JMLR Volume 26
-
Efficiently Escaping Saddle Points in Bilevel Optimization
Minhui Huang, Xuxing Chen, Kaiyi Ji, Shiqian Ma, Lifeng Lai (1):1−61, 2025 PDF BibTeX
-
Bayes Meets Bernstein at the Meta Level: an Analysis of Fast Rates in Meta-Learning with PAC-Bayes
Charles Riou, Pierre Alquier, Badr-Eddine Chérief-Abdellatif (2):1−60, 2025 PDF BibTeX
-
DisC2o-HD: Distributed causal inference with covariates shift for analyzing real-world high-dimensional data
Jiayi Tong, Jie Hu, George Hripcsak, Yang Ning, Yong Chen (3):1−50, 2025 PDF BibTeX
-
Deep Out-of-Distribution Uncertainty Quantification via Weight Entropy Maximization
Antoine de Mathelin, François Deheeger, Mathilde Mougeot, Nicolas Vayatis (4):1−68, 2025 PDF BibTeX
-
Enhancing Graph Representation Learning with Localized Topological Features
Zuoyu Yan, Qi Zhao, Ze Ye, Tengfei Ma, Liangcai Gao, Zhi Tang, Yusu Wang, Chao Chen (5):1−36, 2025 PDF BibTeX
-
Memory Gym: Towards Endless Tasks to Benchmark Memory Capabilities of Agents
Marco Pleines, Matthias Pallasch, Frank Zimmer, Mike Preuss (6):1−40, 2025 codePDF BibTeX
-
A Random Matrix Approach to Low-Multilinear-Rank Tensor Approximation
Hugo Lebeau, Florent Chatelain, Romain Couillet (7):1−64, 2025 PDF BibTeX
-
Adaptive Client Sampling in Federated Learning via Online Learning with Bandit Feedback
Boxin Zhao, Lingxiao Wang, Ziqi Liu, Zhiqiang Zhang, Jun Zhou, Chaochao Chen, Mladen Kolar (8):1−67, 2025 codePDF BibTeX
-
Test-Time Training on Video Streams
Renhao Wang, Yu Sun, Arnuv Tandon, Yossi Gandelsman, Xinlei Chen, Alexei A. Efros, Xiaolong Wang (9):1−29, 2025 codePDF BibTeX
-
An Axiomatic Definition of Hierarchical Clustering
-
Two-Timescale Gradient Descent Ascent Algorithms for Nonconvex Minimax Optimization
Tianyi Lin, Chi Jin, Michael I. Jordan (11):1−45, 2025 PDF BibTeX
-
Selective Inference with Distributed Data
-
Estimating Network-Mediated Causal Effects via Principal Components Network Regression
Alex Hayes, Mark M. Fredrickson, Keith Levin (13):1−99, 2025 codePDF BibTeX
-
Locally Private Causal Inference for Randomized Experiments
-
From Sparse to Dense Functional Data in High Dimensions: Revisiting Phase Transitions from a Non-Asymptotic Perspective
Shaojun Guo, Dong Li, Xinghao Qiao, Yizhu Wang (15):1−40, 2025 PDF BibTeX
-
Error estimation and adaptive tuning for unregularized robust M-estimator
Pierre C. Bellec, Takuya Koriyama (16):1−40, 2025 PDF BibTeX
-
Supervised Learning with Evolving Tasks and Performance Guarantees
Verónica Álvarez, Santiago Mazuelas, Jose A. Lozano (17):1−59, 2025 codePDF BibTeX
-
Riemannian Bilevel Optimization
-
Random ReLU Neural Networks as Non-Gaussian Processes
Rahul Parhi, Pakshal Bohra, Ayoub El Biari, Mehrsa Pourya, Michael Unser (19):1−31, 2025 PDF BibTeX
-
Regularizing Hard Examples Improves Adversarial Robustness
Hyungyu Lee, Saehyung Lee, Ho Bae, Sungroh Yoon (20):1−48, 2025 PDF BibTeX
-
Bayesian Sparse Gaussian Mixture Model for Clustering in High Dimensions
Dapeng Yao, Fangzheng Xie, Yanxun Xu (21):1−50, 2025 PDF BibTeX
-
Directed Cyclic Graphs for Simultaneous Discovery of Time-Lagged and Instantaneous Causality from Longitudinal Data Using Instrumental Variables
Wei Jin, Yang Ni, Amanda B. Spence, Leah H. Rubin, Yanxun Xu (22):1−62, 2025 codePDF BibTeX
-
Improving Graph Neural Networks on Multi-node Tasks with the Labeling Trick
Xiyuan Wang, Pan Li, Muhan Zhang (23):1−44, 2025 codePDF BibTeX
-
The ODE Method for Stochastic Approximation and Reinforcement Learning with Markovian Noise
Shuze Daniel Liu, Shuhang Chen, Shangtong Zhang (24):1−76, 2025 PDF BibTeX
-
depyf: Open the Opaque Box of PyTorch Compiler for Machine Learning Researchers
Kaichao You, Runsheng Bai, Meng Cao, Jianmin Wang, Ion Stoica, Mingsheng Long (25):1−18, 2025 codePDF BibTeX
