
Journal of Machine Learning Research 24 (2023) 1-34 Submitted 6/22; Revised 12/22; Published 3/23

Knowledge Hypergraph Embedding Meets Relational Algebra

Bahare Fatemi bfatemi@cs.ubc.ca
University of British Columbia
Vancouver, BC V6T 1Z4, Canada

Perouz Taslakian perouz.taslakian@servicenow.com
ServiceNow Research
Montreal, QC H2S 3G9, Canada

David Vazquez david.vazquez@servicenow.com
ServiceNow Research
Montreal, QC H2S 3G9, Canada

David Poole poole@cs.ubc.ca
University of British Columbia
Vancouver, BC V6T 1Z4, Canada

Editor: Gal Elidan

Abstract
Relational databases are a successful model for data storage, and rely on query languages for
information retrieval. Most of these query languages are based on relational algebra, a mathematical
formalization at the core of relational models. Knowledge graphs are flexible data storage structures
that allow for knowledge completion using machine learning techniques. Knowledge hypergraphs
generalize knowledge graphs by allowing multi-argument relations. This work studies knowledge
hypergraph completion through the lens of relational algebra and its core operations. We explore
the space between relational algebra foundations and machine learning techniques for knowledge
completion. We investigate whether such methods can capture high-level abstractions in terms
of relational algebra operations. We propose a simple embedding-based model called Relational
Algebra Embedding (ReAlE) that performs link prediction in knowledge hypergraphs. We show
theoretically that ReAlE is fully expressive and can represent the relational algebra operations of
renaming, projection, set union, selection, and set difference. We verify experimentally that ReAlE
outperforms state-of-the-art models in knowledge hypergraph completion, and in representing each
of these primitive relational algebra operations. For the latter experiment, we generate a synthetic
knowledge hypergraph, for which we design an algorithm based on the Erdős-Rényi model for
generating random graphs.
Keywords: Knowledge Hypergraphs, Relational Algebra, Knowledge Hypergraph Completion.

1. Introduction

Knowledge hypergraphs are knowledge bases that store information about the world in the form
of tuples describing relations among entities. Knowledge graphs are a specific form of knowledge
hypergraphs that represent relations between exactly two entities. Knowledge hypergraphs thus
generalize knowledge graphs by allowing multi-argument relations. Knowledge hypergraphs are
inherently incomplete; for example, Wikidata (Vrandečić and Krötzsch, 2014) contains a very small
proportion of the true statements about the notable people included. The goal of link prediction in

©2023 Bahare Fatemi, Perouz Taslakian, David Vazquez, and David Poole.

License: CC-BY 4.0, see https://creativecommons.org/licenses/by/4.0/. Attribution requirements are provided at
http://jmlr.org/papers/v24/22-0638.html.

https://creativecommons.org/licenses/by/4.0/
http://jmlr.org/papers/v24/22-0638.html

Fatemi, Taslakian, Vazquez, and Poole

knowledge hypergraphs (or knowledge hypergraph completion) is to predict unknown relationships
among entities based on existing ones.

The most dominant recent paradigm on knowledge completion has been to learn and reason on
knowledge graphs, but the original structure of many existing graph datasets is in terms of more
than just binary relations. Wen et al. (2016) observe that in the original Freebase (Bollacker et al.,
2008) more than 1

3 of the entities participate in non-binary relations. Fatemi et al. (2020) observe, in
addition, that 61% of the relations in the original Freebase are non-binary. While it is possible to
convert a knowledge hypergraph into a knowledge graph and apply existing methods on it, Fatemi
et al. (2020) show that embedding-based methods for knowledge graph completion do not work well
out of the box for knowledge graphs obtained through such conversion techniques. An alternative
way is to modify the learning model to explicitly handle non-binary relations. However, a model
designed to reason over binary relations does not necessarily generalize well to non-binary relations.
With most existing models being extensions of those used for link prediction in knowledge graphs,
knowledge hypergraph completion remains a relatively underexplored research area.

Recent research (e.g., Battaglia et al., 2018; Teru et al., 2020) has highlighted the importance
of relational inductive biases in building learning agents that learn entity-independent relational
semantics and reason in a compositional manner. In this work, we explore the foundations of
knowledge hypergraph completion; we aim to design a model for reasoning in knowledge hypergraphs
that is simple, expressive, and can represent high-level abstractions in terms of the operations
of relational databases. We hypothesize that models that can reason about relations in terms of
relational algebra operations have better generalization power. Many relational methods involve
explicit knowledge construction (e.g., rules, constraints, or ontologies) that can be used to extend
a partial knowledge base or detect inconsistencies. Our focus in this work is to design a model
that exploits relational inductive biases by incorporating relationships among relations, without
explicitly constructing this knowledge. In the proposed model, all the relationships are implicit in the
similarities in the learned parameters for relations.

Constraint vs. query languages. In relational databases, constraints and queries play com-
plementary roles. Constraints specify restrictions to impose on the database, while queries extract
information that may not be explicitly encoded. In other words, constraints imply that some combina-
tion of tuples must be false, while queries help us determine what else must be true. Both constraints
and queries can be written as (a subset of) first-order logic rules. Consider the following example.
Suppose the data tells us that sam lives with sally (which we write as livesWith(sam, sally)) and sally
lives in paris (written as livesIn(sally,paris)). A query language would let us state that someone lives
in the same city as a person they live with, which would let us infer livesIn(sam,paris). The constraint
that someone only lives in one city makes us reject the statement livesIn(sally,berlin).

Unlike in constraint languages, defining one relation in terms of others in a query language does
not have side effects – i.e. the representation of a relation r does not affect the truth of relations not
defined in terms of r, which is crucial when we want to capture multiple inference patterns jointly. We
can think of a query language as being similar to a directed graphical model and a constraint language
as an undirected graphical model. In a directed graphical model, we add a new random variable by
using existing variables as its parents. Adding the variable does not change the distribution of the
parents. Whereas, in an undirected graphical model, adding a new variable can change the distribution
of other variables; indeed for relational undirected models (in particular Markov logic networks), it
has been proved that it is impossible to add a new variable without changing the distribution over
the existing variables except in trivial cases (Buchman and Poole, 2015). A learning model that is

2

Knowledge Hypergraph Embedding Meets Relational Algebra

based on a query language (e.g. one with relational algebra foundations) can easily capture multiple
inference patterns jointly, a challenge underlined by Abboud et al. (2020) who state that “capturing
multiple inference patterns jointly is significantly more challenging [than capturing them singly].”
This is true of languages that include constraints, but not of query languages.

Relational algebra. Relational algebra is a formalization of queries and defines relations (views)
at the core of relational databases. It consists of several primitive operations that can be combined to
synthesize all other operations used. The primitive operations are renaming, projection, selection,
set union, set difference, and Cartesian product. Each such operation takes relations as input and
returns a relation as output. Renaming changes the order of the entities in a relation. Projection
takes a relation and some positions as input and returns a new relation with the entities in specific
positions removed from each tuple. Selection returns a subset of tuples for a relation that satisfies a
given condition. Set union takes as input two relations of the same arity and returns a new relation
containing the tuples that appear in at least one of the relations. Set difference also gets two relations
of the same arity as input and returns a new relation containing tuples from the first relation that do not
appear in the second relation. Cartesian product takes two relations and returns a relation in which
the tuples are the concatenation of the tuples of the input relations. One non-primitive operation is
join, which is Cartesian product followed by selection and projection; selecting the elements in the
Cartesian product with matching values on corresponding attributes, and projecting onto the different
attributes. Another non-primitive operation is set intersection, which can be defined in terms of set
union and set difference.

Relational Algebra in Knowledge Hypergraphs. In a knowledge hypergraph, the relational
algebra operations can describe how relations depend on each other. To illustrate the connection
between relational algebra operations and relations in knowledge hypergraphs, consider the example
in Figure 1 that shows tuples from a train and test splits of a knowledge hypergraph. The train set
contains tuples sold(drew,alex,book), buyer(alex,book), sold(mike, sam, tv), and bought(sam,mike, tv).
The relations in the example feature the two primitive relational algebra operations renaming and
projection. Relation bought is a renaming of sold. Relation buyer is a projection of relation sold. If
a model is able to represent these two operations, it can potentially learn at train time that a tuple
bought(X,Y, I) (person X bought from person Y item I) is implied by tuple sold(Y,X, I) (person Y sold
to person X item I); or that a tuple buyer(X, I) (person X is the buyer of item I) is implied by the tuple
sold(Y,X, I). An embedding model that cannot represent the operations renaming and projection
would not be able to learn that relation bought in Figure 1 is a renaming of relation sold. It would thus
be difficult for such a model to reason about the relationship between these two relations. In contrast,
a model that can represent renaming and projection operations is potentially able to determine that
bought(alex,drew,book) is true because the train set contains sold(drew,alex,book) and bought is a
renaming of sold, buyer(sam, tv) is true because the train set contains sold(mike, sam, tv) and buyer is
a projection of sold, and sold(mike, sam, tv) is true because the train set contains bought(sam,mike, tv)
and sold is a renaming of bought.

Designing reasoning methods that can capture the relational semantics in terms of relational
algebra is especially important in the context of knowledge hypergraphs, where relations can be
defined on an arbitrary number of entities. Domains with beyond-binary relations provide multiple
methods of expressing the same underlying notion, as seen in the above example where relations sold
and bought encode the same information. Since all relations in a knowledge graph are binary (have
arity 2), many of the relational algebra operations (such as projection, which changes the arity of the
relation; for instance, buyer with arity 2 is a projection of sold with arity 3), are not applicable to this

3

Fatemi, Taslakian, Vazquez, and Poole

drew

mike sam tv

sam mike tv

alex
buyer

alex

? sam tv

? book

buyer
?sam

book

Figure 1: An example of a knowledge hypergraph. The train set contains tuples sold(drew,alex,book),
buyer(alex,book), sold(mike, sam, tv), and bought(sam,mike, tv). Relation bought can be
obtained by applying a renaming operation to relation sold. Similarly, relation buyer is
a projection of relation sold. Learning these relational algebra operations can help the
model generalize to the tuples in the test set. The test responses, from top to bottom, are
drew, tv, and mike.

setting. This also highlights the importance of knowledge hypergraphs as a data model that encodes
rich relational structures ripe for further exploration.

The main contributions of this work are summarized as follows.

• We introduce ReAlE, an embedding-based method for knowledge hypergraph completion
that can provably represent the relational algebra operations renaming, projection, set union,
selection, and set difference,

• A framework for generating synthetic knowledge hypergraphs, which is based on the Erdős-
Rényi random graph generation model and can generate relations by repeated application of
primitive relational algebra operations.

• Experimental results that show that ReAlE outperforms or is comparable to the state-of-the-art
on well-known public datasets, and the synthesized dataset.

2. Related work

Existing work for knowledge hypergraph completion can be grouped into the following categories.
Statistical relational learning. Models under the umbrella of statistical relational learn-

ing (Raedt et al., 2016) can handle variable arity relations and explicitly model the inter-dependencies
of relations. Our work is complementary to these approaches in that ReAlE is an embedding-based
model that represents relational algebra operations implicitly, rather than representing them explicitly.

