖}

Theorem 3 Suppose that Assumption 1 holds. Let η = 1
4L , B =

√
ε
ρ , θ = 4(ερη2)1/4 ∈

(0, 1), K = b1θ c, γ ≤
7
8 , c0 > 1, and c1 > 1. Then Algorithm 2 terminates in at most

O
(
4fL1/2ρ1/4

ε7/4
+ L1/2

ε1/4ρ1/4
log ρB0

ε

)
gradient computations and O

(
4f
√
ρ

ε3/2
+ log ρB0

ε

)
function

evaluations, and the output satisfies ‖∇f(xout)‖ ≤ O(ε).

Remark 4 Algorithm 2 also applies to the case when the Lipschitz constants L and ρ are
unknown. We can initialize a small guess of ρ′, tune an appropriate η, and replace line 11
of Algorithm 2 by the following steps:

x−1 = x0 = x0
cur, k = 0, B0 =

B0

c1
, η = max

(
η

c2
, ηmin

)
, ρ′ = min(ρ′c22, ρ

′
max),

(4)
where c1 ≥ c2 > 1, and the output also satisfies ‖∇f(xout)‖ ≤ O(ε) within O(ε−7/4) gradient
computations and O(ε−3/2) function evaluations. See Theorem 15 in Section 4.3 for the
details.

2.2 Extension to the Second-order Stationary Point

Our restarted AGD can also find ε-approximate second-order stationary point, namely a
point x that satisfies

‖∇f(x)‖ ≤ ε and λmin(∇2f(x)) ≥ −√ερ, (5)

where λmin means the smallest eigenvalue. We follow (Jin et al., 2017, 2018) to add
perturbations to the iterates. Specifically, we only need to replace line 7 of Algorithm 1 by
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the following step:

x−1 = x0 = xk + ξ1‖∇f(yk−1)‖≤B
η
, ξ ∼ Unif(B0(r)), k = 0, (6)

where Unif(B0(r)) means the uniform distribution in the ball B0(r) with radius r and center

0, and 1‖∇f(yk−1)‖≤B
η

=

{
1, if ‖∇f(yk−1)‖ ≤ B

η ,

0, otherwise.
The convergence and complexity is presented in Theorem 5. We see that the perturbed

RAGD-NC needs at most O(ε−7/4 log d
ζε) gradient evaluations to find an ε-approximate

second-order stationary point with probability at least 1− ζ, where d is the dimension of x
in problem (1). Our algorithm has the same complexity with the one given in (Jin et al.,
2018). Comparing with Theorem 1, we see that this complexity is higher by the O(log d

ζε)
factor. Currently, it is unclear how to cancel it, and we conjecture that the polylogarithmic
factor may not be removed when pursuing second-order stationary point (Simchowitz et al.,
2017).

Theorem 5 Suppose that Assumption 1 holds. Let χ = O(log d
ζε) ≥ 1, η = 1

4L , B =

1
288χ2

√
ε
ρ , θ = 1

2

( ερ
L2

)1/4
< 1, K = 2χ

θ , r = min{B2 ,
θB
20K ,

√
θB2

2K } = O(ε). Then the perturbed

RAGD-NC (Algorithm 1 with (6)) terminates in at most O
(
4fL1/2ρ1/4χ6

ε7/4

)
gradient com-

putations and the output satisfies ‖∇f(ŷ)‖ ≤ ε, where 4f = f(xint) −minx f(x). It also
satisfies λmin(∇2f(ŷ)) ≥ −1.011

√
ερ with probability at least 1− ζ.

The proof of this theorem is essentially identical to those in (Jin et al., 2018). We omit
the proofs and they can be found in the supplementary material of our conference version
(Li and Lin, 2022).

3. Restarted Heavy Ball Method

Polyak’s classical heavy ball method (Polyak, 1964) iterates with the following step

xk+1 = xk − η∇f(xk) + (1− θ)(xk − xk−1),

where η = 4
(
√
L+
√
µ)2

and 1 − θ =
(
√
L−√µ)2

(
√
L+
√
µ)2

for strongly convex problems. In the deep

learning literature, people often use the following equivalent iterations empirically with the
running average (Sutskever et al., 2013),

mk = βmk−1 +∇f(xk), xk+1 = xk − ηmk,

where m−1 = 0 and β = 1− θ for the deterministic problems. When applying the heavy ball
iteration to nonconvex optimization, people often set η = O( θL) to ensure the convergence
(Ochs et al., 2014; Sun et al., 2019), which prevents us from proving faster convergence in
theory and slows down the algorithm in practice when θ is small. To address this issue,
similar to RAGD-NC, we combine the restart mechanism with the heavy ball method such
that η = O( 1

L) while maintaining θ small. Our method is presented in Algorithm 3. It runs
Polyak’s classical HB iteration until the “if condition” triggers. Then we restart from the
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Algorithm 3 Restarted HB for Nonconvex Optimization (RHB-NC)

1: Initialize x−1 = x0 = xint, k = 0.
2: while k < K do
3: xk+1 = xk − η∇f(xk) + (1− θ)(xk − xk−1)
4: k = k + 1
5: if k

∑k−1
t=0 ‖xt+1 − xt‖2 > B2 then

6: zk = xk+(1−2θ)(1−θ)xk−1

1+(1−2θ)(1−θ)
7: x−1 = x0 = zk, k = 0
8: end if
9: end while

10: K0 = argminbK
2
c≤k≤K−1 ‖x

k+1 − xk‖
11: Output x̂ = 1

K0+1

∑K0
k=0 xk

auxiliary vector zk, a convex combination of xk and xk−1, and do the next round of HB
iterations. Algorithm 3 shares almost the same framework as Algorithm 1, and the only
difference comes from the iterate zk, which is designed to fit the proof. See Remark 20 for
the detailed reason.

The main result is given in Theorem 6, which also establishes the O(ε−7/4) complexity
to find an ε-approximate first-order stationary point, and we defer the proofs until Section
4.4. Comparing with Theorem 1, we see that the two algorithms need the same assumptions,
share the same convergence rate, and have almost the same parameter settings, which
indicate that no one is superior to the other in theory for nonconvex optimization. As a
comparison, the heavy ball method requires more assumptions for strongly convex problems
and has the slower convergence rate in theory for convex problems than AGD.

Theorem 6 Suppose that Assumption 1 holds. Let η = 1
4L , B =

√
ε
4ρ , θ = 10

(
ερη2

)1/4 ∈
(0, 1

10 ], and K = 1
θ . Then Algorithm 3 terminates in at most

4fL1/2ρ1/4

ε7/4
gradient computations

and the output satisfies ‖∇f(x̂)‖ ≤ 242ε, where 4f = f(xint)−minx f(x).

In practice, Algorithm 3 has the same disadvantages as Algorithm 1 when B is small.
Similar to Algorithm 2, we also propose an adaptive implementation of Algorithm 3, and
present it in Algorithm 4. Theorem 7 gives the O(ε−7/4) complexity.

Theorem 7 Suppose that Assumption 1 holds. Let η = 1
4L , B =

√
ε
4ρ , θ = 10

(
ερη2

)1/4 ∈
(0, 1

10 ], K = b1θ c, γ ≤ 1, c0 > 1, and c1 > 1. Then Algorithm 4 terminates in at most

O
(
4fL1/2ρ1/4

ε7/4
+ L1/2

ε1/4ρ1/4
log ρB0

ε

)
gradient computations and O

(
4f
√
ρ

ε3/2
+ log ρB0

ε

)
function

evaluations, and the output satisfies ‖∇f(xout)‖ ≤ O(ε).

4. Proof of the Theorems

We prove Theorems 1, 3, and 6 in this section. The proof of Theorem 7 is almost the same
to that of Theorem 3 and we omit the details.

10
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Algorithm 4 Adaptively Restarted HB for Nonconvex Optimization (Ada-RHB-NC)

1: Initialize x−1 = x0 = x0
cur = xint, k = 0, B0.

