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Abstract

We study the deletion robust version of submodular maximization under matroid constraints.
The goal is to extract a small-size summary of the data set that contains a high-value
independent set even after an adversary deletes some elements. We present constant-factor
approximation algorithms, whose space complexity depends on the rank k of the matroid,
the number d of deleted elements, and the input precision ε. In the centralized setting we
present a (4.494 + O(ε))-approximation algorithm with summary size O(k+d

ε2 log k
ε ) that

improves to a (3.582 +O(ε))-approximation with O(k + d
ε2 log k

ε ) summary size when the
objective is monotone. In the streaming setting we provide a (9.294 +O(ε))-approximation
algorithm with summary size and memory O(k+ d

ε2 log k
ε ); the approximation factor is then

improved to (5.582 +O(ε)) in the monotone case.

Keywords: Submodular maximization, streaming algorithms, deletion robust, approxi-
mation algorithms, randomized algorithms

1. Introduction

Submodular maximization is a fundamental problem in machine learning that encompasses
a broad range of applications, including active learning (Golovin and Krause, 2011) sparse
reconstruction (Bach, 2010; Das and Kempe, 2011; Das et al., 2012), video analysis (Zheng
et al., 2014), and data summarization (Lin and Bilmes, 2011; Bairi et al., 2015).

Given a submodular function f , a universe of elements V , and a family F ⊆ 2V of feasible
subsets of V , the optimization problem consists in finding a set S ∈ F that maximizes
f(S). A natural choice for F are capacity constraints (a.k.a. k-uniform matroid constraints)
where any subset S of V of size at most k is feasible. Another standard restriction, which
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generalizes capacity constraints and naturally comes up in various settings, is matroid
constraints. For example, consider a movie recommendation application, where, given a
large corpus of movies, we want to produce a set of recommended videos that contains at
most one movie from each genre. This can be modeled as a partition matroid.

Exact submodular maximization is NP-hard, but efficient constant-factor approximation
algorithms exist in both the centralized and in the streaming setting (e.g., Fisher et al.,
1978; Călinescu et al., 2011; Chakrabarti and Kale, 2015; Feldman et al., 2018; Buchbinder
and Feldman, 2024).

In this work, we design algorithms for submodular maximization over matroids that are
robust to deletions. Primary motivations for considering deletions in the applications are
privacy and user preferences, as users may exert their “right to be forgotten” or may update
their preferences and thus exclude some of the data points. For instance, in the earlier movie
recommendation example, a user may mark some of the recommended videos as “seen” or
“inappropriate”, and we may wish to quickly update the list of recommendations accordingly.

1.1 The Deletion Robust Approach

Following Mitrovic et al. (2017), we model robustness to deletion as a two-phase game
against an adversary. In the first phase, the algorithm receives a robustness parameter d
and chooses subset W ⊆ V as a (possibly randomized) summary of the whole data set V ,
which can be given either offline or in streaming. Concurrently, an adversary selects a subset
D ⊆ V with |D| ≤ d. In the second phase, the adversary reveals D, and the algorithm
determines a feasible solution in the portion of the summary that has not been deleted. The
goal of the algorithm is to extract a feasible subset of W \D that is competitive with the
optimal solution in V \D. Natural performance metrics in this model are the algorithm’s
approximation guarantee and its space complexity as measured by the size of the set W . We
study an oblivious adversary, whose choice of the deleted elements D does not depend on the
realized W , but possibly on the structure of the algorithm (not on its random bits). This is
a natural assumption in the applications. Consider the movie recommendation example: the
fact that a movie has already been watched by the user or that it is deemed inappropriate is
independent of whether the specific film has been selected or not in the summary.

In this model, to obtain any constant-factor approximation, the summary size has to be
Ω(k + d), even when f is additive and the constraint is a k-uniform matroid. To see this,
consider the case where exactly k + d the elements have unitary weight, and the remaining
elements have weight zero. The adversary selects d of the valuable elements for deletion,
but the algorithm does not know which. To be protected against any possible choice of the
adversary, the best strategy of the algorithm is to choose W uniformly at random from the
elements that carry weight. This leads to an expected weight of the surviving elements of k
multiplied by |W |/(k+d), while the optimum is k.

Prior work gave deletion robust algorithms for the special case of k-uniform matroids and
monotone objectives. The state-of-the-art is a 2 +O(ε) approximation with O(k + d log k

ε2
)

space in the centralized setting, while in the streaming setting the same approximation
is achievable at the cost of an extra multiplicative factor of O( log k

ε ) in space complexity
(Kazemi et al., 2018).

2



Deletion Robust Non-Monotone Submodular Maximization over Matroids

Reference Objective Model Approximation Summary size

Corollary 9 (this work) Non-Monotone Centralized 4.494 +O(ε) O
(
k+d
ε2

log k
)

Corollary 10 (this work) Monotone Centralized 3.582 +O(ε) O
(
k + d

ε2
log k

)
Zhang et al. (2022) Monotone Centralized 3.582 +O(ε) O

(
k + d

ε
log k

)
Mirzasoleiman et al. (2017) Non-Monotone Streaming 5.205 Õ(kd)

Theorem 12 (this work) Non-Monotone Streaming 9.294 +O(ε) O
(
k + d

ε2
log k

)
Mirzasoleiman et al. (2017) Monotone Streaming 3.147 Õ(kd)

Corollary 15 (this work) Monotone Streaming 5.582 +O(ε) O
(
k + d

ε2
log k

)
Zhang et al. (2022) Monotone Streaming 4 O(k + d)

Table 1: The table summarizes the results for deletion robust submodular maximization with matroid
constraints. Note that the Õ hides terms poly-logarithmic in the rank k. The approximation
guarantees of Mirzasoleiman et al. (2017) are obtained via the state-of-the-art streaming algorithms
for submodular maximization with matroid constraints (Buchbinder and Feldman (2019) and
Feldman et al. (2022)). Zhang et al. (2022) is a follow-up paper.

For general matroids, Mirzasoleiman et al. (2017) give a black-box reduction that adapts
(non-robust) submodular maximization algorithms to the deletion robust setting. Their
approach yields a 3.147-approximation algorithm for monotone objectives using Feldman
et al. (2022) and a 5.205 approximation for non-monotone objectives via Buchbinder and
Feldman (2019). The downside of Mirzasoleiman et al. (2017) is that the space complexity
is Õ(kd).1 The multiplicative factor d is inherent in the construction, and the k is needed
by any streaming subroutine, so this approach necessarily leads to a space complexity of
Ω(dk). The main open problem from their work is to design space-efficient algorithms for
the centralized and streaming problems. These questions are particularly important in many
practical scenarios where data sets are large and space is a crucial resource.

1.2 Our Results

We present the first constant-factor approximation algorithms for deletion robust submodular
maximization subject to general matroid constraints with almost optimal space usage, i.e.,
our algorithms only use Õ(k + d) space. More formally, in the centralized setting we present
a (4.494 + O(ε))-approximation algorithm with summary size O(k+d

ε2
log k

ε ), that can be

improved to a (3.582+O(ε))-approximation with summary size O(k+ d
ε2

log k
ε ) if the objective

is monotone. In the streaming setting we provide a (9.294 +O(ε))-approximation algorithm
with summary size and memory O(k+ d

ε2
log k

ε ), that becomes a (5.582+O(ε))-approximation
if the objective is monotone. We remark that, besides the black box results by Mirzasoleiman
et al. (2017) that have a far-from-optimal space usage, we are the first to offer a positive
result for non-monotone submodular functions in the deletion robust setting, with any type
of constraint. All our results are summarized and compared to the existing literature in
Table 1.

For monotone objectives, the approximation factors in the two cases are 2 + β and 4 + β,
where β is e/(e−1) ≈ 1.582, i.e., the best-possible approximation guarantee for the standard

1. Where the Õ notation hides logarithmic factors.
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centralized problem (Călinescu et al., 2011; Feige, 1998). For the non-monotone case, we
still have a 2 + β, where β ≈ 2.494 is the state-of-the-art approximation guarantee for
non-robust centralized submodular maximization subject to matroid constraint (Buchbinder
and Feldman, 2024); our approximation for the streaming setting also depends on the
routine used, but in a more intricate way. We mention that the best approximation factor
for submodular maximization subject to matroid constraint is still an open problem: the
optimal approximation factor lies between 2.494 (provided by the current best algorithm by
Buchbinder and Feldman, 2024), and 2.092 (as per the impossibility result in Gharan and
Vondrák, 2011). Thus, better algorithms may exist and would automatically improve our
approximation guarantees.