Translational models. Translational models for knowledge hypergraphs (Wen et al., 2016;
Zhang et al., 2018; Guan et al., 2019) are extensions of approaches for binary relations and have

4

Knowledge Hypergraph Embedding Meets Relational Algebra

restrictions on the types of relations they can model (see Section 5). One of the earliest models in this
category is m-TransH (Wen et al., 2016), which extends TransH (Wang et al., 2014) to knowledge
hypergraph embedding. RAE (Zhang et al., 2018) extends m-TransH by adding the relatedness of
values – the likelihood that two values co-participate in a common instance – to the loss function.
NaLP (Guan et al., 2019) uses a similar strategy to RAE, but models the relatedness of values based
on the roles they play in different tuples. Models in this category have restrictions on the types of
relations they can model (see Sec. 5). Liu et al. (2020) discuss these limitations, and we address
them more formally in Section 5. More recently, Abboud et al. (2020) proposed a fully-expressive
translational model based on box embedding (Li et al., 2018). We address this work in the Rule
capturing models paragraph.

Tensor factorization models. Models in this category extend tensor factorization models
for knowledge graph completion to knowledge hypergraph completion. GETD (Liu et al., 2020)
extends Tucker (Balažević et al., 2019) to n-ary relations. The memory complexity of GETD
grows exponentially with the arity of relations. HypE (Fatemi et al., 2020), which is motivated by
SimplE (Kazemi and Poole, 2018; Fatemi et al., 2019), disentangles the embeddings of relations from
the positions of its arguments and thus the memory complexity grows linearly with the arity of the
relations. HypE is fully expressive but cannot represent relational algebra operations (see Section 5).

Key-value pair based models. Models in this category (Galkin et al., 2020; Guan et al., 2020;
Rosso et al., 2020) assume that a tuple is composed of a triple (binary relation), plus a list of attributes
in the form of key-value pairs. The problem these works study is slightly different as we consider all
information as part of a tuple. They evaluate their models on datasets for which they obtain the tuple
attributes from external data sources using heuristics and thus their results are not comparable to ours.

Graph neural network models. These approaches extend graph neural networks to hypergraph
neural networks (Feng et al., 2019; Yadati et al., 2018). G-MPNN (Yadati, 2020) further extends these
models to knowledge hypergraphs (directed and labeled hyperedges). G-MPNN utilizes message
passing in knowledge hypergraphs but the scoring function assumes relations are symmetric, and
thus has restrictions in modeling the non-symmetric relations and is not fully expressive.

Rule capturing models. The closest work to ours is BoxE (Abboud et al., 2020), which is able
to represent a subset of first-order logic rules and is also a translational model. ReAlE differs from
BoxE in two ways. First, theoretical analysis of BoxE only concerns binary relations, while we
capture inference patterns for relations defined on any number of entities; some of the relational
algebra relations (e.g, projection) do not make sense with only binary relations. Second, we analyze
the theoretical aspects of the proposed model in terms of relational algebra, a query language in
which a relation is defined in terms of others without affecting other relations. In contrast, first-order
logic rules in BoxE are a mixture of constraints (mutual exclusion and anti-symmetry) and rules that
imply what else must be true (e.g., symmetry and intersection). Capturing multiple patterns from
first-order logic does not necessarily provide evidence for the rest of the first-order logic. Capturing
the primitive operations of relational algebra is important as all other operations are composed of
multiple primitive operations. We compare our model empirically with BoxE in Section 8.

Present work. Reasoning in hypergraphs is a relatively underexplored area that has recently
gained more attention. Knowledge hypergraphs are isomorphic to relational databases and relational
algebra is the calculus of queries in relational models. In this work, we design a model based on
relational algebra operations. Besides the theoretical contributions, we show empirically how basing
our model on relational algebra operations gives us improvements compared to existing work.

5

Fatemi, Taslakian, Vazquez, and Poole

3. Definition and notation

Assume a finite set of entities E and a finite set of relations R. Each relation has a fixed arity. A
tuple is in the form of r(x1, . . . ,xn) where r ∈ R, n = |r | is the arity of r, and each xi ∈ E. Let τ be a
set of tuples – the ground truth – specifying all of the tuples that are true. If a tuple is not in τ, it is
false. A knowledge hypergraph consists of a subset of the tuples τ′ ⊆ τ. Knowledge hypergraph
completion is the problem of predicting the missing tuples in τ′, that is, finding the tuples τ \ τ′. A
knowledge graph is a special case of a knowledge hypergraph where all relations have an arity 2.

An embedding is a function from an entity or a relation to one or more vectors, matrices, or
higher-order tensors of numbers over a field (typically the real numbers). We use bold lower-case
for embeddings, so that, x is the embedding of entity x, and r is the embedding of relation r. For
the task of knowledge hypergraph completion, an embedding-based model having parameters θ
defines a scoring function φθ that takes a tuple as input and generates a prediction, e.g., a score (or
a probability) of the tuple being true. A model is fully expressive if given any assignment of truth
values to all tuples, there exists an assignment of values to θ that accurately separates the true tuples
from the false ones.

Following Python notation, for a vector x, x[k] represents the k-th index, for a matrix r, r[i]
represents the i-th row of r and r[i][k] represents the k-th index of vector r[i]. We use × for the
multiplication of two scalars. A permutation function π : {1, . . . ,n} → {1, . . . ,n} is a bijective
function. For example, if π = {(1,2), (2,1), (3,3)} then, (xπ(1),xπ(2),xπ(3)) = (x2,x1,x3).

4. ReAlE: A Basic Embedding Algorithm

ReAlE (Relational Algebra Embedding) is a knowledge hypergraph completion model that has
parameters θ and a scoring function φθ . We motivate our model bottom-up by first describing an
intuitive model for this task (Equation 1); we then discuss why this formulation does not work well
and adjust it in ReAlE (Equation 2). Given a tuple r(x1, . . . ,xn), determining whether it is true or
false depends on the relation and the entities involved; it also depends on the position of each entity in
the tuple, as the role of an entity changes with its position and relation. For example, the role of alex
is different in the tuples sold(drew,alex,book) and sold(alex,drew,book) as its position is different.
The role of alex is also different in the tuples sold(drew,alex,book) and bought(drew,alex,book) as
the relation is different.

An intuitive model to decide whether a tuple is true or not is one that embeds each entity xi ∈ E
into a vector xi ∈ [0,1]d of length d, and the relation r into a matrix r ∈ R |r |×d, where the ith row in r
operates over the entity at position i. Each relation r has a learnable bias term br as a part of the
relation embedding as a relation dependent constant that does not depend on any entities and allows
the model. Such a model defines the following scoring function, where σ is a nonlinear function that
is differentiable almost everywhere.

φ◦θ(r(x1, . . . ,xn)) = σ(br +
|r |∑
i=1

d−1∑
k=0

xi[k] × r[i][k]) (1)

Instead of performing a single version of the above scoring function, we found it beneficial to
consider multiple versions of the scoring function and use the output of all of the functions to obtain
the final predictive performance. Scores from multiple versions of Equation 1 are summed to produce
the final score for the input tuple. The idea of using an ensemble of models (Dietterich, 2000) allows

6

Knowledge Hypergraph Embedding Meets Relational Algebra

r(x1,...,xn)

|r|

. . .

. . .

0 nw-1

. . .

. . .

r[1][0]

xi[0] xi[1] xi[w-1] xi[d-1]

r[1][w-1]r[1][1] r[1][d-1]

Figure 2: A schematic of the entity and relation embeddings in ReAlE: the embedding dimension d
is divided into nw windows of size w.

each of the scoring functions to focus on a different aspect of the problem. This is similar to ideas for
having multiple heads in self-attention layers (Vaswani et al., 2017).

Here, we introduce the concept of windows, a range of indices whereby elements within the
same window are used in one scoring function. The number of embedding elements for each entity
in a window, the window size, is a hyperparameter (see Figure 2). Let w denote the window size,
nw = b dwc the number of windows, and bjr the learnable bias term of relation r for the jth window,
for all j = 0, . . . ,nw − 1. Equation 2 defines ReAlE’s score of a tuple r(x1,x2, . . . ,xn), where σ is a
monotonically-increasing nonlinear function that is differentiable almost everywhere.

φθ(r(x1, . . . ,xn)) =
nw−1∑
j=0

σ(bjr +
|r |∑
i=1

w−1∑
k=0

xi[jw + k] × r[i][jw + k]) (2)

The model presented in Equation 2 is an ensemble of nw models of Equation 1. For instance, if
embedding dimension d is 100 and window size w is 5, the model defined in Equation 2 is equivalent
to creating an ensemble model of 20 variants of models in Equation 1. The aggregation of the scores
of Equation 1 could be done with a summation or average, which differ by a constant. We use the
sum as it is simpler.

Learning ReAlE model. To learn a ReAlE model, we use stochastic gradient descent with
mini-batches. In each iteration, we take in a batch of positive tuples from the knowledge hypergraph.
As a knowledge hypergraph, as defined, only has positive instances and we need to also train our
model on negative instances, we follow the literature (Abboud et al., 2020; Fatemi et al., 2020) and
generate negative examples by following the contrastive approach of Bordes et al. (2013). Given
a knowledge hypergraph defined on τ′, we let τ′train, τ

′
test, and τ′valid denote the (pairwise disjoint)

train, test, and validation sets, respectively, so that τ′ = τ′train t τ
′
test t τ

′
valid where t is disjoint set

union. To build a model that completes τ′, we train it using τ′train, tune the hyperparameters of the
model using τ′valid, and evaluate its efficacy on τ′test. For any tuple t in τ′, we let Tneg(t) be a function
that generates a set of related negative samples. The number of negative samples per tuple is called
negative ratio and is a hyperparameter. For a ReAlE model with parameters θ (including relation and

7

Fatemi, Taslakian, Vazquez, and Poole

entity embeddings) and φθ as the function in Equation 2, we minimize the cross entropy loss:

L(θ, τ′train) =
∑

t∈τ′train

− log
eφθ (t)∑

t′∈ {t} ∪ Tneg(t)
eφθ (t′) .

Appendix A shows a high-level description of the algorithm for learning a ReAlE model. Code
and data is available at https://github.com/baharefatemi/ReAlE.

5. Theoretical analysis

To better understand the expressive power of ReAlE and the types of reasoning it can perform, we
analyze the extent of its expressivity and its capacity to represent relational algebra operations without
the operations being known or given to the learner. Relational algebra allows for quantification, in
particular, statements that are true for all entities or statements that are true for at least one. The
semantics of the relational algebra is defined using first-order logical statements, using the conventions
of Datalog, with variables written in upper case, e.g., X1, . . . ,Xn and particular entities in lower case,
e.g., x1, . . . ,xn. To make a meaningful statement, each variable is quantified using ∀ (the statement
is true for all assignments of entities to the variable) and ∃ (the statement is true if there exists an
assignment of an entity to the variable). Here, x̄ is a sequence of particular entities and X̄ is a sequence
of variables. We use ¬ as negation, ∧ as conjunction (and), and ∨ as disjunction (or). In relational
algebra, each relation has a unique definition and there are no cyclic or recursive definitions.

We use first-order logic rules to express relational algebra operations. Both constraints and
queries can be written as (a subset of) first-order logic rules. Clark’s completion (Clark, 1978)
provides a semantics for Prolog (and Datalog1) with negation-as-failure by mapping logic programs
to corresponding first-order logic statements. It provides if-and-only-if statements from a set of
clauses defining a relation under the assumption that the clauses cover all of the cases where the
relation is true.