2: while k < K or B0 > B do
3: xk+1 = xk − η∇f(xk) + (1− θ)(xk − xk−1)
4: k = k + 1
5: if k

∑k−1
t=0 ‖xt+1 − xt‖2 > max{B2, B2

0} or k > K then

6: zk = xk+(1−2θ)(1−θ)xk−1

1+(1−2θ)(1−θ)
7: B0 = B0/c0

8: if f(zk)− f(x0) ≤ −γ ε3/2√ρ then

9: x−1 = x0 = zk, x0
cur = zk, k = 0

10: else
11: x−1 = x0 = x0

cur, k = 0, B0 = B0/c1
12: end if
13: end if
14: end while
15: K0 = argminbK

2
c≤k≤K−1 ‖x

k+1 − xk‖
16: x̂ = 1

K0+1

∑K0
k=0 xk

17: Output xout = argminxK ,x̂{‖∇f(xK)‖, ‖∇f(x̂)‖}

4.1 Proof of Theorem 1

We prove the convergence rate of Algorithm 1 in this section. Denote K to be the iteration
number when the “if condition” on line 6 of Algorithm 1 triggers, that is,

K = min
k

{
k

∣∣∣∣∣k
k−1∑
t=0

‖xt+1 − xt‖2 > B2

}
. (7)

For each epoch consisting of one round of AGD from iterations k = 0 to k = K, we have

1 ≤ K ≤ K, K
K−1∑
t=0

‖xt+1 − xt‖2 > B2, and (8a)

‖xk − x0‖2 =

∥∥∥∥∥
k−1∑
t=0

xt+1 − xt

∥∥∥∥∥
2

≤ k
k−1∑
t=0

‖xt+1 − xt‖2 ≤ B2, ∀k < K, (8b)

where the last inequality comes from the definition of K. From the update of y on line 3 of
Algorithm 1, we also have

‖yk − x0‖ ≤ ‖xk − x0‖+ ‖xk − xk−1‖ ≤ 2B, ∀k < K. (9)

On the other hand, for the last epoch where the “if condition” does not trigger and the
while loop breaks when k increases to K, we have

‖xk − x0‖2 ≤ k
k−1∑
t=0

‖xt+1 − xt‖2 ≤ B2,∀k ≤ K, (10a)

‖yk − x0‖ ≤ 2B, ∀k ≤ K. (10b)

11
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We will show that the function value decreases at least O(ε1.5) in each epoch except the last
one in Sections 4.1.1 and 4.1.2. Thus, Algorithm 1 terminates in at most O(ε−1.5) epochs.
Since each epoch needs at most O(ε−0.25) iterations, Algorithm 1 requires at most O(ε−1.75)
total gradient evaluations. In the last epoch, we will show in Section 4.1.3 that the gradient
norm at the output iterate is less than O(ε).

4.1.1 Large Gradient of ‖∇f(yK−1)‖

We first consider the case when ‖∇f(yK−1)‖ is large.

Lemma 8 Suppose that Assumption 1 holds. Let η ≤ 1
4L and 0 ≤ θ ≤ 1. In each epoch of

Algorithm 1 where the “if condition” triggers, when ‖∇f(yK−1)‖ > B
η , we have

f(xK)− f(x0) ≤ −B
2

4η
.

Proof As the gradient is L-Lipschitz, we have

f(xk+1) ≤f(yk) +
〈
∇f(yk),xk+1 − yk

〉
+
L

2
‖xk+1 − yk‖2

=f(yk)− η‖∇f(yk)‖2 +
Lη2

2
‖∇f(yk)‖2

≤f(yk)− 7η

8
‖∇f(yk)‖2,

(11)

where we use the AGD iteration on line 4 of Algorithm 1 and η ≤ 1
4L . From the L-gradient

Lipschitz, we also have

f(xk) ≥ f(yk) +
〈
∇f(yk),xk − yk

〉
− L

2
‖xk − yk‖2.

So we have

f(xk+1)− f(xk)

≤−
〈
∇f(yk),xk − yk

〉
+
L

2
‖xk − yk‖2 − 7η

8
‖∇f(yk)‖2

=
1

η

〈
xk+1 − yk,xk − yk

〉
+
L

2
‖xk − yk‖2 − 7η

8
‖∇f(yk)‖2

=
1

2η

(
‖xk+1 − yk‖2 + ‖xk − yk‖2 − ‖xk+1 − xk‖2

)
+
L

2
‖xk − yk‖2 − 7η

8
‖∇f(yk)‖2

a
≤ 5

8η
‖xk − yk‖2 − 1

2η
‖xk+1 − xk‖2 − 3η

8
‖∇f(yk)‖2

b
≤ 5

8η
‖xk − xk−1‖2 − 1

2η
‖xk+1 − xk‖2 − 3η

8
‖∇f(yk)‖2,

where we use L ≤ 1
4η in

a
≤ and ‖xk−yk‖ = (1−θ)‖xk−xk−1‖ ≤ ‖xk−xk−1‖ in

b
≤. Summing

over k = 0, · · · ,K − 1 and using x0 = x−1, we have

f(xK)− f(x0) ≤ 1

8η

K−2∑
k=0

‖xk+1 − xk‖2 − 3η

8

K−1∑
k=0

‖∇f(yk)‖2

12
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c
≤B

2

8η
− 3η

8
‖∇f(yK−1)‖2

d
≤ B2

8η
− 3B2

8η
= −B

2

4η
,

where we use (8b) in
c
≤ and ‖∇f(yK−1)‖ > B

η in
d
≤.

4.1.2 Small Gradient of ‖∇f(yK−1)‖

If ‖∇f(yK−1)‖ ≤ B
η , then from the AGD iteration on line 4 and (9) we have

‖xK − x0‖ ≤ ‖yK−1 − x0‖+ η‖∇f(yK−1)‖ ≤ 3B.

For each epoch, denote H = ∇2f(x0) to be the Hessian matrix at the starting iterate
and H = UΛUT to be its eigenvalue decomposition with U,Λ ∈ Rd×d. Let λj be the

jth eigenvalue. Define x̃ = UTx, ỹ = UTy, and ∇̃f(y) = UT∇f(y). As the Hessian is
ρ-Lipschitz, we have

f(xK)− f(x0) ≤
〈
∇f(x0),xK − x0

〉
+

1

2
(xK − x0)TH(xK − x0) +

ρ

6
‖xK − x0‖3

=
〈
∇̃f(x0), x̃K − x̃0

〉
+

1

2
(x̃K − x̃0)TΛ(x̃K − x̃0) +

ρ

6
‖xK − x0‖3

≤g(x̃K)− g(x̃0) + 4.5ρB3,

(12)

where we denote

g(x) =
〈
∇̃f(x0),x− x̃0

〉
+

1

2
(x− x̃0)TΛ(x− x̃0) =

d∑
j=1

gj(xj),

gj(x) =
〈
∇̃jf(x0), x− x̃0

j

〉
+

1

2
λj(x− x̃0

j )
2.

(13)

Denoting

δ̃kj = ∇̃jf(yk)−∇gj(ỹkj ), δ̃k = ∇̃f(yk)−∇g(ỹk),

then the AGD iterations in Algorithm 1 can be rewritten as

ỹkj = x̃kj + (1− θ)(x̃kj − x̃k−1j ), (14a)

x̃k+1
j = ỹkj − η∇̃jf(yk) = ỹkj − η∇gj(ỹkj )− ηδ̃kj , (14b)

and ‖δ̃k‖ can be bounded as

‖δ̃k‖ =‖∇̃f(yk)− ∇̃f(x0)−Λ(ỹk − x̃0)‖
=‖∇f(yk)−∇f(x0)−H(yk − x0)‖

=

∥∥∥∥(∫ 1

0
∇2f(x0 + t(yk − x0))−H

)
(yk − x0)dt

∥∥∥∥
≤ρ

2
‖yk − x0‖2 ≤ 2ρB2

(15)

13
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for any k < K, where we use the ρ-Lipschitz Hessian assumption and (9) in the last two
inequalities, respectively.

Thanks to (12), to prove the decrease from f(x0) to f(xK), we only need to study
the decrease of g(x). Iterations (14a) and (14b) can be regarded as applying AGD to the
quadratic approximation g(x) coordinately with the approximation error δ̃k, where the later
can be controlled within O(ρB2). The quadratic approximation g(x) equals to the sum of d
scalar functions gj(xj). We decompose g(x) into

∑
j∈S1 gj(xj) and

∑
j∈S2 gj(xj), where

S1 =

{
j : λj ≥ −

θ

η

}
and S2 =

{
j : λj < −

θ

η

}
.

We see that gj(x) is approximate convex when j ∈ S1, and strongly concave when j ∈ S2.
We will prove the approximate decrease of gj(xj) in the above two cases. We first consider∑

j∈S1 gj(xj) in the following lemma.

