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Abstract

Many statistical estimators are defined as the fixed point of a data-dependent operator,
with estimators based on minimizing a cost function being an important special case. The
limiting performance of such estimators depends on the properties of the population-level
operator in the idealized limit of infinitely many samples. We develop a general framework
that yields bounds on statistical accuracy based on the interplay between the deterministic
convergence rate of the algorithm at the population level, and its degree of (in)stability
when applied to an empirical object based on n samples. Using this framework, we ana-
lyze both stable forms of gradient descent and some higher-order and unstable algorithms,
including Newton’s method and its cubic-regularized variant, as well as the EM algorithm.
We provide applications of our general results to several concrete classes of models, in-
cluding Gaussian mixture estimation, non-linear regression models, and informative non-
response models. We exhibit cases in which an unstable algorithm can achieve the same
statistical accuracy as a stable algorithm in exponentially fewer steps—namely, with the
number of iterations being reduced from polynomial to logarithmic in sample size n.
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1. Introduction

The interplay between the stability and computational efficiency of optimization algorithms
has long been a fundamental problem in statistics and machine learning. The stability of the
algorithm, a classical desideratum, is often believed to be a necessity for obtaining efficient
statistical estimators. Such a belief rules out the use of a variety of faster algorithms
due to their instability. This paper shows that this popular belief can be misleading: the
situation is more subtle in that there are various settings in which unstable algorithms may
be preferable to their stable counterparts.

Recent years have seen a significant body of work involving performance of various
machine-learning algorithms when applied to statistical estimation problems. Examples
include sparse signal recovery (Hale et al., 2008; Garg and Khandekar, 2009; Beck and
Teboulle, 2009; Becker et al., 2011), more general forms of M-estimation (Agarwal et al.,
2012; Zhang and Zhang, 2012; Loh and Wainwright, 2015), principal component analy-
sis (Amini and Wainwright, 2008; Ma, 2013; Yuan and Zhang, 2013), regression with con-
cave penalties (Loh and Wainwright, 2015; Wang et al., 2014), phase retrieval problems
retrieval (e.g., (Candès et al., 2012, 2015; Chen and Wainwright, 2015; Zhang et al., 2017;
Chen et al., 2018b)), and mixture model estimation (Balakrishnan et al., 2017; Yang et al.,
2017; Cai et al., To Appear; Yi and Caramanis, 2015).

A unifying theme in these works is to study, in a finite-sample setting, the computational
efficiency of different algorithms and the statistical accuracy of the resulting estimates. For
estimators based on solving optimization problems that are convex, standard algorithms
and theory can be applied. However, many modern estimators arise from non-convex op-
timization problems, in which case the associated algorithms become more complex to un-
derstand. But evidence is accumulating for the practical and theoretical advantages of such
algorithms. For instance, the paper (Agarwal et al., 2012) established the fast convergence
of projected gradient descent (GD) for high-dimensional signal recovery in a weakly convex
setting, whereas the papers (Loh and Wainwright, 2015; Wang et al., 2014) provided sim-
ilar guarantees for a class of non-convex learning problems. Other work has demonstrated
fast convergence of the truncated power method for PCA (Yuan and Zhang, 2013), ana-
lyzed the behavior of projected gradient methods for low-rank matrix recovery (Chen and
Wainwright, 2015), and characterized the behavior of gradient descent for phase-retrieval
problems (Chen et al., 2018b). Additionally, there is also a recent line on work on the
fast convergence of EM for various types of mixture models (Balakrishnan et al., 2017;
Yang et al., 2017; Cai et al., To Appear). Finally, there is a line of work (Hardt et al.,
2016; Chen et al., 2018a; Kuzborskij and Lampert, 2018; Charles and Papailiopoulos, 2018)
that provides statistical error bounds for generic machine learning problems (with certain
assumptions on loss functions) in terms of estimators obtained via iterative optimization
algorithms (e.g., stochastic gradient methods).

1.1 Population-to-sample or stability-based analysis

The analysis in these works falls into two distinct categories. The first is a direct analysis,
in which one directly characterizes the behavior of the iterates of the algorithm on the
finite-sample objective. A long line of papers has used the direct approach (e.g., (Agarwal
et al., 2012; Loh and Wainwright, 2015; Wang et al., 2014; Zhang and Zhang, 2012; Yuan
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and Zhang, 2013)) to demonstrate that certain optimization algorithms converge at geo-
metric rates to a local neighborhood of the true parameter, with the radius proportional
to the statistical minimax risk. The second kind of analysis is more indirect and can be
referred to as population-to-sample analysis or stability-based analysis where one analyzes
the algorithmic convergence of population-level iterates, and derives statistical errors for the
sample-level updates via uniform laws for stability/perturbation bounds. These approaches
have been used to analyze the performance of EM and its variants in several statistical
settings, see the papers (Balakrishnan et al., 2017; Cai et al., To Appear; Yang et al., 2017;
Yi and Caramanis, 2015; Dwivedi et al., 2020a,b) and the references therein. In general
settings, it has been used to derive statistical errors for iterates from stochastic optimization
methods (Hardt et al., 2016; Chen et al., 2018a; Kuzborskij and Lampert, 2018; Charles
and Papailiopoulos, 2018).

The contributions of this paper build upon the stability-based analysis, so let us discuss
it in a little more detail. Let F and Fn denote the operators that define the iterates at the
population level, corresponding to the idealized limit of an infinite sample size, and sample-
level based on a dataset of size n. Suppose θ? denotes the parameter of interest, such that
the population-level iterates defined as θt = F (θt−1) for t = 1, 2, . . . with initialization θ0,
i.e., θt = F t(θ0), converge to θ? as t → ∞. Of interest is to characterize the best possible
estimate of θ? obtained from the sample-based (noisy) iterates, defined as θtn = F tn(θ0)
(with initialization θ0), and possibly characterize the change in the error‖F tn(θ0)− θ?‖ as a
function of the iteration t and the sample size n. The population-to-sample or the stability
analysis proceeds by using the following decomposition:

F tn(θ0)− θ? = F t(θ0)− θ?︸ ︷︷ ︸
=:εtopt

+F tn(θ0)− F t(θ0)︸ ︷︷ ︸
=:εtstab

. (1)

Given this decomposition, the analysis proceeds in two steps:

• The first step is a deterministic convergence analysis of the algorithm to the true
parameter at the population-level, namely, obtain a control on the optimization error
εtopt as a function of t.

• The second step is to perform a stability analysis of the difference between the
population and the sample-based iterates, namely, obtain a control on the pertur-
bation/stability error εtstab as a function of t.

The ultimate convergence guarantee—what statistical error can be achieved with the sample-
based operator Fn, and in how many iterations—is then derived based on the interplay
between the two errors in equation (1), namely, εtopt and εtstab.

The ERM-based approach: We remark that the decomposition in equation (1) is differ-
ent from that used when invoking the uniform laws for the empirical risk minimizer (ERM).
Assuming the sample-based iterates converges to the ERM, i.e., limt→∞ F

t
n(θ0) = θ̂ERM,
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the typical decomposition in the ERM-based approach is given by

F tn(θ0)− θ? = F tn(θ0)− θ̂ERM︸ ︷︷ ︸
=:εtopt-sample

+ θ̂ERM − θ?︸ ︷︷ ︸
=:εunif-gen

.

Here the first term in the RHS corresponds to the optimization error at the sample-level at
iteration t and the second term corresponds to the (iteration-independent) uniform gener-
alization bound. Depending on the application, a precise characterization of either of these
terms can be non-trivial; moreover, applying uniform bounds to control the term εunif-gen

may lead to bounds that are overly loose. In such settings, the population-to-sample or
stability-based analysis can prove to be a useful alternative.

1.2 Past works focus on stable methods

Most of the past work with the population-to-sample analysis has focused on algorithms
whose updates are stable, meaning that the perturbation error between sample-level and
population-level iterates decays to zero as the iterates approach the true parameter. For
example, the papers (Balakrishnan et al., 2017; Cai et al., To Appear; Yang et al., 2017;
Yi and Caramanis, 2015) used this framework for problems where the population updates
converge at a geometric rate to the true parameter, and iterates based on n samples yield
an estimate within n−1/2 of the true parameter. On the other hand, other papers (Dwivedi
et al., 2020a,b) have shown that with over-specified Gaussian mixtures, the EM algorithm,
which is a stable algorithm, takes a large number of steps to find an estimate whose statisti-
cal error is of order n−1/4 or n−1/8. Although for those problems the larger final statistical
error of EM is minimax optimal, several natural questions remained unanswered: Can an
algorithm converge to a statistically optimal estimate in significantly fewer steps than EM
for over-specified mixtures? Moreover, will the faster algorithm continue to be stable? Be-
sides the analysis in recent works (Dwivedi et al., 2020a,b) relied heavily on the facts that
the EM updates had closed-form analytical expressions. To our best knowledge, general
statistical guarantees for a generic stable or unstable algorithm (without a closed-formed
expression) when the algorithmic convergence is slow, are not present in the literature.

In past work, Chen et al. (2018b) provided a trade-off between stability and number of
iterations to converge. In particular, they showed that the minimax error of a problem class
forces a trade-off between the two errors in equation (1), εtopt and εtstab, for any iterative
algorithm used for solving it. In simple words, given the minimax error, an algorithm that
converges quickly is necessarily unstable, and conversely, a stable algorithm cannot converge
quickly. Their work, however, did not address the following converse questions: Under what
conditions does an algorithm, either stable or unstable, achieve a statistically optimal rate?
When is an unstable algorithm to be preferred to a stable counterpart?

Such questions about the trade-off between stability, computational efficiency and the
statistical error upon convergence are of special interest for singular problems in which the

. There is a subtle difference in the definition of (in)stability used in Chen et al.’s work (Chen et al.,
2018a) compared to ours. In their work, stability refers to a slow growth in the error ‖F t(θ) − F tn(θ)‖
with number of iterations t, where slow is defined in a relative sense with other methods. In our case,
we use stability for the settings when ‖F (θ)− Fn(θ)‖ decreases with ‖θ − θ?‖ as θ → θ?.
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Fisher information matrices are degenerate. Singular problems appear in a wide range of sta-
tistical settings, including mode estimation (Chernoff, 1964), robust regression (Rousseeuw,
1984), stochastic utility models (Manski, 1975), informative non-response in missing data (Heck-
man, 1976; Diggle and Kenward, 1994), high-dimensional linear regression (Hastie et al.,
2015), and over-specified mixture models (Chen, 1995; Rousseau and Mengersen, 2011;
Nguyen, 2013). Several papers have shown that maximum likelihood estimates for singular
problems have much lower accuracy than the classical parametric rate n−1/2; problems that
exhibit slow rates of this type include stochastic frontier models (Lee and Chesher, 1986;
Lee, 1993), certain classes of parametric models (Rotnitzky et al., 2000), and in strongly
or weakly identifiable mixture models (Chen, 1995; Nguyen, 2013; Ho and Nguyen, 2016).
Nevertheless, the computational aspects of parameter estimation and the trade-offs with
stability in such models are not well understood at the current time.

1.3 Our contributions

This paper lays out a general framework to address the questions raised above. Making
use of the population-to-sample approach and a generalization of the localization argument
from our previous works (Dwivedi et al., 2020a,b), we derive tight bounds on the statistical
error of the final iterate produced by an algorithm. The final error and the number of steps
taken depend on two things: (i) the rate of convergence of the corresponding population-
level iterates, and (ii) the (in)stability of the sample-level iterates with respect to that at
the population-level. As a first contribution, our statistical guarantees for slowly converging
stable algorithms and (fast/slow converging) unstable algorithms complement the findings
of Balakrishnan et al. (2017) for fast converging stable algorithms (Theorems 5 and 6). We
provide an overview of these general results in Table 1.

The second contribution extends the work of Chen et al. (2018a) by showing how the final
statistical errors achieved by stable and unstable algorithms can be used to directly compare
and contrast the (dis)advantages between the two (Section 4). Our third contribution is
an explicit demonstration of the fact that unstable methods can converge in significantly
fewer steps when compared to stable methods, while still yielding statistically optimal
estimates (Corollaries 7, 8 and 9). In particular, applying our framework to three estimation
problems—single index models with known link, informative non-response models, and
Gaussian mixture models—we show that while the (unstable) Newton method converges
after on the order of log n steps, there is some q > 0 such that gradient descent—which we
show to be a stable method—takes on the order of nq steps. Finally, we also establish that
our guarantees are unimprovable in general on both statistical accuracy, and the iteration
complexity.

Organization: The remainder of our paper is organized as follows. We begin in Section 2
with simulations that illustrate the phenomena to be investigated in this paper. We then
introduce some definitions and discuss different properties of the sample and population
operators. Section 3 is devoted to statements of our general computational and statistical
guarantees with detailed proofs presented in Appendix A. In Section 4, we apply our gen-
eral results to demonstrate the trade-off between stable and unstable methods for several
examples. We conclude with a discussion of potential future work in Section 5. Proofs of
supporting lemmas and technical results are provided in the appendices.
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Operator Properties
Rate

Optimization
Stability

convergence
Iterations for

on convergence
Statistical error

General expressions

Fast, stable (Balakrishnan et al., 2017) FAST(κ) STA(0) log(1/ε(n, δ)) ε(n, δ)

Slow, stable (Thm. 5) SLOW(β) STA(γ) ε(n, δ∗)
− 1

1+β−γβ [ε(n, δ∗)]
β

1+β−γβ

Fast, unstable (Thm. 6) FAST(κ) UNS(γ) log(1/ε(n, δ)) [ε(n, δ)]
1

1+|γ|

Slow, unstable (Thm. 6) SLOW(β) UNS(γ) [ε(n, δ)]
− 1

1+β [ε(n, δ)]
β

1+β+|γ|β

ε(n, δ) = log(1/δ)/
√
n

Specific examples

FAST(κ), STA(0) e−κt
1√
n

log n n−1/2

SLOW(1
2), STA(1)

1√
t

r√
n

n1/2 n−1/4

FAST(κ), UNS(-1) e−κt
1

r
√
n

log n n−1/4

SLOW(1
2), UNS(-1)

1√
t

1

r
√
n

n1/3 n−1/8

Table 1. A high-level overview of our results. The notation in the problem set-up (columns
2 and 3) is formalized in Section 2.2, and the formal results (columns 4 and 5) are discussed
in Section 3. In the top panel, we provide general expressions from our results, and in the
bottom panel, we provide some explicit expressions for few specific settings. The second and
third columns respectively denote the optimization and stability properties of the operator,
and the last two columns provide the expressions for iterations for convergence, and the
final statistical errors of the estimate returned the sample-based (noisy) operator (see equa-
tions (14) for the definition of δ∗). For the bottom panel, we use β = 1

2 , γ = 0,−1 with the
noise function ε(n, δ) = log(1/δ)/

√
n. For brevity, we omit log-factors (in n, δ) and universal

constants for the expressions in the bottom panel.

Notation: A few remarks on notation: for a pair of sequences {an}n≥1 and {bn}n≥1,
we write an % bn or an = Ω(bn) to mean that there is a universal constant c such that
an ≥ cbn for all n ≥ 1. We write an � bn if both an % bn and an - bn hold. We use
dxe to denote the smallest integer greater than or equal to x for any x ∈ R. In the paper,
we use c, c′, ci, c

′
i when i ≥ 1 to denote the universal constants. Note that the values of

universal constants may change from line to line. Finally, for our operator notation, we
use the subscript n to distinguish a sample-based operator (e.g., Fn,G

NM
n ,MGA

n ) from its
corresponding population-based analog (respectively F,GNM,MGA).

2. Motivation and problem set-up

We begin in Section 2.1 by motivating the analysis to follow by showing and discussing the
results of some computational studies for the class of non-linear regression models. These
results demonstrate a wide range of possible convergence rates, and associated stability (or
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instability) of the operator to perturbations. With this intuition in hand, we then turn to
Section 2.2, in which we set up the definitions that underlie our analysis. In particular, we
state the (i) local Lipschitz condition, and (ii) local convergence behavior for the population-
level operator F , and (iii) the stability and instability condition of the sample-level operator
Fn with respect to F .

2.1 A vignette on non-linear regression

We first consider a certain class of statistical estimation problems in which there are inter-
esting differences between algorithms. Here we keep the discussion very brief; see Section 4.3
for a more detailed discussion. We consider a simple type of non-linear regression model,
one based on a function f : Rd → R that can be written in the form f(x) = g (〈x, θ〉) for
some parameter vector θ ∈ Rd, and some univariate function g : R → R. In the simplest
setting considered here, the univariate function g is known, and we have a parametric family
of functions as θ ranges over Rd; when g is unknown, we have a semi-parametric family.
Now suppose that we are given a collection of pairs {(Xi, Yi)}ni=1, generated from a noisy
regression model of the form

Yi = g (〈Xi, θ
?〉) + ξi, for i = 1, . . . , n. (2)

Here ξi is a zero-mean noise variable with variance σ2, which we assume to be independent
of Xi. The single index regression model (2) has been studied extensively in the literature
(e.g., (Carroll et al., 1997; Ichimura, 1993)).