For any x̄ and any relation r, we define the relation complement function f as f (φθ(r(x̄))) =
φθ(¬r(x̄)). This function depends on the choice of the nonlinearity σ of the scoring function in
Equation 2. For example, if σ is the Sigmoid function, then f (φθ(r(x̄))) = 1 − φθ(r(x̄)); if it is the
hyperbolic tangent (tanh), then f (φθ(r(x̄))) = −φθ(r(x̄)).

In this section, we state the theorems and provide proof sketches for most of the theorems and
defer all the proofs to Appendix B.

5.1 Full expressivity

The two results in this section state that ReAlE is fully expressive and m-TransH, RAE, and NaLP are
not fully expressive (G-MPNN scoring function and its non-expressiveness were discussed in 2).

Theorem 1 (Full Expressivity) For any ground truth over entities E and relations R containing λ
true tuples with α = maxr∈R(|r |) as the maximum arity over all relations in R, there is a ReAlE model
with nw = λ, w = α, d = max(αλ,α), and σ(x) = 1

1+exp(−x) that accurately separates the true tuples
from the false ones.

1. One way to write a query language is to use Datalog (without recursion), which can be seen as Prolog without function
symbols. The semantics of Prolog, and so of Datalog, for the acyclic case is in terms of Clark’s completion (Clark,
1978), where relations are defined using if-and-only-if (↔) formulae. We write out definitions using this formulation
(as opposed to writing the clauses and assuming the completion, which gives the if-and-only-if).

8

https://github.com/baharefatemi/ReAlE

Knowledge Hypergraph Embedding Meets Relational Algebra

Proof Sketch. To prove full expressivity of ReAlE, we show that there exists an assignment of
embedding values that enables the scoring function φ of ReAlE to correctly separate the true tuples
from the rest, for any set of entities and relations, and for any number of true tuples. Our construction
sets the window size to the maximum arity and the number of windows to the number of true tuples.
Each window encodes one true tuple. �

Theorem 2 m-TransH, RAE, and NaLP are not fully expressive.

The proof of the above theorem follows from Lemma 2.1 and Lemma 2.2 below.

Lemma 2.1 m-TransH and RAE are not fully expressive and have restrictions on what relations
these approaches can represent.

Proof Kazemi and Poole (2018) prove that TransH Wang et al. (2014) is not fully expressive
and explore its restrictions. As m-TransH reduces to TransH for binary relations, it inherits all its
restrictions and is not fully expressive. RAE also follows the same strategy as m-TransH in modeling
the relations. Therefore, both m-TransH and RAE are not fully expressive.

Lemma 2.2 NaLP is not fully expressive.

Proof NaLP first concatenates the embeddings of entities and the embedding of their corresponding
roles in the tuples, then applies to them the following functions: 1D convolution, projection layer,
minimum, and another projection layer. Looking carefully at the output of the model, the NaLP
scoring function for a tuple r(x1, . . . ,xn) is in the form of |P1x1 + · · · + Pnxn + r|1 with Pi as learnable
diagonal matrices with some shared parameters. In the binary setup (n = 2), the score function of
NaLP is |P1x1 + P2x2 + r|1. Kazemi and Poole (2018), however, proved that translational methods
having a score function of |P1x1 − αP2x2 + r|i are not fully expressive and have severe restrictions on
what relations these approaches can represent. NaLP has the same score function with α = −1 and
i = 1 and therefore is not fully expressive.

5.2 Representing relational algebra with ReAlE

Here, we describe some primitive operations and prove how closely ReAlE can represent each.

5.2.1 Renaming

Renaming changes the order of one or more entities in a relation. A renaming operation can be
written as the following logical rule, where t is defined in terms of s and π defines a permutation
function.

∀X1 . . .∀Xn t(X1, . . . ,Xn)↔ s(Xπ(1), . . . ,Xπ(n)) (3)

For example, ∀ X ∀ Y ∀ I bought(X,Y, I)↔ sold(Y,X, I) represents renaming relation (person X
bought I from person Y) into relation (person Y sold I to person X).

9

Fatemi, Taslakian, Vazquez, and Poole

Theorem 3 (Renaming) Given permutation function π, and relation s, there exists a parametrization
for relation t in ReAlE such that for entities x1, . . . ,xn, with arbitrary embeddings,

φθ(t(x1, . . . ,xn)) = φθ(s(xπ(1),xπ(2), . . . ,xπ(n)))

Proof Sketch. The proof considers the formulation of the scoring function and shows (by expanding
and rearranging terms) that the equality condition holds when we set the relation embedding of t to
be a permutation of that of s while setting the biases to the same value. �

5.2.2 Projection

Projection takes a relation as input and removes some entities corresponding to some specific
positions in the relation. A projection operation that defines t as a projection of s can be written as
the following (for m < n).

∀X1 . . .∀Xm t(X1, . . . ,Xm) ↔ ∃Xm+1 . . . ∃Xn s(X1, . . . ,Xm, . . . ,Xn) (4)

Note that projection can be paired with renaming to allow for arbitrary subsets and ordering of
arguments. For example, ∀X ∀I seller(X, I)↔ ∃P bought(P,X, I).

Theorem 4 (Projection) For any relation s on n arguments there exists a parametrization for
relation t on m < n arguments in ReAlE such that for any arbitrary sequence x1, . . . ,xn,

φθ(t(x1, . . . ,xm)) ≥ φθ(s(x1, . . . ,xn))

Inequality is the best we can hope for, because multiple tuples with relation s might project to the
same tuple with relation t. The score of the tuple with relation t should thus be greater than or equal
to the maximum score for s.
Proof Sketch. The embedding for t is the same as for the first m positions of s, and the bias for t is
set to be the worst case, which is the bias of s plus the sum over the windows k, remaining positions i
of the maximum of 0 and s[i][k]. �

5.2.3 Selection

Selection returns the subset of tuples of a relation that satisfies a given condition. Here, we consider
equality conditions whereby a selection operation reduces the number of arguments, and has two
forms defining t as a selection of s.

∀X1 . . .∀Xn t(X1, . . . ,Xp−1,Xp+1, . . . ,Xq, . . . ,Xn)↔ ∃Xp s(X1, . . . ,Xn) ∧ (Xp = Xq) (5)

∀X1 . . .∀Xn t(X1, . . . ,Xp−1,Xp+1, . . . ,Xn)↔ ∃Xp s(X1, . . . ,Xn) ∧ (Xp = c) for fixed c (6)

For example, ∀X ∀Y sold_coffee(X,Y)↔ ∃I sold(X,Y, I)∧ (I = coffee). Observe that selecting tuples
with the condition Xp = Xq for arbitrary p and q is equivalent to first renaming the tuple so that Xp is
in position n and Xq is in position n− 1; and then performing a selection with the condition Xn−1 = Xn
or Xn = c. Thus, we show the selection operation for the cases when Xn−1 = Xn or Xn = c.

10

Knowledge Hypergraph Embedding Meets Relational Algebra

Theorem 5 (Selection 1) For arbitrary relation s, there exists a parametrization for relation t in
ReAlE such that for arbitrary entities x1, . . . ,xn,

φθ(t(x1, . . . ,xn−1)) = φθ(s(x1, . . . ,xn−1,xn−1))

Proof Sketch. Similar to the previous proofs, we show a setting for the biases and relation embeddings
for which the equality holds. In this case, the biases of the two relations are set to be equal, and the
relation embeddings for t and s are set to be equal except for the last entry (at position n − 1), which
we set as t[n − 1][k] = s[n − 1][k] + s[n][k]. �

Theorem 6 (Selection 2) For arbitrary relation s and for a fixed constant c, there exists a
parametrization for relation t in ReAlE such that for arbitrary entities x1, . . . ,xn

φθ(t(x1, . . . ,xn−1)) = φθ(s(x1, . . . ,xn−1,c))

Proof Sketch. The proof is similar to that of the previous Selection operation, but with a slightly
different setting: here, relation embeddings are set to be the same, while the biases in the two relations
differ by an additive factor, which is a function of the relation embeddings. �

5.2.4 Set union

Set union operates on relations of the same arity, and returns a new relation containing the tuples
that appear in at least one of the relations. A set union operation can be written as the following
logical rule, with relation t as the union of s and r.

∀X̄ t(X̄)↔ s(X̄) ∨ r(X̄) (7)

For example, ∀X1 ∀X2 ∀I traded(X1,X2, I)↔ sold(X1,X2, I) ∨ bought(X1,X2, I).
For a ReAlE model to be able to represent the set union operation, first observe that any score for

a tuple t that represents the union of relations r and s depends on how dependent the two relations r
and s are. For example, if s is a subset of r, then the score of t is equal to that of r. But since we do
not know about such dependence relations in the data, then a reasonable bound for the score of t is at
least as high as the maximum score of either r or s, as the following lemma states.

Theorem 7 (Set Union) For arbitrary relations s and r with the same arity, there exists a
parametrization for relation t in ReAlE such that for arbitrary entity set x̄

φθ(t(x̄)) ≥ max(φθ(s(x̄)), φθ(r(x̄)))

Proof Sketch. Expanding the scoring functions on each side of the inequality, the inequality holds
by setting the embedding of t to the maximum of that of s and r for each embedding position, and the
bias of t to the maximum of that of s and r. �

11

Fatemi, Taslakian, Vazquez, and Poole

5.2.5 Set difference

Set difference operates on relations of the same arity, and returns a new relation containing the tuples
from the left relation that do not appear in the right one. The set difference operation can be written
as the following logical rule, where relation t is set difference of s and r.

∀X̄ t(X̄)← s(X̄) ∧ ¬r(X̄) (8)

For example, ∀X ∀Y needs_filter(X,Y)← bought_coffee(X,Y) ∧ ¬bought_filter(X,Y).
Similar to set union, the score of a set difference operator depends on how dependent the relations

r and s are. For the same reasons, the best we can hope for in this case is to show that the score of t is
smaller than that of both s and ¬r (since t(X̄) is true only when both s(X̄) and ¬r(X̄) are true, then
the scores of the latter two must be higher). In the lemma that follows, f is the relation complement
function described in the introduction of Section 5. Here, we assume that f exists for the selected σ.

Theorem 8 (Set Difference) For arbitrary relations r and s with the same arity, if f is a linear
relation complement function and f (σ(x)) = σ(c∗x)with c as a constant, there exists a parametrization
for relation t in ReAlE such that for arbitrary entities x1, . . . ,xn

φθ(t(x̄)) ≤ min(φθ(s(x̄)), f (φθ(r(x̄))))

Proof Sketch. We define t so that for each tuple, it is true whenever s holds and r does not hold.
The minimum ensures that both hold. The relation complement function was designed so that the
score of the negation of r can be computed from the score of r. To show the theorem, we expand the
scoring functions of r and s, then distribute the linear relation complement function f , first inside
the summation, then inside the σ function (as f (σ(x)) = σ(c × x)). Setting the bias and relation
embedding terms for t to the minimum across that of s and r × c, and minimum across the bias of s
and that of r × c, respectively, makes the inequality hold for all input entities. �

5.2.6 Joint representation of operations

The following theorems establish the ability of ReAlE to jointly capture the relational algebra
operations discussed above. This is of interest, particularly because capturing multiple inference
patterns jointly has been deemed challenging in some existing methods (e.g., Abboud et al., 2020).
In our case, the parametrizations do not interfere with each other, as each rule (operation) defines the
relation in the head without side effects on the relations in the body.