-
The Blessing of Heterogeneity in Federated Q-Learning: Linear Speedup and Beyond
Jiin Woo, Gauri Joshi, Yuejie Chi (26):1−85, 2025 PDF BibTeX
-
Mean Aggregator is More Robust than Robust Aggregators under Label Poisoning Attacks on Distributed Heterogeneous Data
Jie Peng, Weiyu Li, Stefan Vlaski, Qing Ling (27):1−51, 2025 codePDF BibTeX
-
Optimal Experiment Design for Causal Effect Identification
Sina Akbari, Jalal Etesami, Negar Kiyavash (28):1−56, 2025 codePDF BibTeX
-
Orthogonal Bases for Equivariant Graph Learning with Provable k-WL Expressive Power
-
Bayesian Multi-Group Gaussian Process Models for Heterogeneous Group-Structured Data
Didong Li, Andrew Jones, Sudipto Banerjee, Barbara E. Engelhardt (30):1−34, 2025 codePDF BibTeX
-
Accelerating optimization over the space of probability measures
Shi Chen, Qin Li, Oliver Tse, Stephen J. Wright (31):1−40, 2025 PDF BibTeX
-
Sliced-Wasserstein Distances and Flows on Cartan-Hadamard Manifolds
Clément Bonet, Lucas Drumetz, Nicolas Courty (32):1−76, 2025 codePDF BibTeX
-
Statistical Inference of Constrained Stochastic Optimization via Sketched Sequential Quadratic Programming
-
gsplat: An Open-Source Library for Gaussian Splatting
Vickie Ye, Ruilong Li, Justin Kerr, Matias Turkulainen, Brent Yi, Zhuoyang Pan, Otto Seiskari, Jianbo Ye, Jeffrey Hu, Matthew Tancik, Angjoo Kanazawa (34):1−17, 2025 codePDF BibTeX
-
Rank-one Convexification for Sparse Regression
-
Copula-based Sensitivity Analysis for Multi-Treatment Causal Inference with Unobserved Confounding
Jiajing Zheng, Alexander D'Amour, Alexander Franks (36):1−60, 2025 codePDF BibTeX
-
Unbalanced Kantorovich-Rubinstein distance, plan, and barycenter on nite spaces: A statistical perspective
Shayan Hundrieser, Florian Heinemann, Marcel Klatt, Marina Struleva, Axel Munk (37):1−70, 2025 PDF BibTeX
-
Optimizing Data Collection for Machine Learning
Rafid Mahmood, James Lucas, Jose M. Alvarez, Sanja Fidler, Marc T. Law (38):1−52, 2025 PDF BibTeX
-
Nonconvex Stochastic Bregman Proximal Gradient Method with Application to Deep Learning
Kuangyu Ding, Jingyang Li, Kim-Chuan Toh (39):1−44, 2025 PDF BibTeX
-
Efficient and Robust Semi-supervised Estimation of Average Treatment Effect with Partially Annotated Treatment and Response
Jue Hou, Rajarshi Mukherjee, Tianxi Cai (40):1−77, 2025 codePDF BibTeX
-
On the Approximation of Kernel functions
-
Extremal graphical modeling with latent variables via convex optimization
Sebastian Engelke, Armeen Taeb (42):1−68, 2025 codePDF BibTeX
-
Wasserstein Convergence Guarantees for a General Class of Score-Based Generative Models
Xuefeng Gao, Hoang M. Nguyen, Lingjiong Zhu (43):1−54, 2025 PDF BibTeX
-
Learning Global Nash Equilibrium in Team Competitive Games with Generalized Fictitious Cross-Play
Zelai Xu, Chao Yu, Yancheng Liang, Yi Wu, Yu Wang (44):1−30, 2025 PDF BibTeX
-
Manifold Fitting under Unbounded Noise
-
Adjusted Expected Improvement for Cumulative Regret Minimization in Noisy Bayesian Optimization
Shouri Hu, Haowei Wang, Zhongxiang Dai, Bryan Kian Hsiang Low, Szu Hui Ng (46):1−33, 2025 PDF BibTeX
-
DAGs as Minimal I-maps for the Induced Models of Causal Bayesian Networks under Conditioning
Xiangdong Xie, Jiahua Guo, Yi Sun (47):1−62, 2025 codePDF BibTeX
-
Efficient and Robust Transfer Learning of Optimal Individualized Treatment Regimes with Right-Censored Survival Data
Pan Zhao, Julie Josse, Shu Yang (48):1−54, 2025 codePDF BibTeX
-
The Effect of SGD Batch Size on Autoencoder Learning: Sparsity, Sharpness, and Feature Learning
Nikhil Ghosh, Spencer Frei, Wooseok Ha, Bin Yu (49):1−61, 2025 PDF BibTeX
-
PFLlib: A Beginner-Friendly and Comprehensive Personalized Federated Learning Library and Benchmark