Lemma 9 Suppose that Assumption 1 holds. Let η ≤ 1
4L and 0 < θ ≤ 1. In each epoch of

Algorithm 1 where the “if condition” triggers, when ‖∇f(yK−1)‖ ≤ B
η , we have

∑
j∈S1

gj(x̃
K
j )−

∑
j∈S1

gj(x̃
0
j ) ≤ −

∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃k+1
j − x̃kj |2 +

8ηρ2B4K
θ

. (16)

Proof Since gj(x) is quadratic, we have

gj(x̃
k+1
j ) =gj(x̃

k
j ) +

〈
∇gj(x̃kj ), x̃k+1

j − x̃kj

〉
+
λj
2
|x̃k+1
j − x̃kj |2

a
=gj(x̃

k
j )−

1

η

〈
x̃k+1
j − ỹkj + ηδ̃kj , x̃

k+1
j − x̃kj

〉
+
〈
∇gj(x̃kj )−∇gj(ỹkj ), x̃k+1

j − x̃kj

〉
+
λj
2
|x̃k+1
j − x̃kj |2

=gj(x̃
k
j )−

1

η

〈
x̃k+1
j − ỹkj , x̃

k+1
j − x̃kj

〉
−
〈
δ̃kj , x̃

k+1
j − x̃kj

〉
+ λj

〈
x̃kj − ỹkj , x̃

k+1
j − x̃kj

〉
+
λj
2
|x̃k+1
j − x̃kj |2

=gj(x̃
k
j ) +

1

2η

(
|x̃kj − ỹkj |2 − |x̃k+1

j − ỹkj |2 − |x̃k+1
j − x̃kj |2

)
−
〈
δ̃kj , x̃

k+1
j − x̃kj

〉
+
λj
2

(
|x̃k+1
j − ỹkj |2 − |x̃kj − ỹkj |2

)
≤gj(x̃kj ) +

1

2η

(
|x̃kj − ỹkj |2 − |x̃k+1

j − ỹkj |2 − |x̃k+1
j − x̃kj |2

)
+

1

2α
|δ̃kj |2 +

α

2
|x̃k+1
j − x̃kj |2 +

λj
2

(
|x̃k+1
j − ỹkj |2 − |x̃kj − ỹkj |2

)
,

for some positive constant α to be specified later, where we use (14b) in
a
=. Using L ≥ λj ≥

− θ
η when j ∈ S1 = {j : λj ≥ − θ

η} and
(
− 1

2η +
λj
2

)
|x̃k+1
j − ỹkj |2 ≤

(
−2L+ L

2

)
|x̃k+1
j − ỹkj |2 ≤

14
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0, we have for each j ∈ S1,

gj(x̃
k+1
j ) ≤gj(x̃kj ) +

1

2η

(
|x̃kj − ỹkj |2−|x̃k+1

j − x̃kj |2
)

+
1

2α
|δ̃kj |2 +

α

2
|x̃k+1
j − x̃kj |2 +

θ

2η
|x̃kj − ỹkj |2

b
=gj(x̃

k
j ) +

(1 + θ)(1− θ)2

2η
|x̃kj − x̃k−1j |2 −

(
1

2η
− α

2

)
|x̃k+1
j − x̃kj |2 +

1

2α
|δ̃kj |2,

where we use (14a) in
b
=. Defining the potential function

`k+1
j = gj(x̃

k+1
j ) +

(1 + θ)(1− θ)2

2η
|x̃k+1
j − x̃kj |2,

we have

`k+1
j ≤`kj −

(
1

2η
− α

2
− (1 + θ)(1− θ)2

2η

)
|x̃k+1
j − x̃kj |2 +

1

2α
|δ̃kj |2

c
≤`kj −

3θ

8η
|x̃k+1
j − x̃kj |2 +

2η

θ
|δ̃kj |2,

where we let α = θ
4η in

c
≤ such that 1

2η −
θ
8η −

(1+θ)(1−θ)2
2η = 3θ

8η + θ2

2η −
θ3

2η ≥
3θ
8η . Summing

over k = 0, 1, · · · ,K − 1 and j ∈ S1, using x0 − x−1 = 0, we have

∑
j∈S1

gj(x̃
K
j ) ≤

∑
j∈S1

`Kj ≤
∑
j∈S1

gj(x̃
0
j )−

∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃k+1
j − x̃kj |2 +

2η

θ

K−1∑
k=0

‖δ̃k‖2

d
≤
∑
j∈S1

gj(x̃
0
j )−

∑
j∈S1

3θ

8η

K−1∑
k=0

|x̃k+1
j − x̃kj |2 +

8ηρ2B4K
θ

,

where we use (15) in
d
≤.

Next, we consider
∑

j∈S2 gj(xj).

Lemma 10 Suppose that Assumption 1 holds. Let η ≤ 1
4L and 0 < θ ≤ 1. In each epoch of

Algorithm 1 where the “if condition” triggers, when ‖∇f(yK−1)‖ ≤ B
η , we have

∑
j∈S2

gj(x̃
K
j )−

∑
j∈S2

gj(x̃
0
j ) ≤ −

∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j − x̃kj |2 +

2ηρ2B4K
θ

. (17)

Proof Denoting vj = x̃0
j − 1

λj
∇̃jf(x0), gj(x) can be rewritten as

gj(x) =
λj
2

(
x− x̃0

j +
1

λj
∇̃jf(x0)

)2

− 1

2λj
|∇̃jf(x0)|2

=
λj
2
|x− vj |2 −

1

2λj
|∇̃jf(x0)|2.

15
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For each j ∈ S2 = {j : λj < − θ
η}, we have

gj(x̃
k+1
j )− gj(x̃kj ) =

λj
2
|x̃k+1
j − vj |2 −

λj
2
|x̃kj − vj |2

=
λj
2
|x̃k+1
j − x̃kj |2 + λj

〈
x̃k+1
j − x̃kj , x̃

k
j − vj

〉
≤− θ

2η
|x̃k+1
j − x̃kj |2 + λj

〈
x̃k+1
j − x̃kj , x̃

k
j − vj

〉
.

(18)

So we only need to bound the second term. From (14b) and (14a), we have

x̃k+1
j − x̃kj =ỹkj − x̃kj − η∇gj(ỹkj )− ηδ̃kj

=(1− θ)(x̃kj − x̃k−1j )− η∇gj(ỹkj )− ηδ̃kj
=(1− θ)(x̃kj − x̃k−1j )− ηλj(ỹkj − vj)− ηδ̃kj
=(1− θ)(x̃kj − x̃k−1j )− ηλj(x̃kj − vj + (1− θ)(x̃kj − x̃k−1j ))− ηδ̃kj .

So for each j ∈ S2, we have

λj

〈
x̃k+1
j − x̃kj , x̃

k
j − vj

〉
=(1−θ)λj

〈
x̃kj−x̃k−1j , x̃kj−vj

〉
−ηλ2j |x̃kj−vj |2−ηλ2j (1−θ)

〈
x̃kj−x̃k−1j , x̃kj−vj

〉
−ηλj

〈
δ̃kj , x̃

k
j−vj

〉
≤(1− θ)λj

〈
x̃kj − x̃k−1j , x̃kj − vj

〉
− ηλ2j |x̃kj − vj |2

+
ηλ2j (1− θ)

2

(
|x̃kj − x̃k−1j |2 + |x̃kj − vj |2

)
+

η

2(1 + θ)
|δ̃kj |2 +

ηλ2j (1 + θ)

2
|x̃kj − vj |2

=(1− θ)λj
〈
x̃kj − x̃k−1j , x̃kj − vj

〉
+
ηλ2j (1− θ)

2
|x̃kj − x̃k−1j |2 +

η

2(1 + θ)
|δ̃kj |2

=(1−θ)λj
〈
x̃kj−x̃k−1j , x̃k−1j −vj

〉
+(1−θ)λj |x̃kj−x̃k−1j |2+

ηλ2j (1−θ)
2

|x̃kj−x̃k−1j |2+
η

2(1+θ)
|δ̃kj |2

a
≤(1− θ)λj

〈
x̃kj − x̃k−1j , x̃k−1j − vj

〉
+
η

2
|δ̃kj |2,

where we use
(

1 +
ηλj
2

)
(1 − θ) ≥

(
1− ηL

2

)
(1 − θ) ≥ 0 and λj < 0 when j ∈ S2 in

a
≥. So

we have

λj

〈
x̃k+1
j − x̃kj , x̃

k
j − vj

〉
≤(1− θ)kλj

〈
x̃1
j − x̃0

j , x̃
0
j − vj

〉
+
η

2

k∑
t=1

(1− θ)k−t|δ̃tj |2

b
=− (1− θ)kηλ2j |x̃0

j − vj |2 +
η

2

k∑
t=1

(1− θ)k−t|δ̃tj |2

≤η
2

k∑
t=1

(1− θ)k−t|δ̃tj |2,

16
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where we use

x̃1
j − x̃0

j =x̃1
j − ỹ0

j = −η∇̃jf(y0) = −η∇̃jf(x0)

=− η∇gj(x̃0
j ) = −ηλj(x̃0

j − vj)

in
b
=. Plugging into (18), we have

gj(x̃
k+1
j )− gj(x̃kj ) ≤ −

θ

2η
|x̃k+1
j − x̃kj |2 +

η

2

k∑
t=1

(1− θ)k−t|δ̃tj |2.

