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Abstract
Differentiable optimization algorithms often involve expensive computations of various

meta-gradients. To address this, we design and implement TorchOpt, a new PyTorch-based
differentiable optimization library. TorchOpt provides an expressive and unified program-
ming interface that simplifies the implementation of explicit, implicit, and zero-order gra-
dients. Moreover, TorchOpt has a distributed execution runtime capable of parallelizing
diverse operations linked to differentiable optimization tasks across CPU and GPU devices.
Experimental results demonstrate that TorchOpt achieves a 5.2× training time speedup in
a cluster. TorchOpt is open-sourced at https://github.com/metaopt/torchopt and has
become a PyTorch Ecosystem project.
Keywords: Differentiable Optimization, Meta Learning, Machine Learning Library

1. Introduction

In recent years, there has been a notable proliferation of differentiable optimization-based
algorithms, exemplified by works such as MAML (Finn et al., 2017), OptNet (Amos and
Kolter, 2017), and MGRL (Xu et al., 2018). Within the realm of differentiable optimization,
a pivotal facet pertains to the concept of meta-gradients. These meta-gradients signify the
gradient components associated with outer-loop variables, obtained through the process
of differentiating across the inner-loop optimization operations. The utilization of meta-
gradients confers advantages to machine learning models, manifesting in heightened sample
efficiency (Finn et al., 2017) and amplified final performance outcomes (Xu et al., 2018).

∗. Equal contribution, the order is determined by dice rolling. See Appendix G for more details.
†. Corresponding author.
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Table 1: Differentiable optimization libraries. Xr indicates a partially supported feature.
Differentiable

Optimizer
Implicit

Differentiation
Zero-order
Gradient

MPMD
Training

SPMD
Training

Gradient
Visualization Backend

higher (Grefenstette et al., 2019) 3 7 7 7 7 7 PyTorch
Optax (Babuschkin et al., 2020) 3 7 7 7 7 7 JAX
Torchmeta (Deleu et al., 2019) 3 7 7 7 7 7 PyTorch
learn2learn (Arnold et al., 2020) 3 7 7 7 Xr 7 PyTorch
JAXopt (Blondel et al., 2021) 3 3 3 7 3 7 JAX
HyperTorch (Grazzi et al., 2020) 3 3 7 7 7 7 PyTorch
Betty (Choe et al., 2022) 3 Xr 3 7 3 7 PyTorch
TorchOpt(ours) 3 3 3 3 3 3 PyTorch

Our objective is to develop a library that enables machine learning researchers to effi-
ciently create differentiable optimization algorithms. Through our interactions with these
researchers, we have identified several essential library requirements: (i) Generic bi-level op-
timization with various meta-gradients: Researchers require the capability to implement var-
ied inner-loop optimizations within an outer-loop optimization framework. The outer-loop
framework needs to compute diverse meta-gradients, including explicit, implicit, and zero-
order gradients. (ii) Generic distributed execution: Given the significant computational de-
mands of differentiable optimization, distributing computations across nodes (such as CPUs
and GPUs) is essential. Depending on algorithm characteristics, distributed differentiable
optimization can follow both single-program-multiple-data (SPMD) (e.g., MAML (Finn
et al., 2017)) and multiple-program-multi-data (MPMD) (e.g., LOLA (Foerster et al.,
2017))1. (iii) Visualizing gradient flow: The computation of meta-gradients often mandates
the incorporation of additional nodes into the gradient flows established by the inner-loop
optimization. To ensure accurate computation of meta-gradients, researchers require the
ability to visualize and manipulate gradient flows.

Existing differentiable optimization libraries, however, are not fully capable of meeting
the aforementioned requirements. We have summarized these libraries in Table 1. The Py-
Torch libraries, such as higher library (Grefenstette et al., 2019) and learn2learn (Arnold
et al., 2020) solely support explicit differentiation. In contrast, Torchmeta (Deleu et al.,
2019) offers additional support for implicit differentiation. The Betty library supports
zero-order gradients and partially covers implicit gradients. In ecosystems beyond PyTorch,
JAX-based libraries such as Optax (Babuschkin et al., 2020) specializes in explicit differenti-
ation. More comprehensively, JAXopt (Blondel et al., 2021) stands out as a state-of-the-art
library that extends support to explicit, implicit, and zero-order gradients. However, it
only accommodates single-program-multiple-data (SPMD) training for distributed execu-
tion, lacking support for more generic multiple-program-multi-data (MPMD). The latter
is particularly essential in meta-learning, given its inherently complex and dynamic na-
ture of the training pipeline. Furthermore, JAXopt needs users to manually implement the
visualization of gradient flow.