When g is known, a natural procedure for estimating θ is based on minimizing the least
squares objective function

Ln(θ) :=
1

n

n∑

i=1

{Yi − g (〈Xi, θ〉)}2 . (3)

When the variables ξi are Gaussian, then this objective coincides (up to scaling and constant
factors) with the negative log-likelihood function, so that minimizing it yields the maximum
likelihood estimate.

Under suitable regularity conditions on g in a neighborhood of θ?, it is known that it is
possible to estimate θ? at the usual parametric rate of n−1/2. However, problems can arise
when the signal-to-noise ratio (SNR), as measured by the ratio ‖θ?‖2/σ, tends to zero. In
particular, consider a function g whose derivative vanishes at zero—that is, g′(0) = 0. For
instance, the function g(t) = t2, which arises in the application of the non-linear regression
framework to the problem of phase retrieval, has this property. Taking the limit of low SNR
amounts to trying to estimate the vector θ? = 0 based on observations from the model (2).
For this type of singular statistical model, we see many interesting differences between
algorithms that might be used to minimize the least-squares criterion (3).

More concretely, let us consider three standard optimization algorithms that might be
applied to the objective (3): (i) gradient descent; (ii) Newton’s method, and; (iii) cubic-
regularized Newton’s method. See Appendix D.3 for a precise description of these algorithms
and the associated updates in application to this model.
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Figure 1. Plots characterizing the behavior of different algorithms, namely gradient descent
(GD), cubic-regularized Newton’s method (CNM), and the vanilla Newton’s method (NM)
for the non-linear regression model when θ? = 0. (a) Log-log plots of the Euclidean distance

‖θ̂n − θ?‖2 versus the sample size. It shows that all the algorithms converge to an estimate
at Euclidean distance of the order n−1/4 from the true parameter θ?. (b) Log-log plots
for the number of iterations taken by different algorithms to converge to the final estimate.
Newton’s method takes the least number of steps. On the other hand, gradient descent takes
significantly larger number of steps, with an empirical scaling close to

√
n.

Statistical and iteration complexity of optimization algorithms: For each pro-
cedure, we are interested both in the associated statistical error—that is, the Euclidean
distance between their output and the true parameter θ?—and their iteration complexity,
meaning the number of iterations required to converge. In order to gain some understanding,
we performed some simulations for non-linear regression based on the function g(t) = t2 in
dimension d = 1, over a range of sample sizes n. Figure 1 provides some plots that summa-
rize some results from these simulations. Panel (a) plots the Euclidean error associated with
the estimate versus the sample size n on a log-log plot, along with associated least-squares
fits to these data. As can be seen, all three methods lie upon a line with slope −1/4 on the
log-log scale, showing that the statistical error decays at the rate n−1/4. This “slow rate”—
to be contrasted with the usual n−1/2 parametric rate—is a consequence of the singularity
in the model. Panel (b) plots the iteration complexity of the three algorithms versus the
sample sizes, again on a log-log plot. For a given problem based on n samples, the iteration
complexity is the number of iterations required for the distance between the iterate and θ?

to drop below n−1/4. Here we see some interesting differences, with the gradient method
having an empirical iteration complexity that grows as ≈ n0.44, based on our fits, with the
two forms of Newton’s method having much milder growth in iteration complexity. In the
theory to follow, we will prove that iteration complexity for the gradient method scales at
most like

√
n, that of the cubic-regularized Newton method scales as n1/6, whereas that of

Newton’s method scales only as log n. (See Corollary 9 for a precise statement.)

Behavior of optimization operators: The plots in Figure 1 all concern the behavior of
algorithms in practice, as applied to the empirical objective function, and our ultimate goal
is to provide a theoretical explanation of phenomena of these types. In order to do so, our
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analysis makes use of the population-level algorithms obtained in the limit of infinite sample
size; i.e., n → ∞. In the special case of the non-linear regression model considered here,
we refer the Appendix D.3 for the precise forms of these operators (cf. equations (107a)–
(107c)). The plots in Figure 2 illustrate the two properties of the operators that underlie
our theoretical analysis: convergence rate of the population operators (panel (a)), and the
stability of the empirical operators relative to the population version (panel (b)).

0 10 20
Iteration number t

10−3

10−1

‖θ
t
−
θ?
‖

Convergence rates of population operators

θt+1 = FGD(θt)

θt+1 = FCNM(θt)

θt+1 = FNM(θt)

0.10 0.15 0.20 0.25 0.30
Perturbation ∆

0.01

0.02

0.03

‖F
al

g
n

(θ
∗

+
∆

)
−
F

al
g (θ
∗

+
∆

)‖

Stability of empirical operator

alg = GD

alg = CNM

alg = NM

(a) (b)

Figure 2. Exploration of the population level updates, and their connection to the empirical
updates for the non-linear regression problem. (a) Plots showing the convergence rate of the
error ‖θt − θ?‖ for different algorithms—namely gradient descent (GD), standard Newton’s
method (NM), and cubic-regularized Newton’s method (CNM)—applied at the population
level (limit of infinite sample size). Notice the log-scale on the y-axis. The sequence from the
Newton’s method converges a geometric rate to θ?, whereas the gradient method converges
at a sub-linear rate. (b) Plots showing the scaling of the perturbation error ‖Fn(θ? + ∆)−
F (θ? + ∆)‖ versus the perturbation ∆. For an unstable operator, the perturbation error can
increase as ‖∆‖ → 0, with Newton’s method showing a strong version of such instability. In
contrast, the gradient descent method is a stable procedure in this setting.

The plots in panel (a) reveal that the three algorithms differ dramatically in their con-
vergence rate at the population level. The ordinary Newton updates converge at a geometric
rate, with the distance to the optimum θ? decreasing as κt with the number of iterations t,
where κ ∈ (0, 1) is a contraction coefficient. In contrast, the other two algorithms exhibit
an inverse polynomial rate of convergence, with the distance to optimality decreasing at
the rate 1/tβ for some exponent β > 0. In the analysis to follow, we prove that gradient
descent has inverse polynomial decay with exponent β = 1/2, whereas the cubic-regularized
Newton updates exhibit inverse polynomial decay with exponent β = 2.

In Corollary 9 and its proof, we characterize the optimization rate (algorithmic rate of
convergence), the stability and the final statistical error obtained by these three methods.
For reader’s convenience, we summarize these results in Table 2.

2.2 Problem set-up

Having provided a high-level overview of the phenomena that motivate our analysis, let us
now set up the problem more abstractly, and introduce some key definitions. Consider an
operator F that maps a space Θ to itself; typical examples of the space Θ that we consider
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Algorithm Optimization Rate Stability
Iterations for
convergence

Statistical error
on convergence

Gradient descent
1√
t

r√
n

n1/2 n−1/4

Newton’s method e−κt
1

r
√
n

log n n−1/4

Cubic-regularized
Newton’s method

1

t2
1√
r
√
n

n1/6 n−1/4

Table 2. Overview of results illustrated in Figures 1 and 2 for non-linear regression model
with the link function g(t) = t2 and θ? = 0. By characterizing the optimization rate and
stability precisely, and invoking our general theory (summarized in Table 1), we establish
that while the three methods differ significantly in terms of their optimization rate and
stability, they achieve the same statistical error upon convergence, albeit by taking different
number of iterations to converge. We omit logarithmic factors and universal constants for
brevity. See Corollary 9 and its proof for precise details.

are subsets of the Euclidean space Rd, and subsets of symmetric matrices. Let θ? be a
fixed point of the operator—i.e., an element θ? ∈ Θ such that F (θ?) = θ?. The challenge
is that we do not have access to the operator F directly, but rather can observe only a
random operator Fn that can be understood as a noisy estimate of F . Throughout, we call
F the population operator and Fn the empirical operator. Using the empirical operator, we
generate a sequence of iterates via the fixed-point updates

θt+1
n = Fn(θtn) for t = 1, 2, . . ., (4)

with a suitable initialization θ0
n ∈ Θ. Our goal is to determine conditions under which the

sequence {θtn}t≥0 approaches a suitably defined neighborhood of θ?. More precisely, for any
given triple (F, Fn, t) we provide a sharp characterization of the optimality gap ‖θtn − θ?‖2
as a function of the iteration count t and the error ‖F −Fn‖2 of the empirical operator Fn.

One interesting class of problems where the operators F and Fn arise naturally is esti-
mation problems in statistics and machine learning. More concretely, consider the problem
of finding the unique minimizer θ? of an objective function L : Θ → R. In practice, we
do not know the true objective function L, instead we have access to an approximate (ran-
dom) objective function Ln, which is an unbiased estimate of the true objective function
L. Given the pair (L,Ln), we can obtain different operators F by applying various op-
timization algorithms to minimize L, including gradient methods, proximal methods, the
EM algorithm and related majorization-minimization algorithms, as well as Newton and
other higher-order methods. The noisy operators Fn are obtained by applying the same
optimization algorithms to the approximate objective function Ln.

. For ease of exposition, going forward the index n is synonymous with the sample size that defines the
operator Fn; while our general results, namely, Theorems 5 and 6 do not rely on use of this simplification.
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2.2.1 Properties of the operator F

We begin by formalizing some properties of the operator F . We assume that the operator
F has a unique fixed point θ? in the local neighborhood of the Euclidean ball

B(θ?, ρ) :=
{
θ ∈ Θ | ‖θ − θ?‖2 ≤ ρ

}
(5)

centered at θ? and we study its behavior in that local neighborhood. Our first condition is
a standard Lipschitz condition on the operator F . In particular, we say that the operator
F is 1-Lipschitz in ‖ · ‖ norm over the ball B(θ?, ρ) if

‖F (θ1)− F (θ2)‖ ≤ ‖θ1 − θ2‖ for all θ1, θ2 ∈ B(θ?, ρ). (6)

In words, the 1-Lipschitz condition guarantees that the operator F is non-expansive with
respect to perturbations of its argument.

Our next two definitions distinguish between fast and slow rates of convergence. The
first definition captures an especially favorable property of operator F ; namely, it is locally
contractive around the fixed point θ?. The second definition considers a substantially slower
(sub-linear) rate of convergence of the operator F .

Definition 1 (Fast convergence) For a contraction coefficient κ ∈ (0, 1), the operator F
is FAST(κ)-convergent on the ball B(θ?, ρ) if

‖F t(θ0)− θ?‖ ≤ κt ‖θ0 − θ?‖ for all iterations t = 1, 2, . . ., (7)

and for all θ0 ∈ B(θ?, ρ).

Definition 2 (Slow convergence) Given an exponent β > 0, the operator F is SLOW(β)-
convergent over the ball B(θ?, ρ) means that

‖F t(θ0)− θ?‖ ≤ c

tβ
for all iterations t = 1, 2, . . ., (8)

and for all θ0 ∈ B(θ?, ρ), where c is a universal constant.

These notions of fast and slow convergence are ubiquitous in analysis of iterative meth-
ods, especially in the optimization literature. For example, when the operator F corresponds
to gradient descent for some objective L, a sufficient condition for fast convergence is local
strong convexity of the objective L, and if L is just convex, F satisfies slow convergence.
Let us now illustrate these definitions with a simple example.

Example 1 (Fast versus slow convergence) Consider the function L(θ) = θ2p

2p for some
positive integer p ≥ 1. Note that for any p ≥ 1, the function L(·) has a unique global mini-
mum at θ? = 0. The first two derivatives of L(·) are given by

L′(θ) = θ2p−1, and L′′(θ) = (2p− 1)θ2p−2.

Consequently, a gradient descent update with a constant stepsize h > 0 takes the form

FGRD(θ) = θ − hL′(θ) = θ
(
1− hθ2p−2

)
. (9)
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Thus, when p = 1, for any h ∈ (0, 1), this gradient descent update is a FAST(κ)-convergent
algorithm with κ = 1− h. On the other hand, for any p ≥ 2, it can be shown that gradient
descent is SLOW(β)-convergent with parameter β = 1

2p−2 in the ball B(θ?, ρ) with θ∗ = 0 and

ρ = h
− 1

2p−2 .

Now, let us consider Newton’s method with step size one, namely the update

FNWT(θ) = θ −
(
L′′(θ)

)−1L′(θ) = θ − θ2p−1

(2p− 1)θ2p−2
= θ

(
1− 1

2p− 1

)
. (10)

For p = 1, this update converges in a single step (simply because the quadratic approximation
that underlies Newton’s method is exact in this special case). For p ≥ 2, the pure Newton
update is FAST(κ)-convergent with κ = 1− 1

2p−1 for all θ ∈ R.

2.2.2 From the empirical operator Fn to the population operator F

In this section, we introduce some key concepts that characterize the (in)-stability of the
sample operator Fn with respect to the population operator F . Given a pair of operators
(Fn, F ) and a tolerance parameter δ ∈ (0, 1), our definitions involve a perturbation function
ε(·) that maps the triple (Fn, F, δ) to a positive (deterministic) scalar ε(n, δ). In general,
we impose the following conditions on the perturbation function ε(·):

• It is decreasing in n for any fixed δ, and is monotonically increasing in δ for any fixed
n.

• For any fixed δ ∈ (0, 1), we have ε(n, δ) → 0 as n → ∞, and similarly, for any fixed
n > 0, we have ε(n, δ)→∞ as δ → 0.

Note that ε(n, δ) =
√

log(1/δ)/n would satisfy these requirements. Given some choices of
perturbation function, we can define our first stability condition as follows:

Definition 3 (STA(γ)-Stability) For a given parameter γ ≥ 0, the operator Fn is STA(γ)-
stable over B(θ?, ρ) with noise function ε(·) means that, for any radius r ∈ (0, ρ) and
tolerance δ ∈ (0, 1), we have

P
[

sup
θ∈B(θ?,r)

‖Fn(θ)− F (θ)‖ ≤ c2 min
{
rγε(n, δ), r

}]
≥ 1− δ, (11)

for some positive universal constant c2.

Informally, given the randomness of the data associated with the operator Fn the stability
condition (11) guarantees that with high probability, the error ‖Fn(θ) − F (θ)‖ is upper
bounded by c2 min{rγε(n, δ), r} uniformly over a disk of radius r. Note moreover that the
upper bound decays to 0 as the radius r → 0+.

Next we consider the case when γ < 0, i.e., the perturbation error ‖Fn(θ)−F (θ)‖ blows
up as θ gets close to θ?. We refer to such operators as unstable operators. Given radii r1, r2

such that r2 > r1 ≥ 0, let A(θ?, r1, r2) = B(θ?, r2)\B(θ?, r1) denote the annulus around θ?

with inner and outer radii r1 and r2 respectively.

12
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Definition 4 (UNS(γ)-Instability) For a given parameter γ < 0 and radii 0 < ρin < ρout,
we say that the operator Fn is UNS(γ)-unstable over the annulus A(θ?, ρin, ρout) with noise
function ε(·) if

P

[
sup

θ∈A(θ?,r,ρout)
‖Fn(θ)− F (θ)‖ ≤ ε(n, δ) max

{
1

r|γ|
, ρout

}]
≥ 1− δ, (12)

for any radius r ∈ [ρin, ρout] and any tolerance δ ∈ (0, 1).

Two remarks are in order: First, note that the main difference between STA(γ)and
UNS(γ)is how the error scales with the radius r as it gets smaller. For stable operators,
the error decreases with scaling rγ , while for unstable operators the error blows up as r−|γ|

(where we use |γ| for clarity). There is another subtle difference: the condition (12) defines
the instability of the perturbation error ‖Fn(θ)−F (θ)‖ in an annulus with the inner radius
bounded below by ρin, and does not characterize the behavior as the distance ‖θ− θ?‖ → 0.
Let us now illustrate these definitions by following up on Example 1.

Example 2 (Stable versus unstable updates) Consider an empirical function of the
form

Ln(θ) =
1

2p
θ2p +

σw

2
√
n
θ2, where w ∼ N(0, 1). (13)

Here p ≥ 2 is a positive integer. Note that E[Ln(θ)] = 1
2pθ

2p, which is equivalent to the
population likelihood function considered in Example 1.

A gradient update with stepsize h > 0 on the empirical objective leads to the empirical
gradient operator

FGRD
n (θ) = θ

{
1− hθ2p−2 − hσw√

n

}
.

Comparing with equation (9), we obtain that |FGRD
n (θ)− FGRD(θ)| = σ√

n
|w| |θ|. Since

|w| ≤ 4
√

log(1/δ) with probability at least 1−δ, we see for any ρ > 0 and n ≥ 16σ2 log(1/δ),
the operator FGRD

n is STA(γ)-stable with parameter γ = 1, with respect to the noise function

ε(n, δ) = 4σ

√
log(1/δ)

n
.