Summing over k = 0, 1, · · · ,K − 1 and j ∈ S2, we have∑
j∈S2

gj(x̃
K
j )−

∑
j∈S2

gj(x̃
0
j ) ≤−

∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j − x̃kj |2 +

η

2

K−1∑
k=0

k∑
t=1

(1− θ)k−t‖δ̃t‖2

c
≤−

∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j − x̃kj |2 + 2ηρ2B4

K−1∑
k=0

k∑
t=1

(1− θ)k−t

≤−
∑
j∈S2

θ

2η

K−1∑
k=0

|x̃k+1
j − x̃kj |2 +

2ηρ2B4K
θ

,

where we use (15) in
c
≤.

Putting Lemmas 9 and 10 together, we have the following lemma.

Lemma 11 Suppose that Assumption 1 holds. Let η ≤ 1
4L and 0 < θ ≤ 1. In each epoch of

Algorithm 1 where the “if condition” triggers, when ‖∇f(yK−1)‖ ≤ B
η , we have

f(xK)− f(x0) ≤ −3θB2

8ηK
+

10ηρ2B4K

θ
+ 4.5ρB3. (19)

Proof Summing over (16) and (17), we have

g(x̃K)− g(x̃0) =
∑

j∈S1∪S2

gj(x̃
K
j )− gj(x̃0

j )

≤− 3θ

8η

K−1∑
k=0

‖x̃k+1 − x̃k‖2 +
10ηρ2B4K

θ

=− 3θ

8η

K−1∑
k=0

‖xk+1 − xk‖2 +
10ηρ2B4K

θ

a
≤− 3θB2

8ηK
+

10ηρ2B4K
θ

,

where we use (8a) in
a
≤. Plugging into (12) and using K ≤ K, we have

f(xK)− f(x0) ≤− 3θB2

8ηK
+

10ηρ2B4K
θ

+ 4.5ρB3

≤− 3θB2

8ηK
+

10ηρ2B4K

θ
+ 4.5ρB3.

17
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From Lemmas 8 and 11, we can establish the decrease of f(x) in each epoch.

Corollary 12 Suppose that Assumption 1 holds. Use the parameter settings in Theorem 1.
In each epoch of Algorithm 1 where the “if condition” triggers, we have

f(xK)− f(x0) ≤ −7ε3/2

8
√
ρ
. (20)

Proof Combing Lemmas 8 and 11 and using the parameter settings, we have

f(xK)− f(x0) ≤ −min

{
3θB2

8ηK
− 10ηρ2B4K

θ
− 4.5ρB3,

B2

4η

}
= −min

{
7ε3/2

8
√
ρ
,
ε

4ηρ

}
.

From θ = 4(ερη2)1/4 ≤ 1, we have 7ε3/2

8
√
ρ ≤

ε
4ηρ .

4.1.3 Small Gradient in the Last Epoch

We first give the following lemma for the last epoch.

Lemma 13 Suppose that Assumption 1 holds. Use the parameter settings in Theorem
1. In the last epoch of Algorithm 1 where the “if condition” does not trigger, we have
‖∇f(ŷ)‖ ≤ 82ε.

Proof Denote ỹ = UT ŷ = 1
K0+1

∑K0
k=0 UTyk = 1

K0+1

∑K0
k=0 ỹk. Since g is quadratic, we

have

‖∇g(ỹ)‖ =

∥∥∥∥∥ 1

K0 + 1

K0∑
k=0

∇g(ỹk)

∥∥∥∥∥
a
=

1

η(K0 + 1)

∥∥∥∥∥
K0∑
k=0

(
x̃k+1 − ỹk + ηδ̃k

)∥∥∥∥∥
=

1

η(K0 + 1)

∥∥∥∥∥
K0∑
k=0

(
x̃k+1 − x̃k − (1− θ)(x̃k − x̃k−1) + ηδ̃k

)∥∥∥∥∥
b
=

1

η(K0 + 1)

∥∥∥∥∥x̃K0+1 − x̃0 − (1− θ)(x̃K0 − x̃0) + η

K0∑
k=0

δ̃k

∥∥∥∥∥
=

1

η(K0 + 1)

∥∥∥∥∥x̃K0+1 − x̃K0 + θ(x̃K0 − x̃0) + η

K0∑
k=0

δ̃k

∥∥∥∥∥
≤ 1

η(K0 + 1)

(
‖x̃K0+1 − x̃K0‖+ θ‖x̃K0 − x̃0‖+ η

K0∑
k=0

‖δ̃k‖

)
c
≤ 2

ηK
‖x̃K0+1 − x̃K0‖+

2θB

ηK
+ 2ρB2, (21)
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where we use (14b) in
a
=, x−1 = x0 in

b
=, K0 + 1 ≥ K

2 , (10a), (15), and (10b) in
c
≤. From

K0 = argminbK
2
c≤k≤K−1 ‖x

k+1 − xk‖, we have

‖xK0+1 − xK0‖2 ≤ 1

K − bK/2c

K−1∑
k=bK/2c

‖xk+1 − xk‖2

≤ 1

K − bK/2c

K−1∑
k=0

‖xk+1 − xk‖2

d
≤ 1

K − bK/2c
B2

K
≤ 2B2

K2
,

(22)

where we use (10a) in
d
≤. On the other hand, we also have

‖∇f(ŷ)‖ = ‖∇̃f(ŷ)‖ ≤‖∇g(ỹ)‖+ ‖∇̃f(ŷ)−∇g(ỹ)‖

=‖∇g(ỹ)‖+ ‖∇̃f(ŷ)− ∇̃f(x0)−Λ(ỹ − x̃0)‖
=‖∇g(ỹ)‖+ ‖∇f(ŷ)−∇f(x0)−H(ŷ − x0)‖

≤‖∇g(ỹ)‖+
ρ

2
‖ŷ − x0‖2

e
≤ ‖∇g(ỹ)‖+ 2ρB2,

where we use ‖ŷ − x0‖ ≤ 1
K0+1

∑K0
k=0 ‖yk − x0‖ ≤ 2B from (10b) in

e
≤. So we have

‖∇f(ŷ)‖ ≤ 2
√

2B

ηK2
+

2θB

ηK
+ 4ρB2 ≤ 82ε.

Based Corollary 12 and Lemma 13, we can prove Theorem 1.

Proof For each epoch where the “if condition” triggers, we have (20). Note that at the
beginning of each epoch, we set x0 to be the last iterate xK in the previous epoch. Summing
(20) over all epochs, say N total epochs, and using minx f(x) ≤ f(xK), we have

min
x
f(x)− f(xint) ≤ −N

7ε3/2

8
√
ρ
.

So the algorithm will terminate (that is, the “if condition” does not trigger and the while

loop breaks) in at most
84f
√
ρ

7ε3/2
epochs. Since each epoch needs at most K = 1

2

(
L2

ερ

)1/4
gradient evaluations, the total number of gradient evaluations must be less than

4fL1/2ρ1/4

ε7/4
.

On the other hand, in the last epoch, we have ‖∇f(ŷ)‖ ≤ 82ε from Lemma 13.

Remark 14 The purpose of using the specific average as the output and k
∑k−1

t=0 ‖xt+1 −
xt‖2 > B2 in the “if condition” in Algorithm 1, rather than ‖xk − x0‖ ≥ B, is to establish
(22).
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4.2 Discussion on the Acceleration Mechanism

When we replace the AGD iterations in Algorithm 1 by the gradient descent steps xk+1 =
xk − η∇f(xk) with step-size η = 1

4L , similar to (11), the descent property in each epoch
becomes

f(xK)− f(x0) ≤ − 7

8η

K−1∑
k=0

‖xk+1 − xk‖2 ≤ −7B2

8ηK
,

and the gradient norm at the averaged output x̂ = 1
K

∑K−1
k=0 xk can be bounded as

‖∇g(x̂)‖ ≤ 1

ηK
‖xK − x0‖+ 2ρB2 ≤ B

ηK
+ 2ρB2.

By setting B =
√

ε
ρ and K = L√

ερ , we have the O(ε−2) total complexity.