We point out that the state-of-the-art approximation guarantees for (non-robust) submodular
maximization with matroid constraint in the streaming model are 3.147-approximation in
the monotone case and a 5.205-approximation in the general non-negative, i.e. possibly
non-monotone, case (Feldman et al., 2022). The “price of robustness” is thus just an extra
small additive term in the approximation factor, depending on the setting. At the same
time, up to possibly a logarithmic factor, the memory requirements of all our results are
tight.

1.3 Our Techniques

Intuitively, the extra difficulty in obtaining space-efficient robust deletion summaries with
general matroid constraints—as opposed to cardinality constraints—is that the algorithm
can only use elements respecting the matroid constraint to replace a good deleted element
from a candidate solution. This phenomenon gets amplified when multiple elements need to
be replaced. This contrasts sharply with the special case of k-uniform matroids, where all
elements can replace any other element.

The Centralized Setting. Our algorithms start by setting a logarithmic number of
value thresholds that span the average contribution of relevant optimum elements, and use
these to group together elements with similar marginal values. The candidate solution is
constructed using only elements from large enough bundles (at least a factor of 1/ε larger
than the number of deletions). Random selection from a large bundle protects the value of
the selected solution against adversarial deletions. In the centralized algorithm, it is possible
to sweep through the thresholds in decreasing order. This monotonic behavior helps us
design a charging mechanism for high-value elements dismissed due to the matroid constraint.
We use the matroid structural properties to find an injective mapping from the optimum
elements rejected by the matroid property to the set of selected elements. This allows us to
claim that the marginal value of missed opportunities cannot dominate the values of added
elements. Finally, since each fixed element of the base set has a very low probability of
being added to the solution (due to the deletion robust sampling), we can handle for free
the non-monotonicity of the objective in the analysis via a well-known sampling argument
for submodular functions (Feige et al., 2007).

The Streaming Setting. In the streaming setting, elements arrive in an arbitrary order
in terms of their membership to various bundles. We can still keep adding elements as long
as a large enough bundle exists, but face the problem that elements from lower-value bundles
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may prevent us from selecting some high-value elements due to the matroid constraint. So,
when considering a new element, we allow for a swap operation with any of the elements in
the solution to maintain feasibility with respect to the matroid constraint. We perform the
swap if the marginal value of the new element e is substantially (a constant factor) higher
than the marginal value that the element e′ we are kicking out of the solution had when
it was added to the solution. The constant factor gap between marginal values helps us
account for not only e′ but also the whole potential chain of elements that e′ caused directly
or indirectly to be removed during the algorithm. As we repeatedly swap elements in and
out of the solution, it no longer holds that each fixed element of the base set has a very low
probability of being, at some point, added to the solution. To tackle non-monotonicity, we
thus embed a uniform sampling step (as in, e.g., Feldman et al., 2018; Amanatidis et al.,
2021, 2022) in the procedure outlined above: any new element is discarded with some fixed
probability before even being considered for swapping.

The Deletion Parameter. Finally, a consideration on the deletion robust parameter d.
Our algorithms (like those from earlier work) do not need exact knowledge of d; an upper
bound yields the same approximation at the cost of a larger summary. Also, with some extra
work, it is possible to show that our approximation guarantees degrade gracefully when
the estimate of d is too conservative and more elements are deleted. Note that some prior
knowledge on d is a reasonable assumption in the applications. Without prior information
about d, achieving good approximation and memory efficiency is impossible.

1.4 Related Work

Robust submodular optimization has been studied for more than a decade. In Krause et al.
(2008), the authors study robustness from the perspective of multiple agents each with its
own submodular valuation function; their objective is to select a subset that maximizes
the minimum among all the agents’ valuation functions. This objective could be seen
as a max-min fair subset selection. Another robustness setting that deals with multiple
valuation functions is distributionally robust submodular optimization (Staib et al., 2019) in
which we can access samples from a distribution of valuation functions. These settings are
fundamentally different from the robustness setting we study in our paper.

Robustness against few deletions. Orlin et al. (2018) and Bogunovic et al. (2017)
investigate robustness in the presence of a few deletions. In their model, the algorithm needs
to finalize the solution before the adversarial deletions are revealed and the adversary sees
the choices of the algorithm. Therefore, having at least k deletions reduces the value of any
solution to zero. This is the most prohibitive deletion robust setting we are aware of in the
literature, and not surprisingly, the positive results of Orlin et al. (2018) and Bogunovic
et al. (2017) are mostly useful when we are dealing with a few deletions.

Dynamic setting with d deletions. Mirzasoleiman et al. (2017) study submodular
maximization and provide a general framework to empower insertion-only algorithms to
process deletions on the fly as well as insertions. Their result works on general constraints,
including matroids. As a result, they provide dynamic algorithms that process a stream of
deletions and insertions with an extra multiplicative overhead of d (on both the computation
time and memory footprint) compared to insertion-only algorithms. Their elegant idea
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consists in running d+ 1 concurrent streaming submodular maximization algorithms where
d is the maximum number of deletions. Every element is sent to the first algorithm. If it is
not selected, it is sent to the second algorithm; if it is not selected again, it is sent to the
third algorithm, and so on. With this trick, they maintain the invariant that the solution of
one of these algorithms is untouched by the adversarial deletions, and therefore this set of
Õ(dk) elements suffice to achieve robust algorithms for matroid constraints. This approach
has the drawback of having per update computation time linearly dependent on d (in the
worst case, a new element can be processes by each one of the d algorithms), which can
be prohibitive for a large number of deletions. It also has a total memory of Õ(dk), which
could be suboptimal compared to the lower bound of Ω(d+ k) presented in the Introduction.
The gap between this lower bound and the Õ(dk) memory footprint in Mirzasoleiman et al.
(2017) motivates the follow-up works on designing even more memory and computationally
efficient algorithms.

Fully-dynamic setting. A closely related line of work investigates submodular maximiza-
tion on stream of arbitrary insertions and deletions, where the goal is to maintain a good
approximation to the dynamic optimum with per update computation time that depends
poly-logarithmic in the total number of updates (length of the stream of updates). For
cardinality constraint, Lattanzi et al. (2020) and Banihashem et al. (2023) provide a fully
polynomial 2-approximation algorithm characterized by poly-logarithmic update time in
both n and k, while Monemizadeh (2020) independently design an algorithm with similar
approximation guarantee and an update time quadratic in the cardinality constraint with a
smaller dependence on logarithmic terms. In subsequent work, Dütting et al. (2025) and
Banihashem et al. (2024) tackle matroid constraints by designing constant factor approxima-
tion algorithms with update time that depends at most logarithmically in n. Note that these
algorithms’ much faster computation time comes at the cost of a potentially much larger
memory footprint (up to the whole ground set), making them impractical in the deletion
robust setting we study.

Two-phase model. Mitrovic et al. (2017) and Kazemi et al. (2018) are the first to study
the deletion robust setting we consider in our work. They independently design submodular
maximization algorithms for k-uniform matroids. Mitrovic et al. (2017) propose a streaming
algorithm that achieves constant competitive ratio with memory O((k+d) polylog(k)). Their
results hold also against the adaptive adversary, that is aware of the summary set W before
selecting the set D of deleted elements. On the other hand, Kazemi et al. (2018) design
centralized and distributed algorithms with constant factor approximation and O(k+d log(k))
memory, as well as a streaming algorithm with 2-approximation factor and memory footprint
of O(k log(k) + d log2(k)). We borrow some of their ideas, including bundling elements
based on their marginal values and ensuring that elements are added to the solution before
deletions only if they are selected uniformly at random from a large enough bundle (pool of
candidates). A subsequent paper (Avdiukhin et al., 2019) shows how to obtain algorithms
for the case of knapsack constraints with similar memory requirements and constant factor
approximation. We aim to the generality of the matroid constraints studied in Mirzasoleiman
et al. (2017) while maintaining the almost optimal computation time and space efficiency of
Mitrovic et al. (2017) and Kazemi et al. (2018).
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Sliding window. Another well-studied robustness model is the sliding window model. In
this case, the deletions occur as the algorithm sweeps through the stream of elements; in that
sense, they occur regularly rather than in an adversarial manner. Every element is deleted
exactly W steps after its arrival. So, at every moment, the most recent W elements are
present, and the objective is to select a subset of these present elements. Epasto et al. (2017)
design a 3-approximation algorithm for the case of cardinality constraints with memory
independent of the window size W . Zhao et al. (2019) provide algorithms that extend the
sliding window algorithm to settings where elements have non-uniform lifespans and leave
after arbitrary times.