As for the Newton update for the problem (13), we have

FNWT
n (θ) = θ − θ2p−1 + σwθ/

√
n

(2p− 1)θ2p−2 + σw/
√
n
,

and hence

|FNWT(θ)− FNWT
n (θ)| = (2p− 2)

(2p− 1)
· σ |w| |θ| /√n

(2p− 1)θ2p−2 + σw/
√
n
.
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Recall that |w| ≤ 4
√

log(1/δ) with probability at least 1− δ. Plugging in w > −4
√

log(1/δ)
in the denominator and w < 4

√
log 1/δ of the RHS, and doing some algebra yields that

|FNWT(θ)− FNWT
n (θ)| ≤ cp

|θ|

√
log(1/δ)

n
for |θ| >

(
c′pσ

√
log(1/δ)

n

) 1
2p−2

,

where cp = 16(p−1)
2p−1 and c′p = 8

2p−1 . Thus, we conclude that the operator FNWT
n is UNS(γ)-

unstable with parameter γ = −1 over the annulus A(θ?, ρin, ρout) with noise function ε
where

ρin =

(
c′pσ

√
log(1/δ)

n

) 1
2p−2

, ρout =∞, and ε(n, δ) = cpσ

√
log(1/δ)

n
.

2.2.3 Comparison of our assumptions with empirical process literature

We note that while the definition of STA(γ) is reminiscent of the typical assumptions in
empirical process literature, there is a subtle difference in our set-up. In a typical statistical
learning problem, the following assumptions are commonly made on: (a) the local curvature
of the population objective function (e.g., the expected negative log-likelihood L), and (b)
bounds on the perturbation error between the population and sample objective functions
(e.g., supθ∈B(θ?,r) |L(θ)−Ln(θ)|). With these assumptions, the statistical guarantees for the
critical points (e.g., the maximum likelihood estimate (MLE)) are then established. See,
e.g., Theorem 3.2.5 (van der Vaart, 1998).

Such a framework is oblivious about any computational aspect of the problem (e.g.,
how the MLE is computed), which is one of the key focus in our work. Our goal is to
study the interplay of computational-statistical tradeoffs between various algorithms that
are used to solve these learning problems. In particular, our aim is to identify the number of
iterations taken by an algorithm, and the final statistical accuracy of the estimate returned
by it. Consequently, our conditions are defined in terms of operators that correspond to the
algorithm employed by the user to solve the problem at hand, rather than the landscape
of the objective itself. In particular, in place of the curvature condition (a) on L, we make
assumptions on the convergence rate of the population operator F (SLOW(β)/FAST(κ)).
And, in place of the perturbation bounds on the objective functions (L,Ln), we make
assumptions on the operator perturbation errors between F and Fn as in equations (11)
and (12) (STA(γ)/UNS(γ)).

2.2.4 Further discussion on our definitions

In several cases (also applicable to all examples in this paper), the user often knows (by
design) the explicit relationship between the operators F and Fn and the corresponding
objectives L and Ln, e.g., when F and Fn correspond to gradient ascent (GA) or Newton’s
method (NM). In these situations, often it is possible to derive whether STA(γ) or UNS(γ)
conditions are satisfied given the assumptions on the curvature of L and the perturbation
error between L and Ln as in the empirical process literature. Our framework allows
the user to simultaneously study the tradeoffs between the final statistical error and the
computational budget needed between several algorithms at once. For example, we show in
several settings that NM while being unstable provides computational benefits compared
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to its stable counterpart GA, since both NM and GA yield an estimate with comparable
statistical error upon convergence while the former takes very few steps (although such a
condition is not guaranteed always).

We remark that the property UNS(γ) of the operators F and Fn as introduced above
has not been commonly used in prior work, while STA(γ) has appeared often in prior
works (albeit in slightly different forms, (Balakrishnan et al., 2017; Chen et al., 2018a;
Dwivedi et al., 2020a)). The condition STA(0) is perhaps the most common, which holds
for most well-conditioned problems (when the Fisher information matrix is invertible). In
such settings, the commonly used methods like GA and NM are also FAST(κ) operators so
that the final statistical error is of order ε(n, δ) which is obtained in roughly log(1/ε(n, δ))
steps (Balakrishnan et al., 2017). In simple words, the statistical-computational tradeoffs
across several algorithms are fairly similar for such cases.

On the other hand, operators with SLOW(β), and STA(γ) with γ ≥ 1, would typically arise
when the log-likelihood is not well-conditioned and one uses methods like GA, and UNS(γ)
with γ < 0 would appear in such a setting when one uses a higher-order optimization scheme
like NM to solve these ill-conditioned problems. So far, there is a limited understanding of
the statistical-computational tradeoff for slowly converging stable algorithms as well as any
unstable algorithm that can arise in such settings. When the population operator has a
unique fixed point, our main results provide a fairly comprehensive understanding towards
this end.

Let us revisit Examples 1 and 2 which serve as motivating examples for the various ill
conditioned settings: Suppose that the population negative log-likelihood is given by L(θ) =
θ2p/(2p) (and the true parameter is θ? = 0), and the sample negative log-likelihood is given
by Ln(θ) = θ2p/(2p)+σwθ2/(2

√
n). For this setting, the population Fisher information (the

second derivative of L) is given by (2p − 1)θ2p−2, and the perturbation term σwθ2/(2
√
n)

between the two objectives mimics the intuition that the finite sample Fisher information
would typically have 1/

√
n fluctuations around its population-level objective with n samples.

With p = 1, it is easy to establish that the operators F and Fn corresponding to both GD
and NM are FAST(κ) and STA(0) operators. However, for p ≥ 2, as our earlier computations
illustrated, we observe a more interesting set of behaviors with GD and NM. In particular,
the operators corresponding to GA are SLOW(β) and STA(γ) with γ > 1, and the NM
operators exhibit a FAST(κ) and UNS(γ) with γ < 0 behavior. The theory to follow provides
a precise characterization of the statistical error achievable and the computational budget
needed for convergence in such settings.

3. General convergence results

With the definitions from the previous section in place, we are now ready to state our main
results. In Section 3.1, we consider the case when Fn is a stable perturbation of F , and in
Section 3.2, we consider the case when it is an unstable perturbation of F . We summarize
our findings in Table 1.

3.1 Results for slowly converging but stable operators

We first consider the setting in which the sample-based operator Fn is a stable perturbation
of the population-level operator F . If, in addition, we assume that the operator F has
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fast convergence (cf. equation (7)), then past work is applicable. In particular, Theorem 2
of Balakrishnan et al. (2017) provides a precise characterization of the convergence behavior
of iterates from the empirical operator Fn. Here we instead consider the more challenging
setting in which the operator F exhibits slow convergence to θ?. Analysis of this slow
convergence case requires rather different techniques than those used to analyze the fast-
convergent case.

Let us collect the assumptions needed to state our first result. The first two assumptions
involve the Euclidean ball B(θ?, ρ) centered at θ? of some fixed radius ρ > 0.

(A) The population operator F is 1-Lipschitz (6) and is SLOW(β)-convergent (8) over the
ball B(θ?, ρ).

(B) There is some γ ∈ [0, β−1] such that the empirical operator Fn is STA(γ)-stable (11)
over B(θ?, ρ).

(C) The tolerance parameters δ ∈ (0, 1) and α ∈ (0, β
1+β−γβ ) are fixed and the sample size

is large enough such that

ε(n, δ∗) ≤ c where δ∗ := δ ·
log(1+β

βγ )

8 log( β
α(1+β−γβ ))

, (14)

and c ∈ (0, 1) is a sufficiently small constant.

Assumptions (A) and (B) quantify, respectively, the convergence behavior of the operator
F and the stability of the operator Fn; Assumption (C) is a book-keeping device needed to
state our results cleanly. Given the above conditions, we now state our first main result.

Theorem 5 Under Assumptions (A), (B), and (C), consider the sequence θt+1
n = Fn(θtn)

generated from an initialization θ0
n ∈ B(θ?, ρ/2). Then there is a universal constant c′ such

that for any fixed α ∈ (0, β
1+β−γβ ) and uniformly for all iterations t ≥ c′

(
1/ε(n, δ∗))

1
1+β−γβ log 1

α ,
we have

‖θtn − θ?‖ ≤ 2[ε(n, δ∗)]
β

1+β−γβ−α with probability at least 1− δ. (15)

Let us make some comments on this result (see Appendix A.1 for a detailed proof).

Tightness of Theorem 5: Disregarding the term α and constants, the bound (15)
guarantees that the sequence θt+1

n = Fn(θtn) converges to a statistical tolerance of order

[ε(n, δ∗)]
β

1+β−γβ with respect to θ? in order [ε(n, δ∗)]
− 1

1+β−γβ step. This guarantee turns
out to be unimprovable under the given assumptions. In Appendix B (see Proposition 12),
we construct a family of examples with the operators F , Fn and noise functions εn (con-
stant with respect to δ) satisfying the assumptions for Theorem 5, such that the following
additional results hold:

‖θtn − θ?‖




≥ ε

β
1+β−γβ
n for all t ≥ 1,

≥ 2ε
β

1+β−γβ
n for all t ≤ c′ε−

1
1+β−γβ

n .

As a result, we conclude that the results of Theorem 5 are tight for both statistical accuracy
and the number of iterations needed for convergence.
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Relation to prior work: As noted earlier, prior work (Balakrishnan et al., 2017) shows
that when the operator is F is FAST(κ)-convergent, and Fn is a STA(0) perturbation of
Fn with error ε(n, δ), we have ‖θTn − θ?‖ - ε(n, δ) for T % log(1/ε(n, δ)). On the other
hand, Chen et al. (2018a) argued that given the minimax error of a problem class, a fast
converging algorithm can not be too stable. Neither of these works provided a precise
characterization of what statistical errors are achievable when dealing with a slow converging
stable operator, which is the focus of our Theorem 5.

A direct sub-optimal proof argument: Let us first illustrate how a naive argument
that tries to directly tradeoff the perturbation error of Fn with the convergence rate of
F leads to a sub-optimal guarantee. Let the assumptions in Theorem 5 remain in force.
Roughly speaking, one can show that (cf. Lemma 10), the operator F tn is also STA(γ)
perturbation of F t with the noise function t · ε(n, δ), so that we can bound the error at
iteration t as follows:

‖θtn−θ?‖=‖F tn(θ0
n)−θ?‖≤‖F tn(θ0

n)−F t(θ0
n)‖+‖F t(θ0

n)−θ?‖ ≤ tCρ · ε(n,δ)+
1

tβ
, (16)

where Cρ = ργ denotes a constant corresponding to the radius ρ of initialization. Minimiz-
ing the last bound in the display above over the iteration index t, we find that the best
possible error is of order (ε(n, δ))β/(1+β). This rate is clearly sub-optimal when compared
to the statistical error of order (ε(n, δ))β/(1+β−γβ) (unless γ = 0) guaranteed by display (15)
from Theorem 5. The reason for sub-optimality of this bound is our failure to localize the
argument with the perturbation error as the iterates θtn converge closer to θ?.

Outline of proof: In order to derive the sharp guarantee, we need to establish a more
refined tradeoff than that in equation (16). To this end, we generalize and refine the annulus-
based localization argument introduced in our prior work on the EM algorithm (Dwivedi
et al., 2020a,b). In the past work (Dwivedi et al., 2020a,b), we studied particular instanti-
ations of the EM algorithm, for which the operators F and Fn had closed-form solutions.
Here in the absence of closed-form expressions, the argument is necessarily more abstract to
establish a sharp guarantee under the more general Assumptions (A), (B), and (C), which
also handles the previous analysis as a special case (as illustrated in Section 4.2).

At a high-level, the proof proceeds by decomposing the total collection of iterations
{1, 2, . . . , t} into a disjoint partition of subsets {T`}`≥0, referred to as epochs, where the
nonnegative integers ` and T` respectively denote the index of a given epoch and the number
of iterations in that epoch. We use S` :=

∑`
i=0 Ti to denote the total number of iterations

up to epoch `. By carefully choosing the sequence {T`}`≥0, we ensure that at the end of a
given epoch `, the error ‖θS`n − θ?‖ has decreased to a prescribed threshold. More precisely,

. In several statistical settings, the error function satisfies ε(n, δ) = c
√

log(1/δ)/n. When the problems are
well-conditioned, e.g., if the Fisher information matrix is invertible while estimating MLE, we typically
have FAST(κ) and STA(0) condition for commonly used algorithms like gradient ascent, and Newton’s
method. In general, we do not expect a setting where the operators are FAST(κ) and STA(γ) with γ ≥ 1.
Although, one can construct pathological examples, in which case, our localization argument augmented

with the earlier proofs by Balakrishnan et al. (2017) would yield that θtn
t→∞→ θ?, i.e., the statistical error

converges to zero as the number of iterations goes to ∞ (even with finite samples).
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using an inductive argument on `, we show that

‖θS`n − θ?‖ ≤ ε(n, δ∗)λ` for all epoch ` ≥ 1, (17)

where the sequence {λ`}`≥0 is defined via the recursion

λ0 = 0 and λ`+1 = νλ` + ν ′, for all ` ≥ 1, (18)

with the scalars ν ∈ (0, 1) and ν ′ > 0 determined by the problem parameters β and γ.
We show that the sequence {λ`}`≥0 converges to ν? := β

1+β−γβ fast enough and we have
|λ` − ν?| ≤ α for all ` ≥ O (log(1/α)). Deriving a suitable upper bound on Tmax on the
epoch size Ti, we then put the pieces together to (roughly) conclude that

‖θtn − θ?‖ ≤ cε(n, δ∗)ν?−α for t ≥ c′Tmax · log
1

α
.

As expected, much of the technical work is required to establish the inductive step. The
full proof of the theorem is given in Appendix A.1. We also illustrate the high-level ideas
of the epoch-based localization argument in Figure 3.

3.2 Results for unstable operators

We now turn to our next main result which characterizes the convergence when the operator
Fn is an unstable perturbation of the operator F . We consider two distinct cases depending
on whether the operator F is (a) FAST(κ)-convergent or (b) SLOW(β)-convergent. In order
to obtain sharp upper bounds—ones that depend purely on the noise function ε—the inner
radius for the instability of the operator Fn around the operator F , which we refer to as
ρ̃n, must be sample size-dependent and chosen suitably.

Theorem 6 For a given parameter δ ∈ (0, 1), consider the sequence θt+1
n = Fn(θtn) for some

initial point θ0
n in the ball B(θ?, ρ/2). Suppose that for some γ < 0, the empirical operator

Fn is UNS(γ)-unstable over the annulus A(θ?, ρ̃n, ρ) with respect to the noise function ε.

(a) Suppose that the operator F is FAST(κ)-convergent over the ball B(θ?, ρ), and the
sample size n is sufficiently large so as to ensure that

[ε(n, δ)]
1

1+|γ| ≤ (1− κ)ρ. (19a)

Then with probability at least 1− δ, for any iteration t ≥ log( ρ
ε(n,δ)

)

(1+|γ|) log 1
κ

, we have

min
k∈{0,1,...,t}

‖θkn − θ?‖ ≤ max

{
(2− κ)

(1− κ)
· [ε(n, δ)]

1
1+|γ| , ρ̃n

}
. (19b)

(b) Suppose that the operator F is 1-Lipschitz and SLOW(β)-convergent for some β > 0,
and that the sample size n is large enough to ensure that

[ε(n, δ)]
β

1+β−γβ ≤ ρ. (20a)

Then with probability at least 1− δ, for any iteration t ≥ 1

[ε(n,δ)]
1

1+β
, we have

min
k∈{0,1,...,t}

‖θkn − θ?‖ ≤ max
{

[ε(n, δ)]
β

1+β−γβ , ρ̃n

}
. (20b)
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Figure 3. An illustration of the epoch-based argument when the population operator F
is SLOW(β)-convergent, and the noisy operator is STA(γ)-stable (Theorem 5). In order to
simplify the visualization, we use the shorthand ε = ε(n, δ∗). Moreover, here θ0 denotes
the starting point for a given epoch ` (assumed to be at distance r = ελ` from θ?), and
the iterations 1, 2, . . . , t denote the iteration count in that epoch. The population iterates
F 1(θ0), F 2(θ0), . . . converge towards to θ? at the rate t−β (shown in blue), and their distance
from the noisy iterates F 1

n(θ0), F 2
n(θ0), . . . grows at the rate at a distance of trγε. Trading-off

the two errors, we can show that at the end of epoch ` (denoted by a suitable choice of t),
the distance ‖F tn(θ0) − θ?‖ - ελ`+1 . By establishing that λ` converges to ν? exponentially
fast, and that similar arguments can be made for sufficiently many epochs, we obtain the
result in Theorem 5. See Appendix A.1 for a formal argument.

Let us make a few comments about these bounds. (See Appendix A.2 for a detailed proof.)

Choice of the inner radius ρ̃n: Focusing on part (a), if we ensure that ρ̃n ≤ [ε(n, δ)]
1

1+γ ,
then we obtain an upper bound on the error that involves only the noise function. We show
how to make such choices in our applications of this general theorem. A similar statement
applies to part (b) of the theorem.