Comparing the above two inequalities with (19) and (21), respectively, we see that the
momentum parameter θ is crucial to speedup the convergence of AGD because it allows
smaller K than that of GD, that is, 1

ε1/4
v.s. 1

ε1/2
for AGD and GD, respectively. Accordingly,

smaller K results in less total gradient evaluations since both methods need O(ε−1.5) epochs.
The above comparisons show the importance of momentum and its parameter θ in the
nonconvex acceleration mechanism. On the other hand, since our proofs do not invoke the
analysis of strongly convex AGD, we conjecture that the nonconvex acceleration mechanism
seems irrelevant to the analysis of convex AGD.

4.3 Proof of Theorem 3

In this section, we prove a stronger theorem, where we replace lines 11 and 8 of Algorithm

2 by (4) and f(xK)− f(x0) ≤ −γ ε3/2√
ρ′

, respectively. Denote ηint, ρ
′
int, and B0,int to be the

initializations of η, ρ′, and B0, respectively.

Theorem 15 Suppose that Assumption 1 holds. Let B =
√

ε
ρ′ , θ = 4(ερ′η2)1/4 ∈ (0, 1), and

K = b1θc in each epoch, where η and ρ′ may change dynamically during epochs. Let γ ≤ 7
8 ,

c0 > 1, c1 ≥ c2 > 1, ηmin ≤ 1
4L , and ρ′max ≥ ρ, where ρ′max

ρ′int
=
(
ηint
ηmin

)2
. Then Algorithm

2 with (4) terminates in at most O(ε−7/4) gradient computations and O(ε−3/2) function
evaluations, and the output satisfies ‖∇f(xout)‖ ≤ O(ε).

Using the same proofs of Corollary 12 and Lemma 13, we have the following two
straight-forward corollaries.

Corollary 16 Suppose that Assumption 1 holds. Let B =
√

ε
ρ′ , θ = 4

(
ερ′η2

)1/4 ∈ (0, 1],

and K = b1θc in one epoch, where η ≤ 1
4L and ρ′ ≥ ρ. Assume that K

∑K−1
t=0 ‖xt+1−xt‖2 > B2

for some K ≤ K and k
∑k−1

t=0 ‖xt+1 − xt‖2 ≤ B2 for all k < K, then for the iterations

yk = xk + (1− θ)(xk − xk−1), xk+1 = yk − η∇f(yk) (23)

starting from x0 = x−1, we have

f(xK)− f(x0) ≤ −7ε3/2

8
√
ρ′
. (24)
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Corollary 17 Suppose that Assumption 1 holds. Let B =
√

ε
ρ′ , θ = 4

(
ερ′η2

)1/4 ∈ (0, 1),

and K = b1θc in one epoch. Assume that k
∑k−1

t=0 ‖xt+1 − xt‖2 ≤ B2 for all k ≤ K, then for
the iterations (23), we have

‖∇f(ŷ)‖ ≤ 2
√

2B

ηK2
+

2θB

ηK
+ 4ρB2 ≤ 78ε

(1− θ)2
+

4ρε

ρ′
,

where ŷ is defined on lines 15 and 16 of Algorithm 2.

Now, we can prove Theorem 15.
Proof Recall that we define one round of AGD to be one epoch and the parameters η, ρ′,
B0, and B do not change during each epoch. From the update of η and ρ′, we know θ and

K never change. That is, θ = 4
(
ερ′intη

2
int

)1/4
= 4

(
ερ′maxη

2
min

)1/4
and K = b1θc all the time.

We first consider the last epoch if the algorithm terminates. From line 2 of Algorithm
2, we know the while loop breaks when k ≥ K and B0 ≤ B. In the last epoch where the
“if condition” on line 6 does not trigger, we have k

∑k−1
t=0 ‖xt+1 − xt‖2 ≤ max{B2, B2

0} and

k ≤ K. So the last epoch consists of K iterations and k
∑k−1

t=0 ‖xt+1 − xt‖2 ≤ B2 for all
k ≤ K. From Corollary 17, we have ‖∇f(ŷ)‖ ≤ 78ε

(1−θ)2 + 4ρε
ρ′int

= O(ε).

Next, we prove the algorithm will terminate in at most O(ε−3/2) epochs. In each epoch
where the “if condition” on line 6 triggers, we execute either line 9 or line 11 (in fact, step
(4)), depending on the condition on line 8. Denote one epoch to be valid when the “if
condition” on line 8 holds. Otherwise, denote this epoch to be invalid, where invalid means
that we discard the whole iterates in this epoch and reset x0 and x−1 to be the last iterate
in the previous valid epoch, which is stored in x0

cur.
Consider the total number of invalid epochs. We can prove that invalid epoch never

appears and line 11 never executes when B0 ≤ B, η ≤ 1
4L , and ρ′ ≥ ρ. In fact, for each

epoch except the last one, when B0 ≤ B, we always have k < K. Otherwise, the while
loop on line 2 breaks. Thus, when the “if condition ” on line 6 triggers, we must have
K
∑K−1

t=0 ‖xt+1 − xt‖2 > B2 for some K ≤ K and k
∑k−1

t=0 ‖xt+1 − xt‖2 ≤ B2 for all k < K.

From Corollary 16, we have f(xK)− f(x0) ≤ −7ε3/2

8
√
ρ′
≤ −γ ε3/2√

ρ′
, which triggers the condition

on line 8. Thus, line 11 never executes. So we only need to count the number of epochs
such that B0 ≤ B, η ≤ 1

4L , and ρ′ ≥ ρ. Letting

B0,int

(c0c1)Niv
≤
√

ε

ρ′intc
2Niv
2

,
ηint

cNiv2

≤ 1

4L
, ρ′intc

2Niv
2 ≥ ρ, (25)

we have Niv = O
(

logc0c1/c2
B0,intρ

′
int

ε + logc2(Lηint) + logc2
ρ
ρ′int

)
. So we only need O(log C

ε )

invalid epochs for some constant C to get B0 ≤ B, η ≤ 1
4L , and ρ′ ≥ ρ.

Consider the valid epochs. Since each valid epoch decreases the objective value at least

γ ε
3/2
√
ρ′
≥ γ ε3/2√

ρ′max
, we have at most

4f
√
ρ′max

γε3/2
valid epochs.

Putting the two cases together, we need at most O
(
4f
√
ρ′max

ε3/2
+ log C

ε

)
epochs, and

accordingly, O
(
4f
√
ρ′max

ε3/2
+ log C

ε

)
function evaluations. On the other hand, each epoch,
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no matter valid or not, needs at most K + 1 = O
(

1
(ερ′η2)1/4

)
= O

(
1

(ερ′maxη
2
min)

1/4

)
gradient

computations (see line 6 of Algorithm 2). So the total number of gradient computations is

O
((

4f
√
ρ′max

ε3/2
+ log C

ε

)(
1

(ερ′maxη
2
min)

1/4

))
= O

(
4f (ρ′max)1/4

ε7/4η
1/2
min

+ 1
(ερ′maxη

2
min)

1/4 log C
ε

)
.

At last, we consider Theorem 3. In the original Algorithm 2 where we do not dy-

namically change ρ′ and η, we only need to replace (25) by
B0,int

c
Niv
0

≤
√

ε
ρ such that

Niv = O
(

logc0
ρB0,int

ε

)
, even if line 11 in Algorithm 2 is never triggered. Since ρ′ and

η are fixed at ρ and 1
4L , respectively, we have the complexity of O

(
4f
√
ρ

ε3/2
+ log

ρB0,int

ε

)
function evaluations and O

(
4fL1/2ρ1/4

ε7/4
+ L1/2

ε1/4ρ1/4
log

ρB0,int

ε

)
gradient computations.

4.4 Proof of Theorem 6

We follow the proof sketch in Section 4.1 and use the notations therein. Specifically, (8a),
(8b), and (10a) also hold for the heavy ball method.

4.4.1 Large Gradient of ‖∇f(xK−1)‖

Similar to Lemma 8, we first consider the case when ‖∇f(yK−1)‖ is large and give the
following lemma for Algorithm 3.

Lemma 18 Suppose that Assumption 1 holds. Let η ≤ 1
4L and 0 ≤ θ ≤ 1

10 . In each epoch
of Algorithm 3 where the “if condition” triggers, when ‖∇f(xK−1)‖ > 4B

η , we have

f(zK)− f(x0) ≤ −3B2

16η
.

Proof As the gradient is L-Lipschitz, we have

f(xk+1)

≤f(xk) +
〈
∇f(xk),xk+1 − xk

〉
+
L

2
‖xk+1 − xk‖2

a
=f(xk) +

〈
∇f(xk), (1− θ)(xk − xk−1)− η∇f(xk)

〉
+
L

2
‖(1− θ)(xk − xk−1)− η∇f(xk)‖2

≤f(xk)− η‖∇f(xk)‖2 +
η

2
‖∇f(xk)‖2 +

1

2η
‖xk − xk−1‖2 +L‖xk − xk−1‖2 +Lη2‖∇f(xk)‖2

b
≤f(xk)− η

4
‖∇f(xk)‖2 +

3

4η
‖xk − xk−1‖2,

where we use the heavy ball iteration on line 3 of Algorithm 3 in
a
= and η ≤ 1

4L in
b
≤.