Theorem 9 (Composition) For an arbitrary set of relations Sr and arbitrary non-empty composition
of operations Sop from the set renaming, projection, selection, set union, and set difference, there
exists a parametrization for relation t in ReAlE with t as the resulting relation of applying Sop to Sr.

Proof Sketch. The proof is by induction on the number of primitive operations in Sop. The induction
step relies on the fact that a parametrization for the last operation is independent of the parameters of
all operations that come before it in the sequence (see Theorems 3-8). �

Theorem 10 (Joint representation) ReAlE is able to jointly represent a set of relations each being
either the result of a relational algebra operation renaming, projection, selection, set difference, set
union, or a composition of these operations.

12

Knowledge Hypergraph Embedding Meets Relational Algebra

number of tuples number of tuples with respective arity

Dataset |E | |R| #train #valid #test #arity=2 #arity=3 #arity=4 #arity=5 #arity=6
JF17K 29,177 327 61,911 15,822 24,915 56,322 34,550 9,509 2,230 37
FB-auto 3,388 8 6,778 2,255 2,180 3,786 0 215 7,212 0
m-FB15K 10,314 71 415,375 39,348 38,797 82,247 400,027 26 11,220 0

Table 1: Dataset Statistics.

Proof All the parametrizations proposed in the proofs of Theorems 3, 4, 5, 6, 7, 8, and 9 are solely
based on defining the parametrization of the output relation t based on the input relation(s) without
changing that of other relations (including t). Since each relation t uses its own parametrization
without affecting any parameters of other relations, then all such relations can be represented
concurrently. This proves the theorem.

6. Datasets

6.1 Real-world datasets

We use three real-world datasets for our experiments: JF17K (Wen et al., 2016), and FB-auto and
m-FB15K (Fatemi et al., 2020). Table 1 summarizes the statistics for the datasets JF17K, FB-auto,
and m-FB15K.

6.2 Synthetic dataset

To study and evaluate the generalization power of models in a controlled environment, we generate a
synthetic dataset. This practice has become common in recent years, with the creation of several
procedurally generated benchmarks to study the generalization power of models in different tasks.
Examples of such datasets include CLEVR (Johnson et al., 2017) for images and TextWorld (Côté
et al., 2018) for text data, and GraphLog (Sinha et al., 2020) for graph data. To create a benchmark
for analyzing the relational algebraic generalization power of ReAlE for hypergraph completion, we
consider the following criteria.

1. Completeness: The benchmarks must contain the desired relational algebra operations; in our
case: renaming, projection, selection, set union, and set difference.

2. Diversity: The benchmark must contain a variety of relations that are the result of repeated
application of relational algebra operations having varying depths.

3. Compositional generalization: The benchmark must contain relations that are the result of
repeated application of operations of different types.

To synthesize a dataset that satisfies the above conditions, we extend the Erdős-Rényi model (Erdős and
Rényi, 1959) for generating random graphs to directed edge-labeled hypergraphs. The Erdős-Rényi
model is a random graph generation method that is widely used in simulation, whose properties are
well-studied and, for our purposes, is simple to extend to directed ordered hypergraphs. We use this
hypergraph generation model to first generate a given number of true tuples; we then apply the five

13

Fatemi, Taslakian, Vazquez, and Poole

relational algebra operations to these tuples (repeatedly and recursively) to obtain new tuples with
varying depths. In what follows, we discuss the details of our dataset generation algorithm.

6.2.1 Knowledge Hypergraphs

A knowledge hypergraph is a directed hypergraph H = (V,E,R) with nodes (entities) V , edges
(tuples) E, and edge labels (relations) R such that:

• every edge in the hypergraph consists of an ordered sequence of nodes,

• every edge has a label ri ∈ R, and

• edges with the same label are defined on the same number of nodes.

Observe that in knowledge hypergraphs, edges having the same label form a uniform directed
hypergraph (all edges defined on the same number of nodes). We can thus think of H as the
combination of |R| directed uniform hypergraphs.

6.2.2 Extending Erdős-Rényi to Knowledge Hypergraphs

In the Erdős-Rényi model, all graphs with a fixed number of nodes and edges are equally likely.
Equivalently, in such a random graph, each edge is present in the graph with a fixed probability p,
independent of other edges. In this section, we describe a method of generating a random knowledge
hypergraph inspired by the Erdős-Rényi process.

Let n be the (predefined) number of nodes in the hypergraph and nr be the number of relations.
We let R be a list of relations defined in terms of arity and a probability that influences the number of
tuples generated for that given relation. More formally,

R = {(ki,pi)|ki = arity,0 ≤ pi ≤ 1,∀i = 0, . . . ,nr}

The expected number of edges generated for a given relation ri is mi = ki!
(n
ki

)
pi. As the process

of including edges in the graph is a Binomial, we can compute this expected value by sampling from
the following probability density.

P(mi) =
(
N
mi

)
pi(1 − pi)N−mi

where N = ki!
(n
ki

)
is the number of possible ki-uniform (directed) edges in the hypergraph.

14

Knowledge Hypergraph Embedding Meets Relational Algebra

The running time of Algorithm 1 depends on the number of nodes n and the arity ki of each
relation. Let k = maxki∈Rki. Thus the running time of Algorithm 1 is O(|R|nk).

Algorithm 1: generate_knowledge_hypergraph(V , R)
edge_list = []
n = len(V)
for r, (k, p) in enumerate(R) do
N = k!

(n
k
)

m = random.binomial(N, p) {result of flipping a coin N times with probability of success p}
edge_count = 0
while edge_count <= m do
edge = random.sample(V , k) {select k vertices from V at random}
if edge not in edge_list then

edge_list.append([r] + edge)
edge_count = edge_count + 1

end if
end while

end for
return edge_list

6.2.3 Dataset Generation

To evaluate a model on how well it represents relational algebra operations, we generate a set of
ground-truth true tuples, each of which is the result of repeated application of a primary relational
algebra operation to an existing tuple (hyperedge). The operations we are interested in are renaming,
projection, selection, set union, and set difference.

Algorithm 2: generate_ground_truth(V , R, n_derived_tuples)
E = generate_knowledge_hypergraph(V , R)
for i in range(n_derived_tuples) do
op = randomly select one primary operation
tuple = randomly select one hyperedge from E
apply op to tuple
add tuple to the set of edges E

end for

Finally, the complete algorithm to generate the train, valid, and test sets of the synthetic dataset is
described in Algorithm 3 below.

Algorithm 3: synthesize_dataset(V , R, n_derived_tuples)
ground_truth = generate_ground_truth(V , R, n_derived_tuples)
relational_data = sub-sample from ground_truth
train, valid, test = randomly split relational_data into train, valid and test

15

Fatemi, Taslakian, Vazquez, and Poole

To evaluate our model in a controlled environment, we create a synthetic dataset whose statistics
are proportional to that of JF17K, as follows:

• We create a set of primitive relations by sampling (with replacement) from the relations in
JF17K, and we use the arity of the sampled relation for the primitive relation.

• For each primitive relation r, we select a relation in JF17K with the same arity and populate r
with the same number of tuples as the selected relation.

• We create the derived relations using Algorithm 2.

• Finally, we generate the train, valid, and test sets of REL-ER using Algorithm 3.

This procedure allows us to create a synthetic dataset close to JF17K. For instance, we observe
that in JF17K, the number of tuples per relation follows a long-tailed right-skewed distribution with a
minimum value of 1, maximum of 8955, mean of 313, mode of 3, and median of 31. This algorithm
gives us a distribution with a minimum of 1, maximum of 3559, mean of 203, mode of 2, and median
of 43. We call this synthetic dataset REL-ER and use it in our experiments.

7. Experimental setup

In this section, we explain the evaluationmetrics used in our experiments. We defer the implementation
details of our model and baselines to Appendix D. Following the literature (Abboud et al., 2020;
Fatemi et al., 2020), we evaluate the link prediction performance with Mean Reciprocal Rank (MRR)
and Hit@k, k ∈ {1,3,10}. Both MRR and Hit@k rely on the ranking of a tuple x ∈ τ′test within a set of
corrupted tuples. For each tuple r(x1, . . . ,xn) in τ′test and each entity position i in the tuple, we generate
|E |−1 corrupted tuples by replacing the entity xi with each of the entities in E \ {xi}. For example,
by corrupting entity xi, we obtain a new tuple r(x1, . . . ,xci , . . . ,xn) where xci ∈ E \ {xi}. Let the set
of corrupted tuples, plus r(x1, . . . ,xn), be denoted by ζi(r(x1, . . . ,xn)) (Note that Tneg(r(x1, . . . ,xn))
introduced in Section 4 is a random sample of the corrupted tuples in ζ1 ∪ . . . ∪ ζn for r(x1, . . . ,xn)).

Let ranki(r(x1, . . . ,xn)) be the ranking of r(x1, . . . ,xn) within ζi(r(x1, . . . ,xn)) based on the
score φθ(x) for each x ∈ ζi(r(x1, . . . ,xn)). In an ideal knowledge hypergraph completion method,
ranki(r(x1, . . . ,xn)) is 1 among all corrupted tuples ζi(r(xi, . . . ,xn)). The mean reciprocal rank is
1
N

∑
r(x1,...,xn)∈τ′test

∑n
i=1

1
ranki(r(x1,...,xn)) where N = ∑

r(x1,...xn)∈τ′test
|r | is the number of prediction tasks.

Hit@k measures the proportion of tuples in τ′test that rank among the top k in their corresponding
corrupted sets. Following the literature, we remove all corrupted tuples that are in τ′ from our
computation of MRR and Hit@k.

8. Experiments

We organize our experiments into three groups with different objectives. The goal of the first set of
experiments is to evaluate the proposed method on real datasets and compare its performance to that
of existing work. Our second goal is to test the ability of ReAlE to represent the relational algebra
operations. The final set of experiments is an ablation study that examines the effect of window size.
More empirical comparisons and ablation studies are presented in Appendix C.

16

Knowledge Hypergraph Embedding Meets Relational Algebra

JF17K FB-auto m-FB15K

Model MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10
m-DistMult (Fatemi et al., 2020) .463 .372 .510 .634 .784 .745 .815 .845 .705 .633 .740 .844
m-CP (Fatemi et al., 2020) .392 .303 .441 .560 .752 .704 .785 .837 .680 .605 .715 .828
m-TransH (Wen et al., 2016) .444 .370 .475 .581 .728 .727 .728 .728 .623 .531 .669 .809
RAE (Zhang et al., 2018) .310 .219 .334 .504 - - - - - - - -
NaLP (Guan et al., 2019) .366 .290 .391 .516 - - - - - - - -
GETD (Liu et al., 2020) .151 .104 .151 .258 .367 .254 .422 .601 - - - -
HSimplE (Fatemi et al., 2020) .472 .378 .520 .645 .798 .766 .821 .855 .730 .664 .763 .859
HypE (Fatemi et al., 2020) .494 .408 .538 .656 .804 .774 .823 .856 .777 .725 .800 .881
G-MPNN (Yadati, 2020) .501 .425 .537 .660 - - - - .779 .732 .805 .894
BoxE (Abboud et al., 2020) .553 .467 .596 .711 .844 .814 .863 .898 .761 .702 .791 .877
ReAlE (Ours) .559 .482 .594 .705 .873 .852 .886 .909 .801 .755 .823 .901

Table 2: Knowledge hypergraph completion results on JF17K, FB-auto and m-FB15K for baselines
and the proposed method. Our method ReAlE outperforms (or is competitive to) the
baselines on all datasets. Higher values are better for all columns. To measure the stability
of ReAlE, we ran it on JF17K 10 times with the best hyperparameters and the standard
deviation of MRR is 0.0004. So, the answer is correct to three significant digits which is
why the error bars are not shown. The baselines did not report standard deviation.