Non-robust literature. Prior to the deletion robust models and motivated by large-scale
applications, Mirzasoleiman et al. (2013) design the distributed greedy algorithm and shows it
achieves provable guarantees for the cardinality constraint problem under some assumptions.
In follow-up work, Mirrokni and Zadimoghaddam (2015) provide core-set frameworks that
achieve constant factor approximation in the distributed setting. Barbosa et al. (2016)
show how to approach the optimal e/(e−1) approximation guarantee by increasing the round
complexity of the distributed algorithm. For the case of matroid constraints, Ene et al. (2019)
provide distributed algorithms that achieve the e/(e−1) approximation with a poly-logarithmic
number of distributed rounds. For the streaming setting, Feldman et al. (2022) provides a
3.147 competitive ratio algorithm with Õ(k) memory with a matroid constraint of rank k.

Preliminary version and follow-up. A preliminary version of this work considering only
monotone objectives has appeared as Dütting et al. (2022). In follow-up work, Zhang et al.
(2022) design a simple algorithm for the streaming version of the deletion-robust submodular
maximization problem with monotone objective subject to a p-matroid constraint. Their
algorithm has optimal space usage of O(k + d) and achieves a 4p approximation in the
streaming case. They handle robustness via an elegant non-uniform sampling technique that
avoids the extra O(log k) due to keeping the different buckets. For more details, see Table 1.

2. Problem formulation and preliminary results

We consider a set function f : 2V → R≥0 on a ground set V of n elements. Given two sets
X,Y ⊆ V , the marginal gain of X with respect to Y quantifies the change in value of adding
X to Y and is defined as

f (X | Y ) = f(X ∪ Y )− f(Y ) .

When X consists of a singleton x, we use the shorthand f(x | Y ) instead of f({x} | Y ). The
function f is called monotone if f (e | X) ≥ 0 for any set X ⊆ V and element e ∈ V , and
submodular if for any two sets X and Y such that X ⊆ Y ⊆ V and any element e ∈ V \ Y
we have f (e | X) ≥ f (e | Y ) . Throughout the paper, we assume that f is given in terms of
a value oracle that computes f(S) for given S ⊆ V , and that f is normalized, i.e., f(∅) = 0.
We do not assume monotonicity of the function f when not specified otherwise. We slightly
abuse the notation, and for a set X and an element e, use X + e to denote X ∪ {e} and
X − e for X \ {e}.

Matroids. A non-empty family of sets M ⊆ 2V is called a matroid if it satisfies the
following properties:
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• Downward-closure: if A ⊆ B and B ∈M, then A ∈M;

• Augmentation: if A,B ∈M with |A| < |B|, then ∃ e ∈ B such that A+ e ∈M.

We call a set A ⊆ 2V independent, if A ∈M, and dependent otherwise. An independent set
that is maximal with respect to inclusion is called a base; all the bases of a matroid share
the same cardinality k, which is referred to as the rank of the matroid. Dually to basis, for
any A /∈M, a circuit C(A) is defined as a minimal dependent subset of A, i.e., C(A) /∈M
such that all its proper subsets are independent. The span or closure of a set A is defined as
the set cl(A) of all the elements e ∈ V such that rM(A+ e) = rM(A)2. Given any matroid
M and set S, it is possible to define two auxiliary matroids:

• the contraction of M by S, written M/S, which is the matroid on V \ S with rank
function r(T ) = rM(T ∪ S)− rM(S),

• the restriction of M to S, which is the matroid M′ on S whose independent sets are
the independent sets of M that are contained in S.

For a comprehensive overview of matroids and their properties, we refer to Schrijver (2003).

2.1 The Deletion Robust Model

The deletion robust model consists of two phases. The input of the first phase is the ground
set V and a robustness parameter d, while the input of the second phase is an adversarial
set of d deleted elements D ⊂ V , along with the outputs of the first phase. The goal is to
construct a small size summary W ⊆ V that is robust to deletions in the first phase, and a
solution S ⊆ W \D that is independent with respect to matroid M in the second phase.
The problem’s difficulty lies in the fact that the summary W has to be robust against any
possible choice of set D by an adversary oblivious to the randomness of the algorithm.
For any set of deleted elements D, the optimum solution denoted by OPT(V \D) is

OPT(V \D) = argmax
R⊆V \D,R∈M

f(R).

We say that a two-phase algorithm is an α-approximation for this problem if for all D ⊆
V s.t. |D| ≤ d, it holds that

f(OPT(V \D)) ≤ α · E [f(SD)] ,

where SD is the solution produced in Phase II when set D is deleted, and the expectation is
with respect to the internal randomization of the algorithm. Besides the approximation factor
α, an important feature of a two-phase algorithm is its summary size, i.e., the cardinality of
the set W returned by the first phase.
In this paper, we also consider the streaming version of the problem, where the elements
in V are presented in some arbitrary order (Phase I). At the end of the online phase, the
algorithm outputs a deletion-robust summary W. Finally, the deleted set D is revealed and

2. We denote with rM the rank function associated to matroid M (we omit the dependence on the matroid
if clear from the context). The rank of a generic subset S of V is the cardinality of the largest independent
set in S.
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Phase II on W \D takes place offline. The quality of an algorithm for the streaming problem
is not only assessed by its approximation guarantee and summary size but also in terms of
its memory, i.e., the cardinality of the buffer of elements maintained in the online phase.

2.2 Preliminary Results

We conclude this section with three preliminary results: the folklore Sampling Lemma
by Buchbinder et al. (2014), a Combinatorial Lemma derived from the well-known Hall’s
Marriage Theorem, and a graph theoretical result from Feldman et al. (2018). While the
first lemma is our main tool to address non-monotonicity, the other two results are used for
the charging arguments in the analysis of our algorithms.
We start with the Sampling Lemma, originally proved by Feige et al. (2011), and that we
report as in Lemma 2.2 of Buchbinder et al. (2014). It states that the value of a random set
cannot decrease much if no single element has a probability too large to be sampled.

Lemma 1 (Sampling Lemma) Let f : 2V → R≥0 be a (possibly not normalized) submodu-
lar set function, let X ⊆ V and let X(p) be a random subset, where each element of X appears
with probability at most p (not necessarily independent). Then E [f(X(p))] ≥ (1− p)f(∅) .

We move now to our Combinatorial Lemma. At a high level, it is a general tool that maps
injectively elements in a dependent set to those of an independent set under some conditions.

Lemma 2 (Combinatorial Lemma) Consider a matroid M⊆ 2V , set F ⊆ V , and set
G ∈ M. Suppose that for all x ∈ G \ F there exist a set Fx ⊆ F, Fx ∈ M such that
Fx + x 6∈ M. Then there exists a mapping h : G \ F → F such that

• h(x) ∈ Fx for all x ∈ G \ F

• h(x) 6= h(y) for all x, y ∈ G \ F with x 6= y.

Intuitively, h as a semi-matching that matches all elements in G \ F to an element in
∪x∈G\FFx, while some of the elements in ∪x∈G\FFx ⊆ F can remain unmatched. To prove
the lemma, we use the combinatorial version of Hall’s Marriage Theorem (Hall, 1935),
which concerns set systems and the existence of a transversal (a.k.a. system of distinct
representatives). Formally, let S be a family of finite subsets of a base set X (S may contain
the same set multiple times). A transversal is an injective function f : S → X such that
f(S) ∈ S for every set S ∈ S. In other words, f selects one representative from each set in
S so that no two of these representatives are equal.

Theorem 3 (Hall’s Theorem) A family of sets S has a transversal if and only if S
satisfies the marriage condition: for each subfamily W ⊆ S, it holds that |W| ≤

∣∣⋃
F∈W F

∣∣ .
We are ready to present the proof of our Combinatorial Lemma.
Proof of Lemma 2 Let W be any subset of G \ F and define FW =

⋃
x∈W Fx. We want

to show that |FW | =
∣∣∣⋃x∈W Fx

∣∣∣ ≥ |W |, this would conclude the proof by Theorem 3.