Jianqing Zhang, Yang Liu, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, Jian Cao (50):1−10, 2025 codePDF BibTeX
-
Composite Goodness-of-fit Tests with Kernels
Oscar Key, Arthur Gretton, François-Xavier Briol, Tamara Fernandez (51):1−60, 2025 codePDF BibTeX
-
Curvature-based Clustering on Graphs
Yu Tian, Zachary Lubberts, Melanie Weber (52):1−67, 2025 PDF BibTeX
-
Scaling Data-Constrained Language Models
Niklas Muennighoff, Alexander M. Rush, Boaz Barak, Teven Le Scao, Aleksandra Piktus, Nouamane Tazi, Sampo Pyysalo, Thomas Wolf, Colin Raffel (53):1−66, 2025 codePDF BibTeX
-
Lightning UQ Box: Uncertainty Quantification for Neural Networks
Nils Lehmann, Nina Maria Gottschling, Jakob Gawlikowski, Adam J. Stewart, Stefan Depeweg, Eric Nalisnick (54):1−7, 2025 codePDF BibTeX
-
A Comparative Evaluation of Quantification Methods
Tobias Schumacher, Markus Strohmaier, Florian Lemmerich (55):1−54, 2025 codePDF BibTeX
-
Scaling ResNets in the Large-depth Regime
Pierre Marion, Adeline Fermanian, Gérard Biau, Jean-Philippe Vert (56):1−48, 2025 codePDF BibTeX
-
Variance-Aware Estimation of Kernel Mean Embedding
-
Determine the Number of States in Hidden Markov Models via Marginal Likelihood
Yang Chen, Cheng-Der Fuh, Chu-Lan Michael Kao (58):1−59, 2025 PDF BibTeX
-
On Adaptive Stochastic Optimization for Streaming Data: A Newton's Method with O(dN) Operations
Antoine Godichon-Baggioni, Nicklas Werge (59):1−49, 2025 PDF BibTeX
-
Evaluation of Active Feature Acquisition Methods for Time-varying Feature Settings
Henrik von Kleist, Alireza Zamanian, Ilya Shpitser, Narges Ahmidi (60):1−84, 2025 PDF BibTeX
-
Recursive Causal Discovery
Ehsan Mokhtarian, Sepehr Elahi, Sina Akbari, Negar Kiyavash (61):1−65, 2025 codePDF BibTeX
-
Continuously evolving rewards in an open-ended environment
-
Ontolearn---A Framework for Large-scale OWL Class Expression Learning in Python
Caglar Demir, Alkid Baci, N'Dah Jean Kouagou, Leonie Nora Sieger, Stefan Heindorf, Simon Bin, Lukas Blübaum, Alexander Bigerl, Axel-Cyrille Ngonga Ngomo (63):1−6, 2025 codePDF BibTeX
-
Estimation of Local Geometric Structure on Manifolds from Noisy Data
-
Instability, Computational Efficiency and Statistical Accuracy
Nhat Ho, Koulik Khamaru, Raaz Dwivedi, Martin J. Wainwright, Michael I. Jordan, Bin Yu (65):1−68, 2025 PDF BibTeX
-
Deletion Robust Non-Monotone Submodular Maximization over Matroids
Paul Dütting, Federico Fusco, Silvio Lattanzi, Ashkan Norouzi-Fard, Morteza Zadimoghaddam (66):1−28, 2025 PDF BibTeX
-
Fine-Grained Change Point Detection for Topic Modeling with Pitman-Yor Process
Feifei Wang, Zimeng Zhao, Ruimin Ye, Xiaoge Gu, Xiaoling Lu (67):1−53, 2025 PDF BibTeX
-
Stabilizing Sharpness-Aware Minimization Through A Simple Renormalization Strategy
Chengli Tan, Jiangshe Zhang, Junmin Liu, Yicheng Wang, Yunda Hao (68):1−35, 2025 PDF BibTeX
-
Local Linear Recovery Guarantee of Deep Neural Networks at Overparameterization
Yaoyu Zhang, Leyang Zhang, Zhongwang Zhang, Zhiwei Bai (69):1−30, 2025 PDF BibTeX
-
Sharp Bounds for Sequential Federated Learning on Heterogeneous Data
-
Sampling and Estimation on Manifolds using the Langevin Diffusion
Karthik Bharath, Alexander Lewis, Akash Sharma, Michael V. Tretyakov (71):1−50, 2025 PDF BibTeX
-
Laplace Meets Moreau: Smooth Approximation to Infimal Convolutions Using Laplace's Method
Ryan J. Tibshirani, Samy Wu Fung, Howard Heaton, Stanley Osher (72):1−36, 2025 codePDF BibTeX
-
Optimization Over a Probability Simplex
James Chok, Geoffrey M. Vasil (73):1−35, 2025 codePDF BibTeX
-
On Consistent Bayesian Inference from Synthetic Data
Ossi Räisä, Joonas Jälkö, Antti Honkela (74):1−65, 2025 codePDF BibTeX
-
Learning causal graphs via nonlinear sufficient dimension reduction
Eftychia Solea, Bing Li, Kyongwon Kim (75):1−46, 2025 PDF BibTeX