8.1 Results on real datasets

We evaluate ReAlE on the three public datasets JF17K, FB-auto, and m-FB15K and compare its
performance to existing models. For all variants of ReAlE, we use the sigmoid function as σ in
Equation 2. This is because the sigmoid was the best among all non-linear functions tested in
Section C.2.

ReAlE is comparable to BoxE on JF17K. On FB-auto and m-FB15K, ReAlE outperforms all
existing models. It is interesting to note that m-FB15K is the largest of all three datasets, and that
most of the tuples in both FB-auto and m-FB15K are beyond-binary relations, in contrast to JF17K,
in which more than half the tuples (54%) are binary (See Table 1 for more details). Results are
summarized in Table 2. Overall, ReAlE is competitive on all benchmarks and is state-of-the-art on
FB-auto and m-FB15K. Among the metrics reported, Hit@1 is a notion of precision and Hit@10 is
a notion of recall; ReAlE outperforms all the baselines in precision (Hit@1).

8.2 Results on synthetic datasets

We also evaluate our model on REL-ER dataset created in Section 6.2.3. We break down the
performance of our model based on the type of relational algebra operation and its depth. As a first
step of the synthetic dataset generation, we create a list of tuples at random. The relations involved in
these tuples are called elementary relations, as they are not generated based on any relational algebra
operation. We then create a set of tuples that are based on composite relations: relations that are built
from previously defined elementary and composite relations. We let the type of a composite relation
be the last operation applied. We decompose our results by type in Table 3.

Note that the choice of the last operation for defining the type does not change the overall
performance of the model; it merely helps us break down the performance to gain insight. As there
is no obvious way of defining the type of a composite relation, we experimented with letting it be

17

Fatemi, Taslakian, Vazquez, and Poole

Operation type Depth

Model All elementary renaming projection set union set difference 1 2 3 4
m-TransH (Wen et al., 2016) .387 .166 .447 .652 .459 .464 .531 .499 .352 .03
HypE (Fatemi et al., 2020) .689 .335 .877 .856 .888 .894 .881 .872 .897 .976
BoxE (Abboud et al., 2020) .695 .327 .916 .852 .900 .918 .885 .904 .908 .976
ReAlE (Ours) .709 .336 .882 .877 .932 .923 .887 .950 .945 .938
#test tuples 5378 1833 458 762 1676 649 2075 1204 245 21

Table 3: Breakdown performance of MRR across composite relations (based on a sequence of
primitive operations) and of varying depth on the REL-ER dataset along with their statistics.
Higher values are better.

determined by the first, last, or all operations; our experiments showed little variation between the
results.

Figure 3: MRR of ReAlE for different number
of windows nw on JF17K with fixed
values for negative ratio, batch size, and
embedding dimension of 10, 128, and
200 respectively. The total number of
parameters for each value of nw is fixed.

We define the depth of a relation recursively.
An elementary relation has a depth of 0. A
relation that is the result of a unary operation
(e.g., projection or renaming) has a depth of one
plus the depth of the input relation. For a relation
that is the result of a binary operation (e.g., set
union or set difference), the depth is one plus
the maximum depth of the input relations. Note
that there are only 21 test tuples for depth 4. The
results of our experiments on REL-ER are sum-
marized in Table 3 and show that our proposed
model outperforms the state-of-the-art in almost
all cases. In the case of renaming, BoxE is able
to better represent the operation, most probably
due to its ability to model inversion. As the de-
composed performance shows, the improvement
to the general result is due mostly to improve-
ments in the performance of the operations as
well as improvements for elementary relations.
These results confirm that our theoretical find-
ings are in line with the practical results. We do not have tuples for the selection operation in the test
set because, by nature, selection generates very few tuples; and as the split of train/test/validation in
REL-ER is done at random, the chance of having selection tuples in the test set is very low and did
not occur when we synthesized the dataset (selection tuples are still present in the train data).

8.3 Ablation study on varying number of windows

Here, we compare the performance of ReAlE with different numbers of windows nw. The negative
ratio, batch size, and embedding dimension are fixed to 10, 128, and 200 respectively for this
experiment. Here, the total number of parameters for each value of nw is fixed. The outcome of the

18

Knowledge Hypergraph Embedding Meets Relational Algebra

study is summarized in Figure 3. Number of windows nw of 1 is the same as Equation 1. Increasing
nw means having more models in the ensemble learner. As we increase the number of learners, the
performance (MRR) on the test set increases and it plateaus when having a large number of windows.
This result confirms the importance of having multiple learners as an ensemble model. Therefore,
window size or number of windows is a sensitive hyperparameter that needs to be tuned for the best
performance.

9. Conclusion and future work

In this work, we introduce ReAlE for reasoning in knowledge hypergraphs. To design a powerful
method, we build on the primitives of relational algebra, which is the calculus of relational
models. We prove that ReAlE can represent the primitive relational algebra operations renaming,
projection, selection, set union, and set difference, and is fully expressive. The results of our
experiments on real and synthetic datasets are consistent with the theoretical findings. Like some
other proposals (e.g., BoxE), ReAlE does not representCartesian product and modeling this operation
remains an open problem. As the join operation is a Cartesian product followed by a projection, the
model is not able to represent join. This paper is not the end of the story, but provides a solution to
one part of the puzzle while providing a building block for more sophisticated models that can also
deal with richer reasoning patterns.

Appendix A. Learning ReAlE Model

For completeness, we restate the scoring function and the cross-entropy loss used to train the model.
In what follows, we use lower case x1, . . . ,xn to denote particular entities, x̄ a sequence of particular
entities, and x the embedding of x. Recall that our model embeds each entity xi into a vector
xi ∈ [0,1]d of length d, and each relation r into a matrix r ∈ R |r |×d. Recall that w denotes the window
size, nw = b dwc the number of windows, and bjr the bias term of relation r for the jth window, for
all j = 0, . . . ,nw − 1. Equation 1 defines ReAlE’s score of a tuple r(x1,x2, . . . ,xn), where σ is a
monotonically-increasing nonlinear function that is differentiable almost everywhere and θ is the set
of all entity and relation embeddings.

φθ(r(x1, . . . ,xn)) =
nw−1∑
j=0

σ

(
bjr +

|r |∑
i=1

w−1∑
k=0

xi[jw + k] × r[i][jw + k]

)
(1)

We minimize the following cross-entropy loss:

L(θ, τ′train) =
∑

t∈τ′train

− log
©«

eφθ (t)∑
t′∈ {t} ∪ Tneg(t)

eφθ (t′)

ª®®®¬ (2)

19

Fatemi, Taslakian, Vazquez, and Poole

Here, θ represents parameters of the model including relation and entity embeddings, and φθ is
the function given by Equation 1 that maps a tuple to a score using parameters θ. Algorithm 4 shows
a high-level description of how we train a ReAlE model.
Algorithm 4: Learning ReAlE
Input: Tuples τ′train, loss function L, scoring function φθ
Output: Embeddings x and r for all entities and relations in τ′train.
Initialize x and r (at random)
for every batch τ′batch of tuples in τ

′
train do

for tuple t in τ′batch do
Generate negative tuples Tneg(t)
for t′ ∈ {t} ∪ Tneg(t) do

Compute φθ(t′) (Equation 1)
end for

end for
Compute the loss L(θ, τ′batch) (Equation 2)
Compute the gradient of loss with respect to x and r
Update embeddings x and r through back-propagation

end for

Appendix B. Theoretical Analysis

The current section groups the theoretical analysis of our work into four parts. In particular, Section B.1
proves that ReAlE is fully expressive. Section B.2 shows how closely ReAlE can represent relational
algebra operations. Section B.3 further proves that HypE cannot represent all relational algebra
operations (in particular, we show that HypE cannot represent selection). For completeness, we
restate the theorems.

B.1 Full Expressivity of ReAlE

The following result proves that there exists a setting of the parameters for which ReAlE can separate
true and false tuples for arbitrary input. In particular, we show it for the case where σ is the sigmoid
function.

Theorem 1 (Full Expressivity) For any ground truth over entities E and relations R containing λ
true tuples with α = maxr∈R(|r |) as the maximum arity over all relations in R, there is a ReAlE model
with nw = λ, w = α, d = max(αλ,α), and σ(x) = 1

1+exp(−x) that accurately separates the true tuples
from the false ones.

Proof Let T = {τ0, τ1, . . . , τλ−1} be all the true tuples defined over E and R. To prove the theorem,
we show an assignment of embedding values for each of the entities and relations in T such that the
scoring function of ReAlE is as follows.

φ(τ)

{
≥ 1 − ε if τ ∈ T
< λε otherwise

20

Knowledge Hypergraph Embedding Meets Relational Algebra

r1

K K

K K

K K

r2
K

K

br
j = K/2 - 3K

br
j = K/2 - 2K

xa

xb

xc

xd 1

1 1

1 1

1 1 1

1

1

1

K

K

K

Figure 4: An example of a ReAlE embedding assignments for true tuples τ0 = r1(xa,xb,xc), τ1 =
r2(xa,xc), τ2 = r1(xc,xb,xd) and τ3 = r1(xd,xc,xa). Here, the number of true tuples
λ = nw = 4, maximum arity ω = 3. Cells that are set to zero are left empty for better
readability. As an example, given that xb is in position 1 of τ2, we set cell 2 × ω + 1 = 7 of
xb to 1. We further set the value of r1 at positions [1][7] to K.

Here, ε is an arbitrary small value such that ε < 1
2+λ2 . Observe that λ (the number of true tuples)

is positive. So, for any value of λ, λε and 1 − ε never meet (As ε < 1
2+λ2 and also ε < 1

1+λ , therefore
λε < 1 − ε).

We first consider the case where λ > 0. Let K = 2 × σ−1(1 − ε). Then, σ(K2) = 1 − ε and
σ(−K2) = ε .

We begin the proof by first describing an assignment of the embeddings of each of the entities
and relations in ReAlE; we then proceed to show that with such an embedding, ReAlE accurately
separates the true tuples from the false ones.

We consider the embeddings of entities to be nw = λ blocks of size w each, such that each block i
is conceptually associated with true tuple τi for all 0 ≤ i < λ. Then, for a given entity xm at position
m of tuple τi, we set the value xm[iw + m] to 1, for all 0 ≤ i < λ. All other values in xm are set
to zero. For the relation embeddings, first, recall that these embeddings are matrices of dimension
|r |×wλ, and we consider each of the |r | rows of this matrix to be λ blocks of size w, where |r |> 1
is the arity of the given relation. If a given relation r appears in true tuple τi, we set the |r | values
at position [iw + k][iw + k] to K, for all 0 ≤ k < |r | and 0 ≤ i < λ; all other values in the relation
embedding are set to zero. Finally, we set all the bias terms in our model to bjr = K

2 − |r |×K, for all
0 ≤ j < λ. As an example, consider Figure 4, in which the first, third and fourth tuples τ0, τ1 and τ3
are defined on relation r1; thus the embedding of r1 has K in the diagonal of the first, third and fourth
3 × 3 blocks. The tuple τ0 has entity xb at its second position; hence the embedding of xb has a 1
in its second position. We claim that with such an assignment, the score of tuples that are true is
≥ 1 − ε and < λε otherwise.