In this paper, we present TorchOpt, a new PyTorch differentiable optimization library.
TorchOpt address the above development requirements through two contributions:
(1) Comprehensive differentiation mode. TorchOpt furnishes users with a versa-
tile array of APIs, encompassing low-level, high-level, functional, and Object-Oriented
(OO) paradigms. This empowers users to seamlessly incorporate differentiable optimiza-
tion within the computational graphs generated by different PyTorch programs. Notably,
TorchOpt offers support for three differentiation modes tailored to diverse differentiable

1. We discuss the differences between SPMD and MPMD in Appendix E.1.
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Figure 1: TorchOpt’s differentiation modes. A backward pass is denoted by dotted lines.

optimization problems: (i) Explicit gradient for unrolled optimization, (ii) Implicit gradient
for differentiable optimization, and (iii) Zero-order gradient estimation for non-smooth or
non-differentiable functions.

(2) High-performance distributed execution runtime. TorchOpt aims to enable op-
timal utilization of CPUs and GPUs for differentiable optimization algorithms. To achieve
this, we have the following designs: (i) Implementation of CPU/GPU-accelerated opti-
mizers such as SGD, RMSProp, and Adam. These optimizers fuse small differentiable
operators and fully offload them to GPUs. (ii) Introduction of fast and efficient PyTree
operations, capable of high-throughput flattening of nested structures (Tree Operations) –
a crucial computation-intensive task in differentiable optimization. (iii) Establishment of a
distributed auto-grad framework that automatically identifies inner-loop tasks within dif-
ferentiable optimizers. It then efficiently dispatches the execution of these inner-loop tasks
to distributed CPUs and GPUs.

2. Comprehensive Differentiation Mode

We describe the differentiable mode of TorchOpt in Figure 1 and leave a detailed discussion
of TorchOpt’s architecture in Appendix A.

Explicit Gradient (EG). Figure 1-2a illustrates the concept behind implementing EG in
TorchOpt. In this approach, TorchOpt treats the gradient step as a differentiable function
and facilitates the backpropagation of gradients through the unrolled optimization path.
EG suits algorithms where the inner-level solution is obtained through a few gradient steps,
as seen in algorithms like MAML (Finn et al., 2017) and MGRL (Xu et al., 2018). Moreover,
TorchOpt provides users with the flexibility to declare EG within PyTorch programs through
both functional and object-oriented APIs. Refer to the code snippet in Appendix C.1 and
the EG update scheme in Appendix C for further details.

Implicit Gradient (IG). Figure 1-2b shows the concept behind implementing IG. In this
approach, TorchOpt treats the inner-loop optimization solution as an implicit function of
outer-loop parameters. Hence, it can directly get analytical best-response derivatives by the
implicit function theorem (Krantz and Parks, 2002). IG suits algorithms where the inner-
level solution is obtained by reaching certain stationary conditions, such as iMAML (Ra-
jeswaran et al., 2019) and DEQ (Bai et al., 2019). TorchOpt offers functional and object-
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oriented API for both conjugate gradient-based (Rajeswaran et al., 2019) and Neumann
series-based (Lorraine et al., 2020) method. Refer to the code snippet in Appendix C.2 and
the update scheme in C for further details.

Zero-order Differentiation (ZD). As shown in Figure 1-2c, when the inner-loop pro-
cess is non-differentiable or one wants to eliminate the heavy computation burdens in the
previous two modes (brought by Hessian), one can choose ZD. ZD typically gets gradients
based on zero-order estimation, such as finite-difference, or Evolutionary Strategy (ES) (Sal-
imans et al., 2017). ESMAML (Song et al., 2019), and NAC (Feng et al., 2021), successfully
solve the differentiable optimization problem based on ES. TorchOpt also offers functional
and OOP API for ES method. Refer to Listing 3 Appendix C.3 for code snippets and
Appendix C for illustration.

Gradient graph visualization. TorchOpt provides a visualization tool that draws vari-
able (e.g. network parameters or meta parameters) names on the gradient graph for better
analysis. TorchOpt fuses the operations within the optimization algorithm (such as Adam)
to reduce the complexity and provide a more concise visualization. Refer to the visualization
example in Appendix B.

3. High-performance Distributed Execution Runtime

TorchOpt offers the following three features to enable efficient differentiable optimization.