In order to do that we first show that cl(W ∪ FW ) = cl(FW ), where cl(.) denotes the closure
(or span) of a set. We have that W ⊆ cl(FW ), in fact, for each element x ∈ W , there
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Algorithm 1 Centralized Algorithm Phase I

1: Input: Precision ε and deletion parameter d
2: Vd ← elements with the d largest values.
3: V ← V \ Vd, A← ∅.
4: ∆← argmax{f(e) | e ∈ V }. B Value of (d+ 1)st largest element

5: T =
{

(1 + ε)i | i ∈ Z, ε · ∆
(1+ε)k < (1 + ε)i ≤ ∆

}
6: for τ ∈ T in decreasing order do
7: Bτ ← {e ∈ V | A+ e ∈M, f(e | A) ≥ τ}
8: while |Bτ | ≥ k+d

ε do
9: e← a random element sampled independently and uniformly from Bτ .

10: V ← V − e, A← A+ e.
11: Bτ ← {e ∈ V | A+ e ∈M, f(e | A) ≥ τ}
12: Remove Bτ from V .
13: B ← Vd ∪

⋃
τ∈T Bτ .

14: return A,B.

exists a subset Fx ⊆ FW such that Fx + x 6∈ M and therefore x ∈ cl(Fx), which implies, by
monotonicity of the closure with respect to the inclusion, that x ∈ cl(FW ). We also know
that FW ⊆ cl(FW ), hence FW ∪W ⊆ cl(FW ). If we apply the closure to both sets, we get

cl(FW ∪W ) ⊆ cl(cl(FW )) = cl(FW ) ⊆ cl(FW ∪W ),

where the equality follows by noting that the closure of the closure is the closure itself. This
shows that cl(FW ) and cl(FW ∪W ) coincide, as claimed.

Now let’s look at the matroid M restriction to cl(FW ∪W ) = cl(FW ). Afterward, con-
tract this matroid by (F ∩ G) ∩ cl(FW ) and call the resulting matroid with M′. We
claim that W is independent in this new matroid M′. This is due to W ⊆ G \ F and
W ∪ (F ∩ G) ⊆ G and G ∈ M. If we call r′ the rank of the matroid M′, we have
rM(cl(FW )) ≥ rM(cl(FW ) \ (F ∩ B)) = r′ ≥ |W |. Finally, by the property of the rank
function and of the closure, it holds that |FW | ≥ rM(FW ) = rM(cl(FW )). Putting these two
chains of inequalities together, we obtain |FW | ≥ |W | as claimed.

The last preliminary result we present is Lemma 13 of Feldman et al. (2018). It concerns
directed acyclic graphs (DAGs) where the nodes are also elements of a matroid. Under
some assumptions, it guarantees the existence of an injective mapping between elements in
an independent set and the sinks of the DAG. As a convention, we denote with δ+(u) the
out-neighborhood of any node u.

Lemma 4 Consider an arbitrary directed acyclic graph G = (V,E) whose vertices are
elements of some matroid M. If every non-sink vertex u of G is spanned by δ+(u) in M,
then for every set S of vertices of G which is independent in M there must exist an injective
function ψ such that, for every vertex u ∈ S, ψ(u) is a sink of G which is reachable from u.

10
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3. Centralized Algorithm

In this section, we present a centralized algorithm for the Deletion Robust Submodular
Maximization problem subject to a matroid constraint. We start by introducing some
notations: ẽ denotes the (d+ 1)-th element with the largest value according to f , and ∆ is
its value.

Phase I. Our Phase-I algorithm takes in input a generic precision parameter ε, and uses
it to define the set of relevant thresholds T :

T =

{
(1 + ε)i | i ∈ Z, ε · ∆

(1 + ε)k
< (1 + ε)i ≤ ∆

}
.

The first phase of our algorithm constructs iteratively the summary W using two main sets:
a candidate solution A and a reservoir B of good elements. The elements in the reservoir
are selected according to their marginal value and are grouped into buckets of “similar”
elements. The algorithm goes over the thresholds in T in decreasing order and updates sets
A,B, and V (for loop in the pseudocode). Let τ be the threshold considered at some point,
then Bτ contains any element e ∈ V such that f(e | A) ≥ τ and A+ e ∈M (lines 7 and 11).
These high-contribution elements can be added to A while maintaining its independence.
As long as the size of Bτ is larger than (k+d)/ε (line 8), the algorithm chooses uniformly at
random an element from Bτ (line 9), adds it to A (line 10) and recomputes Bτ (line 11).
We observe that A is robust to deletions, i.e., when d elements are deleted, the probability
of one specific element in A being deleted is intuitively at most ε. Moreover, since each
element added to A is drawn from a pool of elements with similar marginals, the value of
this set after the deletions decreases at most by a factor (1 − ε) in expectation (this is a
very slack bound).
As soon as the cardinality of Bτ drops below (k+d)/ε, no more elements can be added directly
from it while keeping A robust and feasible. Therefore, we remove these elements from V
and save them for Phase II (line 12). During the execution of the algorithm, we need to
take special care of the top d element with the highest f values. To avoid complications,
we remove them from the instance before starting the procedure and add them to set B at
the end. This does not affect the general logic and only simplifies the presentation and the
proofs. The pseudocode of the centralized algorithm for Phase I is given in Algorithm 1.

Phase II. The summary W computed at the end of Phase I is composed by the union of
A and B and is then passed to the second phase of our algorithm, which uses as routine
an arbitrary algorithm Alg for centralized submodular maximization subject to matroid
constraint. Alg takes in input a set of elements, function f and matroid M and returns
a β-approximate solution (as a convention, we denote with Alg(X) the solution output
by the algorithm on input X). In this phase, we simply use Alg to compute a solution
among all the elements in A and B that survived the deletion and return the best among
the computed solution and the value of the surviving elements in A.

Theorem 5 Consider deletion-robust submodular maximization with matroid constraints in
the centralized setting. For any constant δ ∈ (0, 1), the Centralized Algorithm (Algorithms 1
and 2) with precision parameter ε ∈ (0, δ) is in expectation a (2 + β +O(ε))-approximation
algorithm with summary size O(k+d

ε2
log k

ε ), where β is the approximation factor of Alg.
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Algorithm 2 Algorithm Phase II

1: Input: A and B from phase I, set D of deleted elements and optimization routine Alg
2: A′ ← A \D, B′ ← B \D
3: S̃ ← Alg(A′ ∪B′)
4: return S ← argmax{f(A′), f(S̃)}

Proof We start by analyzing the summary size, composed of the sets returned by Algorithm 1
at the end of phase I. Set A belongs toM, so its size is no more than the rank ofM: |A| ≤ k.
Set B is the union of Vd (containing exactly d elements) and

⋃
τ∈T Bτ . Each set Bτ has at

most k+d
ε element and there are at most 2

ε log k
ε such sets (by design of T ). Therefore

|A|+ |B| ≤ k + d+ 2(k+d)
ε2

log k
ε ∈ O

(
k+d
ε2

log k
ε

)
.

We move to the approximation factor. We fix any set D with |D| ≤ d and bound the ratio
between the expected value of f(S) and f(OPT) (we omit the dependence on D since it is
clear from the context). As a first step, we relate the value of OPT with that of OPT∪A.
This passage is immediately true when f is monotone but needs some work otherwise.

Lemma 6 It holds that (1− ε)f(OPT) ≤ E [f(OPT∪A)] .

Proof of Lemma 6 Every time a new random element is added to the candidate solution
A, it is drawn uniformly at random from a large pool of elements of cardinality at least
(k+d)/ε. Denote with xi the ith element added to the solution by the algorithm, by the above
consideration, it holds that P (x = xi) ≤ ε/(k+d) for any fixed x ∈ V and i = 1, . . . k. By
union bound, we have the following:

P (x ∈ A) ≤
k∑
i=1

P (x = xi) ≤ ε
k

k + d
≤ ε, ∀x ∈ V. (1)

Consider the submodular function g : 2V → R≥0, defined as g(T ) = f(OPT∪T ), for all
T ⊆ V . Applying the Sampling Lemma (Theorem 1) on g, and using Equation (1), yields:

E [f(OPT∪A)] = E [g(A)] ≥ (1− ε)g(∅) = (1− ε)f(OPT).

This concludes the proof of the Lemma.

We now partition V \D into subsets whose elements can be accounted for in a similar way.
First, recall that we denoted by B′ the subset of B surviving the deletion: B′ = B \D; it
holds that B ∩OPT ⊆ B′. Then, define L as the set of elements of low value:

L =
{
e ∈ V \D | f(e | A) ≤ ε · f(OPT)

k

}
.