-
Distributed Stochastic Bilevel Optimization: Improved Complexity and Heterogeneity Analysis
Youcheng Niu, Jinming Xu, Ying Sun, Yan Huang, Li Chai (76):1−58, 2025 PDF BibTeX
-
Wasserstein F-tests for Frechet regression on Bures-Wasserstein manifolds
-
Derivative-Informed Neural Operator Acceleration of Geometric MCMC for Infinite-Dimensional Bayesian Inverse Problems
Lianghao Cao, Thomas O'Leary-Roseberry, Omar Ghattas (78):1−68, 2025 codePDF BibTeX
-
Dynamic angular synchronization under smoothness constraints
Ernesto Araya, Mihai Cucuringu, Hemant Tyagi (79):1−45, 2025 codePDF BibTeX
-
GraphNeuralNetworks.jl: Deep Learning on Graphs with Julia
-
Towards Optimal Branching of Linear and Semidefinite Relaxations for Neural Network Robustness Certification
Brendon G. Anderson, Ziye Ma, Jingqi Li, Somayeh Sojoudi (81):1−59, 2025 PDF BibTeX
-
Implicit vs Unfolded Graph Neural Networks
Yongyi Yang, Tang Liu, Yangkun Wang, Zengfeng Huang, David Wipf (82):1−46, 2025 PDF BibTeX
-
Causal Abstraction: A Theoretical Foundation for Mechanistic Interpretability
Atticus Geiger, Duligur Ibeling, Amir Zur, Maheep Chaudhary, Sonakshi Chauhan, Jing Huang, Aryaman Arora, Zhengxuan Wu, Noah Goodman, Christopher Potts, Thomas Icard (83):1−64, 2025 PDF BibTeX
-
Random Pruning Over-parameterized Neural Networks Can Improve Generalization: A Training Dynamics Analysis
Hongru Yang, Yingbin Liang, Xiaojie Guo, Lingfei Wu, Zhangyang Wang (84):1−51, 2025 PDF BibTeX
-
On Inference for the Support Vector Machine
Jakub Rybak, Heather Battey, Wen-Xin Zhou (85):1−54, 2025 PDF BibTeX
-
Integral Probability Metrics Meet Neural Networks: The Radon-Kolmogorov-Smirnov Test
Seunghoon Paik, Michael Celentano, Alden Green, Ryan J. Tibshirani (86):1−57, 2025 codePDF BibTeX
-
How good is your Laplace approximation of the Bayesian posterior? Finite-sample computable error bounds for a variety of useful divergences
Mikolaj J. Kasprzak, Ryan Giordano, Tamara Broderick (87):1−81, 2025 codePDF BibTeX
-
Feature Learning in Finite-Width Bayesian Deep Linear Networks with Multiple Outputs and Convolutional Layers
Federico Bassetti, Marco Gherardi, Alessandro Ingrosso, Mauro Pastore, Pietro Rotondo (88):1−35, 2025 PDF BibTeX
-
High-Dimensional L2-Boosting: Rate of Convergence
Ye Luo, Martin Spindler, Jannis Kueck (89):1−54, 2025 PDF BibTeX
-
Uplift Model Evaluation with Ordinal Dominance Graphs
Brecht Verbeken, Marie-Anne Guerry, Wouter Verbeke, Sam Verboven (90):1−56, 2025 PDF BibTeX
-
Causal Effect of Functional Treatment
Ruoxu Tan, Wei Huang, Zheng Zhang, Guosheng Yin (91):1−39, 2025 codePDF BibTeX
-
Affine Rank Minimization via Asymptotic Log-Det Iteratively Reweighted Least Squares
-
Outlier Robust and Sparse Estimation of Linear Regression Coefficients
Takeyuki Sasai, Hironori Fujisawa (93):1−79, 2025 PDF BibTeX
-
Posterior Concentrations of Fully-Connected Bayesian Neural Networks with General Priors on the Weights
-
Invariant Subspace Decomposition
Margherita Lazzaretto, Jonas Peters, Niklas Pfister (95):1−56, 2025 codePDF BibTeX
-
Linear cost and exponentially convergent approximation of Gaussian Matérn processes on intervals
David Bolin, Vaibhav Mehandiratta, Alexandre B. Simas (96):1−34, 2025 codePDF BibTeX
-
Bagged k-Distance for Mode-Based Clustering Using the Probability of Localized Level Sets
-
Bayesian Data Sketching for Varying Coefficient Regression Models
Rajarshi Guhaniyogi, Laura Baracaldo, Sudipto Banerjee (98):1−29, 2025 PDF BibTeX
-
Statistical field theory for Markov decision processes under uncertainty
-
Distribution Free Tests for Model Selection Based on Maximum Mean Discrepancy with Estimated Parameters
Florian Brück, Jean-David Fermanian, Aleksey Min (100):1−52, 2025 codePDF BibTeX
-