High-performance differentiable optimization. We manually write the forward and
backward functions, thus achieving a symbolic reduction towards the gradient flow. In
addition, we reuse intermediate data during the back-propagation. Our design reduces
computation and also benefits numerical stability. We write the accelerated functions in
C++ OpenMP and CUDA, bind them by pybind11 to allow Python can call them, and
then we define the forward and backward behavior using torch.autograd.Function. Refer
to Appendix D for experimental results of CPU/GPU-accelerated optimizers.

High-performance PyTree utilities. The tree operations (e.g., flatten and unflatten)
are frequently called by the functional and Just-In-Time (JIT) components in TorchOpt. To
enable memory-efficient nested structure flattening, we implement a set of high-performance
PyTree utilities, named OpTree. By optimizing their memory and cache performance (e.g.,
absl::InlinedVector), TorchOpt can significantly improve the performance of differen-
tiable optimization at scale. Refer to Appendix F for OpTree experimental results.

Distributed differentiable optimization. TorchOpt can distribute differentiable op-
timization to parallel GPUs. Different from MPI-based synchronous training (Mai et al.,
2020) and asynchronous model averaging (Koliousis et al., 2019), TorchOpt adopts RPC as
a flexible and performant communication backend. The distributed GPUs perform parallel
differentiable optimization tasks. The GPUs are coordinated by a controller, thus guaran-
teeing the convergence of the model in various distributed training (including MPMD and
SPMD). More details are in Appendix E.
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4. Conclusion

This paper introduces TorchOpt, a novel differentiable optimization library for PyTorch.
TorchOpt features a comprehensive differentiation mode and a high-performance distributed
execution runtime. TorchOpt has been used by numerous researchers on GitHub (Liu et al.,
2021), making it a popular library in the PyTorch ecosystem.
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Appendix A. Architecture Overview

Figure 2: TorchOpt’s architecture overview.

Figure 2 gives an overview of the system architecture, TorchOpt consists of two differ-
ent aspects, the unified and expressive differentiable optimization programming lets users
easily implement differentiable optimization algorithms, we provide both high-level APIs
and low-level APIs for three differentiation modes along with debugging tools, all of which
are described in Sec. 2. Then the high-performance and distributed execution runtime con-
tains several accelerated solutions to support fast differentiation with different modes on
GPU & CPU and distributed training features for multi-node multi-GPU scenario, which
we demonstrate boost performance in Sec. 3. Additionally, we offer OpTree to enable fast
structure flatten and unflatten, which is specially designed for our functional program-
ming implementation. We use an optimized structure to avoid memory allocation if the
sub-tree is small.

Appendix B. Gradient Graph Visualization

The visualization tool is modified from TorchViz (Zagoruyko, 2018). Fig. 3 shows the visu-
alization example of MAML. We use red squares to represent what each part accomplishes
separately. Compared with TorchViz, TorchOpt fuses the operations within the Adam to-
gether (orange) to reduce the complexity and provides a more straightforward visualization.
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Figure 3: Gradient graph visualization comparison between TorchViz and TorchOpt. Red
squares represent what gradient computation each node group accomplishes sepa-
rately. Compared with TorchViz, TorchOpt fuses the operations within the Adam
together (orange node) to reduce the complexity and provide a more straightfor-
ward visualization.

Appendix C. Differentiable Optimization Updating Scheme

The key challenge of consolidating these high-level and low-level APIs in a single library
is that we must have a unified abstraction that allows different differentiable optimization
algorithms to be easily declared. To address this, we design a differentiable optimization
updating scheme, which can be easily extended to realize various differentiable optimization
processes. As shown in Fig. 1, the scheme contains an outer level that has parameters φ that
can be learned end-to-end through the inner level parameters solution θ ′(φ) (treating solu-
tion θ ′ as a function of φ) by using the best-response derivatives ∂θ ′(φ)/∂φ. It can be seen
that the key component of this algorithm is to calculate the best-response (BR) Jacobian.
From the BR-based perspective, TorchOpt supports three differentiation modes: explicit
gradient over unrolled optimization, implicit differentiation, and zero-order differentiation.
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C.1 Explicit Gradient Differentiation

# Functional API
opt = torchopt.adam()
# Define meta and inner parameters
meta_params = ...
fmodel, params = make_functional(model)
# Initialize optimizer state
state = opt.init(params)

for iter in range(iter_times):
loss = inner_loss(fmodel, params, meta_params)
grads = torch.autograd.grad(loss, params)
# Apply non-inplace parameter update
updates, state = opt.update(grads, state, inplace=False)
params = torchopt.apply_updates(params, updates)

loss = outer_loss(fmodel, params, meta_params)
meta_grads = torch.autograd.grad(loss, meta_params)