Intuitively, L contains all the low-value elements: these elements do not increase the value
of the submodular function considerably if added to A (so that we do not lose much by
ignoring them). Finally, let F be the surviving elements not added to the summary because
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of feasibility issues; formally, F = V \ (A ∪ B ∪ L ∪ D). We can now decompose the
contributions of elements in OPT∪A using the sets we introduced:

(1− ε)f(OPT) ≤E [f(OPT∪A)] (by Lemma 6)

≤E [f(A)] + E
[
f(OPT∩B′ | A)

]
(by submodularity)

+E [f(OPT∩F | A)] + E [f(OPT∩L | A)] (2)

We study separately the terms in Equation (2). Recall that A′ is the candidate solution
once the deleted elements D are revealed; we use its expected value to bound the first term
of the inequality. Intuitively, for any element in A, the probability of being deleted is O(ε)
since it has been sampled from (d+k)/ε similar elements uniformly at random, and only d
elements are deleted. We formalize this idea in the following lemma.

Lemma 7 It holds that E [f(A)] ≤ 1+ε
1−ε E [f(A′)].

Proof of Lemma 7 The proof is similar to that of Lemma 2 in Kazemi et al. (2017), but
without relying on the monotonicity of f . For the sake of the analysis, for each threshold
τ ∈ T , let Aτ be the set of elements in A that were added during an iteration of the for loop
corresponding to threshold τ in Algorithm 1. Moreover, let nτ = |Aτ | and sort the elements
in Aτ = {aτ1 , aτ2 , . . . , aτnτ } according to the order in which they are added to Aτ . We can
decompose the value of A using the definition of marginal value and a telescopic argument:

f(A) =
∑
τ∈T

nτ∑
`=1

f(aτ` | ∪t>τ At ∪ {aτ1 , aτ2 , . . . , aτ`−1}).

The elements added in a specific iteration of the for loop share the same marginal up to an
(1 + ε) factor (because they all have marginal contribution larger than the threshold τ of
that iteration but did not pass the test with the previous threshold τ · (1 + ε)):

τ ≤ f(aτ` | ∪t>τAt ∪ {aτ1 , aτ2 , . . . , aτ`−1}) ≤ τ · (1 + ε), ∀τ ∈ T, ∀` = 1, . . . , n`. (3)

Thus, summing up these contributions, we have

∑
τ∈T
|Aτ | · τ ≤ f(A) ≤ (1 + ε)

∑
τ∈T
|Aτ | · τ. (4)

We decompose the value of A′ = A \ D similarly. The crucial argument is that any aτ`
is drawn uniformly at random from a set of cardinality at least (d+k)/ε where at most d
elements lie in D, so

P (aτ` /∈ D | ` ≤ nτ ) ≥ 1− ε d
k+d ≥ 1− ε. (5)
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Note that the randomness here is with respect to the random draw of the algorithm in Phase
I, as D is fixed but unknown to the algorithm. Let A′τ = Aτ \D = Aτ ∩A′, we have

f(A′) =
∑
τ∈T

nτ∑
`=1

I {aτ` /∈ D} f(aτ` | ∪t>τA′t ∪ ({aτ1 , . . . , aτ`−1} ∩D))

≥
∑
τ∈T

nτ∑
`=1

I {aτ` /∈ D} · f(aτ` | ∪t>τ At ∪ {aτ1 , . . . , aτ`−1}) (by submodularity)

≥
∑
τ∈T

nτ∑
`=1

I {aτ` /∈ D} · τ (by Equation (3))

=
∑
τ∈T
|A′τ | · τ.

We apply the expected value to the previous inequality, which results in

E
[
f(A′)

]
≥
∑
τ∈T

E
[
|A′τ |

]
· τ ≥ (1− ε)

∑
τ∈T

E [|Aτ |] · τ ≥
1− ε
1 + ε

E [f(A)] ,

while the last inequality follows from the right-hand side of Equation (4), the argument
behind the second one is based on the linearity of expectation and the bound on the
probability as in Equation (5):

E
[
|A′τ |

]
= E

[
nτ∑
`=1

I {aτ` 6∈ D}

]
=

+∞∑
`=1

E [I {aτ` 6∈ D} · I {|Aτ | ≥ t}]

=

+∞∑
`=1

P
(
aτ` 6∈ D

∣∣|Aτ | ≥ `) · P (|Aτ | ≥ t)

≥ (1− ε)
+∞∑
`=1

P (|Aτ | ≥ `) (by Equation (5))

= (1− ε)E [|Aτ |] . (6)

This concludes the proof of the Lemma.

For the second term of Equation (2), observe that OPT∩B′ ∈M and is contained in the
set of elements passed to Alg, so its value is dominated by β times that of Alg(A′ ∪B′),
by the approximation guarantees of the routine Alg:

E
[
f(OPT∩B′ | A)

]
≤ β · E [f(S)] . (7)

Recall that S is the final solution output by the algorithm. Bounding the third term is
more involved and is handled in the following lemma via a charging argument that uses our
Combinatorial Lemma (Lemma 2).

Lemma 8 It holds that E [f(OPT∩F | A)] ≤ (1 + ε)E [f(A)].
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Proof of Lemma 8 Sort the elements in OPT∩F = 〈x1, x2, . . . 〉 according to the order
in which they were removed from some Bτ because of feasibility constraint (since they are
in V \ (A ∪B ∪D ∪ L) it must be the case). Once an element fails the feasibility test and
is removed from some Bτ , it never becomes feasible again because only new elements are
inserted in A during the execution of the first phase. Furthermore, for each such xi, let Fi
be the set A when xi fails the feasibility test. We know that Fi is independent since A is
maintained independent throughout the execution of Algorithm 1; moreover, by definition
of Fi, Fi + xi 6∈ M. By Lemma 2, there exists an injective function h : OPT∩F → A such
that h(xi) ∈ Fi for all i. Let Ai denote the set A when the element h(xi) gets added to it.
Since h(xi) has been added to A before xi, it holds that Ai ⊆ Fi. We have

f(OPT∩F | A) ≤
∑

x∈OPT∩F
f(x | Ai) (by submodularity and Ai ⊆ A)

≤
∑

x∈OPT∩F
(1 + ε) · f(h(xi) | Ai)

≤ (1 + ε) · f(A).

The second inequality uses the fact that if xi was still feasible to add when h(xi) was added,
then their marginals are at most a (1 + ε) factor away. The last inequality follows from a
telescopic decomposition of A, the fact that an element is added to the candidate solution A
only if its marginal is positive (larger than a certain non-negative threshold), and the fact
that h is injective. Applying the expectation to both extremes of the chain of inequalities
concludes the proof of the lemma.

The fourth term of Equation (2) refers to at most k elements and can be bounded based on

the definition of L: any element e in L is such that f(e|A) ≤ ε · f(OPT)
k , by submodularity

we have then that

E [f(OPT∩L | A)] ≤ E

[ ∑
e∈OPT∩L

f(e | A)

]
≤ ε · f(OPT). (8)

Finally, we compose the four bounds in Equation (2), and obtain the following:

(1− ε)f(OPT)

≤ E [f(A)] + E
[
f(OPT∩B′ | A)

]
+ E [f(OPT∩F | A)] + E [f(OPT∩L | A)]

≤ (2 + ε)E [f(A)] + βE [f(S)] + εf(OPT) (by Equations (7, 8) and Lemma 8)

≤ (2 + ε)
1 + ε

1− ε
E
[
f(A′)

]
+ β · E [f(S)] + εf(OPT) (by Theorem 7)

≤
[
(2 + ε)

1 + ε

1− ε
+ β

]
· E [f(S)] + ε · f(OPT) (by definition of S)

Rearranging terms, we get

f(OPT) ≤ E [f(OPT∪A)]

1− 2ε
≤
[

(2 + ε) (1 + ε)

(1− 2ε)(1− ε)
+

β

1− 2ε

]
· E [f(S)]

≤ [2 + β +O(ε)] · E [f(S)] .
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We conclude with a comment on what we mean by using O(ε) here and throughout the
paper: for any fixed constant β and fixed δ ∈ (0, 1), there exists a constant C such that the
O(ε) term can be replaced with C · ε, for any ε ∈ (0, δ).

Combining the previous theorem with some routines for non-monotone submodular maxi-
mization with matroid constraints, we get an approximation factor of ≈ 4.494 if we use the
state-of-the-art algorithm as in Buchbinder and Feldman (2024), or of ≈ 4.73 if we use the
less involved measured continuous greedy (Feldman et al., 2011). Formally, we have the
following corollary.

Corollary 9 Consider deletion-robust submodular maximization with matroid constraints in
the centralized setting. For any constant δ ∈ (0, 1), there exists a constant Cδ such that for
any ε ∈ (0, δ), a (4.494 + ε · Cδ)-approximation algorithm with summary size O(k+d

ε2
log k

ε )
exists.