Tightness of Theorem 6: In Appendix B, we construct examples of the operators F
and Fn which satisfy the assumptions of Theorem 6, and with the inner radius satisfying
the bound ρ̃n ≤ [ε(n, δ)]τ , τ = 1

1+γ for part (a) or τ = β
1+β−γβ for part (b). For each of

these examples, we show that the sequence θt+1
n = Fn(θtn) satisfies the lower bound

‖θtn − θ?‖ ≥ [ε(n, δ)]τ for all t ≥ 0,

with constant probability. Thus, we conclude that the results of Theorem 6 are tight and
not improvable in general.
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Necessity of the minimum: Note that both of the bounds (19b) and (20b) apply to
the minimum over all iterates k ∈ {1, 2, . . . , t}, as opposed to the final iterate t. For this
reason, our results only guarantee that the iterates produced by an unstable operator Fn
converge at least once to a vicinity of the parameter θ?, but not that they necessarily stay
there for all the future iterations. In fact, such “escape” behavior for an unstable algorithm
is unavoidable in the absence of any additional regularity assumptions. In particular, we
provide a simple example in Appendix B.4 that illustrates this unavoidability.

Additional regularity condition: If we impose an additional regularity condition, then
we can remove the minimum from the guarantee. In particular, consider the condition:

(D) There exists a universal constant C such that for a given initialization θ0
n, the sequence

θtn = F tn(θ0
n) has the following property:

‖θt+1
n − θ?‖ ≤ Cρ̃ whenever ‖θtn − θ?‖ ≤ ρ̃, (21)

where the radius ρ̃ corresponds to equation (19b) or (20b) as relevant to F .

Under this condition, it is straightforward to modify the proof of Theorem 6 to show that the
bounds in both parts (a) and (b) can be sharpened by replacing the term mink∈{0,1,...,t} ‖θkn−
θ?‖ with ‖θtn − θ?‖. In Section 4 to follow, we provide a number of examples for which
Assumption (D) is satisfied.

4. Some concrete results for specific models

In this section, we study three interesting classes of statistical problems that fall within the
framework of the paper. We also discuss various consequences of Theorems 5 and Theorem 6
when applied to these problems.

4.1 Informative non-response model

In our first example, let us consider the problem of biased or informative non-response in
sample surveys. In certain settings, the chance of a response to not be observed depends
on the value of the response. This form of non-response introduces systematic biases in
the survey and associated conclusions (Heckman, 1976). Some examples where this issue
arises include longitudinal data (Diggle and Kenward, 1994), housing surveys and election
polls (Shaiko et al., 1991). In such settings, it is common practice to estimate the non-
responsive behavior in order to correct for the bias. We now describe one simple formulation
of such a setting.

Suppose that we have n i.i.d. values Y1, . . . , Yn for the response variable Y ∼ N (µ, σ2),
where for each Yi there is a chance that the value is not observed. To account for such a
possibility, we define {0, 1}-valued random variables Ri for i = 1, . . . , n as follows:

Ri = 1 if Yi is observed, and Ri = 0 otherwise. (22a)

We assume that the conditional distribution Ri|Yi takes the form

Pθ(Ri = 1|Yi = y) = exp
(
H
(
θ(y − µ)/σ

))
, (22b)

20



Instability, Computational Efficiency and Statistical Accuracy

where H is a known function and θ is an unknown parameter which controls the dependence
of the probability of non-response on the observation Y = y. In a general setting, all the
parameters µ, σ and θ are unknown and are estimated jointly from the data. However,
to simplify our presentation, we assume that the parameters (µ, σ) are known and only θ
needs to estimated. In particular, we consider the case when the response variable Y ∼
N (µ, σ2) ≡ N (0, 1) and H(x) = −x2 − log 2. Under these assumptions, simple algebra
yields that

Pθ(Ri = 1|Yi = y) = exp

(
−θ

2y2

2
− log 2

)
and Pθ(Ri = 1) =

1

2
√
θ2 + 1

. (22c)

Given n i.i.d. samples {Ri, Yi}ni=1, where we note that Yi is not observed when Ri = 0, the
log-likelihood is given by

L̄n(θ) :=
1

n

n∑

i=1

−Ri
(
Y 2
i (θ2 + 1) + 2 log 2

)

2
+ (1−Ri) log

(
1− 1

2
√
θ2 + 1

)
. (23)

Note that the likelihood above does not depend on the unobserved Yi since Ri = 0 makes
the contribution of the corresponding term 0.

In the remainder of this section, we focus on the singular regime, i.e., when the true
parameter θ? = 0 and consequently the probability of observing any sample Yi = y is
always 1/2 (independent of the value y). For such a setting, the results of Rotnitzky et al.

(2000) imply that the statistical error of the MLE is larger than the parametric rate n−
1
2 .

In particular, they showed that |θ̂n,MLE − θ?| = O(n−
1
4 ). However, with high probability,

the log-likelihood L̄n is non-concave and thereby a closed-form for the maximum-likelihood
estimate is not available. Thus a theoretical analysis of the estimates obtained via different
optimization algorithms (that can be used to maximize the log-likelihood L̄n) can be of
significant interest. We now apply our general theory to analyze two optimization methods:
(i) gradient ascent, and (ii) Newton’s method.

4.1.1 Theoretical guarantees

We now state a theoretical guarantee on the behavior of the optimization algorithms in
practice with the informative non-response model (22)—that is, when applied to the sample
log likelihood (23). We analyze the gradient ascent updates for a step-size η ∈ (0, 8

3), and
the pure Newton updates. We use MGA

n and MNM
n respectively to denote the sample-based

operators for gradient ascent and Newton’s method (see Appendix D.1 for the precise form of
these operators). The following statement also involves other universal constants c, ci, c

′
i, c
′′
i

etc.

Corollary 7 For the singular setting of informative non-response model (θ? = 0) and given
some δ ∈ (0, 1), the following properties hold with probability at least 1− δ:

. For instance, when
∑n
i=1 Ri(Y

2
i + 1) < n, the sample log-likelihood function is bimodal and symmetric

around 0.
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(a) For any fixed α ∈ (0, 1/4) and initialization θ0 ∈ B(θ?, 1/2), the sequence θt :=
(MGA

n )t(θ0) of gradient iterates satisfies the bound

∣∣θt − θ?
∣∣ ≤ c1

(
log( log(1/α)

δ )

n

) 1
4
−α

for all iterates t ≥ c′1
√
n log 1

α , (24a)

as long as n ≥ c′′1 log log(1/α)
δ .

(b) For any initialization θ0 ∈ A(θ?,
√

2c (log(1/δ)/n)1/4 , 1/2), the sequence of Newton
iterates θt := (MNM

n )t(θ0) satisfies the bound

∣∣θt − θ?
∣∣ ≤ c2

(
log(1/δ)

n

) 1
4

for all iterates t ≥ c′2 log n, (24b)

as long as n ≥ c′′2 log(1/δ).

See Appendix D.1 for the proof of this corollary (and below for the proof sketch).

Corollary 7 shows that given n samples, (i) the final statistical errors achieved by the
iterates generated by the gradient descent and the Newton’s method are similar (of order

n−
1
4 ), and (ii) the Newton’s method takes a considerably smaller number (of order log n)

of steps in comparison to that taken by gradient ascent (of order
√
n). Finally, in Ap-

pendix D.1, we show that all the non-zero fixed points of the considered operators have
a magnitude of the order n−

1
4 with constant probability. Therefore, the statistical radius

achieved by the given optimization methods are optimal.

4.1.2 Proof sketch for Corollary 7

Our proof of Corollary 7 starts with an analysis of the gradient ascent and Newton iter-
ates on the population-level analog of the problem. In particular, taking expectations in
equation (23), we obtain the following population-level optimization problem

max
θ∈R
L̄(θ) where L̄(θ) =

1

2
log

(
1− 1

2
√
θ2 + 1

)
− θ2 + 1

4
. (25)

Let MGA denote the gradient update operator applied to this objective with a given step-
size η, and let MNM denote the Newton update. In Appendix D.1 (where we also provide
explicit forms of these operators), we show that with θ? = 0, the population-level operators
have the following properties:

(P1) The gradient operator MGA is SLOW(β)-convergent with parameter β = 1
2 over the

Euclidean ball B(θ?, 1
2), i.e., for the sequence θt = (MGA)t(θ0) with θ0 ∈ B(θ?, 1

2), we
have

∣∣θt − θ?
∣∣ ≤ c

t1/2
.

(P2) The Newton operator MNM is FAST(κ)-convergent with parameter κ = 4
5 over the

Euclidean ball B(θ?, 1
2), i.e., for the sequence θt = (MNM)t(θ0) with θ0 ∈ B(θ?, 1

2), we
have

∣∣θt − θ?
∣∣ ≤ c e−κt.
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Moreover in the same Appendix D.1, we show that with the noise function ε(n, δ) =√
log(1/δ)

n , the sample-level operators satisfy the following properties:

(S1) The sample-based gradient ascent operator MGA
n is STA(γ)-stable with parameter

γ = 1 over the ball B(θ?, 1
2), and

(S2) the operator MNM
n is UNS(γ)-unstable with parameter γ = −1 over the annulus

A(θ?, ρ̃n, ρ) with ρ̃n = c[ε(n, δ)]
1
2 and ρ = 1

2 where c denotes some universal posi-
tive constant.

Given these properties, we now show how our general theory yields the results stated in
Corollary 7. To simplify the following discussion, we omit the universal constants and a
few-logarithmic terms, and track the dependency only on the sample size n.

Results for gradient ascent: The items (P1) and (S1) establish that the gradient op-
erators are slow-convergent and stable, and thus we can apply our general result from
Theorem 5. In particular, plugging β = 1

2 , and γ = 1 in Theorem 5, we find that the
statistical error for the gradient iterates θt = (MGA

n )t(θ0) satisfies

∣∣θt − θ?
∣∣ - [ε(n, δ)]

β
1+β−γβ � [n−

1
2 ]

1/2
1+1/2−1/2 = n−

1
4 , (26a)

for t % [ε(n, δ)]
− 1

1+β−γβ � [n−
1
2 ]
− 1

1+1/2−1/2 = n
1
2 . (26b)

Results for Newton’s method: The items (P2) and (S2) establish that the Newton
operators are fast-convergent but unstable, and as a consequence our general result from
Theorem 6(a) can be applied. In particular, plugging γ = −1 in Theorem 6(a), we find that
the Newton iterates θt = (MNM

n )t(θ0) satisfy

∣∣θt − θ?
∣∣ - max

{
[ε(n, δ)]

1
1+|γ| , ρ̃n

}

� [n−
1
2 ]

1
1+1 = n−

1
4 for t % log(1/ε(n, δ)) � log n. (27)

Moreover, we show that (see the discussion around equation (87)) Assumption (D) holds
for the Newton iterates with an initialization outside the ball B(θ?, ρ̃n), and hence part (b)
of the Corollary 7 states that the Newton iterates stay in a close vicinity of θ? for all future
iterations.

4.2 Over-specified Gaussian mixture models

We now consider the problem of parameter estimation in Gaussian mixture models; and
analyze the behavior of two popular algorithms namely (a) Expectation-Maximization (EM)
algorithm (Dempster et al., 1997), and (b) Newton’s method. We note that EM is arguably
the most widely used algorithm for parameter estimation in mixture models and other
missing data problems (Dempster et al., 1997). Here we study the problem of estimating
the parameters of a Gaussian mixture model given n i.i.d. samples from the model. When
the number of components in the mixture is known, prior works (Balakrishnan et al., 2017;
Daskalakis et al., 2017; Cai et al., To Appear) have shown that (i) the mixture parameters

can be estimated at the parametric rate n−
1
2 with the EM algorithm and (ii) the algorithm
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takes at most logn steps to converge. In the over-specified setting, i.e., when the fitted
model has more components than the true model, recent works (Dwivedi et al., 2020a,b;
Wu and Zhou, 2019) have established the slow convergence of EM on both the statistical
and algorithmic fronts. For example, for over-specified Gaussian-location mixtures EM
takes n

1
2 � log n steps (where � denotes much greater than) to converge and produces an

estimate for the mean parameter that has a statistical error of order n−
1
4 � n−

1
2 .

In the sequel, we apply our general theory to study the behavior of EM and Newton’s
method for parameter estimation in over-specified Gaussian-location mixtures. First, we
recover the slow convergence of EM as derived in prior works (Dwivedi et al., 2020a). Second,
we prove that the Newton’s method—although an unstable algorithm in this setting—
achieves a similar statistical accuracy as EM albeit in an exponentially fewer number of
steps. We now formalize the details. Let φ(·; θ, σ2) denote the density of N (θ, σ2) random
variable, i.e.,

φ(x; θ, σ2) = (2πσ2)−1/2e−
(x−θ)2

2σ2 (28a)

and let X1, . . . , Xn be n i.i.d. draws from the standard normal distribution (density
φ(·; 0, 1)). Given this data, we fit an over-specified mixture model namely, a two-component
symmetric Gaussian mixture with equal fixed weights whose density is given by

fθ(x) =
1

2
φ(x;−θ, 1) +

1

2
φ(x; θ, 1), (28b)

where θ is the parameter to be estimated. In such a setting, the true parameter is unique and
given by θ∗ = 0 since f0(·) = φ(·; 0, 1). However, the fact that we fit a mixture that has one
extra component than the true model (which has just one component) leads to interesting
consequences as we now elaborate. Using Ln to denote the log-likelihood function, the MLE
estimate is given by

θ̂n,MLE ∈ arg max
θ∈R

Ln(θ) where Ln(θ) :=
1

n

n∑

i=1

log fθ(Xi). (28c)

On one hand, it is known (Chen, 1995) that the over-specification in such a setting leads to

a slower than n−
1
2 statistical rate for the MLE, i.e., |θ̂n,MLE − θ?| = O(n−

1
4 ). On the other

hand, MLE does not admit a closed-form expression and thus it is of significant interest to
understand the behavior of iterative algorithms that are used to estimate the MLE. Next, we
use our general framework to provide a precise characterization of two algorithms namely,
EM, and Newton’s method on maximizing the log-likelihood Ln (28c).

4.2.1 Theoretical guarantees

The next corollary provides a precise characterization of EM and Newton’s method for the
over-specified setting described in the previous section. We analyze the EM updates and the
pure Newton updates. Moreover, we use GEM

n and GNM
n respectively to denote the sample-

based operators for EM and Newton’s method (see Appendix D.2 for the precise form of
these operators). Finally, the scalars c, ci, c

′
i, c
′′
i denote some positive universal constants.
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Corollary 8 For the over-specified Gaussian mixture model (28) with θ? = 0, given some
δ ∈ (0, 1), the following properties hold with probability at least 1− δ:

(a) For any fixed α ∈ (0, 1/4) and initialization θ0 ∈ B(θ?, 1), the sequence θt := (GEM
n )t(θ0)

of EM iterates satisfies the bound

∣∣θt − θ?
∣∣ ≤ c1

(
log( log(1/α)

δ )

n

) 1
4
−α

for all iterates t ≥ c′1
√
n log 1

α , (29a)

as long as n ≥ c′′1 log log(1/α)
δ .

(b) For any initialization θ0 ∈ A(θ?,
√

2c log2(3n/δ)

n1/4 , 1/3), the sequence of Newton iterates

θt := (GNM
n )t(θ0) satisfies the bound

∣∣θt − θ?
∣∣ ≤ c2

(
log(n/δ)

n

) 1
4

for all iterates t ≥ c′2 log n, (29b)

as long as n ≥ c′′2 log(1/δ).

See Appendix D.2 for the proof (and below for the proof sketch).

Corollary 8 establishes that the Newton EM is significantly faster than EM for the
model setup (28). More precisely, it reaches ball around θ? with a statistical radius of order

n−
1
4 within log n steps, which is much smaller than the number of steps taken by EM.

Moreover, the updates from Newton’s method do not escape this ball for future iterations.
This behavior is a consequence of the fact that under the assumed initialization condition,
the (cubic-regularized) Newton EM sequence satisfies assumption (D).

Multivariate settings: In Figure 4, we discuss the performance of EM and Newton’s
method under the multivariate setting of the over-specified Gaussian mixture model (28b).
Similar to the univariate setting, both algorithms converge to a statistical error of order
(d/n)1/4 around the true parameter θ?. Furthermore, the EM algorithm takes

√
n/d number

of iterations to converge to the final estimate (see Appendix E.1 for a formal result) while
the Newton’s method takes much fewer number of iterations (which seems in agreement
with the logn scaling suggested by our theory). Given that each iteration of the EM
algorithm takes order n · d arithmetic operations, the computational complexity for the
EM algorithm to reach the final estimate is of order n3/2d1/2. On the other hand, each
iteration of the Newton’s method takes an order of n · d + d3 arithmetic operations where
d3 is computational complexity of computing inverse of an d× d matrix via Gauss-Jordan
elimination approach. It leads to the computational complexity at the order (nd+ d3) log n
for the Newton’s method to reach to the final estimate. Thus, when d5/3 � n, Newton’s
method is computationally more efficient than the EM algorithm.