Efficient Numerical Integration in Reproducing Kernel Hilbert Spaces via Leverage Scores Sampling
Antoine Chatalic, Nicolas Schreuder, Ernesto De Vito, Lorenzo Rosasco (101):1−55, 2025 codePDF BibTeX
-
Linear Hypothesis Testing in High-Dimensional Expected Shortfall Regression with Heavy-Tailed Errors
Gaoyu Wu, Jelena Bradic, Kean Ming Tan, Wen-Xin Zhou (102):1−54, 2025 PDF BibTeX
-
Error bounds for particle gradient descent, and extensions of the log-Sobolev and Talagrand inequalities
Rocco Caprio, Juan Kuntz, Samuel Power, Adam M. Johansen (103):1−38, 2025 PDF BibTeX
-
A Unified Analysis of Nonstochastic Delayed Feedback for Combinatorial Semi-Bandits, Linear Bandits, and MDPs
Lukas Zierahn, Dirk van der Hoeven, Tal Lancewicki, Aviv Rosenberg, Nicolò Cesa-Bianchi (104):1−60, 2025 codePDF BibTeX
-
Learning conditional distributions on continuous spaces
Cyril Benezet, Ziteng Cheng, Sebastian Jaimungal (105):1−64, 2025 codePDF BibTeX
-
A Decentralized Proximal Gradient Tracking Algorithm for Composite Optimization on Riemannian Manifolds
-
On Global and Local Convergence of Iterative Linear Quadratic Optimization Algorithms for Discrete Time Nonlinear Control
Vincent Roulet, Siddhartha Srinivasa, Maryam Fazel, Zaid Harchaoui (107):1−85, 2025 codePDF BibTeX
-
Adaptive Distributed Kernel Ridge Regression: A Feasible Distributed Learning Scheme for Data Silos
Shao-Bo Lin, Xiaotong Liu, Di Wang, Hai Zhang, Ding-Xuan Zhou (108):1−54, 2025 PDF BibTeX
-
Near-Optimal Nonconvex-Strongly-Convex Bilevel Optimization with Fully First-Order Oracles
Lesi Chen, Yaohua Ma, Jingzhao Zhang (109):1−56, 2025 PDF BibTeX
-
Prominent Roles of Conditionally Invariant Components in Domain Adaptation: Theory and Algorithms
Keru Wu, Yuansi Chen, Wooseok Ha, Bin Yu (110):1−92, 2025 codePDF BibTeX
-
On the Statistical Properties of Generative Adversarial Models for Low Intrinsic Data Dimension
Saptarshi Chakraborty, Peter L. Bartlett (111):1−57, 2025 PDF BibTeX
-
Score-based Causal Representation Learning: Linear and General Transformations
Burak Varici, Emre Acartürk, Karthikeyan Shanmugam, Abhishek Kumar, Ali Tajer (112):1−90, 2025 codePDF BibTeX
-
Precise High-Dimensional Asymptotics for Quantifying Heterogeneous Transfers
Fan Yang, Hongyang R. Zhang, Sen Wu, Christopher Re, Weijie J. Su (113):1−88, 2025 codePDF BibTeX
-
Principled Penalty-based Methods for Bilevel Reinforcement Learning and RLHF
Han Shen, Zhuoran Yang, Tianyi Chen (114):1−49, 2025 PDF BibTeX
-
DRM Revisited: A Complete Error Analysis
Yuling Jiao, Ruoxuan Li, Peiying Wu, Jerry Zhijian Yang, Pingwen Zhang (115):1−76, 2025 PDF BibTeX
-
Bayesian Scalar-on-Image Regression with a Spatially Varying Single-layer Neural Network Prior
-
On Model Identification and Out-of-Sample Prediction of PCR with Applications to Synthetic Controls
Anish Agarwal, Devavrat Shah, Dennis Shen (117):1−58, 2025 codePDF BibTeX
-
Sparse SVM with Hard-Margin Loss: a Newton-Augmented Lagrangian Method in Reduced Dimensions
Penghe Zhang, Naihua Xiu, Hou-Duo Qi (118):1−55, 2025 PDF BibTeX
-
Quantifying the Effectiveness of Linear Preconditioning in Markov Chain Monte Carlo
-
Degree of Interference: A General Framework For Causal Inference Under Interference
Yuki Ohnishi, Bikram Karmakar, Arman Sabbaghi (120):1−37, 2025 PDF BibTeX
-
Maximum Causal Entropy IRL in Mean-Field Games and GNEP Framework for Forward RL
Berkay Anahtarci, Can Deha Kariksiz, Naci Saldi (121):1−40, 2025 PDF BibTeX
-
Posterior and Variational Inference for Deep Neural Networks with Heavy-Tailed Weights
-
Last-iterate Convergence of Shuffling Momentum Gradient Method under the Kurdyka-Lojasiewicz Inequality
-
Physics-informed Kernel Learning
Nathan Doumèche, Francis Bach, Gérard Biau, Claire Boyer (124):1−39, 2025 codePDF BibTeX