Let’s move our attention to monotone objectives. We get an improved approximation factor
of 4 if we use as subroutine the greedy algorithm (Fisher et al., 1978) or 2 + e

e−1 ≤ 3.582 if
we use continuous greedy as in Călinescu et al. (2011). Furthermore, it is possible to slightly
improve the bound on the summary size.

Corollary 10 Consider deletion-robust submodular maximization with matroid constraints
in the centralized setting. For any constant δ ∈ (0, 1), there exists a constant Cδ such that for
any ε ∈ (0, δ), a (3.582 + ε · Cδ)-approximation algorithm with summary size O(k+ d

ε2
log k

ε )
exists.

Proof First, we study the improved bound on the summary size. Since the function is
monotone, we do not need to argue as in Lemma 6 to bound f(OPT) with f(OPT∪A); thus
we can modify the condition on the while loop of Algorithm 1 to simply consider |Bτ | ≥ d/ε.
With this tweak, there are still at most 1

ε log k
ε buckets, each of cardinality at most d/ε,

thus the summary size is O(k + d
ε2

log k
ε ). From the approximation point of view, Lemma

7 still holds, as the crucial property that P (I(`, τ)) ≥ 1 − ε is verified (we are sampling
uniformly at random from a bucket of cardinality at least d/ε where there are at most d
deleted elements). The rest of the analysis of Theorem 5 goes through without any other
difference, and we get that

f(OPT) ≤ E [f(OPT∪A)] ≤
[
(2 + ε)

1 + ε

1− ε
+ β

]
· E [f(S)] + ε · f(OPT)

We use as optimization routine Alg continuous greedy, therefore we can plug in β = e
e−1

and, rearranging the terms we obtain

f(OPT) ≤
(

e

(e− 1)(1− ε)
+

(2 + ε)(1 + ε)

(1− ε)2

)
E [f(S)]

≤
[ e

e− 1
+ 2 +

8e− 7− δ(2e− 1)

(e− 1)(δ − 1)2︸ ︷︷ ︸
Cδ

·ε
]
E [f(S)] ,

where the last inequality can be numerically verified and holds for any ε ∈ (0, δ).
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4. Streaming Setting

In this section, we consider the streaming setting, wherer the elements of V arrive on a
stream in the first phase, and the goal is to compute a small summary W using limited
(online) memory. Our approach consists in carefully combining the swapping algorithm
(Chakrabarti and Kale, 2015) with subsampling (Feldman et al., 2018) in a deletion robust
fashion. Our algorithm maintains an independent candidate solution A and buckets Bτ
that contain small reservoirs of elements with similar marginal contributions with respect to
A. Beyond the candidate solution and the buckets, the algorithm keeps an extra buffer Vd
containing the best d elements.

We start explaining the algorithm by defining the thresholds values. We do not have an
a priori estimate of OPT in the streaming setting. Thus, we do not know the thresholds
corresponding to high quality elements upfront. This issue is overcome by initially considering
all the powers of (1 + ε) and progressively removing the ones too small with respect to ∆,
i.e., the (d + 1)-st largest value seen so far. Note that at any point of its execution, the
algorithm actually maintains at most a small (finite) subset of these thresholds.

Every new arriving element e′ is first used to update Vd (line 7 in the pseudocode): if its
value is larger than the minimum in Vd, then we add it to Vd and pop out e, the smallest
value element from Vd. If the value of the newly arrived element is smaller than the smallest
value element in Vd, we keep the set Vd intact. For simplicity, we denote with e to be the
newly arrived element e′ in this case. In other words, element e is either the new element or
the element that lost its place in Vd to the new element. In either case, we use element e in
the next steps of the algorithm. The value of ∆ is updated if f(e) > ∆ (line 8) and all the
buckets corresponding to thresholds that are too small are deleted, thus guaranteeing that
only a logarithmic number of active buckets is kept (line 9). At this point, element e is put
into the correct bucket Bτ , if such bucket still exists (line 11).

Now, new elements are repeatedly drawn uniformly at random from the buckets Bτ with
size at least d/ε as long as no bucket contains more than d/ε elements (while loop line 12).
These elements drawn from the buckets are added to A if and only if the subsampling is
successful (line 13) and it is either feasible to add them directly or they can be swapped with
a less important element in A.

We formalize this notion of “importance”. Each element in the solution is associated with a
weight, defined as its marginal value to A when it was first considered for addition to the
solution (line 14). An element in A is swapped for a more promising one only if the new one
has a larger weight by at least a (1 + γ) factor and it is sampled independently with some
probability p, while maintaining A independent.

Every time A changes, the buckets Bτ are wholly updated to maintain the invariant that
Bτ contains only elements whose marginal value with respect to the current solution A
is within τ and (1 + ε)τ (line 26). This property is crucial to ensure deletion robustness.
Every bucket contains similar elements, i.e., whose marginal density with respect to the
current solution is at most a multiplicative (1 + ε) factor away. When the stream terminates,
the algorithm passes the deletion robust summary W (composed by the candidate solution
A and B, containing Vd and the surviving buckets) to Algorithm 2. Note that both the
centralized and the streaming pipelines share the same algorithm for the second phase.
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Algorithm 3 Streaming Algorithm Phase I

1: Input: Precision ε, deletion parameter d, sampling probability p, swapping factor γ
2: T ← {(1 + ε)i | i ∈ Z}
3: A← ∅, ∆← 0, τmin ← 0, Bτ ← ∅ for all τ ∈ T
4: L← ∅,Γ← ∅,K ← ∅, R← ∅, F ← ∅ B Auxiliary sets for the analysis
5: Vd ← the first d arriving elements
6: for every arriving element e′ do
7: Add e′ to Vd and then pop element e with smallest value from Vd
8: ∆← max{f(e),∆}, τmin ← ε

1+ε ·
∆
k , T ← {τ ∈ T | τ ≥ τmin}

9: Remove all Bτ s.t. τ 6∈ T B The deleted elements are added to L
10: if τmin > f(e | A) then Discard e and continue B L← L+ e
11: Find the largest threshold τ ∈ T s.t. f(e | A) ≥ τ and add e to Bτ
12: while ∃τ ∈ T such that |Bτ | ≥ d/ε do
13: Remove one element g from Bτ independently and u.a.r. B Γ← Γ + g
14: w(g)← f(g | A)
15: Draw Xg independently from a Bernoulli with parameter p
16: if A+ g ∈M then
17: if Xg = 1, then A← A+ g
18: else Discard g B R← R+ g
19: else
20: kg ← argmin{w(k) | k ∈ C(A+ g)}
21: if w(g) > (1 + γ) · w(kg) then
22: if Xg = 1, then A← A+ g − kg B K ← K + kg
23: else Discard g B R← R+ g
24: else
25: Discard g B F ← F + g
26: Update {Bτ} according to A B The deleted elements are added to L
27: B ← Vd ∪τ∈T Bτ
28: return A,B

The pseudocode of the streaming algorithm is presented in Algorithm 3. Besides the
operations already mentioned, part of the pseudocode relates only to the analysis (sets L, Γ,
K, R, and F are indeed only functional to the analysis and play no role in the algorithm).
Before stating and proving our theorem, we describe some of the properties of the weight
function w that governs the swapping.

Lemma 11 Let w be the weight function, A the candidate solution, A′ = A \D, and let K
be the set of all the elements that, at some point, were in A but were later swapped. Then,
the following properties hold:

(i) γ · w(K) ≤ w(A) ≤ f(A)

(ii) w(A′) ≤ f(A′)

(iii) f(A ∪K) ≤ w(A ∪K)
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Proof The proof of the (i) first inequality is similar to the one of Lemma 9 in Chakrabarti
and Kale (2015). Crucially, the weight function w is linear, and once an element enters A, its
weight is fixed forever as the marginal value it contributed when entering A. Moreover, the
weight of all the elements added to A is strictly positive. During the run of the algorithm,
every time an element kg is removed from A, the weight of A increases by w(g)− w(kg) by
its replacement with some element g. Moreover, γ · w(kg) ≤ w(g)− w(kg) for every element
kg ∈ K since (1 + γ)w(kg) ≤ w(g). Summing over all the elements in K, it holds that

w(K) =
∑
kg∈K

w(kg) ≤
1

γ

∑
kg∈K

[w(g)− w(kg)] ≤
1

γ
w(A).