4.2.2 Proof sketch for Corollary 8

The proof strategy for this case is similar to that laid out in Section 4.1.2 for informative non-
response model. First, to study this problem in our framework, we consider the population
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Figure 4. Plots characterizing the behavior of Expectation-Maximization (EM) and New-
ton’s method (NM) for two Gaussian mixture models in d = 2 and d = 8 dimensions. (a)

Log-log plots of the Euclidean distance ‖θ̂n − θ?‖2 versus the sample size. It shows that all
the algorithms converge to an estimate at Euclidean distance of the order n−1/4 from the true
parameter θ?. (b) Log-log plots for the number of iterations taken by different algorithms
to converge to the final estimate. While EM takes roughtly

√
n iterations, the scaling of

iterations taken by Newton’s method is significantly slower.

level objective L by replacing the sum over samples in equation (28c) with the corresponding
expectation:

L(θ) := EX∼N (0,1) [log fθ(X)] = EX
[

1

2
φ(X;−θ, 1) +

1

2
φ(X; θ, 1)

]
. (30)

Second, we use GEM and GNM respectively to denote the corresponding population-level
EM and Newton’s method operators (see Appendix D.2 for the precise expressions).

Results for EM: For the case of θ? = 0, Theorem 2 and Lemma 1 of our prior works (Dwivedi
et al., 2020a) show that, for any initialization θ0, the EM operators GEM and GEM

n satisfy

∣∣(GEM)t(θ0)− θ?
∣∣ ≤ c

t
1
2

and,

sup
θ∈B(θ?,r)

∣∣GEM(θ)−GEM
n (θ)

∣∣ ≤ c1r ·
√

log(1/δ)

n
, (31)

where the second bound holds with probability at least 1 − δ for any fixed radius r >
0. In the framework of our current work, the bounds (31) imply that the operator GEM

exhibits SLOW(1
2)-convergence, and the operator GEM

n is STA(1)-stable with the noise function√
log(1/δ)

n . Thus a direct application of Theorem 5 of this paper (in a fashion similar to that

of equations (26a) and (26b)), recovers the main result of our prior work (Dwivedi et al.,
2020a) (Theorem 3). That is, with high probability, the sequence θt+1

n = GEM
n (θtn) satisfies

∣∣θt − θ?
∣∣ - [n−

1
2 ]

1/2
1+1/2−1/2 = n−

1
4 for t % [n−

1
2 ]
− 1

1+1/2−1/2 = n
1
2 . (32)
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Results for Newton’s method: In Appendix D.2, we demonstrate the following prop-
erties of Newton’s method operators:

(M1) the Newton operator GNM is FAST(7
9)-convergent over the ball B(θ?, 1

3), and

(M2) the operator GNM
n is UNS(−1)-unstable over the annulus A(θ?, ρ̃n, 1/3) with noise func-

tion ε(n, δ) = log(n/δ)√
n

where ρ̃n = c log2(3n/δ)

n1/4 .

Based on the results of Theorem 6(a) with κ = 7
9 and γ = −1, the items (M1) and (M2)

suggest that the Newton updates θt = (MNM
n )t(θ0) satisfy

∣∣θt − θ?
∣∣ - max

{
[ε(n, δ)]

1
1+1 , ρ̃n

}
- n−

1
4 for t % log(1/ε(n, δ)) � log n. (33)

Furthermore, we prove that the Newton iterates satisfy Assumption (D) (see the argument
with equation (97)). Therefore, the Newton iterates stay in a close vicinity of θ? for all
future iterations.

4.3 Non-linear regression model

In our third example, we consider a non-linear regression model (Carroll et al., 1997) with
a known link function g. Models of this type have proven useful for applications in signal
processing, econometrics, statistics, and machine learning (Ichimura, 1993; Horowitz and
Härdle, 1996). For simplicity, we briefly summarize the one-dimensional version of this
problem. The multivariate setting of the problem is considered in Appendix E.2. We
observe the pairs of data (Xi, Yi) ∈ R2 that are generated from the model

Yi = g (Xiθ
∗) + ξi for i = 1, . . . , n. (34a)

Here Yi denotes the response variable, Xi corresponds to the covariate and ξi denotes the

additive noise assumed to have a standard Gaussian distribution, i.e., ξi
i.i.d.∼ N (0, 1). Note

that, the Gaussianity of the additive noise is for the simplicity of the proof, and the results
can be extended to sub-Gaussian errors.

In this example, we consider the case of random design for the covariates, i.e., the
covariates {Xi}ni=1 are independent and Xi ∼ N (0, 1). Given the samples {(Xi, Yi), i ∈ [n]},
we want to estimate the unknown parameter θ∗. A popular choice is the maximum-likelihood
estimate (MLE):

θ̂mle
n ∈ arg min

θ∈R
L̃n(θ) where L̃n :=

1

2n

n∑

i=1

(Yi − g (Xiθ))
2 . (34b)

Generally, the loss-function L̃n is non-convex and hence the MLE does not admit a closed-
form expression. Consequently, one needs to make use of certain optimization algorithms
to compute an estimate θ̂n, which need not be the same as θ̂mle

n .
In the remainder of this section, we study the case when the SNR degenerates to zero.

Specifically, we consider θ∗ = 0 and a link function of the form g(x) = x2p with p ≥ 1. For
such a setting, the optimization problem (34b) takes the following form:

θ̂n ∈ arg min
θ∈R
L̃n(θ) where L̃n :=

1

2n

n∑

i=1

(
Yi − (Xiθ)

2p
)2
. (34c)
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4.3.1 Theoretical guarantees

For the non-linear regression model described above with the link function g(x) = x2p,
we consider three iterative optimization methods: (a) gradient descent with a step size
η ∈ (0, 1

(4p−1)!!(2p) ], (b) (pure) Newton’s method, and (c) cubic-regularized Newton’s method

with Lipschitz constant L := (4p− 1)!!(4p− 1)p/3. We denote the updates for these three
methods via the operators FGD

n , FNM
n , and FCNM

n respectively (see Appendix D.3 for the
precise expressions of these operators). The next result characterizes the behavior of these
three methods:

Corollary 9 For the non-linear regression model (34) with link function g(x) = x2p for
p ≥ 1 and true parameter θ? = 0, given some δ ∈ (0, 1), the following properties hold with
probability at least 1− δ:

(a) For any fixed α ∈ (0, 1/4) and initialization θ0 ∈ B(θ?, 1), the sequence θt := (FGD
n )t(θ0)

of gradient iterates satisfies the bound

∣∣θt − θ?
∣∣ ≤ c1

(
log4p(n log(1/α)

δ )

n

) 1
4p
−α

for all iterates t ≥ c′1n
2p−1

2p log 1
α , (35a)

as long as n ≥ c′′1 log log(1/α)
δ .

(b) For any initialization θ0 ∈ A(θ?, c logp/(2p−1)(n/δ)

n1/4(2p−1) , 1), the sequence of Newton iterates

θt := (FNM
n )t(θ0) satisfies the bound

∣∣θt − θ?
∣∣ ≤ c2

(
log4p(n/δ)

n

) 1
4p

for all iterates t ≥ c′2 log n, (35b)

as long as n ≥ c′′2 log(1/δ).

(c) The sequence of cubic-regularized Newton iterates θt := (FCNM
n )t(θ0) with initialization

θ0 ∈ A(θ?, c logp/(2p−1)(n/δ)

n1/4(2p−1) , 1) satisfies the bound

∣∣θt − θ?
∣∣ ≤ c3

(
log4p(n/δ)

n

) 1
4p

for all iterates t ≥ c′3n
4p−3

2(4p−1) , (35c)

as long as n ≥ c′′3 log(1/δ).

See Appendix D.3 for the proof (and below for the proof sketch).

This corollary shows that the final statistical errors achieved by gradient descent and the
(cubic-regularized) Newton’s method have the same scaling. Moreover, Newton’s method,
while unstable, converges to the correct statistical radius in a significantly smaller log n

number of steps when compared to gradient descent, which takes n
2p−1

2p steps and cubic-

regularized Newton’s method, which takes n
4p−3

2(4p−1) steps. Moreover, we also show that
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assumption (D) holds for the iterates from the (cubic-regularized) Newton method’s and

hence we obtain that these iterates not only converge to a ball of radius n
− 1

4p around
θ?, but also that they stay there for all the future iterations. Finally, in Appendix D.3
(see equation (116)) we also establish that the statistical radius n−1/(4p) achieved by the
considered optimization methods is tight.

When g(x) = x2, the model (34a) corresponds to a phase retrieval problem. In the
regime of large signal-to-noise ratio (SNR), i.e., |θ?| � 1, and with the link function
g(x) = x2, there are efficient algorithms which produce an estimate θ̂n satisfying a bound

|θ̂n − θ?| - n−
1
2 (Eldar and Mendelson, 2013; Candès et al., 2015; Tan and Vershynin, 2018).

However, as the SNR approaches zero these parametric rates do not apply and precise sta-
tistical behavior of these estimates are not known.

4.3.2 Proof sketch for Corollary 9

In order to study these updates using our framework, we need to consider the population-
level version of the optimization problem (34c), which is given by

min
θ∈R
L̃(θ) where L̃(θ) :=

1

2
E(X,Y )

[(
Y − (Xθ)2p

)2
]
,

where the expectation is taken with respect to X ∼ N (0, 1), Y ∼ N (0, 1) as θ? = 0. Direct
computation yields that

L̃(θ) =
1

2
+

(4p− 1)!!θ4p

2
and arg min

θ
L̃(θ) = 0 = θ?. (36)

Like the previous proof sketches, we let FGD,FNM and FCNM denote the population op-
erators corresponding to the algorithms, gradient descent, Newton’s method and cubic-
regularized Newton’s method, for the problem (36) (for a given p). See Appendix D.3 for
the precise definitions of these operators. In Appendix D.3, we show that with θ? = 0, these
population-level operators satisfy the following properties over the ball B(θ?, 1):

(P̃1) the gradient operator FGD is SLOW( 1
4p−2)-convergent for step size η ∈ (0, 1

(4p−1)!!(2p) ],

(P̃2) the Newton operator FNM is FAST(4p−2
4p−1)-convergent, and

(P̃3) the cubic-regularized Newton operator FCNM is SLOW( 2
4p−3)-convergent.

Moreover in the Appendix D.3, we show that with the noise function ε(n, δ) =

√
log4p(n/δ)

n ,
the sample-level operators satisfy the following properties:

(S̃1) the operator FGD
n is STA(2p− 1)-stable over the ball B(θ?, 1),

(S̃2) the operator FNM
n is UNS(−(2p− 1))-unstable over the annulus A(θ?, ρ̃n, 1) with inner

radius ρ̃n = c logp/(2p−1)(n/δ)/n1/4(2p−1), and

(S̃3) the operator FCNM
n is UNS(−1

2)-unstable over the annulus A(θ?, ρ̃n, 1).

. See the proofs of equations (111) and (117) in Appendix D.3 for more details.
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These properties show that the gradient descent is a slow-converging stable method and we
can apply Theorem 5. On the other hand, Newton’s method is a fast-converging unstable
method, and Theorem 6(a) can be applied. Finally, cubic-regularized Newton’s method is
a slow-converging unstable method and Theorem 6(b) can be applied. In the subsequent
proof-sketch, we track the dependency only on the sample size n and ignore logarithmic
factors and universal constants. Moreover, since the computations here mimic the discussion
from Section 4.1.2, we keep the discussion briefer.

Results for gradient descent: Applying Theorem 5 with β = 1
4p−2 , and γ = 2p − 1

(items (P̃1) and (S̃1) respectively), we find that the statistical error for the gradient iterates
θt = (FGD

n )t(θ0) satisfy

∣∣θt − θ?
∣∣ - [ε(n, δ)]

β
1+β−γβ - n

− 1
2p for t % [ε(n, δ)]

− 1
1+β−γβ � n

2p−1
2p . (37)

Results for Newton’s method: Next applying Theorem 6(a) for the Newton’s method
with κ = 4p−2

4p−1 , and γ = −(2p− 1) (see items (P̃2) and (S̃2)), we conclude that the updates

θt = (FNM
n )t(θ0) from the Newton’s method have the following property:

∣∣θt − θ?
∣∣ - max

{
[ε(n, δ)]

1
1+|γ| , ρ̃n

}
- n

− 1
2p for t % log(1/ε(n, δ)) � log n. (38)

Results for cubic-regularized Newton’s method: Finally by using Theorem 6(b)
for the cubic-regularized Newton’s method with β = 2

4p−3 , and γ = −1
2 (see items (P̃3)

and (S̃3)), the following results hold for the cubic-regularized Newton iterates θt = (FCNM
n )t(θ0):

∣∣θt − θ?
∣∣ - max

{
[ε(n, δ)]

β
1+β−γβ , ρ̃n

}

- n
− 1

2p for t % [ε(n, δ)]
− 1

1+β � n
4p−3

2(4p−1) . (39)

5. Discussion

In this paper, we established several results characterizing the statistical radius achieved
by a sequence of updates {F tn(θ0

n)}t≥0, induced by an operator Fn and a given initial point
θ0
n. We established these results by analyzing the interplay between (in)-stability of the

operator Fn for its population operator F and the local convergence of F around its fixed
point θ?. We then applied our general theory to derive sharp algorithmic and statistical
guarantees for several iterative algorithms by analyzing the corresponding sample and popu-
lation operators, in three different statistical settings. In particular, we studied the behavior
of gradient methods and higher-order (cubic-regularized) Newton’s method for parameter
estimation—in the weak signal-to-noise ratio regime—in Gaussian mixture models, non-
linear regression models, and informative non-response models. We showed that for such
models, despite instability, fast algorithms like Newton’s method may still be preferred over
a stable one like gradient descent since they achieve the same statistical accuracy as that
of the stable counterpart in exponentially fewer steps.

We now discuss a few questions that arise naturally from our work. First, our results,
as stated, are not directly applicable to the settings of accelerated optimization meth-
ods or quasi-Newton methods, e.g., accelerated gradient descent (Nesterov, 2013) and L-
BFGS (Fletcher, 1987). On the one hand, the updates from an accelerated gradient descent

30



Instability, Computational Efficiency and Statistical Accuracy

method require that the operators Fn and F to change with each iteration. On the other
hand, the updates from the L-BFGS method would require additional machinery to deal
with the preconditioning matrices in each step. Developing a general theory to characterize
the statistical performance of algorithms associated with a time-varying operator Fn is an
interesting direction for future research.

Secondly, it is desirable to understand the behavior of optimization methods to a wider
range of statistical problems. In the context of mixture models, recent work by Dwivedi et
al. (Dwivedi et al., 2020b) established that for over-specified mixtures with both location

and scale parameter unknown, EM takes an O(n
3
4 ) steps to return estimates with minimax

statistical error of order n−
1
8 and n−

1
4 for the location and scale parameter, respectively.

Whether an unstable method like (cubic-regularized) Newton’s EM proves computationally
advantageous (without losing statistical accuracy) in such more challenging non-convex
landscapes remains an open problem.

Finally, our theory does not easily extend to the settings with dependent data, such as
time series. When the samples are (time) dependent, taking the limit of infinite sample
size does not yield a natural population-level operator. One possible fix is to borrow the
technique of truncating the sample operator from the analysis of the Baum-Welch algorithm
for hidden Markov models (Yang et al., 2017). However, even with the help of such a
technique, ample technical challenges remain towards developing a general theory for such
non-i.i.d. settings.

In this supplementary material, we provide the details of proofs and results that were
deferred from the main paper. Appendices A and C contain the proofs of Theorems 5
and 6, respectively, including all the details of the localization argument and the proofs of
all auxiliary technical lemmas. In Appendix B, we construct a simple class of problems to
demonstrate that the guarantees Theorems 5 and 6 are unimprovable in general. Finally,
in Appendix D, we collect the proofs of several corollaries stated in the paper. Finally, we
discuss an extension of the theoretical results in the main text to multivariate settings in
Appendix E.

Appendix A. Proofs of main results

In this section, we provide the proofs of our main results, namely Theorems 5 and 6.

A.1 Proof of Theorem 5

The reader should recall the proof outline provided following the statement of the theorem.
Our proof here follows this outline, making each step precise. For the remainder of the
proof, we assume without loss of generality that θ? = 0 and r0 = 1. Proofs for the cases
θ? 6= 0 or r0 > 1 can be reduced to this case in a straightforward fashion and are thereby
omitted.

A.1.1 Notation for stable case

For each positive integer ` = 1, 2, . . ., let T` denote the number of iterations during the `-th
epoch, and let S` denote the total number of iterations taken up to the completion of epoch
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`. In order to describe some recursions satisfied by these quantities, we define

T
(1)
` := Cε(n, δ∗)

−
λ`−1(γ)+1

1+β and T
(2)
` := C ′ε(n, δ∗)

−λ`(γ)+1

1+β ,

for C := (c22γ)
− 1

(1+β) and C ′ := C(c′)
γ

1+β ,
(40a)

where c′ := (c22γ)
β

1+β = C−β and hence we have C ′ = C
1+β+βγ

1+β . Here the constant c2 is
the constant from the the stability definition (11). The sequences {T`} and {S`} have the
following properties: with the initialzation T0 := 0, we have

T` :=
⌈
T

(1)
` + T

(2)
`

⌉
and S` :=

∑̀

j=0

Tj for ` = 1, 2, . . .. (40b)

Our proof is based on studying the sequence of real-numbers {λ`}`≥0 given by

λ0 = 0 and λ`+1 = λ`ν + ν ′, where ν = βγ
1+β and ν ′ = β

1+β . (40c)

Note that Assumption (B) implies that ν ∈ (0, 1) and hence

λ` = ν?(1− ν`) ↑ ν? where ν? :=
β

1 + β − γβ , (40d)

where λ` ↑ ν? means that the sequence λ` is monotonically increasing and converges to ν?.
In the epoch-based argument, we need to control the deviation sup‖θ‖≤r ‖F (θ) − Fn(θ)‖
uniformly for each radii r ∈ R′. To this end, for any tolerance δ ∈ (0, 1), we define the
event E by

E :=

{
sup

θ∈B(θ?,r)
‖F (θ)− Fn(θ)‖ ≤ c2r

γε(n, δ∗) uniformly for all r ∈ R′
}
, (41)

where δ∗ = δ · log( 1+β
βγ

)

8 log( β
α(1+β−γβ ))

was defined in equation (14) and the radii-set R′ is defined as

R′ := R∪ 2R, with

R :=
{
ε(n, δ∗)λ0 , . . . , ε(n, δ∗)λ`α , c′ε(n, δ∗)λ0 , . . . , c′ε(n, δ∗)λ`α

}
,

`α = dlog(1/α)e and c′ = (c22γ)
β

1+β .