-
BitNet: 1-bit Pre-training for Large Language Models
Hongyu Wang, Shuming Ma, Lingxiao Ma, Lei Wang, Wenhui Wang, Li Dong, Shaohan Huang, Huaijie Wang, Jilong Xue, Ruiping Wang, Yi Wu, Furu Wei (125):1−29, 2025 PDF BibTeX
-
Modelling Populations of Interaction Networks via Distance Metrics
George Bolt, Simón Lunagómez, Christopher Nemeth (126):1−112, 2025 PDF BibTeX
-
Actor-Critic learning for mean-field control in continuous time
Noufel FRIKHA, Maximilien GERMAIN, Mathieu LAURIERE, Huyen PHAM, Xuanye SONG (127):1−42, 2025 PDF BibTeX
-
Optimal Sample Selection Through Uncertainty Estimation and Its Application in Deep Learning
Yong Lin, Chen Liu, Chenlu Ye, Qing Lian, Yuan Yao, Tong Zhang (128):1−47, 2025 codePDF BibTeX
-
Transformers from Diffusion: A Unified Framework for Neural Message Passing
Qitian Wu, David Wipf, Junchi Yan (129):1−47, 2025 codePDF BibTeX
-
Categorical Semantics of Compositional Reinforcement Learning
Georgios Bakirtzis, Michail Savvas, Ufuk Topcu (130):1−37, 2025 PDF BibTeX
-
On the O(sqrt(d)/T^(1/4)) Convergence Rate of RMSProp and Its Momentum Extension Measured by l_1 Norm
Huan Li, Yiming Dong, Zhouchen Lin (131):1−25, 2025 codePDF BibTeX
-
Score-Aware Policy-Gradient and Performance Guarantees using Local Lyapunov Stability
Céline Comte, Matthieu Jonckheere, Jaron Sanders, Albert Senen-Cerda (132):1−74, 2025 codePDF BibTeX
-
PREMAP: A Unifying PREiMage APproximation Framework for Neural Networks
Xiyue Zhang, Benjie Wang, Marta Kwiatkowska, Huan Zhang (133):1−44, 2025 PDF BibTeX
-
Characterizing Dynamical Stability of Stochastic Gradient Descent in Overparameterized Learning
Dennis Chemnitz, Maximilian Engel (134):1−46, 2025 PDF BibTeX
-
Optimal and Efficient Algorithms for Decentralized Online Convex Optimization
Yuanyu Wan, Tong Wei, Bo Xue, Mingli Song, Lijun Zhang (135):1−43, 2025 PDF BibTeX
-
Minimax Optimal Deep Neural Network Classifiers Under Smooth Decision Boundary
Tianyang Hu, Ruiqi Liu, Zuofeng Shang, Guang Cheng (136):1−38, 2025 PDF BibTeX
-
Randomly Projected Convex Clustering Model: Motivation, Realization, and Cluster Recovery Guarantees
Ziwen Wang, Yancheng Yuan, Jiaming Ma, Tieyong Zeng, Defeng Sun (137):1−57, 2025 PDF BibTeX
-
Finite Expression Method for Solving High-Dimensional Partial Differential Equations
-
Diffeomorphism-based feature learning using Poincaré inequalities on augmented input space
Romain Verdière, Clémentine Prieur, Olivier Zahm (139):1−31, 2025 PDF BibTeX
-
Deep Variational Multivariate Information Bottleneck - A Framework for Variational Losses
Eslam Abdelaleem, Ilya Nemenman, K. Michael Martini (140):1−50, 2025 codePDF BibTeX
-
Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching
Jannis Chemseddine, Paul Hagemann, Gabriele Steidl, Christian Wald (141):1−47, 2025 codePDF BibTeX
-
ClimSim-Online: A Large Multi-Scale Dataset and Framework for Hybrid Physics-ML Climate Emulation
Sungduk Yu, Zeyuan Hu, Akshay Subramaniam, Walter Hannah, Liran Peng, Jerry Lin, Mohamed Aziz Bhouri, Ritwik Gupta, Björn Lütjens, Justus C. Will, Gunnar Behrens, Julius J. M. Busecke, Nora Loose, Charles I Stern, Tom Beucler, Bryce Harrop, Helge Heuer, Benjamin R Hillman, Andrea Jenney, Nana Liu, Alistair White, Tian Zheng, Zhiming Kuang, Fiaz Ahmed, Elizabeth Barnes, Noah D. Brenowitz, Christopher Bretherton, Veronika Eyring, Savannah Ferretti, Nicholas Lutsko, Pierre Gentine, Stephan Mandt, J. David Neelin, Rose Yu, Laure Zanna, Nathan M. Urban, Janni Yuval, Ryan Abernathey, Pierre Baldi, Wayne Chuang, Yu Huang, Fernando Iglesias-Suarez, Sanket Jantre, Po-Lun Ma, Sara Shamekh, Guang Zhang, Michael Pritchard (142):1−85, 2025 codePDF BibTeX
-
Deep Generative Models: Complexity, Dimensionality, and Approximation