We show the part of the first point. Let {a1, a2, . . . a`} be the elements in A, sorted in the
order in which they were added to A. We have that

f(A) =
∑̀
i=1

f(ai | {a1, . . . , ai−1}) ≥
∑̀
i=1

f(ai | Aai) =
∑̀
i=1

w(ai) = w(A),

where Aai is the solution set right before ai is added to A. The second inequality (ii) follows
from submodularity, because {a1, . . . , ai−1} ⊆ Aai (Aai may also contains elements that are
later removed from the solution). We have the following chain of inequalities

f(A′) =
∑̀
i=1

I {ai /∈ D} · f(ai | {a1, . . . , ai−1} ∩D) (by a telescopic argument)

≥
∑̀
i=1

I {ai /∈ D} · f(ai | {a1, . . . , ai−1}) (by submodularity)

≥
∑̀
i=1

I {ai /∈ D} · f(ai | Aai) = w(A′).

(by submodularity and {a1, . . . , ai−1} ⊆ Aai)

For the last (iii) inequality, let {x1, x2, . . . xt} be the elements in A ∪K, sorted by the order
in which they were added to A. We have that

f(A ∪K) =
t∑
i=1

f(xi | {x1, . . . , xi−1}) ≤
t∑
i=1

f(xi | Axi) =
t∑
i=1

w(xi) = w(A ∪K),

where Axi is the solution set right before xi is added to A. The inequality follows from
submodularity: Axi contains all the elements entered in A before xi but not those that have
already been removed.

We are finally ready for the main result of the Section. Instead of stating a general black box
result as in Theorem 5, we consider directly the algorithm from Buchbinder and Feldman
(2024) as Alg and analyze the relative algorithm for a suitable choice of p and γ. This is
just for clarity of exposition, as the dependence on β of the generic approximation is more
involved than in the centralized case.
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Theorem 12 Consider the problem of deletion robust monotone submodular maximization
with matroid constraints in the streaming scenario. For any constant δ ∈ (0, 1), there exists
a constant Cδ such that for any ε ∈ (0, δ), a (9.294 + Cδ · ε)-approximation algorithm with
summary and memory size O(k + d

ε2
log k

ε ) exists.

Proof We prove that our streaming pipeline (Algorithm 3 and Algorithm 2) verifies the
theorem for the right choice of parameters and optimization routine. We start by bounding
the memory used by the algorithm. Sets A and Vd always contains at most k, respectively d,
elements. Every time a new element of the stream is considered, all the active Bτ contain at
most d/ε elements; furthermore, there are always at most O(1

ε log k
ε ) of them. The invariant

ensures that the active thresholds are smaller than ∆ (by submodularity) and larger than
τmin. Overall, the memory of the algorithm and the summary size is thus O(k + d

ε2
log k

ε ).
As in the analysis of Theorem 5, we fix any set D and study the relative expected performance
of our algorithm. In the pseudocode, we have introduced some auxiliary sets that are useful
in the analysis: the base set V is partitioned into the elements that are considered at some
point in line 13 (contained in Γ), those in the buckets or Vd (in set B) and the ones with low
marginals (in set L). We have all the ingredients to decompose OPT∪A ∪K accordingly:

(1− p)f(OPT) ≤E [f(OPT∪A ∪K)]

=E [f(A ∪K)] + E [f(OPT∩L | A ∪K)]

+ E [f(OPT∩B | A ∪K)] + E [f(OPT∩Γ | A ∪K)] (9)

Note that the first inequality follows from the uniform sampling step (line 13) and the
Sampling Lemma (Lemma 1): each fixed element belongs to A ∪K with a probability that
is at most p.
The second and third terms of the decomposition are fairly easy to bound. If an element
e is added to L at some point it means that its marginal contribution with respect to the
current solution A is smaller than the current estimate τmin of ε/kf(OPT) (of which it is
consistently a lower bound), by submodularity this implies that also its contribution with
respect to the final A ∪K is such that f(e | A ∪K) ≤ ε/kf(OPT), all in all:

f(OPT∩L | A ∪K) ≤
∑

x∈OPT∩L
f(x | A ∪K) ≤ ε · f(OPT). (10)

We know that OPT∩D = ∅, this implies that OPT∩B is contained in B′ and thus in the
summary W , which is passed to the second phase algorithm. Plus, note that OPT∩B is
independent because it is contained in OPT. So, if we use as Alg a routine for centralized
submodular maximization with matroid constraint that guarantees a β approximation, we
have:

E [f(OPT∩B | A ∪K)] ≤ E [f(OPT∩B)] ≤ β · E [f(S)] . (11)

At this point, we get back to the decomposition in Equation (9) and bound the first term.
We show that the value of all the elements that at some point were in the candidate solutions
(corresponding to set A∪K), is comparable with f(A′). This result overcomes two challenges:
on the one hand, it shows that the total value of the elements swapped is upper bounded by
1/γ that of those that are not swapped; while on the other hand, that A is indeed robust to
deletion.
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Lemma 13 It holds that

E [f(A ∪K)] ≤ 1 + ε

1− ε

(
1 +

1

γ

)
E
[
f(A′)

]
. (12)

Proof of Lemma 13 As a first step, we show that w(A) is close to f(A′), at least in
expectation with respect to the randomness of the algorithm. Let Aτ be the subset of
elements that were added into A coming from Bτ and A′τ = Aτ \D. Moreover, let aτ` be
the `th element added to Aτ (if any), and denote with nτ the random cardinality of |Aτ |.
The crucial observation is that when the algorithm decides to add an element to A from Bτ ,
then the probability that the element belongs to D is at most ε. Let Aa be the elements in
A when a is added, so that w(a) = f(a | Aa). We have

w(A) =
∑
τ∈T

nτ∑
`=1

w(aτ` ), while w(A′) =
∑
τ∈T

nτ∑
`=1

I {a /∈ D}w(aτ` )

We know that, for any thresholds τ , the weight of any element aτ` coming from Bτ respects

τ ≤ w(aτ` ) < (1 + ε) · τ (13)

We can then proceed similarly to the proof of Lemma 7:

E
[
w(A′)

]
=
∑
τ∈T

E

[
nτ∑
`=1

I {a /∈ D}w(aτ` )

]
≥
∑
τ∈T

τ · E
[
|A′τ |

]
(by Equation (13))

≥ (1− ε) ·
∑
τ∈T

τ · E [|Aτ |] (by the same argument as in Equation (6))

≥ (1− ε)
(1 + ε)

E [w(A)] , (14)

where, the last inequality follows from Equation (13). Now, let’s move our attention to
w(A) + w(K). Using the properties of the weight function (Theorem 11), we have that

E [f(A ∪K)] ≤ E [w(A ∪K)] (Property (iii))

= E [w(A) + w(K)] (Linearity of w)

≤
(

1 +
1

γ

)
E [w(A)] (by Property (i))

≤
(

1 +
1

γ

)
1 + ε

1− ε
· E
[
w(A′)

]
(by Equation (14))

≤
(

1 +
1

γ

)
1 + ε

1− ε
· E
[
f(A′)

]
(by Property (ii))

≤
(

1 +
1

γ

)
1 + ε

1− ε
· E [f(S)] . (By definition of S)

This concludes the proof of the lemma.
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We are left with bounding the marginal contribution of elements in OPT∩Γ with respect to
A ∪K. Γ \ (A ∪K) is partitioned into two disjoint sets, F and R. Set F contains all the
elements that failed the swapping test (line 21), while R all the elements that were removed
because of sampling either in line 18 or 23.

Lemma 14 Choosing p = 1/(γ+2), it holds that

E [f(OPT∩Γ | A ∪K)] ≤ (1 + γ)
1 + ε

1− ε
· E [f(S)] . (15)

Proof of Lemma 14 Let g be any element in OPT∩Γ, and fix any compatible history
Eg of the algorithm up to the point when g is considered in line 13 of Algorithm 3. The
history Eg deterministically induces the candidate solution Ag when g is considered. Suppose
g is not in F . In that case, it is possible to either add it directly or swap it with some
kg ∈ Ag such that f(g | Ag) = w(g) ≥ (1 + γ)w(kg), then we have two possibilities: either g
is successfully sampled and swapped with some element in the current candidate solution
Ag, or g is added to R and discarded. Conditioning on Eg, we have:

p · E [I {g ∈ R}w(g) | Eg] = p · (1− p)E [w(g) | Eg] = (1− p) · E [I {g ∈ A ∪K}w(g) | Eg] .