Summing over k = 0, · · · ,K − 1 and using x0 = x−1, we have

f(xK)− f(x0) ≤ 3

4η

K−2∑
k=0

‖xk+1 − xk‖2 − η

4

K−1∑
k=0

‖∇f(xk)‖2
c
≤ 3B2

4η
− η

4
‖∇f(xK−1)‖2, (26)
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where we use (8b) in
c
≤. On the other hand, we also have

f(xK−1)− f(x0) ≤ 3

4η

K−3∑
k=0

‖xk+1 − xk‖2 − η

4

K−2∑
k=0

‖∇f(xk)‖2 ≤ 3B2

4η
. (27)

Define h(x) = f(x) + L
2 ‖x − x0‖2. We know h(x) is convex since ∇2f(x) � −LI. Thus

we have h(zK) ≤ αh(xK) + (1 − α)h(xK−1) with α = 1
1+(1−2θ)(1−θ) ∈ [12 ,

1
1.72 ] and zK =

αxK + (1− α)xK−1, which further yields

f(zK) ≤αf(xK) + (1− α)f(xK−1) +
Lα

2
‖xK − x0‖2 +

L(1− α)

2
‖xK−1 − x0‖2

− L

2
‖α(xK − x0) + (1− α)(xK−1 − x0)‖2

d
=αf(xK) + (1− α)f(xK−1) +

Lα(1− α)

2
‖xK − xK−1‖2

≤αf(xK) + (1− α)f(xK−1) +
1

32η
‖xK − xK−1‖2

≤αf(xK) + (1− α)f(xK−1) +
1

16η
‖xK−1 − xK−2‖2 +

η

16
‖∇f(xK−1)‖2,

(28)

where we use |αx+ (1−α)y|2 = αx2 + (1−α)y2−α(1−α)|x− y|2 in
d
=. Plugging (26) and

(27) into (28) and using ‖xK−1 − xK−2‖2 ≤ B2, we have

f(zK)− f(x0) ≤3B2

4η
+
B2

16η
− ηα

4
‖∇f(xK−1)‖2 +

η

16
‖∇f(xK−1)‖2

≤13B2

16η
− η

16
‖∇f(xK−1)‖2

e
≤ −3B2

16η
,

where we use ‖∇f(xK−1)‖ > 4B
η in

e
≤.

4.4.2 Small Gradient of ‖∇f(xK−1)‖

If ‖∇f(xK−1)‖ ≤ 4B
η , then from the heavy ball iteration on line 3 of Algorithm 3 and (8b)

we have

‖xK − x0‖ ≤ ‖xK−1 − x0‖+ η‖∇f(xK−1)‖+ (1− θ)‖xK−1 − xK−2‖ ≤ 6B.

Similar to (12), using the definition of g(x) in (13), we have

f(xK)− f(x0) ≤ g(x̃K)− g(x̃0) + 36ρB3. (29)

Denoting

δ̃kj = ∇̃jf(xk)−∇gj(x̃kj ), δ̃k = ∇̃f(xk)−∇g(x̃k),
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then the heavy ball iteration in Algorithm 3 can be rewritten as

x̃k+1
j =x̃kj − η∇̃jf(xk) + (1− θ)(x̃kj − x̃k−1j )

=x̃kj − η∇gj(x̃kj )− ηδ̃kj + (1− θ)(x̃kj − x̃k−1j ).
(30)

Similar to (15), ‖δ̃k‖ can also be bounded as

‖δ̃k‖ ≤ ρ

2
‖xk − x0‖2 ≤ ρB2

2
(31)

for any k < K.

Lemma 19 Suppose that Assumption 1 holds. Let η ≤ 1
4L and 0 ≤ θ ≤ 1

10 . In each epoch
of Algorithm 3 where the “if condition” triggers, when ‖∇f(xK−1)‖ ≤ 4B

η , we have

f(zK)− f(x0) ≤ −9θB2

40ηK
+
ηρ2B4K

4θ
+ 36ρB3.

Proof Since gj(x) is quadratic, we have

gj(x̃
k+1
j )− gj(x̃kj ) =

λj
2
|x̃k+1
j − x̃0

j |2 −
λj
2
|x̃kj − x̃0

j |2 +
〈
∇̃jf(x0), x̃k+1

j − x̃kj

〉
=
λj
2
|x̃k+1
j − x̃kj |2 +

〈
x̃k+1
j − x̃kj , λj(x̃

k
j − x̃0

j ) + ∇̃jf(x0)
〉

=
λj
2
|x̃k+1
j − x̃kj |2 +

〈
x̃k+1
j − x̃kj ,∇gj(x̃kj )

〉
.

(32)

From (30), we have〈
x̃k+1
j − x̃kj ,∇gj(x̃kj )

〉
=(1− θ)

〈
x̃kj − x̃k−1j ,∇gj(x̃kj )

〉
− η|∇gj(x̃kj )|2 − η

〈
δ̃kj ,∇gj(x̃kj )

〉
≤(1− θ)

〈
x̃kj − x̃k−1j ,∇gj(x̃kj )

〉
− η|∇gj(x̃kj )|2 +

η

4θ
|δ̃kj |2 + θη|∇gj(x̃kj )|2

=(1− θ)
〈
x̃kj − x̃k−1j ,∇gj(x̃kj )

〉
− (1− θ)η|∇gj(x̃kj )|2 +

η

4θ
|δ̃kj |2.

Plugging into (32), we have

gj(x̃
k+1
j )− gj(x̃kj ) ≤

λj
2
|x̃k+1
j − x̃kj |2 + (1− θ)

〈
x̃kj − x̃k−1j ,∇gj(x̃kj )

〉
− (1− θ)η|∇gj(x̃kj )|2 +

η

4θ
|δ̃kj |2.

(33)

Rearranging and squaring both sides of (30) and using (a+ b)2 ≤ (1+ θ
1−θ )a2 +(1+ 1−θ

θ )b2 =
a2

1−θ + b2

θ , we have

|x̃k+1
j − x̃kj |2 ≤

1

1− θ

∣∣∣(1− θ)(x̃kj − x̃k−1j )− η∇gj(x̃kj )
∣∣∣2 +

η2|δ̃kj |2

θ

=(1−θ)|x̃kj−x̃k−1j |2+
η2

1−θ
|∇gj(x̃kj )|2−2η

〈
x̃kj−x̃k−1j ,∇gj(x̃kj )

〉
+
η2|δ̃kj |2

θ
.

(34)
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Multiplying both sides of (34) by (1−θ)2
η , adding it to (33), and rearranging the terms, we

have

gj(x̃
k+1
j )− gj(x̃kj )

≤−
(

(1− θ)2

η
− λj

2

)
|x̃k+1
j − x̃kj |2 +

(1− θ)3

η
|x̃kj − x̃k−1j |2

− (1− 2θ)(1− θ)
〈
x̃kj − x̃k−1j ,∇gj(x̃kj )

〉
+

(
η

4θ
+
η(1− θ)2

θ

)
|δ̃kj |2

=−
(

(1− θ)2

η
− λj

2

)
|x̃k+1
j − x̃kj |2 +

(1− θ)3

η
|x̃kj − x̃k−1j |2

− (1− 2θ)(1− θ)
〈
x̃kj − x̃k−1j , λj(x̃

k
j − x̃0

j ) + ∇̃jf(x0)
〉

+

(
η

4θ
+
η(1− θ)2

θ

)
|δ̃kj |2

≤−
(

(1− θ)2

η
− λj

2

)
|x̃k+1
j − x̃kj |2 +

(1− θ)3

η
|x̃kj − x̃k−1j |2 +

5η

4θ
|δ̃kj |2

− (1−2θ)(1−θ)
(
λj
2
|x̃kj − x̃k−1j |2+

λj
2
|x̃kj − x̃0

j |2−
λj
2
|x̃k−1j − x̃0

j |2+
〈
x̃kj − x̃k−1j , ∇̃jf(x0)

〉)
=−

(
(1− θ)2

η
− λj

2

)
|x̃k+1
j − x̃kj |2 +

(
(1− θ)3

η
− (1− 2θ)(1− θ)λj

2

)
|x̃kj − x̃k−1j |2

+
5η

4θ
|δ̃kj |2 − (1− 2θ)(1− θ)

(
gj(x̃

k
j )− gj(x̃k−1j )

)
.