(42)

Combining the STA(γ)-stability assumption (11) with a standard application of union bound
we conclude that

P(E) ≥ 1− δ. (43)

Before we start the main argument, we state a lemma useful in the proof of our theorem:

Lemma 10 Assume that the assumptions of Theorem 5 are in force. Then conditioned on
the event E (41. 43), for all radius r in the set R (42), we have

sup
θ∈B(θ?,r)

‖F t(θ)− F tn(θ)‖ ≤ c2(2r)γε(n, δ∗) · t for all t ≤ T̃ (r), (44)
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where T̃ (r) := r1−γ

2γc2ε(n,δ∗)
. Furthermore, for all ` ≤ `α we have

T
(1)
`+1 ≤ T̃ (ε(n, δ∗)λ`) and T

(2)
`+1 ≤ T̃ (c′ε(n, δ∗)λ`+1). (45)

See Appendix C.1 for the proof of this lemma.

A.1.2 Main argument

We claim that the sequence {θtn}t≥1 satisfies

‖θS`n ‖2 ≤ ε(n, δ∗)λ` uniformly for all ` ∈ {0, 1, . . . , `α} , and (46a)

‖θS`α+t
n ‖ ≤ 2ε(n, δ∗)ν?−α uniformly for all t ∈ {0, 1, 2, . . .}, (46b)

with probability at least 1− δ. The quantities λ`, S` and `α are defined in equations (40a)
through equation (40c). With these claims at our disposal, it remains to prove an upper
bound on the scalar S`α . Towards this end, doing some straightforward algebra we find that

T` ≤ T`α ≤ c′ε(n, δ∗)−
ν?
β for any 0 ≤ ` ≤ `α. (47)

Combining the above bounds on T` with the definition of S` from equation (40b) yields
an upper bound on S`α . Substituting the upper bound on S`α in inequality (46b) yields
the claimed bound (15) of Theorem 5. We now prove the claims (46a) and (46b) using
induction.

A.1.3 Proof of claim (46a)

We condition on the event E defined in the equation (41), which occurs with probability at
least 1 − δ, and establish the claim using induction on the epoch index `. The base case
` = 0 is immediate. We now establish the inductive step, i.e., given ‖θS`n ‖ ≤ ε(n, δ∗)λ` for

some ` ≤ `α − 1, we show that ‖θS`+1
n ‖ ≤ ε(n, δ∗)λ`+1 . We split the proof in two parts

(primarily to handle the constants):

‖θS`+T
(1)
`+1

n ‖ ≤ c′ε(n, δ∗)λ`+1 and (48a)

‖θS`+T
(1)
`+1+T

(2)
`+1

n ‖ ≤ ε(n, δ∗)λ`+1 , (48b)

where c′ > 1 is a universal constant. These claims together imply the induction hypothesis
and thereby the claim (46a).

Proof of claim (48a) Inequality (45) implies that T
(1)
`+1 ≤ T̃ (ε(n, δ∗)λ`), and hence we can

apply the bound (44) from Lemma 10 with r = ε(n, δ∗)λ` ∈ R for any t ≤ T
(1)
`+1. Applying

the triangle inequality yields

‖θt+S`n ‖ = ‖F tn(θS`n )‖ ≤ ‖F t(θS`n )‖+ ‖F t(θS`n )− F tn(θS`n )‖
(i)

≤ 1

tβ
+ ‖F t(θS`n )− F tn(θS`n )‖ (49)

(ii)

≤ 1

tβ
+ c2(2ε(n, δ∗)λ`)γε(n, δ∗)t, (50)
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for any t ≤ T
(1)
`+1; where step (i) follows from the SLOW(β)-convergence (8) of the operator

F along with the assumption that θ? = 0, and step (ii) follows by using the inductive
hypothesis ‖θS`n ‖ ≤ ε(n, δ∗)λ` and applying Lemma 10 with r = ε(n, δ∗)λ` . Note that in the
final bound (50) the first term decreases with iteration t while the second term increases

with t. In order to trade off these two terms, we set t = T
(1)
`+1 (40a) in the bound (50) and

find that

‖θS`+T
(1)
`+1

n ‖ ≤ 1

(T
(1)
`+1)

β
+ c2(2ε(n, δ∗)λ`)γε(n, δ∗)T

(1)
`+1

= 2(c22γ)
β

1+β

︸ ︷︷ ︸
=:c′

·ε(n, δ∗)1−λ`γ+1

1+β
+λ`γ

= c′ε(n, δ∗)
λ`(βγ)+β

1+β

= c′ε(n, δ∗)λ`+1 ,

where the last equality follows from the relation (40c) between λ` and λ`+1. The claim (48a)
now follows.

Proof of claim (48b) For any t ≤ T̃ (c′ε(n, δ∗)λ`+1), we have

‖θt+S`+T
(1)
`+1

n ‖ ≤ ‖F t(θS`+T
(1)
`+1

n )‖+ ‖F t(θS`+T
(1)
`+1

n )− F tn(θ
S`+T

(1)
`+1

n )‖

≤ 1

tβ
+ c2(2c′ε(n, δ∗)λ`+1)γε(n, δ∗)t,

where the last inequality follows from arguments similar to those used to establish the

inequalities (49) and (50) above. Next, recalling the inequality T
(2)
`+1 ≤ T̃ (c′ε(n, δ∗)λ`+1)

from equation (45) and plugging t = T
(2)
`+1 (40a) in the above inequality, we find that

‖θS`+1
n ‖ ≤ 2(c22γ)

β
1+β c

′ βγ
1+β

︸ ︷︷ ︸
=:C̃

·ε(n, δ∗)
λ`+1βγ+β

1+β = C̃ε(n, δ∗)λ`+2 .

In order to complete the proof, it remains to show that last quantity is upper bounded by
ε(n, δ∗)λ`+1 ; equivalently, we need to verify the following upper bound

ε(n, δ∗) ≤ 1

C̃λ`+2−λ`+1
, (51)

which is equivalent to the large sample-size assumption (C) (see condition (79) for a more
precise statement) if we establish that

λ`+2 − λ`+1 ≥ α? :=
α(1 + β − βγ)

1 + β
. (52)

In order to do so, we use the fact (40d) that λ` = ν?(1− ν`) and obtain that

λ` ≤ ν? − α and consequently that ν?ν
` ≥ α

. We ignore the effect of the ceiling function d·e to simplify the computations
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for all ` ∈ {0, 1, . . . , `α}. Putting together the pieces we have

λ`+2 − λ`+1 = ν?ν
`+1(1− ν) ≥ α(1− ν) = α?,

which yields the claimed bound (52) and we are done.

A.1.4 Proof of claim (46b)

The proof of this claim follows a similar road-map as that in the previous Section, and
hence we simply sketch it. Conditional on the event E , we claim that

‖θS`α+kT`α
n ‖ ≤ ε(n, δ∗)ν?−α uniformly for all k ∈ {0, 1, 2, . . .}. (53)

Assuming this bound is given for now, we complete the proof. Invoking inequality (75) from
the proof of Lemma 10, we obtain that

‖θS`α+kT`α+t
n ‖ ≤ 2ε(n, δ∗)ν?−α (54)

for all k ∈ {1, 2, . . .} and t ≤ T̃ (ε(n, δ∗)ν?−α). Mimicking the arguments from claims (48a)
and (48b), and using the large sample-size assumption (C) (condition (79)) yields the

claim (54) for any t ≤ ε(n, δ∗)
− ν?
β . Putting this together with the fact (47) that T`α ≤

ε(n, δ∗)
− ν?
β implies the claim (46b).

Turning to the proof of claim (53), we note that the base case k = 0 follows from the

claim (46a) by plugging in ` = `α. For the inductive step, assuming ‖θS`α+kT`α
n ‖ ≤ ε(n, δ∗)ν?−α,

arguments similar to that in the proof of claims (48a) and (48b) yield

‖θS`α+kT`α+T
(1)
`α

n ‖ ≤ c′ε(n, δ∗)ν?−α and,

‖ θS`α+kT`α+T
(1)
`α

+T
(2)
`α

n︸ ︷︷ ︸
θ
S`α

+(k+1)T`α
n

‖ ≤ ε(n, δ∗)ν?−α,

thereby establishing the induction hypothesis.

A.2 Proof of Theorem 6

We divide the proof into two subsections, corresponding to parts (a) and (b) of Theorem 6.

A.2.1 Proof of part (a)

We introduce the shorthands ε̃(n, δ) = (ε(n, δ))
1

1+γ and Tf = 1
(1+γ) ·

log(ρ/ε(n,δ))
log(1/κ) . Without

loss of generality, we can assume that

‖θtn − θ?‖ >
(2− κ)

(1− κ)
ε̃(n, δ) for all t ∈ {0, . . . , Tf − 1} . (55)

Otherwise, the claim is immediate. Given the condition (55), we prove the following two
claims:

θtn ∈ A(θ?, ε̃(n, δ), ρ) for all t ∈ {0, . . . , Tf − 1} , (56a)

and ‖θTf
n − θ?‖ ≤

(2− κ)

(1− κ)
ε̃(n, δ). (56b)

The latter claim (56b) completes the proof of part (a) of the theorem.
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Proof of claim (56a) With the condition (55) in hand, it remains to prove that ‖θtn − θ?‖ ≤ ρ.
The base case of t = 0 is immediate from the initialization conditions. For the induction
step, assuming θtn ∈ A(θ?, ε̃(n, δ), ρ), we have

‖θt+1
n − θ?‖ = ‖Fn(θtn)− θ?‖ ≤ ‖Fn(θtn)− F (θtn)‖+ ‖F (θtn)− θ?‖

(i)

≤ sup
θ∈A(θ?,ε̃(n,δ),ρ)

‖Fn(θ)− F (θ)‖+ κ‖θtn − θ?‖

(ii)

≤ ε(n, δ) max

{
1

ε̃(n, δ)γ
, ρ

}
+ κρ (57)

=
ε(n, δ)

ε̃(n, δ)γ
+ κρ

= ε(n, δ)
1

1+γ + κρ
(iii)

≤ ρ,

where the inequality (i) follows from the induction hypothesis that θtn ∈ A(θ?, ε̃(n, δ), ρ)
and the fact that operator F is κ-contractive in the ball B(θ?, ρ); inequality (ii) follows

from the first inequality from condition (19a) that implies that ε̃(n, δ) = ε(n, δ)
1

1+γ ≥ ρ̃ and
then invoking the instability condition (12) with r = ε̃(n, δ) and ρ2 = ρ. Finally, the last
inequality (iii) follows from the second bound of the condition (19a). The inductive step is
thus established.

Proof of claim (56b) We observe that

‖θTf
n − θ?‖ = ‖Fn(θTf−1

n )− θ?‖ (58)

≤ ‖Fn(θTf−1
n )− F (θTf−1

n )‖+ ‖F (θTf−1
n )− θ?‖

(i)

≤ sup
θ∈A(θ?,ε̃(n,δ),ρ)

‖Fn(θTf−1
n )− F (θTf−1

n )‖+ κ‖θTf−1
n − θ?‖

(ii)

≤ ε(n, δ) max

{
1

ε̃(n, δ)γ
, ρ

}
+ κ‖θTf−1

n ‖, (59)

where inequality (i) follows from our earlier claim (56a) and the κ-contractivity of the
operator F on the ball B(θ?, ρ); inequality (ii) follows from an argument similar to the one
used to establish the inequality (57). Finally, recursing equation (59) Tf times, we obtain
that

‖θTf
n − θ?‖≤ε(n, δ) max

{
1

ε̃(n, δ)γ
, ρ

}
· (1 + κ+ . . .+ κTf−1) + κTf‖θ0

n − θ?‖

≤ ε(n, δ)

(1− κ)
max

{
1

ε̃(n, δ)γ
, ρ

}
+ κTfρ

≤ ε̃(n, δ)

(1− κ)
+ ε̃(n, δ) =

(2− κ)

(1− κ)
ε̃(n, δ),

where the last step follows from the upper bound on iteration Tf , which in turn implies that
κTfρ ≤ ε̃(n, δ). The proof is now complete.
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A.2.2 Proof of part (b)

The proof for Theorem 6(b) borrows ideas from the proof of Theorem 5 as well as the proof
of part (a) of Theorem 6. We introduce the following definitions:

Ts := [ε(n, δ)]
− 1−|γ|ν?

1+β , where ν? :=
β

1 + β − γβ .

In order to prove the result (20b), we can, without loss of generality, assume that

‖θtn − θ?‖ > 2[ε(n, δ)]ν? for all t ∈ {0, . . . , Ts − 1} , (60)

and show that ‖θTs
n − θ?‖ ≤ 2[ε(n, δ)]ν? . We only prove the result for θ? = 0 as the more

general case can be derived in a similar fashion.
In order to proceed further, we make use of a result similar to Lemma 10 adapted to

the unstable case. Given two positive scalars r1 < r2, we define

T̃ (r1, r2) :=
r2r
|γ|
1

ε(n, δ)
. (61)

Lemma 11 Suppose that the assumptions for part (b) of Theorem 6 hold. Further, suppose
that the operator Fn satisfies ‖F tn(θ)‖ ≥ r1 for any point θ such that ‖θ‖ ∈ [r1, r2] and for
all t ≤ T̃ (r1, r2), where ρ̃ ≤ r1 ≤ r2 ≤ ρ/2. Then with probability at least 1− δ, we have

sup
θ∈A(θ?,r1,r2)

‖F t(θ)− F tn(θ)‖ ≤ t · ε(n, δ)
r
|γ|
1

for all t ≤ T̃ (r1, r2). (62)

See Appendix C.2 for its proof.
We are now ready for the main argument. We have

‖θtn‖ = ‖F tn(θ0
n)‖ ≤ ‖F t(θ0

n)‖+ ‖F t(θ0
n)− F tn(θ0

n)‖
(i)

≤ 1

tβ
+ ‖F t(θ0

n)− F tn(θ0
n)‖ (63)

(ii)

≤ 1

tβ
+ t · ε(n, δ)

[ε(n, δ)]ν?|γ|
, for all t ≤ T̃ ([ε(n, δ)]ν? , ρ), (64)

with probability at least 1 − δ. Here, inequality (i) follows from the SLOW(β)-convergence
condition (8) of the operator F along with the assumptions that θ? = 0 and ‖θ0

n‖ ≤ ρ;
inequality (ii) follows by applying Lemma 11 with r1 = [ε(n, δ)]ν? and r2 = ρ in light
of the condition (60). In the final bound (64), the first term decreases with iteration t
while the second term increases with t. In order to trade off the two terms, we plug

in t = Ts

(†)
≤ T̃ ([ε(n, δ)]ν? , ρ) (where the inequality (†) holds due to the second bound in

assumption (20a)), and perform some algebra to obtain that

‖θTs
n ‖ ≤

1

T βs
+ Ts

ε(n, δ)

[ε(n, δ)]ν?|γ|
≤ 2[ε(n, δ)]ν? ,

which yields the claim.
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Appendix B. Tightness of general results

In this appendix, we construct a simple class of problems to demonstrate that the guarantees
Theorems 5 and 6 in this paper are unimprovable in general.

B.1 Constructing the family of operators

We establish our lower bounds by considering the following pairs of optimization problems:

min
θ∈Rd

f(θ), where f(θ) :=
‖θ‖p
p

, and (65)

min
θ∈Rd

fn(θ), where fn(θ) := f(θ)− εn
‖θ‖q
q

, (66)

where p, q are positive reals satisfying q ≥ 2, and p > q+1, and the scalar εn is a perturbation
term. The perturbation εn is any non-increasing function in n, that decays to zero as the
sample size n increases, so that the problem (66) can be seen as a noisy “finite-sample
instantiation” of the “population-level” problem (65).

To study the tightness of our general results, we study the guarantees for three different
algorithms: (a) gradient descent method, (b) Newton’s method, and (c) cubic-regularized
Newton’s method (for d = 1). We note that for the population-level updates, there is a
unique global optimal θ? = 0, and for the sample-level objective, the global minima θ∗n

satisfies εstat
n := ‖θ∗n‖ = ε

1
p−q
n .