To see why this assignment works, firs, observe that our scoring function φθ is a summation of λ
sigmoids; each sigmoid is defined on an embedding block where we sum the bias term with the sum
of pairwise product between the entity and relation embeddings of the given block.

Let τp = r(x1, . . . ,xm) be a true tuple and observe the embeddings of its entities and relations.
The blocks at position p of the embeddings of each of x1, . . . ,xm contain exactly one value 1 each
(with the rest being zero); and the block at position p of the relation embedding for r contains Ks in
the diagonal and zeros elsewhere. With such an assignment, the block at position p will contribute

21

Fatemi, Taslakian, Vazquez, and Poole

the following sigmoid to the scoring function.

σ
(
bpr + |r |K

)
= σ

(
K
2
− (|r |K) + (|r |K)

)
= σ

(
K
2

)
= 1 − ε (3)

All other blocks q 6= p in τp will contribute to the scoring function in one of two ways, depending
on whether or not r is a relation in τq.

If the relation r of τp is also the relation in τq (e.g. r1 is a relation in τ0, τ2 and τ3 in Figure 4), then
when we multiply the |r | w-sized blocks at position q of the relation embedding to their corresponding
entity blocks at position q (the inner double-summation in the scoring function 2), there will be at most
c < |r | instances where K (in the relation embedding) is multiplied by 1 (in the entity embedding).
This is because otherwise the fact at position q is the same as the fact at position p in T , indicating
there is a duplicate in our set of facts. More precisely, for all blocks q 6= p in τp such that r is the
relation of τq, the block at position p will contribute the following sigmoid to the scoring function.

σ
(
bqr + cK

)
= σ

(
K
2
− |r |K + cK

)
= σ

(
K
2
− (r − c)K

)
< ε

(4)

If r is not a relation in τq, then the block at position q of the relation embedding is all zeros. In
this case,

σ
(
bqr + 0

)
= σ

(
K
2
− (|r |K)

)
< ε (5)

In the end, the score of any true tuple φθ(τp) will be the sum of λ sigmoids such that exactly one
of these sigmoids (block at position p) has a value 1 − ε , while the other λ − 1 sigmoids are < ε . The
score of a true tuple τp can thus be bounded as follows.

φθ(τp) >= 1 − ε (6)

In the case of a false tuple, all the sigmoids will yield values < ε (as they will be of the forms in
either of Equations 4, or 5). The score of a false tuple τf can thus be bounded as follows.

φθ(τf) < λε (7)

To complete the proof, we consider the case when λ = 0. In this case, we let the entity and
relation embeddings be blocks of arbitrary size and set all values to zero. We set the bias terms as
before. Then, the score of any tuple will be φθ(τf) < ε (Equation 7), which is what we want. This
completes the proof.

B.2 Representing Relational Algebra with ReAlE

Theorem 3 (Renaming) Given permutation function π, and relation s, there exists a parametrization
for relation t in ReAlE such that for entities x1, . . . ,xn, with arbitrary embeddings

φθ(t(x1, . . . ,xn)) = φθ(s(xπ(1),xπ(2), . . . ,xπ(n)))

22

Knowledge Hypergraph Embedding Meets Relational Algebra

Proof To prove the above statement, we show that given entity embeddings x1, . . . ,xn and an
embedding for s, there exists a parametrization for t that satisfies the above equality.

We claim that the following settings for t are enough to show the theorem.

1. t[π(i)][k] = s[i][k] ∀ 1 ≤ i ≤ n, ∀ 0 ≤ k < d, and

2. bjt = bjs ∀ 0 ≤ j < nw

To see why, we simply expand the score function of s and replace the values for s by that of t as
described, to obtain the score for t.

φθ(s(xπ(1),xπ(2), . . . ,xπ(n))) =
nw−1∑
j=0

σ(bjs +
|s |∑
i=1

w−1∑
k=0

xπ(i)[j × w + k] × s[i][j × w + k])

=
nw−1∑
j=0

σ(bjt +
|s |∑
i=1

w−1∑
k=0

xπ(i)[j × w + k] × t[π(i)][j × w + k])

=
nw−1∑
j=0

σ(bjt +
|t |∑
i=1

w−1∑
k=0

xi[j × w + k] × t[i][j × w + k])

= φθ(t(x1,x2, . . . ,xn))

Theorem 4 (Projection) For any relation s on n arguments there exists a parametrization for
relation t on m < n arguments in ReAlE such that for any arbitrary sequence x1, . . . ,xn

φθ(t(x1, . . . ,xm)) ≥ φθ(s(x1, . . . ,xn))

Proof To prove the above statement, we first expand the score function of each side of the inequality.

(8)φθ(t(x1, . . . ,xm)) =
nw−1∑
j=0

σ(bjt +
m∑
i=1

w−1∑
k=0

xi[j × w + k] × t[i][j × w + k])

(9)
φθ(s(x1, . . . ,xn)) =

nw−1∑
j=0

σ(bjs +
m∑
i=1

w−1∑
k=0

xi[j × w + k] × s[i][j × w + k]

+
n∑

i=m+1

w−1∑
k=0

xi[j × w + k] × s[i][j × w + k])

Because each xi[·] ≤ 1, the theorem holds with the following assignments:

1. t[i][k] = s[i][k] ∀ 1 ≤ i ≤ m, ∀ 0 ≤ k < d, and

2. bjt = bjs +
n∑

i=m+1

w−1∑
k=0

max(0, s[i][k]) ∀ 0 ≤ j < nw

23

Fatemi, Taslakian, Vazquez, and Poole

Theorem 5 (Selection 1) For arbitrary relation s, there exists a parametrization for relation t in
ReAlE such that for arbitrary entities x1, . . . ,xn−1

φθ(t(x1, . . . ,xn−1)) = φθ(s(x1, . . . ,xn−1,xn−1))

Proof To prove the above statement, we first expand the score function of φθ for the right side of the
equality.

φθ(s(x1, . . . ,xn−1,xn−1))

=
nw−1∑
j=0

σ(bjs +
n−2∑
i=1

w−1∑
k=0

xi[j × w + k] × s[i][j × w + k]

+
w−1∑
k=0

xn−1[j × w + k] × s[n − 1][j × w + k]

+
w−1∑
k=0

xn−1[j × w + k] × s[n][j × w + k])

= (grouping terms)
nw−1∑
j=0

σ(bjs +
n−2∑
i=1

w−1∑
k=0

xi[j × w + k] × s[i][j × w + k]

+
w−1∑
k=0

xn−1[j × w + k] × (s[n − 1][j × w + k] + s[n][j × w + k]))

(10)

For the lemma to hold, the above score has to be equal to that of t, which is described as follows.

(11)
φθ(t(x1, . . . ,xn−1)) =

nw−1∑
j=0

σ(bjt +
n−2∑
i=1

w−1∑
k=0

xi[j × w + k] × t[i][j × w + k]

+
w−1∑
k=0

xn−1[j × w + k] × t[n − 1][j × w + k])

The scores in Equations 10 and 11 are equal when the embedding and bias of t are set as follows.

1. t[i][k] = s[i][k] ∀ 1 ≤ i ≤ n − 2, ∀ 0 ≤ k < d, and

2. t[n − 1][k] = s[n − 1][k] + s[n][k] ∀ 0 ≤ k < d, and

3. bjt = bjs ∀ 0 ≤ j < nw

24

Knowledge Hypergraph Embedding Meets Relational Algebra

Theorem 6 (Selection 2) For arbitrary relation s and for a fixed constant c, there exists a
parametrization for relation t in ReAlE such that for arbitrary entities x1, . . . ,xn−1

φθ(t(x1, . . . ,xn−1)) = φθ(s(x1, . . . ,xn−1,c))

Proof Using similar score expansions as in the proof of Lemma 5, we can rewrite the scores of the
two relations as follows.

φθ(s(x1, . . . ,xn−1,c))

=
nw−1∑
j=0

σ(bjs +
n−2∑
i=1

w−1∑
k=0

xi[j × w + k] × s[i][j × w + k]

+
w−1∑
k=0

xn−1[j × w + k] × s[n − 1][j × w + k]

+
w−1∑
k=0

c[j × w + k] × s[n][j × w + k])

(12)

(13)
φθ(t(x1, . . . ,xn−1)) =

nw−1∑
j=0

σ(bjt +
n−2∑
i=1

w−1∑
k=0

xi[j × w + k] × t[i][j × w + k]

+
w−1∑
k=0

xn−1[j × w + k] × t[n − 1][j × w + k])

The scores in Equations 12 and 13 are equal when the embedding and bias of t are as set follows.

1. t[i][k] = s[i][k] ∀ 1 ≤ i ≤ n − 1, ∀ 0 ≤ k < d, and

2. bjt = bjs + ∑w−1
k=0 s[n][j × w + k] × c[j × w + k] ∀ 0 ≤ j < nw

Theorem 7 (Set Union) For arbitrary relations s and r with the same arity, there exists a
parametrization for relation t in ReAlE such that for arbitrary entity set x̄

φθ(t(x̄)) ≥ max(φθ(s(x̄)), φθ(r(x̄)))

Proof Given that ReAlE embeds entities in non-negative vectors and examining the scoring functions
of each of the relations t, r, s, it can be observed that the above inequality holds by setting the
following values.

1. t[i][k] = max(s[i][k],r[i][k]) ∀ 1 ≤ i < |x̄| and 0 ≤ k < d.

2. bjt = max(bjs,b
j
r) ∀ 0 ≤ j < nw.

25

Fatemi, Taslakian, Vazquez, and Poole

In the lemma that follows, recall that the relation complement function (if it exists) is some
linear function f (φθ(r(x̄))) = φθ(¬r(x̄)) for arbitrary relation r and entities x̄ that also has the form
f (σ(x)) = σ(c × x) with c as a constant. For instance, when σ is sigmoid, f (x) = 1 − x and c = −1
(f (σ(x)) = 1 − σ(x) = σ(−x)) and when σ is tanh, f (x) = −x and c = −1 (f (σ(x)) = −σ(x) = σ(−x)).

Theorem 8 (Set Difference) For arbitrary relations r and s with the same arity, if f is a linear
relation complement function and f (σ(x)) = σ(c×x)with c as a constant, there exists a parametrization
for relation t in ReAlE such that for arbitrary entities x1, . . . ,xn

φθ(t(x̄)) ≤ min(φθ(s(x̄)), f (φθ(r(x̄))))

Proof
As f is the relation complement, we have:

φθ(¬r(x1, . . . ,xn)) = f (φθ(r(x1, . . . ,xn)))

As f is linear, we can distribute it inside the summation as follows:

f (φθ(r(x1, . . . ,xn))) =
nw−1∑
j=0

f (σ(bjr +
|r |∑
i=1

w−1∑
k=0

xi[jw + k] × r[i][jw + k]))

Now, as f (σ(x)) = σ(c × x), we can distribute it inside the σ as follows:

f (φθ(r(x1, . . . ,xn))) =
nw−1∑
j=0

σ(bjr × c +
|r |∑
i=1

w−1∑
k=0

xi[jw + k] × r[i][jw + k] × c)

Therefore, for the above inequality to hold, the bias terms and embedding values of t must be at
most that of each of s and the complement of the score of r. Examining the scoring functions of each
of the relations t, r, s, it can be observed that the lemma holds when the following is set.