Note that

(1− θ)2

η
− λj

2
− (1− θ)3

η
+

(1− 2θ)(1− θ)λj
2

=
(1− θ)2θ

η
− λj(3θ − 2θ2)

2

a
≥ (1− θ)2θ

η
− 3θ − 2θ2

8η

b
≥ 9θ

20η
,

where we use λj ≤ L = 1
4η in

a
≥ and θ ≤ 1

10 in
b
≥. So we have

gj(x̃
k+1
j )− gj(x̃kj ) + (1− 2θ)(1− θ)

(
gj(x̃

k
j )− gj(x̃k−1j )

)
≤−

(
(1− θ)3

η
− (1− 2θ)(1− θ)λj

2
+

9θ

20η

)
|x̃k+1
j − x̃kj |2

+

(
(1− θ)3

η
− (1− 2θ)(1− θ)λj

2

)
|x̃kj − x̃k−1j |2 +

5η

4θ
|δ̃kj |2.

Summing over k = 0, 1, · · · ,K − 1 and using x0 = x−1, we have

gj(x̃
K
j )− gj(x̃0

j ) + (1− 2θ)(1− θ)
(
gj(x̃

K−1
j )− gj(x̃0

j )
)

≤−
(

(1−θ)3

η
− (1−2θ)(1−θ)λj

2

)
|x̃Kj − x̃K−1j |2− 9θ

20η

K−1∑
k=0

|x̃k+1
j − x̃kj |2 +

5η

4θ

K−1∑
k=0

|δ̃kj |2.
(35)
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Denoting α = 1
1+(1−2θ)(1−θ) ∈ [12 ,

1
1.72 ] and multiplying both sides of (35) by α, we have

α
(
gj(x̃

K
j )− gj(x̃0

j )
)

+ (1− α)
(
gj(x̃

K−1
j )− gj(x̃0

j )
)

≤− α
(

(1−θ)3

η
− (1−2θ)(1−θ)λj

2

)
|x̃Kj − x̃K−1j |2− 9αθ

20η

K−1∑
k=0

|x̃k+1
j − x̃kj |2+

5αη

4θ

K−1∑
k=0

|δ̃kj |2

≤− 1

2

(
(1−θ)3

η
− (1−2θ)(1−θ)λj

2

)
|x̃Kj − x̃K−1j |2− 9θ

40η

K−1∑
k=0

|x̃k+1
j − x̃kj |2+

η

θ

K−1∑
k=0

|δ̃kj |2,

(36)

where we use (37) in the last inequality. On the other hand, from zK = xK+(1−2θ)(1−θ)xK−1

1+(1−2θ)(1−θ) =

αxK + (1− α)xK−1, we have

gj(z̃
K
j )− gj(x̃0

j )

=
λj
2

∣∣∣α(x̃Kj − x̃0
j ) + (1− α)(x̃K−1j − x̃0

j )
∣∣∣2 + α

〈
∇̃jf(x0), x̃Kj − x̃0

j

〉
+ (1− α)

〈
∇̃jf(x0), x̃K−1j − x̃0

j

〉
c
=
λjα

2
|x̃Kj − x̃0

j |2 +
λj(1− α)

2
|x̃K−1j − x̃0

j |2 −
λjα(1− α)

2
|x̃Kj − x̃K−1j |2

+ α
〈
∇̃jf(x0), x̃Kj − x̃0

j

〉
+ (1− α)

〈
∇̃jf(x0), x̃K−1j − x̃0

j

〉
=α

(
gj(x̃

K
j )− gj(x̃0

j )
)

+ (1− α)
(
gj(x̃

K−1
j )− gj(x̃0

j )
)
− λjα(1− α)

2
|x̃Kj − x̃K−1j |2

d
≤α

(
gj(x̃

K
j )− gj(x̃0

j )
)

+ (1− α)
(
gj(x̃

K−1
j )− gj(x̃0

j )
)

+
1

32η
|x̃Kj − x̃K−1j |2

e
≤− 1

2

(
(1−θ)3

η
− (1−2θ)(1−θ)λj

2
− 1

16η

)
|x̃Kj − x̃K−1j |2− 9θ

40η

K−1∑
k=0

|x̃k+1
j − x̃kj |2 +

η

θ

K−1∑
k=0

|δ̃kj |2

f
≤− 9θ

40η

K−1∑
k=0

|x̃k+1
j − x̃kj |2 +

η

θ

K−1∑
k=0

|δ̃kj |2,

where we use |αx+ (1− α)y|2 = αx2 + (1− α)y2 − α(1− α)|x− y|2 in
c
≤, λj ≥ −L = − 1

4η

in
d
≤, (36) in

e
≤, and

(1− θ)3

η
− (1− 2θ)(1− θ)λj

2
− 1

16η
≥ (1− θ)3

η
− 1

8η
− 1

16η
≥ 0 (37)

with θ ∈ [0, 1
10 ] in

f
≤. Summing over j, using (31) and (8a), we have

g(z̃K)− g(x̃0) =
∑
j

gj(z̃
K
j )− gj(x̃0

j ) ≤−
9θ

40η

K−1∑
k=0

‖x̃k+1 − x̃k‖2 +
ηρ2B4K

4θ

≤− 9θB2

40ηK
+
ηρ2B4K

4θ
.
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Plugging into (29), we have the conclusion.

Remark 20 Comparing with the proofs in Lemmas 9 and 10, we do not divide the eigenval-
ues into two groups in the proof of Lemma 19. However, the bad thing is that gj(x̃

K
j )− gj(x̃0

j )

and gj(x̃
K−1
j )− gj(x̃0

j ) appear simultaneously on the left hand side of (35). This is the reason

why we introduce the vector zk in Algorithm 3.

Combing Lemmas 18 and 19, similar to Corollary 12, we have

f(zK)− f(x0) ≤ −ε
3/2

√
ρ
.

Similar to Lemma 13, we also have ‖∇f(x̂)‖ ≤ 2
√
2B

ηK2 + 2θB
ηK + ρB2 ≤ 242ε in the last epoch.

Using the same proofs of Theorem 1 at the end of Section 4.1.3, we can prove Theorem 6.

5. Experiments

We test the practical performance on the matrix completion problem (Negahban and
Wainwright, 2012; Hardt, 2014) and one bit matrix completion problem (Davenport et al.,
2014), and end this section by discussing the gap between theory and practice.

5.1 Matrix completion

In matrix completion (Negahban and Wainwright, 2012; Hardt, 2014), we aim to recover the
true low rank matrix from a set of randomly observed entries, which can be formulated as
follows:

min
X∈Rm×n

1

2N

∑
(i,j)∈O

(Xi,j −X∗i,j)
2, s.t. rank(X) ≤ r,

where O is the set of randomly observed entries with size N and X∗ is the true low rank
matrix to recover. We reformulate the above problem in the following matrix factorization
form:

min
U∈Rm×r,V∈Rn×r

1

2N

∑
(i,j)∈O

((UVT )i,j −X∗i,j)
2 +

1

2N
‖UTU−VTV‖2F ,

where r is the rank of X∗ and the regularization is used to balance U and V.
We verify the performance on the Movielens-10M, Movielens-20M and Netflix data sets,

where the corresponding observed matrices are of size 69878× 10677, 138493× 26744, and
480189×17770, respectively. We set r = 10. Denote XO to be the observed data and AΣBT

to be its SVD. We initialize U = A:,1:r

√
Σ1:r,1:r and V = B:,1:r

√
Σ1:r,1:r for all the compared

methods. It is efficient to compute the maximal r singular values and the corresponding
singular vectors of sparse matrices, for example, by Lanczos.

We compare Ada-RAGD-NC (Algorithm 2) and Ada-RHB-NC (Algorithm 4) with Jin’s
AGD (Jin et al., 2018), the “convex until proven guilty” method (Carmon et al., 2017),
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heuristic restarted AGD (O’Donoghue and Candès, 2015), nonlinear conjugate gradient (CG)
(Polak and Ribiere, 1969), and gradient descent (GD). We do not compare with RAGD-NC
(Algorithm 1) and RHB-NC (Algorithm 3) because the two methods restart at almost every
iteration due to the small hyperparameter B. Their performance is almost the same as GD
and their plots almost coincide with that of GD. Heuristic RAGD consists of the following
iterations

xk+1 = yk − η∇f(yk), yk+1 = xk+1 +
mk+1 − 1

mk+1 + 2
(xk+1 − xk),

where m0 = 1 and

mk+1 =

{
mk + 1, if f(xk+1) ≤ f(xk),

1, otherwise.