For our lower bounds, we analyze the behavior of three different algorithms: (a) gradient
descent method, (b) Newton’s method, and (c) cubic-regularized Newton’s method (for
d = 1), with the population-level operators QGD

n , QNM
n , and QCNM

n defined as follows:

QGD(θ) = θ − η∇f(θ) = θ
(
1− η‖θ‖q−2

)
, (67a)

QNM(θ) = θ −
[
∇2f(θ)

]−1∇f(θ) =

(
1− 1

p− 1

)
θ, and (67b)

QCNM(θ) = arg min
y∈R

{
∇f(θ)(y − θ) +

1

2
∇2f(θ)(y − θ)2 + cp |y − θ|3

}
, (67c)

where cp := 1
6(p− 1)(p− 2), and η > 0 denotes the step-size of gradient descent algorithm.

The corresponding sample-level updates are generated by the operators QGD
n , QNM

n , and
QCNM
n , as follows:

QGD
n (θ)=θ−η∇fn(θ) = θ − η

(
‖θ‖p−2 − ε‖θ‖q−2

)
θ, (68a)

QNM
n (θ) = θ −

[
∇2fn(θ)

]−1∇fn(θ) =
(p− 2)‖θ‖p−2 − (q − 2)ε‖θ‖q−2

(p− 1)‖θ‖p−2 − ε(q − 1)‖θ‖q−2
θ, (68b)

QCNM
n (θ) = arg min

y∈R

{
∇fn(θ)(y−θ) +

1

2
∇2fn(θ)(y−θ)2+cp |y−θ|3

}
. (68c)

Standard algebra with the update equations (67a)-(67c) yields the following properties
with the population-level operators:

(P̂1) the operator QGD is SLOW( 1
p−2)-convergent on the ball B(θ?, 1) for small enough η > 0,
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(P̂2) the operator QNM is FAST(p−2
p−1)-convergent towards θ? = 0, and

(P̂3) the operator QCNM is SLOW( 2
p−3)-convergent on the ball B(θ?, 1).

Moving to the (in)-stability of sample-level operators, we can verify that:

(Ŝ1) the operator QGD
n is STA(q − 1)-stable over the Euclidean ball B(θ?, 1);

(Ŝ2) the operator QNM
n is UNS(−p+ q + 1)-unstable over the annulus A(θ?, c1r∗, 1), and

(Ŝ3) the operator QCNM
n is UNS(−p+1

2 + q)-unstable over the annulus A(θ?, c2r∗, 1) (d = 1)

with respect to the corresponding population-level operators, and the noise function εn.

B.2 Lower bounds showing sharpness

In this section, we demonstrate the our general upper bounds on statistical accuracy and
the iteration count, when specialized to the set-up above, are unimprovable. More precisely,
the following result applies to the gradient descent updates (68a) with step size η ∈

(
0, 1

2

]
,

along with the cubic regularized and standard Newton updates.

Proposition 12 Let p > q+1 and q ≥ 2, and define εstat
n := ε

1
p−q
n , then for the set-up (66),

given an initialization θ0 with ‖θ0‖ = 1, we have

‖(QGD
n )t(θ0)− θ?‖





≤ 2εstat
n for all t ≥ c1ε

− p−2
p−q

n ,

≥ εstat
n for all t ≥ 1,

≥ 2εstat
n for all t ≤ c′1ε

− p−2
p−q

n ,

(69)

‖(QNM
n )t(θ0)− θ?‖





≤ 2εstat
n for all t ≥ c2 log(ε−1

n )),

≥ εstat
n for all t ≥ 1,

≥ 2εstat
n for all t ≤ c′2 log(ε−1

n )),

and (70)

‖(QCNM
n )t(θ0)− θ?‖




≤ 2εstat

n for all t ≥ c3ε
− p−3
p−1

n ,

≥ εstat
n for all t ≥ 1,

(71)

where θ? = 0 denotes the fixed point of the operators QGD,QNM, and QCNM, and c1 >
c′1, c2 > c′2, and c3 denote universal constants depending on p, q and independent of n.

It is worth understanding how Proposition 12 establishes the tightness of the general
upper bounds given in Theorems 5 and 6. Note that the properties (P̂1)− (P̂3) and (Ŝ1)−
(Ŝ3), in conjunction with our general results in Theorems 5 and 6, provide an upper bound
on the statistical error given sufficiently many iterations as summarized in bounds (69),
(70) and (71), e.g., for the GD iterates, substituting β = 1

p−2 and γ = q − 1 in Theorem 5,
we conclude that

‖(QGD
n )t(θ0)− θ?‖ ≤ 2ε

1
p−q
n = 2εstat

n for all t ≥ c1ε
− p−2
p−q

n .
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Furthermore, Proposition 12 guarantees that, up to a the constant pre-factor 2, this statis-
tical error is the best possible since

‖(QGD
n )t(θ0)− θ?‖ ≥ εstat

n for all t ≥ 1.

Finally, the proposition also asserts that the GD updates take at least order ε
− p−2
q−2

n iterations
to converge by the following additional bounds, as we also have the following bound from
the display (69):

‖(QGD
n )t(θ0)− θ?‖ ≥ 2εstat

n for all t = c′2ε
− p−2
p−q

n .

A similar tightness of the statistical and computational guarantee can be argued for
fast unstable methods stated in Theorem 6(a) via the guarantee (70) for the Newton’s
method. Finally, for slow unstable operators, we establish the tightness for the statistical
error guarantee of Theorem 6(b) via the bound (71) for the CNM algorithm. (Showing the
tightness of iteration complexity for this case requires fairly involved technical analysis, and
is left for future work.) In a nutshell, Proposition 12 shows that the upper bound on the
final statistical errors, and the lower bound on the number of iterations needed to obtain
that final estimate, as stated in Theorems 5 and 6 are tight for the class of problems (66).

B.3 Proof of Proposition 12

As noted earlier, the upper bounds on the statistical error, and the corresponding lower
bound on the number of iterations follow directly by substituting appropriate β and γ
parameters from the properties listed above in Theorems 5 and 6. Since the arguments are
very similar to those in Appendix D, we omit a detailed derivation.

In order to see that the statistical error cannot decrease any further, we note that in
our example the iterates from gradient descent and (cubic-regularized) Newton’s methods
always converge to the global minima θ∗n of fn. Thus, we also have

‖QGD
n (θ)‖ ≥ εstat

n , ‖QNM
n (θ)‖ ≥ εstat

n , and
∣∣QCNM

n (θ)
∣∣ ≥ εstat

n

for all ‖θ‖ ≥ εstat
n . Consequently, we conclude that the error for all iterations are lower

bounded by εstat
n .

Next, we establish the lower bounds on the number of iterations to converge to within
2εstat
n for Gradient descent and Newton’s method. Introducing the shorthand ε := εn, and

rearranging terms in equations (68a) and (68b), we find that

QGD
n (θ) =

(
1− η‖θ‖p−2 + ηε‖θ‖q−2

)
θ, (72)

QNM
n (θ) =

(
1− ‖θ‖p−2 − ‖θ‖q−2ε

(p− 1)‖θ‖p−2 − (q − 1)‖θ‖q−2ε

)
θ. (73)

Proof for gradient descent iterates: Recursing the update (72), we find that

θt+T = θt ·
T∏

j=1

(
1− η‖θt+j‖p−2 + ηε‖θt+j‖q−2

)
. (74)
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Note that it suffices to show that with ‖θt‖ = 2∆ := 4εstat
n = 4ε

1
p−q , the smallest T∆ such

that ‖θT∆+t‖ ≤ satisfies T∆ = Ω(∆2−p).
Since the sequence {‖θt+j‖}T∆

j=1 is a decreasing sequence, we find that

∆ ≤ ‖θt+j‖ ≤ 2∆ for all j = 1, . . . T∆.

Using ∆ := 2 · ε
1
p−q and the update (74), we have

‖θt+T∆+1‖ ≥
(
1− cη∆p−2

)T∆ ‖θt‖ = 2∆ ·
(
1− cη∆2

)T∆ .

where c = 22p−4 − 2q−p > 0 under the assumptions p > q + 1 and q ≥ 2. In order to ensure
that ‖θt+T∆‖ ≤ ∆, we need to have

(
1− cη∆p−2

)T∆ ≤ 1

2
.

Rearranging the last equation yields T∆ ≥ c′

∆p−2 ≥ c′ε−
p−2
p−q , where c′ is a universal constant

which depends only on the pair (p, q). This completes the proof.

Proof for Newton’s method iterates: Following an argument similar to the last para-

graph and using ‖θt‖ = 2∆ ≥ 2 · ε
1
p−q , we find that

‖θt+T∆‖ ≥
(

1− 1

p− q

)T∆

‖θt‖ = 2∆ ·
(

1− 1

p− q

)T∆

.

Recalling that p− q ≥ 2, we have that T∆ ≥ log 2

log
(

p−q
p−q−1

) . Consequently, in order to achieve

an accuracy of 1
εp−q , we need at least log 2

log
(

p−q
p−q−1

) · log(ε−(p−q)) = c′ · log(1/ε) steps. Here,

the universal constant c′ only depends on (p, q). This completes the proof of the sharpness
of the Newton’s method.

B.4 Undesirable behavior of unstable operators

In this appendix, we prove that the minimum over all iterates k ∈ {1, 2, . . . , t} in Theorem 6
is necessary. In particular, we consider the following example

L(θ) = −θ4(θ − 2)2 and Ln(θ) = −
(
θ4 − θ2

√
n

)
(θ − 2)2.

We let F and Fn denote the operators corresponding to the Newton’s method as applied to
the functions L and Ln, respectively (Consequently, the operator F has three fixed points).
Following some simple algebra, it can be verified there are universal constants (c1, c2) such
that that the operators F and Fn defined above satisfy the conditions of Theorem 6 (a)

with θ? = 0 for some κ < 1, γ = −1, ε(n, δ) = n−
1
2 , ρ̃ = c1n

− 1
4 and ρ = c2. In panel (a)

of Figure 5, we plot the two functions L and Ln and illustrate the radii ρ̃, ρ (for a fixed
n). Some additional algebra shows that there exists θ0

n ∈ B(θ?, ρ̃) such that the iterates
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corresponding to the sequence θt+1
n = Fn(θtn) satisfy ‖θtn − θ?‖ ≥ 1� n−

1
4 for all iterations

t = 1, 2, . . .. See, in particular, the red (diamond) iterates in panel (b) of Figure 5 which

are generated with a starting point θ0
n = c3n

− 1
4 (which is below the controlled instability

threshold ρ̃). Clearly, we see that the first iterate produced by Newton’s method escapes
the local basin of attraction and the subsequent iterates converge to a very different fixed
point of the function Ln. On the other hand, when the Newton’s method is initialized in the
annulus A(θ?, ρ̃, ρ), the sequence θtn (blue circles) converges quickly to the vicinity of θ? as
guaranteed by Theorem 6. Furthermore, the iterates do not escape this local neighborhood.
Via this simple example, we have demonstrated that if no further regularity assumptions

−1 0 1 2
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−1.5

−1.0

−0.5

0.0

0.5

θ?
ρ̃

ρ

Ln(θ)

L(θ)

−1 0 1 2
θ →

−1.5

−1.0

−0.5

0.0

0.5

θ?
ρ̃

ρ

θ0

θ1

θ10

θ100θ0
θ10

Ln(θ)

L(θ)

Newton iterates

Newton iterates

(a) (b)

Figure 5. Instability of Newton’s method for the example discussed above (figure best
viewed in color). When the algorithm is initialized too close to θ? (red diamonds), the in-
stability of Newton’s method forces the iterates to jump too far away from θ? and converge
to another fixed point. On the other hand, if the initial point is initialized in the annu-
lus A(θ?, ρ̃, ρ), the Newton iterates (blue circles), do not leave this annulus and converge
monotonically to a small neighborhood of θ?.

are made, then starting an unstable algorithm from a point that is too close to θ?, the
subsequent iterates can be quite far from the true parameter.

Appendix C. Proofs of auxiliary results

In this appendix, we collect the proofs of Lemmas 10 and 11 that are central to the proofs
of our main theorems.

C.1 Proof of Lemma 10

We fix a radius r ∈ R. Our proof is based on the following auxiliary claim: conditioned on
the event E from equation (41), we have

sup
θ∈B(θ?,r)

‖F tn(θ)‖ ≤ 2r for all t ≤ T̃ (r) =
r1−γ

2γc2ε(n, δ∗)
. (75)

Taking this claim as given for the moment, we now establish the bound (44) claimed in
the lemma. We do so via induction on the iteration t ∈ {0, 1, . . . , T̃ (r)}. Note that the
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base-case t = 0 holds trivially, since ‖F 0(θ) − F 0
n(θ)‖ = ‖θ − θ‖ = 0. Given the induction

hypothesis for t, we establish the claim for t′ = t+ 1. For any θ ∈ B(θ?, r), we have

‖F t′(θ)− F t′n (θ)‖ = ‖F t+1(θ)− F t+1
n (θ)‖ (76)

≤ ‖F (F t(θ))− F (F tn(θ))‖+ ‖F (F tn(θ))− Fn(F tn(θ))‖
(i)

≤ ‖F t(θ)− F tn(θ)‖+ sup
θ̃∈B(θ?,2r)

‖F (θ̃)− Fn(θ̃)‖

(ii)

≤ sup
θ∈B(θ?,r)

‖F t(θ)− F tn(θ)‖+ c2(2r)γε(n, δ∗)

(iii)

≤ c2(2r)γε(n, δ∗)t+ c2(2r)γε(n, δ∗)

= (t+ 1)c2(2r)γε(n, δ∗).

In the above sequence of inequalities, we have made use of the following facts. In step (i),
we have used the 1-Lipschitzness (6) of the operator F for the first term and the bound (75)
on F tn(θ) for the second term. In order to establish step (ii), we have used the fact that
θ ∈ B(θ?, r) for the first term, while for the second term we have invoked the definition of
the event E in equation (41) with radius 2r (note that 2R ⊂ R′ and the event E is defined
for all r′ ∈ R′). Finally step (iii) follows directly from the induction hypothesis. Noting
that the bound (75) holds for any t ≤ T̃ (r) and taking supremum over θ ∈ B(θ?, r) on the
LHS of equation (81), we obtain the desired proof of the inductive step.

C.1.1 Proof of claim (75)

We establish the claim (75) by proving the following stronger result: For any fixed r ∈ R,
and any θ ∈ B(θ?, r), we have

‖F tn(θ)‖ ≤ r + c2(2r)γε(n, δ∗) · t for all iterations t = 0, 1, . . . , T̃ (r). (77)

We note that the claim (75) is a direct application of this result along with the definition

T̃ (r) = r1−γ

2γc2ε(n,δ∗)
. We now use an induction argument on the iteration t (similar to the

ones used in the paragraph above) to establish the claim (77). The base-case t = 0 holds
trivially. Let us assume that ‖F tn(θ)‖ ≤ r + c2(2r)γε(n, δ∗) · t and establish the claim (77)
for t′ = t+ 1. Note that since t ≤ T̃ (r), this assumption trivially yields that ‖F tn(θ)‖ ≤ 2r.
We have

‖F t+1
n (θ)‖ ≤ ‖F (F tn(θ))‖+ ‖F (F tn(θ))− Fn(F tn(θ))‖

(i)

≤ ‖F tn(θ)‖+ sup
θ̃∈B(θ?,2r)

‖F (θ̃)− Fn(θ̃)‖

(ii)

≤ (r + c2(2r)γε(n, δ∗) · t) + c2(2r)γε(n, δ∗)

= r + c2(2r)γε(n, δ∗)(t+ 1),

where in step (i), we have used the 1-Lipschitzness (6) of the operator F for the first term
and the observation that ‖F tn(θ)‖ ≤ 2r for the second term. On the other hand, in step (ii),
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we have used the induction hypothesis to bound the first term, and invoked the definition
of the event E in equation (41) with radius 2r to bound the second term. Taking supremum
over θ ∈ B(θ?, r) completes the proof.

C.1.2 Proof of claim (45)

Combining the relation λ` = ν?(1− ν`) with the two inequalities in equation (45), we find
that it suffices to prove the following two bounds:

ε(n, δ∗)
− βν`

1+β ≥ (2γc2)
β

1+β and ε(n, δ∗)
−βν

`+1

1+β ≥ (2γc2)
β

1+β (c′)
− β
ν?(1+β) . (78)

Observe that λ` ≤ ν?−α/4; consequently, we find that 1/ν` ≤ 4ν?/α for all ` ≤ `α. Finally,
invoking assumption (14) we find that

ε(n, δ∗) ≤ 1

(2γc2)
4ν?
α ·max

{
1, (c′)

4
α

} . (79)

The rest of the proof follows by noting that the upper bound (79) implies the bounds in
equation (78).