1. t[i][k] = min(s[i][k],r[i][k] × c) ∀ 1 ≤ i < |x̄| and 0 ≤ k < d.

2. bjt = min(bjs,b
j
r × c) ∀ 0 ≤ j < nw.

The following theorem establishes the ability of ReAlE to jointly capture the relational algebra
operations discussed above. This is of interest, particularly as Abboud et al. (2020) claimed "Capturing
multiple inference patterns jointly is significantly more challenging [than capturing them singly]."
Here the parametrizations do not interfere with each other; each relation has its own parametrization.

Theorem 9 (Composition) For arbitrary set of relations Sr and arbitrary non-empty composition
of operations Sop from the set renaming, projection, selection, set union, and set difference, there
exists a parametrization for relation t in ReAlE with t as the resulting relation of applying Sop to Sr.

26

Knowledge Hypergraph Embedding Meets Relational Algebra

Proof Given any operation in Sop composed of k primitive operations, we prove the theorem by
induction on k for arbitrary k.

Base case: For one operation (k = 1), according to Theorems 3, 4, 5, 6, 7, and 8, ReAlE is able to
represent single operations for arbitrary relation(s) as input to the operation. So the base case holds.

Induction step (operation k to k + 1): Assume a parametrization exists for all compositions of
length k. Now consider an operation composed of k + 1 operations from Sop. If we ignore the last
operation in the sequence, we know by the induction hypothesis that there exists a parametrization for
a relation that represents the composition of the first k operations. Adding the (k + 1)st relation back
to the sequence, the preceding theorems (Theorems 3-8) show that we can define a parametrization
for this last operation based on that of the previous that is independent of the parameters of the first k
operations. This completes the proof.

B.3 Representing Relational Algebra with HypE

So far, we showed that ReAlE is fully expressive and can represent the relational algebra operations
renaming, projection, selection, set union, and set difference. We also showed that most other
models for knowledge hypergraph completion are not fully expressive. In this section, we show that
even as HypE (Fatemi et al. (2020)) is fully expressive in general, it cannot represent some relational
algebra operations (namely, selection) while at the same time retaining its full expressivity. In special
cases, such as when all tuples are false, it obviously can, however, we show that in the general case it
cannot.

We proceed by first showing in Theorem 11 that HypE cannot represent selection for arbitrary
entity and relation embeddings while retaining full expressivity. Now, one might think that even if
representing selection is not possible for all embeddings, there might be some embedding space for
which HypE would be able to represent selection. In Theorem 12 we show that when the embedding
size is less than the number of entities (as it usually is the case), then there is no setting for which
HypE would be able to represent selection.

HypE embeds an entity xi and a relation r in vectors xi ∈ R
d and r ∈ Rd respectively, where d is

the embedding size. In what follows, we let f (x,p) be a function that computes the convolution of the
embedding of entity x with the corresponding convolution filters associated to position p and outputs
a vector (see Fatemi et al. (2020) for more details). We let φHθ to be the HypE scoring function.

Theorem 11 (HypE Selection 1 (a)) For arbitrary relation s and arbitrary embeddings for entities
x1, . . . ,xn−1, there exists no parametrization for relation t in HypE such that

φHθ (t(x1, . . . ,xn−1)) = φHθ (s(x1, . . . ,xn−1,xn−1)) (14)

Proof
To see why there is no parametrization for t that satisfies Equation 14, we first expand the left and

right hand side of the equality as follows.

φHθ (t(x1, . . . ,xn−1)) = φHθ (s(x1, . . . ,xn−1,xn−1))

27

Fatemi, Taslakian, Vazquez, and Poole

d∑
i=1

t[i] × f (x1,1)[i] × . . . × f (xn−1,n − 1)[i] =

d∑
i=1

s[i] × f (x1,1)[i] × . . . × f (xn−1,n − 1)[i] × f (xn−1,n)[i]

For this equation to hold, the following should hold for arbitrary entities x1, . . . ,xn−1, and
∀ 1 ≤ i ≤ d.

or

{
f (x1,1)[i] × . . . × f (xn−1,n − 1)[i] = 0
t[i] = s[i] × f (xn−1,n)[i]

(15)

For an entity x at position p in a tuple, the output of function f (x,p) depends on the embedding of
entity x and the convolution filters associated with position p. Note that these convolution filters are
shared among all relations in the knowledge hypergraph and are not specific to relation s or t.

As we want Equation 15 to hold for arbitrary entity embeddings, it is easy to see that there exists
at least one setup for convolution filters and entity embeddings for which none of the factors in the
product f (xi,1)[i] × . . . × f (xn−1,n − 1)[i] is zero.

Now consider such an embedding setting. The only way Equation 15 is satisfied is when we set
t[i] = s[i] × f (xn−1,n)[i] for all 1 ≤ i ≤ d. Observe that by setting the embedding of relation t to the
embedding of s times f (xn−1,n) for a particular entity xn−1, we have effectively set it to a fixed value.
Now consider an entity xk such that f (xk,n) 6= f (xn−1,n), and apply the selection t to xk by replacing
xn−1 with xk in Equation 14. The equality condition in the equation will not hold, because none of
the conditions in Equation 15 hold. Therefore, in this setup, t fails to represent s for arbitrary entity
embeddings.

Given that relation t should represent selection of s for all the entities in the hypergraph, setting it
to a fixed value will make it incapable of representing selection for arbitrary entities. We can thus
conclude that there is no parametrization for HypE such that it can represent selection for arbitrary
embeddings of relations and entities.

We now show that when the embedding size is less than the number of entities |E | in the
hypergraph, there is no setting for which HypE would be able to represent selection without losing
full expressivity.

Theorem 12 (HypE Selection 1 (b)) For arbitrary relation s, there exists no parametrization for
relation t in HypE having scoring function φHθ such that for arbitrary entities x1, . . . ,xn and embedding
dimension d < |E |, where |E | is the number of entities in the knowledge hypergraph, HypE remains
fully expressive and

φHθ (t(x1, . . . ,xn−1)) = φHθ (s(x1, . . . ,xn−1,xn−1))

Proof Sketch. We expand the scoring functions on both sides of the equality, and show that the only
way for the equality to hold is to set the embedding of t to a value that is a function of entity xn−1.
This effectively sets the embedding of t to a fixed value, making t incapable of representing selection
for arbitrary entities. �

Proof
Consider |s|= 2 and |t|= 1 and tuples t(xj) and s(xj,xj) such that relation t is a selection of s. We

will show that when the embedding dimension d of the entities is smaller than the number of entities

28

Knowledge Hypergraph Embedding Meets Relational Algebra

in the knowledge hypergraph, there is no parametrization of HypE that gets t to represent s while
retaining full expressivity.

For the sake of contradiction, assume that the lemma statement is false. Then there exists a
parametrization for t such that HypE is fully expressive and that

φHθ (t(xj)) = φHθ (s(xj,xj))

Expanding the score function for s and t we get

d∑
i=1

t[i] × f (xj,1)[i] =
d∑
i=1

s[i] × f (xj,1)[i] × f (xj,2)[i]

⇒
d∑
i=1

f (xj,1)[i] ×
(
t[i] − s[i] × f (xj,2)[i]

)
= 0

For this equation to hold for arbitrary entities x1,x2, . . . ,xn, it should hold for all 1 ≤ i ≤ d and all
1 ≤ j ≤ |E| for which s(xj,xj) is true. Assuming that d < |E |, we need to have the following hold for
all 1 ≤ j ≤ |E| and 1 ≤ i ≤ d.

or

{
f (xj,1)[i] = 0
t[i] = s[i] × f (xj,2)[i]

(16)

We claim that to satisfy the above equation simultaneously for all possible i and j, there must be
at least one entity xk for which the convolution function returns a zero vector; that is, f (xk,1)[i] = 0
for all 0 ≤ i ≤ d. To see why this is true, assume the contrary; that is, for each convolution filter
f (xj,1) has at least one bit that is different than zero for arbitrary entity xj. Without loss of generality,
let the jth bit f (xj,1)[j] = Kj, for all 1 ≤ j ≤ |E| and Kj ∈ R

∗. Then, to satisfy Equation 16 at index j,
we must set t[j] = s[j] × f (xj,2)[j]. As Equation 16 must be satisfied for all entities, then all other
entities xk with k 6= j must have their j-th bit set to zero. Thus f (xk,1)[j] = 0 for all 0 ≤ j ≤ d and
j 6= k. See Figure 5. Since we have d < |E |, and by the pigeon-hole principle, there must be at least
one entity xd+1 such that f (xd+1,1) = 0 for all 1 ≤ i ≤ d. This contradicts the original assumption,
and thus there exists at least one k for which f (xk,1) returns a zero vector.

This would further imply that any tuple having xk in the first position will have a score φHθ of zero.
This would be regardless of the relation in the tuple, or whether or not it is true. This violates the
full-expressivity of HypE, thus contradicting the original assumption that the lemma statement is
False. Therefore, when d < |E |, there is no parametrization for t such that HypE represents selection
while retaining full expressivity.

Appendix C. More Experiments

C.1 ReAlE with a fixed negative ratio and batch size

The results reported in Table 1 of the main paper were obtained by running experiments using the
BoxE setup: the negative ratio and batch size were tuned for each model.

29

Fatemi, Taslakian, Vazquez, and Poole

K1 0 0 0 0 ……. 0 0

0 K2 0 0 0 ……. 0 0

0 0 0 0 0 ……. 0 Kd

0 0 0 0 0 ……. 0 0

… …
.

0 0 K3 0 0 ……. 0 0

⨉

⨉

⨉

⨉

Figure 5: Proof of Theorem 12: If at least one value of each vector f (xi,1) is different than zero (Ki >
0) and the value of at most one position i can be non-zero (the d columns in the figure),
then by the pigeon-hole principle, we will run out of indices as we have more entities in
the knowledge hypergraph. In the above image, the entity xd+1.

Here, we follow the setup used by all other baselines to report their results and run experiments
by fixing the negative ratio to 10 and batch size to 128. We summarize the results for the baselines
and ReAlE in Table 4. ReAlE (Small) refers to a ReAlE model that has a negative ratio of 10 and a
batch size of 128 (called Small because it has a smaller negative ratio and bath size compared to the
best set of hyperparameters).

JF17K FB-auto m-FB15K

Model MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10 MRR Hit@1 Hit@3 Hit@10
m-DistMult (Fatemi et al., 2020) .463 .372 .510 .634 .784 .745 .815 .845 .705 .633 .740 .844
m-CP (Fatemi et al., 2020) .392 .303 .441 .560 .752 .704 .785 .837 .680 .605 .715 .828
m-TransH (Wen et al., 2016) .444 .370 .475 .581 .728 .727 .728 .728 .623 .531 .669 .809
GETD (Liu et al., 2020) .151 .104 .151 .258 .367 .254 .422 .601 - - - -
HSimplE (Fatemi et al., 2020) .472 .378 .520 .645 .798 .766 .821 .855 .730 .664 .763 .859
HypE (Fatemi et al., 2020) .494 .408 .538 .656 .804 .774 .823 .856 .777 .725 .800 .881
G-MPNN (Yadati, 2020) .501 .425 .537 .660 - - - - .779 .732 .805 .894
ReAlE (Small) .530 .454 .563 .677 .861 .836 .877 .908 .801 .755 .823 .901

Table 4: Knowledge hypergraph completion results on JF17K, FB-auto and m-FB15K for baselines
and the proposed method for a fixed embedding dimension of 200, negative ratio of 10, and
batch size of 128. Our method ReAlE (Small) outperforms the baselines on all datasets
with these settings.