The nonlinear conjugate gradient has the following steps

δk = −∇f(xk) + max

{〈
∇f(xk),∇f(xk)−∇f(xk−1)

〉
‖∇f(xk−1)‖2

, 0

}
δk−1, xk+1 = xk + ηkδk,

where δ−1 = 0 and we follow (Carmon et al., 2017) to set ηk by the following backtracking

line search: set ηk = 2ηk−1 and check whether f(xk + ηkδk) ≤ f(xk) +
ηk〈δk,∇f(xk)〉

2 holds.
If it does not hold, set ηk = ηk/2 and repeat.

We tune the best stepsize η for each compared method (except CG) on each dataset.
For CG, we set the same stepsize as GD since CG adaptively tune η during the iterations.

For Ada-RAGD-NC and Ada-RHB-NC, we set ε = 10−4, B =
√

ε
ρ , θ = 0.005(ερη2)1/4,

K = b1/θc, B0 = 100, γ = 10−5, c0 = 1 + 0.001t at the tth epoch, and c1 = 10. We use (4)
to adaptively tune η and ρ since ρ is unknown, where we set c2 = 2 and initialize ρ = 1.
When preparing the experiments, we observe that proper B0, θ, and γ are crucial in the
fast convergence of Ada-RAGD-NC and Ada-RHB-NC. We suggest to set θ in (0, 0.01] and
γ to be small such that line 11 in Algorithms 2 and 4 is less frequently triggered. B0 can
be set larger when the methods restart frequently. For CG, we stop the line search when
it repeats more than 10 times. For Jin’s AGD, we tune θ = 0.04(ερη2)1/4 and follow (Jin

et al., 2018) to set γ = θ2

η and s = γ
4ρ in their method. Since the Hessian Lipschitz constant

ρ is unknown, we set it as 1 for Jin’s AGD for simplicity. For the “convex until proven
guilty” method, we follow the theory in (Carmon et al., 2017) to set the parameters except
that we terminate the inner loop after 100 iterations to improve its practical performance.
GD and heuristic RAGD have no hyperparameter to tune except the stepsize. Since the
optimal function value f(x∗) is unknown, we run each method for 2000 iterations and use
the minimum objective value to approximate the optimal one. We only plot the figures using
the first 1000 iterations.

Figure 1 plots the objective error f(xk)− f(x∗) and gradient norm ‖∇f(xk)‖. We use
running time as the horizontal axis in the first and third row, and the number of function
and gradient evaluations as the horizontal axis in the second and forth row. Note that
the “convex until proven guilty” method needs at least two gradient evaluations at each
iteration while the other methods only need one. For the function evaluations, GD needs
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(a) MovieLens-10M (b) MovieLens-20M (c) Netflix

Figure 1: Comparisons on the matrix completion problem. The first and second row:
objective error. The third and forth row: gradient norm. The first and third row:
use time as the horizontal axis. The second and forth row: use the number of
function and gradient evaluations as the horizontal axis. Circles in Ada-RAGD-NC
and Ada-RHB-NC indicate where restart occurs.

29



Li and Lin

none, Ada-RAGD-NC and Ada-RHB-NC need one only when restart occurs, heuristic RAGD
needs one at each iteration, Jin’s AGD needs at least two, CG needs at least one, and the
“convex until proven guilty” method needs at least three at each iteration. Thus, GD and
our Ada-RAGD-NC and Ada-RHB-NC need less total running time when we run all the
methods for 1000 iterations. We see that all the accelerated methods perform better than
GD, which verifies the efficiency of acceleration in nonconvex optimization. We also observe
that our Ada-RAGD-NC and Ada-RHB-NC decrease the objective error and gradient norm
to low level quickly. We observe that the gradient norms of CG oscillate during iterations.
It may be because CG uses line search to tune the stepsize dynamically, which may be too
large and aggressive. On the other hand, due to the specification of the matrix completion
problem, we observe that Jin’s AGD and the “convex until proven guilty” method seldom
run negative curvature exploitation.

5.2 One bit matrix completion

In one bit matrix completion (Davenport et al., 2014), the signs of a random subset of
entries are observed, rather than observing the actual entries. Given a probability density
function, for example, the logistic function f(x) = ex

1+ex , we observe the sign of entry Xi,j as
Yi,j = 1 with probability f(Xi,j), and observe the sign as −1 with probability 1− f(Xi,j).
The training model is to minimize the following negative log-likelihood:

min
X∈Rm×n

− 1

N

∑
(i,j)∈O

{
1Yi,j=1log(f(Xi,j)) + 1Yi,j=−1log(1− f(Xi,j))

}
,

s.t. rank(X) ≤ r,

where 1Yi,j=1 =

{
1, if Yi,j = 1,
0, otherwise.

We solve the following reformulated matrix factorization

model:

min
U,V
− 1

N

∑
(i,j)∈O

{
1Yi,j=1log(f((UVT )i,j))+1Yi,j=−1log(1−f((UVT )i,j))

}
+

1

2N
‖UTU−VTV‖2F ,

where U ∈ Rm×r and V ∈ Rn×r. We compare Ada-RAGD-NC (Algorithm 2) and Ada-
RHB-NC (Algorithm 4) with the methods compared in Section 5.1. The best stepsize is
tuned for each method on each data set. We use the same initialization and set the same
parameters as those in Section 5.1, and also run each method for 1000 iterations. Figure 2
plots the results. We see that acceleration also takes effect in nonconvex optimization and
our Ada-RAGD-NC and Ada-RHB-NC also decrease the objective value and gradient norm
to low level quickly.

5.3 Gap Between Theory and Practice

In the previous two sections, we only run Ada-RAGD-NC and Ada-RHB-NC for 1000
iterations such that the objective error and gradient norm are reduced to low level quickly,
which is sufficient for practical machine learning applications. In this section, we verity what
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Figure 2: Comparisons on the 1 bit matrix completion problem. The first and second row:
function value. The third and forth row: gradient norm. The first and third row:
use time as the horizontal axis. The second and forth row: use the number of
function and gradient evaluations as the horizontal axis. Circles in Ada-RAGD-NC
and Ada-RHB-NC indicate where restart occurs.
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happens when we run the two methods for a longer time and discuss the gap between theory
and practice for nonadaptive RAGD-NC and RHB-NC (Algorithms 1 and 3).

We only report the observations on the Movielens-10M data set, and the results are
similar on the other two. For both the matrix completion and one bit matrix completion
problems, we run Ada-RAGD-NC and Ada-RHB-NC for 105 iterations and use the minimum
function value to approximate the optimal one. We set the same parameters as those in
Section 5.1. Figure 3 plots the results. We have the following observations and conclusions.

1. We see that line 11 (in fact, step (4)) in Algorithms 2 and 4 is invoked only once for
both two methods (marked by the blue-green circle), at which time the objective error
and gradient norm increase substantially. Then we decrease B0 and η and increase the
estimated ρ properly. After the adaptive update, line 11 is never invoked.

2. When B0 decreases to be smaller than B (marked by the yellow circle), we see that
both methods restart frequently. Specifically, we observe that for the matrix completion
problem, Ada-RAGD-NC restarts every 16 iterations after B0 ≤ B while Ada-RHB-NC
restarts every 10 iterations. For the one bit matrix completion problem, Ada-RAGD-
NC restarts every 4 iterations after B0 ≤ B while Ada-RHB-NC restarts every 3
iterations. It seems to take an extremely long time to break the while loop (that is, no
restart occurs in K iterations), especially for high dimensional problems (‖xt+1 − xt‖
is not likely to be small even if |xt+1

i − xti| is small for each i = 1, 2 · · · , d). Thus, we
suggest to stop the algorithm in practice when the gradient norm is smaller than a
threshold or the number of iterations exceeds the maximum one.

3. Note that Ada-RAGD-NC and Ada-RHB-NC reduce to their nonadaptive counterparts
(Algorithms 1 and 3) when B0 ≤ B, and the plots after the yellow circles may illustrate
the practical performance of the nonadaptive methods. Thus, nonadaptive RAGD-NC
and RHB-NC (Algorithms 1 and 3) are only for the theoretical purpose and we do not
suggest to use them in practice due to their frequent restart, unless we do not follow
the theory to set the parameters, especially the parameter B.

6. Conclusion

This paper proposes two simple accelerated gradient methods, restarted AGD and restarted
HB, for general nonconvex problems with Lipschitz continuous gradient and Hessian. Our
simple methods find an ε-approximate first-order stationary point within O(ε−7/4) gradient
evaluations, which improves over the best known complexity by the O(log 1

ε ) factor. Our
proofs only use elementary analysis. We hope our analysis may lead to a better understanding
of the acceleration mechanism for nonconvex optimization.
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