# OOP API
# Define meta and inner parameters
meta_params = ...
model = ...
# Define differentiable optimizer
opt = torchopt.MetaAdam(model)

for iter in range(iter_times):
# Perform the inner update
loss = inner_loss(model, meta_params)
opt.step(loss)

loss = outer_loss(model, meta_params)
loss.backward()

Listing 1: TorchOpt code snippet for explicit gradient. Left: Similiar to Optax Babuschkin
et al. (2020), TorchOpt leverages init, update and apply updates to conduct functional
differentiable optimization. Right: OOP API similar with PyTorch loss.step API

C.2 Implicit Gradient Differentiation

# Functional API for implicit gradient
def stationary(params, meta_params, batch, labels):

# Stationary condition construction
...
return stationary condition

@torchopt.diff.implicit.custom_root(stationary)
def solve(params, meta_params, batch, labels):

# Forward optimization process
...
return optimal_params

# OOP API
class Module(torchopt.nn.ImplicitMetaGradientModule):

def __init__(self, meta_module, ...):
...

def forward(self, x):
# Forward process
...

def optimality(self, batch, labels):
# Stationary condition construction
...

def solve(self, batch, labels):
# Forward optimization process
...
return self

Listing 2: TorchOpt code snippet for implicit gradient. Left: Similar to JAXopt Blondel
et al. (2021), users need to define the stationary function, and TorchOpt provides the
decorator to wrap the solve function for enabling implicit gradient computation. Right:
The OOP API needs users to implement the solve and optimality functions. TorchOpt
will automatically make the solve function differentiable.
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C.3 Zero-order Gradient Differentiation

# Functional API
# Customize the noise sampling function in ES
def sample(sample_shape):

...
return sample_noise

# Specify the method and parameter of ES
@torchopt.diff.zero_order(method, sample)
def forward(params, batch, labels):

# Forward process
return output

# OOP API
class ESModule(torchopt.nn.ZeroOrderGradientModule):

def sample(self, sample_shape):
# Customize the noise sampling function in ES
...
return sample_noise

def forward(self, batch, labels):
# Forward process
...
return output

Listing 3: TorchOpt code snippet for zero-order differentiation.

Appendix D. CPU/GPU-Accelerated Optimizers
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Figure 4: Performance of TorchOpt compared with Higher using MAML example, (a) and
(b) are the meta-optimization time (Adam optimizer) in different inner steps and
model structures.

Fig. 4 shows the meta-optimization time comparison with Higher (Grefenstette et al.,
2019) in the CPU and GPU settings. Note that the meta-optimization process consists of
extra computation beyond the optimizer, where we do not offer acceleration. However, the
acceleration is still significant (around %25) for the MLP model in the CPU setting and
both Conv/MLP model in the GPU setting.

10



TorchOpt: An Efficient Library for Differentiable Optimization

0 200K 400K 600K 800K 1M

Parameter Size

0.0

0.5

1.0

1.5

2.0
Ti

m
e(

s)
TorchOpt/Forward
TorchOpt/Backward
Torch/Forward
Torch/Backward

(a) CPU-accelerated optimizer

TorchOpt/Forward
TorchOpt/Backward
Torch/Forward
Torch/Backward

0 200K 400K 600K 800K 1M

Parameter Size

0.0

0.5

1.0

1.5

2.0

Ti
m

e(
s)

(b) GPU-accelerated optimizer

1 2 3 4 5 6 7 8
Number of Workers

0
1
2
3
4
5
6

Sp
ee

du
p

(c) Distributed Speedup Ratio

Figure 5: Performance of TorchOpt, (a) and (b) are the forward/backward time (Adam
optimizer) in different parameter sizes comparing TorchOpt and PyTorch, (c) is
the speedup ratio on distributed implementation compared with the sequential
implementation.

The results in Fig. 5(a) and Fig. 5(b) show that our design largely reduces the optimizer
forward and backward time. Fig. 5(c) shows that TorchOpt can achieve linear speed-up
with MAML when increasing the number of GPU workers.

Appendix E. Distributed Training

E.1 SPMD vs. MPMD in Distributed Optimization

SPMD (Single-Program-Multiple-Data) and MPMD (Multiple-Program-Multi-Data) are
parallel processing paradigms pivotal in distributed optimization.
SPMD: Each processor runs an identical program, though on unique data subsets. Such
uniformity simplifies task distribution and debugging. All units typically process a shard
of the overarching dataset, necessitating synchronization to maintain pace uniformity.
MPMD: Diverse tasks can run different programs on separate processors, each potentially
on distinct data subsets. While offering computational flexibility, it demands intricate syn-
chronization, especially if tasks have interdependencies or require data interchange.
In differentiable optimization, the preference between SPMD and MPMD hinges on algo-
rithmic specificity and data nature.