Kevin Wang, Hongqian Niu, Yixin Wang, Didong Li (143):1−37, 2025 codePDF BibTeX
-
Fine-grained Analysis and Faster Algorithms for Iteratively Solving Linear Systems
Michal Dereziński, Daniel LeJeune, Deanna Needell, Elizaveta Rebrova (144):1−49, 2025 PDF BibTeX
-
On the Ability of Deep Networks to Learn Symmetries from Data: A Neural Kernel Theory
-
Dynamic Bayesian Learning for Spatiotemporal Mechanistic Models
Sudipto Banerjee, Xiang Chen, Ian Frankenburg, Daniel Zhou (146):1−43, 2025 codePDF BibTeX
-
Latent Process Models for Functional Network Data
Peter W. MacDonald, Elizaveta Levina, Ji Zhu (147):1−69, 2025 codePDF BibTeX
-
Losing Momentum in Continuous-time Stochastic Optimisation
Kexin Jin, Jonas Latz, Chenguang Liu, Alessandro Scagliotti (148):1−55, 2025 PDF BibTeX
-
skglm: Improving scikit-learn for Regularized Generalized Linear Models
Badr Moufad, Pierre-Antoine Bannier, Quentin Bertrand, Quentin Klopfenstein, Mathurin Massias (149):1−6, 2025 codePDF BibTeX
-
Randomization Can Reduce Both Bias and Variance: A Case Study in Random Forests
-
Sample Complexity of the Linear Quadratic Regulator: A Reinforcement Learning Lens
Amirreza Neshaei Moghaddam, Alex Olshevsky, Bahman Gharesifard (151):1−50, 2025 PDF BibTeX
-
Universal Online Convex Optimization Meets Second-order Bounds
Lijun Zhang, Yibo Wang, Guanghui Wang, Jinfeng Yi, Tianbao Yang (152):1−53, 2025 PDF BibTeX
-
Classification in the high dimensional Anisotropic mixture framework: A new take on Robust Interpolation
Stanislav Minsker, Mohamed Ndaoud, Yiqiu Shen (153):1−39, 2025 PDF BibTeX
-
On Non-asymptotic Theory of Recurrent Neural Networks in Temporal Point Processes
Zhiheng Chen, Guanhua Fang, Wen Yu (154):1−67, 2025 PDF BibTeX
-
Frontiers to the learning of nonparametric hidden Markov models
Kweku Abraham, Elisabeth Gassiat, Zacharie Naulet (155):1−75, 2025 PDF BibTeX
-
WEFE: A Python Library for Measuring and Mitigating Bias in Word Embeddings
Pablo Badilla, Felipe Bravo-Marquez, María José Zambrano, Jorge Pérez (156):1−6, 2025 codePDF BibTeX
-
Regularized Rényi Divergence Minimization through Bregman Proximal Gradient Algorithms
Thomas Guilmeau, Emilie Chouzenoux, Víctor Elvira (157):1−56, 2025 PDF BibTeX
-
Score-Based Diffusion Models in Function Space
Jae Hyun Lim, Nikola B. Kovachki, Ricardo Baptista, Christopher Beckham, Kamyar Azizzadenesheli, Jean Kossaifi, Vikram Voleti, Jiaming Song, Karsten Kreis, Jan Kautz, Christopher Pal, Arash Vahdat, Anima Anandkumar (158):1−62, 2025 codePDF BibTeX
-
Simplex Constrained Sparse Optimization via Tail Screening
Peng Chen, Jin Zhu, Junxian Zhu, Xueqin Wang (159):1−38, 2025 codePDF BibTeX
-
Density Estimation Using the Perceptron
Patrik Róbert Gerber, Tianze Jiang, Yury Polyanskiy, Rui Sun (160):1−51, 2025 PDF BibTeX
-
Extending Temperature Scaling with Homogenizing Maps
Christopher Qian, Feng Liang, Jason Adams (161):1−46, 2025 codePDF BibTeX
-
Distribution Estimation under the Infinity Norm
Aryeh Kontorovich, Amichai Painsky (162):1−30, 2025 PDF BibTeX
-
System Neural Diversity: Measuring Behavioral Heterogeneity in Multi-Agent Learning
Matteo Bettini, Ajay Shankar, Amanda Prorok (163):1−27, 2025 codePDF BibTeX
-
Nonparametric Regression on Random Geometric Graphs Sampled from Submanifolds
-
Autoencoders in Function Space
Justin Bunker, Mark Girolami, Hefin Lambley, Andrew M. Stuart, T. J. Sullivan (165):1−54, 2025 codePDF BibTeX
-
EMaP: Explainable AI with Manifold-based Perturbations
Minh Nhat Vu, Huy Quang Mai, My T. Thai (166):1−35, 2025 PDF BibTeX
-
Asymptotic Inference for Multi-Stage Stationary Treatment Policy with Variable Selection
Daiqi Gao, Yufeng Liu, Donglin Zeng (167):1−50, 2025 codePDF BibTeX
-
Frequentist Guarantees of Distributed (Non)-Bayesian Inference
-
Boosting Causal Additive Models