C.2 Results of ReAlE with different non-linear functions

Following the last experiment with a fixed negative ratio and batch size, we tried different non-linear
functions (σ). The results of the different nonlinear functions are in Table 5. As sigmoid is the
winner for JF17K, we only experiment with sigmoid for the remaining datasets.

30

Knowledge Hypergraph Embedding Meets Relational Algebra

JF17K

Model MRR Hit@1 Hit@3 Hit@10
ReAlE (σ as exponent) (Ours) 0.394 0.311 0.428 0.548
ReAlE (σ as tanh) (Ours) 0.512 0.430 0.548 0.667
ReAlE (σ as sigmoid) (Ours) 0.530 0.454 0.563 0.677

Table 5: Knowledge hypergraph completion results for ReAlE on JF17K for different σ (nonlinear
function).

C.3 Do the learned embeddings follow the theoretical findings?

Our theoretical analysis shows that ReAlE is able to represent a large subset of relational algebra
operations. Here, we further investigate whether, in practice, the embeddings learned by ReAlE
follow the theoretical results.

We thus first look at the relations in REL-ER that are the result of the renaming operation and
observe the embeddings that ReAlE generates for each. If relation t is a renaming of relation s,
one possible parametrization for the embedding of t is the one proposed in the proof of Theorem 3.
Analysing multiple examples of relations t representing renaming of s in REL-ER, we observe that
in all cases, the embedding of relations t is the closest to the parametrization proposed in the proof
compared to all other relation embeddings. We did the same analysis with the rest of the operations
(and their respective theorems), and the same holds for all. The results of Table 2 in the main
paper show the breakdown performance for each operation: further evidence for learnability of the
operations in ReAlE.

This experiment was only done for renaming because according to the proofs for the other
operations, there are multiple ways for ReAlE to represent them.

Appendix D. Implementation Details

We implement ReAlE in PyTorch (Paszke et al., 2019) and use Adagrad (Duchi et al., 2011) as the
optimizer and dropout (Srivastava et al., 2014) to regularize the model. We perform early stopping
and hyperparameter tuning based on the MRR on the validation set. We fix the maximum number of
epochs to 1000 and embedding size to 200. We tune lr (learning rate) and w (window size) using the
sets {0.05,0.08,0.1,0.2}, and {1,2,4,5,8} (first five divisors of 200). We tune σ (nonlinear function)
using the set {tanh, sigmoid,exponent} for the JF17K dataset. As sigmoid outperforms tanh and
exponent on JF17K, we only tried sigmoid for other datasets. For the experiment on REL-ER and
also in Section C.1, we fixed the negative ratio and batch size of all baselines and our model to 10
and 128 respectively.

Reported results for the baselines on JF17K, FB-auto, and m-FB15K are taken from the original
paper except for that of GETD Liu et al. (2020) and BoxE Abboud et al. (2020) on m-FB15K. The
original paper of GETD only reports results for arity 3 and 4 as trained and tested separately in the
corresponding arity. However, in our experimental setup, we train and test in a dataset containing
relations of different arities. For that, we train and test GETD. As GETD learns a tensor of dimension
|r | for each relation r, it needs d |r | (with d as embedding size) number of parameters. The original
paper proposes smart strategies to reduce the number of parameters to be learned by the model.

31

Fatemi, Taslakian, Vazquez, and Poole

However, we still need to store the relation embedding and thus need to store d |r | floating-point
numbers for each relation r. Because of our memory limitation (12GB GPU), we could only train the
GETD model for an embedding size of less than 10.

The sign “-” in Table 1 indicates that the corresponding paper has not provided the results.
For the experiment on the synthetic dataset, we compare our model with m-TransH 2 (Wen et al.,

2016), HypE 3 (Fatemi et al., 2020), and BoxE 4 (Abboud et al., 2020), which are the only competitive
baselines that have provided the code.

For all the experiments we use a single 12GB GPU (NVIDIA Tesla P100 PCIe 12 GB).

Appendix E. Runtime and Space Complexity of ReAlE

Runtime complexity. For a tuple r(x1, . . . ,xn), ReAlE performs O(nd) multiplications to compute
the score in Equation 2. This implies that ReAlE scales linearly with the arity of the relations in a
knowledge hypergraph.

Space complexity. ReAlE embeds a relation r with arity n into a matrix of size n × d and each
entity into a vector of size d. Therefore, for a knowledge hypergraph with |E | entities and |R | relations
with arity n, ReAlE requires (|E |+n|R |)d parameters.

References

Ralph Abboud, İsmail İlkan Ceylan, Thomas Lukasiewicz, and Tommaso Salvatori. Boxe: A box
embedding model for knowledge base completion. In Proceedings of the Thirty-Fourth Annual
Conference on Advances in Neural Information Processing Systems (NeurIPS), 2020.

Ivana Balažević, Carl Allen, and Timothy M Hospedales. Tucker: Tensor factorization for knowledge
graph completion. arXiv preprint arXiv:1901.09590, 2019.

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al.
Relational inductive biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261,
2018.

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. Freebase: a
collaboratively created graph database for structuring human knowledge. In ACM ICMD, 2008.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko.
Translating embeddings for modeling multi-relational data. In NIPS, 2013.

David Buchman and David Poole. Representing aggregators in relational probabilistic models. In
Proc. Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI-15), 2015.

K. L. Clark. Negation as failure. In H. Gallaire and J. Minker, editors, Logic and Databases, pages
293–322. Plenum Press, 1978.

2. https://github.com/wenjf/multi-relational_learning
3. https://github.com/ElementAI/HypE
4. https://github.com/ralphabb/BoxE

32

https://github.com/wenjf/multi-relational_learning
https://github.com/ElementAI/HypE
https://github.com/ralphabb/BoxE

Knowledge Hypergraph Embedding Meets Relational Algebra

Marc-Alexandre Côté, Ákos Kádár, Xingdi Yuan, Ben Kybartas, Tavian Barnes, Emery Fine, James
Moore, Matthew Hausknecht, Layla El Asri, Mahmoud Adada, et al. Textworld: A learning
environment for text-based games. In Workshop on Computer Games, pages 41–75. Springer,
2018.

Thomas G Dietterich. Ensemble methods in machine learning. In International workshop on multiple
classifier systems, pages 1–15. Springer, 2000.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. JMLR, 12(Jul):2121–2159, 2011.

Paul Erdős and Alfred Rényi. On random graphs. Publicationes Mathematicae Debrecen, 6:290–297,
1959.

Bahare Fatemi, Siamak Ravanbakhsh, and David Poole. Improved knowledge graph embedding using
background taxonomic information. In AAAI, 2019.

Bahare Fatemi, Perouz Taslakian, David Vazquez, and David Poole. Knowledge hypergraphs:
Prediction beyond binary relations. In IJCAI, 2020.

Yifan Feng, Haoxuan You, Zizhao Zhang, Rongrong Ji, and Yue Gao. Hypergraph neural networks.
In AAAI, 2019.

Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, and Jens Lehmann. Message
passing for hyper-relational knowledge graphs. arXiv preprint arXiv:2009.10847, 2020.

Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and Xueqi Cheng. Link prediction on n-ary relational
data. In The World Wide Web Conference, pages 583–593, 2019.

Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng. Neuinfer: Knowledge
inference on n-ary facts. In Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics, pages 6141–6151, 2020.

Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence Zitnick, and
Ross Girshick. Clevr: A diagnostic dataset for compositional language and elementary visual
reasoning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 2901–2910, 2017.

Seyed Mehran Kazemi and David Poole. Simple embedding for link prediction in knowledge graphs.
In NIPS, 2018.

Xiang Li, Luke Vilnis, Dongxu Zhang, Michael Boratko, and Andrew McCallum. Smoothing the ge-
ometry of probabilistic box embeddings. In International Conference on Learning Representations,
2018.

Yu Liu, Quanming Yao, and Yong Li. Generalizing tensor decomposition for n-ary relational
knowledge bases. In Proceedings of The Web Conference 2020, pages 1104–1114, 2020.

33

Fatemi, Taslakian, Vazquez, and Poole

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style, high-performance deep
learning library. In NeurIPS. 2019.

Luc De Raedt, Kristian Kersting, Sriraam Natarajan, and David Poole. Statistical relational artificial
intelligence: Logic, probability, and computation. Synthesis Lectures on Artificial Intelligence and
Machine Learning, 10(2):1–189, 2016.

Paolo Rosso, Dingqi Yang, and Philippe Cudré Mauroux. Beyond triplets: hyper-relational knowledge
graph embedding for link prediction. In Proceedings of The Web Conference 2020, pages
1885–1896, 2020.

Koustuv Sinha, Shagun Sodhani, Joelle Pineau, and William L Hamilton. Evaluating logical
generalization in graph neural networks. arXiv preprint arXiv:2003.06560, 2020.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. JMLR, 15(1):1929–1958,
2014.

Komal Teru, Etienne Denis, and Will Hamilton. Inductive relation prediction by subgraph reasoning.
In International Conference on Machine Learning, pages 9448–9457. PMLR, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowledgebase. Communica-
tions of the ACM, 57(10):78–85, 2014.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph embedding by
translating on hyperplanes. In AAAI, 2014.

Jianfeng Wen, Jianxin Li, Yongyi Mao, Shini Chen, and Richong Zhang. On the representation and
embedding of knowledge bases beyond binary relations. In IJCAI, 2016.

Naganand Yadati. Neural message passing for multi-relational ordered and recursive hypergraphs.
Advances in Neural Information Processing Systems, 33, 2020.

Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Anand Louis, and Partha Talukdar. Hy-
pergcn: Hypergraph convolutional networks for semi-supervised classification. arXiv preprint
arXiv:1809.02589, 2018.

Richong Zhang, Junpeng Li, Jiajie Mei, and Yongyi Mao. Scalable instance reconstruction in
knowledge bases via relatedness affiliated embedding. In Proceedings of the 2018 World Wide
Web Conference, pages 1185–1194, 2018.

34

	Introduction
	Related work
	Definition and notation
	ReAlE: A Basic Embedding Algorithm
	Theoretical analysis
	Full expressivity
	Representing relational algebra with ReAlE
	Renaming
	Projection
	Selection
	Set union
	Set difference
	Joint representation of operations

	Datasets
	Real-world datasets
	Synthetic dataset
	Knowledge Hypergraphs
	Extending Erdos-Rényi to Knowledge Hypergraphs
	Dataset Generation

	Experimental setup
	Experiments
	Results on real datasets
	Results on synthetic datasets
	Ablation study on varying number of windows

	Conclusion and future work
	Learning ReAlE Model
	Theoretical Analysis
	Full Expressivity of ReAlE
	Representing Relational Algebra with ReAlE
	Representing Relational Algebra with HypE

	More Experiments
	ReAlE with a fixed negative ratio and batch size
	Results of ReAlE with different non-linear functions
	Do the learned embeddings follow the theoretical findings?

	Implementation Details
	Runtime and Space Complexity of ReAlE