E.2 Distributed Framework

In Fig. 6 we show the overview of our distributed framework. As shown in Fig. 6, TorchOpt
distributes a differentiable optimization job across multiple GPU workers and executes the
workers in parallel. TorchOpt users can wrap code in the distributed Autograd module and
achieve substantial speedup in training time with only a few changes in existing training
scripts.
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Figure 6: Overview of the Distributed RPC and Autograd framework. The forward and
backward pass can be distributed on multiple processes and multiple nodes. The
RPC framework supports heterogeneous workloads for different workers.

E.3 Distributed MAML Performance

In Fig. 7, we show the training accuracy and wall time comparison on the MAML Omniglot
example. Distributed training achieves better performance and much higher computational
efficiency.
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Figure 7: Wall time comparison between sequential training results and distributed training
on 8 GPUs for MAML implemented with TorchOpt.

Appendix F. OpTree Performance

In Table. 2 we show the Speedup ratios of tree operations with ResNet models comparing
OpTree, JAX XLA, PyTorch, and DM-Tree. In Fig. 8, 9 and 10, we show the time cost
of tree-flatten, tree-unflatten, and tree-map trees in a different number of nodes comparing
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OpTree, JAX XLA, PyTorch, and DM-Tree. OpTree achieves a large speedup compared
with all baselines.

Table 2: Speedup ratios of tree operations with ResNet models. Here, O, J, P, D refer to
OpTree, JAX XLA, PyTorch, and DM-Tree, respectively.

Module Scale ResNet18 ResNet50 ResNet101 ResNet152
Speedup Ratio J / O P / O D / O J / O P / O D / O J / O P / O D / O J / O P / O D / O

Tree Flatten 2.80 27.31 1.49 2.63 26.52 1.40 2.46 25.18 1.38 2.56 23.25 1.28
Tree UnFlatten 2.68 4.47 15.89 2.56 4.16 14.51 2.55 4.32 14.86 2.68 4.51 15.70

Tree Map 2.61 10.17 10.86 2.63 10.18 10.62 2.35 9.26 10.13 2.53 9.69 10.16
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Figure 8: Tree-Flatten time comparison with respect to the tree scale.
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Figure 9: Tree-UnFlatten time comparison with respect to the tree scale.
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Figure 10: Tree-Map time comparison with respect to the tree scale.

Appendix G. Author Contributions

We summarise the main contributions from each of the authors as follows:
Bo Liu, Xidong Feng and Jie Ren created development roadmap for TorchOpt.
Jie Ren and Xuehai Pan implemented CPU/GPU-accelerated Adam operator.
Jie Ren and Bo Liu implemented differentiable optimizers.
Xuehai Pan and Jie Ren implemented optimized PyTree utilities.
Jie Ren, Xidong Feng and Bo Liu implemented explicit gradient differentiation func-
tional API.
Xidong Feng, Jie Ren and Xuehai Pan, Bo Liu implemented explicit gradient differ-
entiation OOP API.
Jie Ren, Xidong Feng and Bo Liu implemented implicit gradient differentiation func-
tional API.
Xuehai Pan designed and implemented implicit gradient differentiation OOP API.
Xidong Feng and Jie Ren and Xuehai Pan implemented zero-order gradient differen-
tiation functional and OOP API.
Xuehai Pan implemented distributed framework for differentiable optimization.
Xidong Feng, Bo Liu, Xuehai Pan and Jie Ren implemented tutorials for this project.
Bo Liu, Xidong Feng, Xuehai Pan and Jie Ren implemented examples for this project.
Xuehai Pan, Bo Liu and Jie Ren designed continuous integration and continuous
delivery pipeline for this project.
Bo Liu, Xuehai Pan, Xidong Feng, Jie Ren implemented documentation for this
project.
Xuehai Pan wrote the packaging tool for release distribution.
Xidong Feng wrote the README for this project.
Yao Fu designed and implemented differentiable RMSProp optimizer.
Luo Mai and Yaodong Yang led the project from its inception.
Xidong Feng, Bo Liu, Xuehai Pan, Jie Ren, Yao Fu, Luo Mai and Yaodong
Yang wrote the paper.
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