Maximilian Kertel, Nadja Klein (169):1−49, 2025 codePDF BibTeX
-
Contextual Bandits with Stage-wise Constraints
Aldo Pacchiano, Mohammad Ghavamzadeh, Peter Bartlett (170):1−57, 2025 PDF BibTeX
-
Data-Driven Performance Guarantees for Classical and Learned Optimizers
Rajiv Sambharya, Bartolomeo Stellato (171):1−49, 2025 codePDF BibTeX
-
Enhanced Feature Learning via Regularisation: Integrating Neural Networks and Kernel Methods
Bertille FOLLAIN, Francis BACH (172):1−56, 2025 codePDF BibTeX
-
Interpretable Global Minima of Deep ReLU Neural Networks on Sequentially Separable Data
Thomas Chen, Patrícia Muñoz Ewald (173):1−31, 2025 PDF BibTeX
-
Best Linear Unbiased Estimate from Privatized Contingency Tables
Jordan Awan, Adam Edwards, Paul Bartholomew, Andrew Sillers (174):1−41, 2025 codePDF BibTeX
-
High-Rank Irreducible Cartesian Tensor Decomposition and Bases of Equivariant Spaces
Shihao Shao, Yikang Li, Zhouchen Lin, Qinghua Cui (175):1−53, 2025 codePDF BibTeX
-
Fast Algorithm for Constrained Linear Inverse Problems
Mohammed Rayyan Sheriff, Floor Fenne Redel, Peyman Mohajerin Esfahani (176):1−41, 2025 codePDF BibTeX
-
Four Axiomatic Characterizations of the Integrated Gradients Attribution Method
Daniel Lundstrom, Meisam Razaviyayn (177):1−31, 2025 PDF BibTeX
-
Bagged Regularized k-Distances for Anomaly Detection
Yuchao Cai, Hanfang Yang, Yuheng Ma, Hanyuan Hang (178):1−59, 2025 PDF BibTeX
-
Assumption-lean and data-adaptive post-prediction inference
Jiacheng Miao, Xinran Miao, Yixuan Wu, Jiwei Zhao, Qiongshi Lu (179):1−31, 2025 codePDF BibTeX
-
"What is Different Between These Datasets?" A Framework for Explaining Data Distribution Shifts
Varun Babbar*, Zhicheng Guo*, Cynthia Rudin (180):1−64, 2025 codePDF BibTeX
-
Generative Adversarial Networks: Dynamics
Matias G. Delgadino, Bruno B. Suassuna, Rene Cabrera (181):1−30, 2025 PDF BibTeX
-
Hierarchical Decision Making Based on Structural Information Principles
Xianghua Zeng, Hao Peng, Dingli Su, Angsheng Li (182):1−55, 2025 PDF BibTeX
-
Early Alignment in Two-Layer Networks Training is a Two-Edged Sword
Etienne Boursier, Nicolas Flammarion (183):1−75, 2025 codePDF BibTeX
-
Imprecise Multi-Armed Bandits: Representing Irreducible Uncertainty as a Zero-Sum Game
-
Optimizing Return Distributions with Distributional Dynamic Programming
Bernardo Ávila Pires, Mark Rowland, Diana Borsa, Zhaohan Daniel Guo, Khimya Khetarpal, André Barreto, David Abel, Rémi Munos, Will Dabney (185):1−90, 2025 PDF BibTeX
-
Exponential Family Graphical Models: Correlated Replicates and Unmeasured Confounders, with Applications to fMRI Data
Yanxin Jin, Yang Ning, Kean Ming Tan (186):1−66, 2025 PDF BibTeX
-
Learning from Similar Linear Representations: Adaptivity, Minimaxity, and Robustness
Ye Tian, Yuqi Gu, Yang Feng (187):1−125, 2025 codePDF BibTeX
-
Multiple Instance Verification
Xin Xu, Eibe Frank, Geoffrey Holmes (188):1−46, 2025 codePDF BibTeX
-
EF21 with Bells & Whistles: Six Algorithmic Extensions of Modern Error Feedback
Ilyas Fatkhullin, Igor Sokolov, Eduard Gorbunov, Zhize Li, Peter Richtárik (189):1−50, 2025 codePDF BibTeX
-
Model-free Change-Point Detection Using AUC of a Classifier
Rohit Kanrar, Feiyu Jiang, Zhanrui Cai (190):1−50, 2025 codePDF BibTeX
-
A New Random Reshuffling Method for Nonsmooth Nonconvex Finite-sum Optimization
Junwen Qiu, Xiao Li, Andre Milzarek (191):1−46, 2025 PDF BibTeX
-
Learning with Linear Function Approximations in Mean-Field Control
Erhan Bayraktar, Ali Devran Kara (192):1−53, 2025 PDF BibTeX
-
On the Convergence of Projected Policy Gradient for Any Constant Step Sizes
Jiacai Liu, Wenye Li, Dachao Lin, Ke Wei, Zhihua Zhang (193):1−35, 2025 PDF BibTeX
-
Linear Separation Capacity of Self-Supervised Representation Learning