Summing over all such g and taking the expectation over all the compatible Eg, we get:

p · E [w(OPT∩R)] = (1− p) · E [w(OPT∩(A ∪K))] . (16)

We now move our attention to the elements in OPT∩F , i.e., the good elements in OPT
that have been discarded because of the matroid constraint, and we fix any realization of
the randomness of the algorithm (so that both F and R are fixed). As a first step, we show
the existence of the injection h : (OPT∩Γ) \R→ A with the following properties:

(a) h restricted to A ∩OPT is the identity

(b) w(g) ≤ (1 + γ)w(h(g)) for all g ∈ OPT∩F

(c) w(g) ≤ w(h(g)) for all g ∈ OPT∩K

We prove the existence of such h by constructing a suitable graph G where we apply Lemma
4. The nodes of G are the elements of Γ, while the edges are created iteratively as the
algorithm considers elements in A. Let u be a generic element arriving in Γ \R, and let Au
be the candidate solution at that point. If Au + u ∈ M, then no edge is created at that
iteration; otherwise, a unique cycle C(Au + u) in Au + u containing u exists. Now, we have
two cases: either u is swapped with some element x in C(Au + u) ∩Au, in which case we
create directed edges from x to each element in C(Au + u)− x, or u is rejected. In the latter
case, we create directed edges from u to each element in C(Au + u)− u. Note that, in both
cases, the out-neighborhood of the node that gets discarded spans the element corresponding
to the node itself. It is also clear that the graph G generated at the end of the procedure
is acyclic, as an out-edge is only created when an element is discarded towards elements
that have not been discarded yet. Thus, the graph respects the assumption of Lemma 4 and
there exists an injective function h that associates every vertex/element u ∈ (OPT∩Γ) \R
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to a sink h(u) that is reachable from u. From a different perspective, this h is a charging
function that associates each element in (OPT∩Γ) \R with an element in the final solution
A that accounts for it.
It is easy to see that h respects the three properties we want to enforce. For Property (a),
function h restricted to A∩OPT is the identity as elements in A are sinks. For the other two
properties, consider any element g ∈ OPT∩F . Element g has been discarded without being
added to the solution, meaning that the outgoing edges from g verify w(g) ≤ (1 + γ)w(u),
for all u ∈ δ+(g). If we focus on the unique path from g to h(g), we see that after the first
step, when the weight decreases by at most a (1 + γ) factor, all the following edges do not
decrease the weight, this is because an outgoing edge from an element of the solution either
points to an element it is swapped with (whose weight is larger by at least a (1 + γ) factor)
or to another element in the solution but with larger weight (as we swap the element with
smallest weight in the cycle). This settles Property (b). To see why Property (c) holds, note
that the same argument implies that, for all the elements already in the solution that are
later swapped (OPT∩K), the weight does not decrease along the path to the sink.
We can use the properties of the injective function h to bound w(OPT∩F ).

E[w(OPT∩F )] ≤ (1 + γ)E [w(h(OPT∩F ))] (by Property (b))

≤ (1 + γ)E [w(h(OPT∩F )) + w(h(OPT∩K))− w(OPT∩K))] (by Property (c))

= (1 + γ)E [w(h(OPT∩(F ∪K))− w(OPT∩K) + w(OPT∩A)− w(OPT∩A)]

= (1 + γ)E [w(h((OPT∩Γ) \R))− w(OPT∩(A ∪K)))] (by Property (a))

≤ (1 + γ)E [w(A)]− (1 + γ)(w(OPT∩(A ∪K))) (17)

Observe that in the last inequality we use that w(a) ≥ 0 for all a ∈ A, as h((OPT∩Γ) \R)
may be a strict subset of A. We can finally proceed to prove the lemma.

E[f(OPT∩Γ | A ∪K)]

≤E

[ ∑
x∈OPT∩F

f(x | A ∪K)

]
+ E

[ ∑
x∈OPT∩R

f(x | A ∪K)

]
(by submodularity)

≤E [w(OPT∩F )] + E [w(OPT∩R)] (by submodularity)

≤(1 + γ)E [w(A)] +
(

1−p
p − 1− γ

)
E [w(OPT∩(A ∪K))] (by Equations (16) and (17))

=(1 + γ)E [w(A)] (by choice of p)

≤(1 + γ)1+ε
1−ε · E [f(S)] . (as in Lemma 13)

Note that the second inequality follows from submodularity and the fact that the candidate
solution when an element is considered (and thus used to compute its weight) is always
contained in A ∪K.

Plugging Equations (10) to (12) and (15) into Equation (9) we obtain the following:(
1− 1

2 + γ

)
f(OPT) ≤E [f(A ∪K)] + E [f(OPT∩L | A ∪K)]

+ E [f(OPT∩B | A ∪K)] + E [f(OPT∩Γ | A ∪K)]

≤
[(

2 + γ +
1

γ

)
1 + ε

1− ε
+ β

]
· E [f(S)] + ε · f(OPT)
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Rearranging terms, one gets

f(OPT) ≤
(

1− ε− 1

2 + γ

)−1 [(
2 + γ +

1

γ

)
1 + ε

1− ε
+ β

]
· E [f(S)]

=
(2 + γ)[γ2 + (β + 2)γ + 1 + ε(γ2 + (2− β)γ + 1)]

γ(1− ε)[1 + γ − ε(γ + 2)]
· E [f(S)]

≤ (2 + γ)[γ2 + (β + 2)γ + 1]

γ[1 + γ − ε(γ + 2)]

1 + ε

1− ε
· E [f(S)]

The theorem follows by using as optimization routine the state-of-the-art algorithm for
centralized (non-monotone) submodular maximization with matroid constraint (β ≈ 2.494 as
in Buchbinder and Feldman (2024)) and then choosing γ (and accordingly p) as to minimize
the multiplicative factor. In particular, if we set γ ≈ 1.732, then for any fixed δ there exists a
constant Gδ such that we get an approximation of the form (9.294+Cδ ·ε) for all ε in (0, δ).

As a corollary of the previous theorem, we get an improved approximation for monotone
objectives. If the objective function is monotone, there is no need for the sampling procedure
(as the value of OPT is trivially upper bounded by that of OPT∪A∪K). Moreover, we can
use the more effective greedy (Fisher et al., 1978) or continuous greedy (Călinescu et al.,
2011) subroutine as Alg.

Corollary 15 Consider the problem of deletion robust monotone submodular maximization
with matroid constraints in the streaming setting. For any constant δ ∈ (0, 1), there exists
a constant Cδ such that for any ε ∈ (0, δ), a (5.582 + ε · Cδ)-approximation algorithm with
summary size and memory O(k + d

ε2
log k

ε ) exists.

Proof The proof is similar to the one of Theorem 12. The only difference is that we do not
need to subsample as f(OPT) is smaller than f(OPT∪A ∪K) by monotonicity. Thus, we
set p = 1 and γ = 1 and then Equation (9) becomes:

f(OPT) ≤E [f(OPT∪A ∪K)]

=E [f(A ∪K)] + E [f(OPT∩L | A ∪K)]

+ E [f(OPT∩B | A ∪K)] + E [f(OPT∩Γ | A ∪K)]

≤2
1 + ε

1− ε
E [f(S)] + εf(OPT) + β · E [f(S)] + E [f(OPT∩Γ | A ∪K)]

For the last term, we use a more general statement. For all X ⊆ Γ, X ∈M, then it holds
that w(X) ≤ 2 ·w(A). This is a direct application of Theorem 1 of Varadaraja (2011) (using
a single matroid and setting r = 2). More specifically, we can imagine restricting the stream
to consider only the elements in Γ, with the order in which they are considered in line 13.
Choosing X = OPT∩Γ, we then get that

E [f(OPT∩Γ | A ∪K)] ≤ E [w(OPT∩Γ)] ≤ 2E [w(A)] .
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We use as optimization routine Alg continuous greedy, therefore we can plug in β = e
e−1

and, rearranging the terms we obtain

f(OPT) ≤
(

2
1 + ε

(1− ε)2
+

3e− 2

(1− ε)(e− 1)

)
E [f(S)]

≤
[ e

e− 1
+ 4 +

9e− 8− δ(5e− 4)

(e− 1)(1− δ)2︸ ︷︷ ︸
Cδ

·ε
]
E [f(S)] .

The last inequality can be numerically verified and holds for any ε ∈ (0, δ).

5. Conclusion

We present the first space-efficient constant-factor approximation algorithms for deletion-
robust submodular maximization over matroids in both the centralized and the streaming
settings. In particular, we are also the first to design space-efficient deletion robust algorithms
for non-monotone objectives with any type of constraints.
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functions. In FOCS, pages 461–471. IEEE Computer Society, 2007.

Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular
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