C.2 Proof of Lemma 11

Fix an arbitrary pair of radii r1, r2 ∈ R. Our proof is based on the following intermediate
claim

‖F tn(θ)‖ ≤ 2r2 for all t ≤ T̃ (r1, r2). (80)

We prove this claim at the end of this appendix. Assuming that this claim is given at
the moment, we now establish the bound (62) claimed in the lemma. We do so by using
induction on the iteration t ∈ {0, 1, . . . , T̃ (r1, r2)} where we note that the base-case t = 0
holds trivially, since ‖F 0(θ) − F 0

n(θ)‖ = ‖θ − θ‖ = 0. Turning to the induction step (with
t′ = t+ 1), for any θ with ‖θ‖ ∈ [r1, r2], we have

‖F t′(θ)− F t′n (θ)‖ = ‖F t+1(θ)− F t+1
n (θ)‖ (81)

≤ ‖F (F t(θ))− F (F tn(θ))‖+ ‖F (F tn(θ))− Fn(F tn(θ))‖
(i)

≤ ‖F t(θ)− F tn(θ)‖+ sup
r1≤‖θ̃‖≤2r2

‖F (θ̃)− Fn(θ̃)‖

(ii)

≤ sup
r1≤‖θ‖≤2r2

‖F t(θ)− F tn(θ)‖+
ε(n, δ∗)

r
|γ|
1

(iii)

≤ t
ε(n, δ∗)

r
|γ|
1

+
ε(n, δ∗)

r
|γ|
1

= (t+ 1) · ε(n, δ
∗)

r
|γ|
1

.

In step (i), we have used the 1-Lipschitzness (6) of the operator F for the first term and
the upper bound (75) on F tn(θ) for the second term. In step (ii), the upper bound for the
first term follows from the sequence of inequalities

ρ̃ ≤ r1 ≤ ‖θ‖ ≤ r2 ≤ 2r2 ≤ ρ,
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whereas for the second term we have invoked the bound ‖θ̃‖ := F t
′
n (θ) ≤ 2r2 (80) and

applied the instability condition (12). Finally, step (iii) follows from a direct application
of the induction hypothesis. Note that the bound (75) holds for any t ≤ T̃ (r). By taking
supremum over θ ∈ B(θ?, r) on the LHS of equation (81), we obtain the desired proof of the
inductive step.

C.2.1 Proof of bound (80)

We use an inductive argument to show that

‖F tn(θ)‖ ≤ t · ε(n, δ
∗)

r
|γ|
1

+ r2 for all 1 ≤ t ≤ T̃ (r1, r2), (82)

which immediately implies the claim (80) once we plug in the definition of T̃ (61).
For the base-case t = 0, invoking the properties of the operators F and Fn we have

‖Fn(θ)‖ ≤ ‖Fn(θ)− F (θ)‖+ ‖F (θ)‖
(i)

≤ sup
r1≤‖θ‖≤r2

‖Fn(θ)− F (θ)‖+ ‖θ‖

(ii)

≤ ε(n, δ∗)

r
|γ|
1

+ r2,

where step (i) follows since ‖θ‖ ∈ [r1, r2] and the operator F is 1-Lipschitz, and step (ii)
follows from the instability condition (12). This proves the base case of the induction
hypothesis (82).

Now we prove the inductive step. In particular, we assume that the induction hypothe-
sis (82) holds for t ≤ T̃ (r1, r2)− 1 and show that the upper bound (82) holds for t′ = t+ 1.
Towards this end, unwrapping the expression for ‖F t+1

n (θ)‖ we have

‖F t′n (θ)‖ ≤ ‖F t+1
n (θ)− F (F tn(θ))‖+ ‖F (F tn(θ))‖

(iii)

≤ sup
r1≤‖θ‖≤2r2

‖Fn(θ)− F (θ)‖+ ‖F tn(θ)‖

(iv)

≤ ε(n, δ∗)

r
|γ|
1

+ t
ε(n, δ∗)

r
|γ|
1

+ r2

= (t+ 1)
ε(n, δ∗)

r
|γ|
1

+ r2.

Here, step (iii) follows from the fact that ‖F tn(θ)‖ ≥ r1 and the LL(ρ) condition (6); step
(iv) stems from the instability condition (12) and the induction hypothesis. This completes
the proof of the intermediate claim (82).

Appendix D. Proofs of corollaries

We now collect the proofs of several corollaries stated in the paper. As a high-level summary,
our analysis in all three examples in Section 4 involves applying Theorem 5 to analyze
gradient descent/ascent and EM, both of which are stable algorithms and exhibit slow
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convergence for the considered examples. We invoke Theorem 6(b) to characterize the
cubic-regularized Newton algorithm, a slowly convergent and unstable algorithm. Finally,
the analysis of Newton’s method in all the examples relies on Theorem 6(a). Appendices D.1
and D.2 are devoted to the proofs of Corollaries 7 and 8, respectively. We then prove
Corollary 9 in Appendix D.3. In this section, the values of universal constants (e.g., c, c′

etc.) can change from line-to-line.

D.1 Proof of Corollary 7

In this appendix, we demonstrate the convergence and stability of the gradient and Newton
methods. The operators for the gradient method and Newton’s method take the following
forms

MGA(θ) = θ + ηL̄′(θ), and MGA
n (θ) = θ + ηL̄′n(θ), (83a)

MNM(θ) = θ −
[ L̄′(θ)
L̄′′(θ)

]
, and MNM

n (θ) = θ −
[ L̄′n(θ)

L̄′′n(θ)

]
. (83b)

D.1.1 Proofs for the gradient operators

In lieu of the discussion around Corollary 7 it remains to establish that (a) the operator
MGA exhibits a slow convergence condition SLOW(1

2) over the Euclidean ball B(θ?, 1/2) and
(b) the operator MGA

n satisfies a stability condition STA(1) over the Euclidean ball B(θ?, 1/2)
with noise function ε(n, δ) =

√
log(1/δ)/n when n ≥ c log(1/δ) for some universal constant

c > 0.

Slow convergence of MGA Direct computation with the gradient of population log-
likelihood function L̄ leads to

L̄′(θ) :=
θ

2(θ2 + 1)(2
√

1 + θ2 − 1)
− θ

2
(84)

=⇒ MGA(θ) = θ

[
1− η

(
1

2
− 1

2(θ2 + 1)(2
√

1 + θ2 − 1)

)]
.

Noting that the fixed point of the population operator is θ? = 0 and that η ≤ 8/3, we find
that

∣∣MGA(θ)− θ?
∣∣ = |θ|

[
1− η

(
1

2
− 1

2(θ2 + 1)(2
√

1 + θ2 − 1)

)]

≤ |θ|
[
1− η

(
1

2
− 1

2(θ2 + 1)

)]

≤ |θ|
(

1− ηθ2

4

)
for all |θ| ∈ [0, 1/2].

Thus the population operator MGA satisfies a slow convergence condition SLOW(1
2) over the

ball B(θ?, 1/2).
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Stability of the sample operator MGA
n We have

∣∣MGA
n (θ)−MGA(θ)

∣∣ = η
∣∣∇L̄(θ)−∇L̄n(θ)

∣∣

≤ η
( ∣∣∣∣∣∣

θ

2(θ2 + 1)
(

2
√

1 + θ2 − 1
)
(

2

n

n∑

i=1

(1−Ri)− 1

)∣∣∣∣∣∣

+

∣∣∣∣∣θ
(

1

2
− 1

n

n∑

i=1

RiY
2
i

)∣∣∣∣∣

)
.

Recall that, R1, . . . , Rn are i.i.d. samples from Bernoulli distribution with probability 1/2.
Invoking Hoeffding’s inequality yields that

∣∣∣∣∣
2

n

n∑

i=1

(1−Ri)− 1

∣∣∣∣∣ ≤ c
√

log(1/δ)

n
, (85)

with probability at least 1− δ. Additionally, as Y1, . . . , Yn are i.i.d. samples from standard
Gaussian distribution N (0, 1) and R1, . . . , Rn are independent of Y1, . . . , Yn, by following
the same argument as that in the proof of Lemma 1 from the paper (Dwivedi et al., 2020a),
we can demonstrate that

∣∣∣∣∣
1

n

n∑

i=1

RiY
2
i −

1

2

∣∣∣∣∣ ≤ c1

√
log(1/δ)

n
, (86)

as long as the sample size n ≥ c2 log(1/δ) with probability at least 1 − δ where c1 and c2

are some universal constants.

Combining the inequalities (85) and (86) yields the following bound

sup
θ∈B(θ?,r)

∣∣MGA
n (θ)−MGA(θ)

∣∣

≤ c3

√
log(1/δ)

n
sup

θ∈B(θ?,r)


 |θ|

2(θ2 + 1)
(

2
√

1 + θ2 − 1
) + |θ|




≤ 3c3r

2
,

with probability at least 1 − 2δ for any r > 0. Here, the second inequality in the above

display follows from the fact that (θ2 + 1)
(

2
√

1 + θ2 − 1
)
≥ 1 for all θ ∈ R. Thus, the

sample-level operator MGA
n is STA(1)-stable over the Euclidean ball B(θ?, 1/2) with noise

function ε(n, δ) =
√

log(1/δ)/n when n ≥ c log(1/δ) for some universal constant c > 0.

D.1.2 Proof for the Newton operators

Similar to the proof for Newton operators in over-specified Gaussian mixtures (see Ap-
pendix D.2.1), we first verify the geometric convergence of population operator MNM and
the instability condition of sample operator MNM

n . Then, we validate Assumption (D) by
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showing that the Newton updates are monotone decreasing and satisfy the following lower
bound

∣∣MNM(θ)
∣∣ ≥ |θ∗n| , (87)

for all |θ| ∈ [|θ∗n| , 1/2] for any global maxima θ∗n of the sample log-likelihood function L̄n in
equation (23).

Geometric convergence of MNM We can verify that L̄′′(θ) < 0 for all θ ∈ R. Addition-
ally, we have the following equation

∣∣MNM(θ)− θ?
∣∣ = |θ − θ?| θ2T2(θ)

T1(θ) + θ2T2(θ)
,

where the functions T1 and T2 are defined as

T1(θ) :=
1

2
− 1

2(θ2 + 1)(2
√
θ2 + 1− 1)

, and

T2(θ) :=
1

2(θ2 + 1)2(2
√
θ2 + 1− 1)

(
3 +

1

2
√
θ2 + 1− 1

)
.

From the earlier proof argument for slow convergence of MGA, we have T1(θ) ≥ θ2

8 for all
|θ| ∈ [0, 1/2]. Given the above lower bound of T1, we directly obtain that

∣∣MNM(θ)− θ?
∣∣ ≤ |θ − θ?| T2(θ)

1/8 + T2(θ)
≤ |θ − θ?| T2(1/2)

1/8 + T2(1/2)
≤ 4

5
|θ − θ?| ,

for all |θ| ∈ [0, 1/2] where the last inequality is due to the fact that T2(θ)/(c + T2(θ))
achieves its maximum value at |θ| = 1/2. Therefore, the population operator MNM is
FAST(4/5)-convergent on the ball B(θ∗, 1/2).

Instability of the sample Newton operator MNM
n Given the formulations of popula-

tion operator MNM and sample operator MNM
n from Newton’s method, we have the following

inequality

∣∣MNM
n (θ)−MNM(θ)

∣∣ ≤
∣∣∣∣
L̄′(θ)− L̄′n(θ)

L̄′′(θ)

∣∣∣∣
︸ ︷︷ ︸

:=J1

+

∣∣∣∣L̄′n(θ)

(
1

L̄′′(θ) −
1

L̄′′n(θ)

)∣∣∣∣
︸ ︷︷ ︸

:=J2

.

We claim the following upper bounds of J1 and J2:

J1 ≤ c1
1

|θ|

√
log(1/δ)

n
, (89)

with probability at least 1− 2δ as long as |θ| ∈ [0, 1/2] and n ≥ c′ log(1/δ), and

J2 ≤ c2 ·
1

|θ|

√
log(1/δ)

n
, (90)
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with probability at least 1− 6δ when |θ| ≥
√

2c (log(1/δ)/n)1/4.

With the upper bounds (89) and (90) of J1 and J2 respectively, we arrive at the following
inequality

∣∣MNM
n (θ)−MNM(θ)

∣∣ ≤ c′′ |θ|−1
√

log(1/δ)/n,

with probability at least 1 − 8δ as long as
√

2c (log(1/δ)/n)1/4 ≤ |θ| ≤ 1/2. As a con-
sequence, the sample operator MNM

n satisfies instability condition UNS(1) over the annu-

lus A(θ?,
√

2c (log(1/δ)/n)1/4 , 1/2) with noise function ε(n, δ) =

√
log(1/δ)

n
as long as

n ≥ c′ log(1/δ).

Proof for the upper bound of J1 When n ≥ c′ log(1/δ), we can validate that

∣∣L̄′(θ)− L̄′n(θ)
∣∣ ≤ c |θ|

√
log(1/δ)

n
,

for any |θ| ∈ [0, 1/2] with probability at least 1 − 2δ where c and c′ are some universal
constants. Furthermore, based on the computations in Appendix D.1.2, we find that

∣∣L̄′′(θ)
∣∣ = T1(θ) + θ2T2(θ) ≥ θ2

8
+ θ2T2(1/2) ≥ 11θ2

32
, (91)

for any |θ| ∈ [0, 1/2]. Combining the previous inequalities, we have the following upper
bound with J1:

J1 ≤ c1
1

|θ|

√
log(1/δ)

n
,

with probability at least 1− 2δ as long as |θ| ∈ [0, 1/2] and n ≥ c′ log(1/δ).

Proof for the upper bound of J2 In order to derive an upper bound for J2, we make
use of the following bounds:

∣∣L̄′n(θ)
∣∣ ≤ c1

(
|θ|
√

log(1/δ)

n
+ |θ|3

)
, (92a)

∣∣L̄′′n(θ)− L̄′′(θ)
∣∣ ≤ c2

√
log(1/δ)

n
, (92b)

∣∣L̄′′n(θ)
∣∣ ≥ c3

(
θ2 − c ·

√
log(1/δ)

n

)
, (92c)

for all |θ| ∈ [0, 1/2] with probability at least 1 − 2δ when n ≥ c′ log(1/δ). Here, c, c1, c2, c3

in the above bounds are universal constants independent of δ.

Deferring the proofs of these claims to later, we now proceed to give an upper bound
for J2 based on the given bounds in the above display. In particular, from the formulation
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of J2, we achieve that

J2 ≤
32c1c2

11c3

(
|θ|
√

log(1/δ)

n
+ |θ|3

) √
log(1/δ)

n

θ2

(
θ2 − c

√
log(1/δ)

n

)

≤ C · 1

|θ|

√
log(1/δ)

n

with probability at least 1 − 6δ when |θ| ≥
√

2c (log(1/δ)/n)1/4 where C is some univer-

sal constant. Here, the last inequality is due to |θ|
√

log(1/δ)
n + |θ|3 ≤ |θ|3

(
1 + 1

2c

)
and

θ2 − c
√

log(1/δ)
n ≥ |θ|2 /2 as long as we have |θ| ≥

√
2c (log(1/δ)/n)1/4.

Proof of claim (92a) Invoking triangle inequality, when n ≥ c′ log(1/δ) we have

∣∣L̄′n(θ)
∣∣ ≤ c |θ|



√

log(1/δ)

n
+

1

2
− 1

2(θ2 + 1)
(

2
√
θ2 + 1− 1

)


 ,

with probability at least 1 − 2δ for any |θ| ∈ [0, 1/2] where the inequality in the above
display is due to the inequalities (85) and (86). Furthermore, we can validate that

1

2
− 1

2(θ2 + 1)
(

2
√
θ2 + 1− 1

) ≤ 3θ2

2

for any |θ| ∈ [0, 1/2]. In light of the previous inequalities, we arrive at the following inequal-
ity

∣∣L̄′n(θ)
∣∣ ≤ 3c |θ|

2

(√
log(1/δ)

n
+ θ2

)
,

with probability at least 1 − 2δ for all |θ| ∈ [0, 1/2]. As a consequence, we reach the
conclusion of claim (92a).

Proof of claims (92b) and (92c) The proof of claim (92b) is a direct application of
triangle inequality and the fact that |θ| ∈ [0, 1/2]. In addition, we have

∣∣L̄′′n(θ)
∣∣ ≥

∣∣L̄′′(θ)
∣∣−
∣∣L̄′′n(θ)− L̄′′(θ)

∣∣ ≥ c′
(
θ2 − c

√
log(1/δ)

n

)
,

with probability at least 1−2δ for any |θ| ∈ [0, 1/2] where c, c′ are universal constants inde-
pendent of δ and the last inequality in the above display is due the results from equation (91)
and claim (92b). As a consequence, we achieve the conclusion of claim (92c).
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Lower bound and monotonicity of Newton updates Now, we proceed to verify the
lower bound of Newton updates in claim (87). In order to ease the ensuing presentation, we
denote f(θ) := 1

(θ2+1)(2
√
θ2+1−1)

for all θ. The global maxima θ∗n of the sample log-likelihood

function L̄n are the solutions of the following equation

θ∗nf(θ∗n)

(
1

n

n∑

i=1

(1−Ri)
)

= θ∗n

(
1

n

n∑

i=1

RiY
2
i

)
.

The specific forms of θ∗n depend on the values of Ri, Yi for i ∈ [n]. In particular, when∑n
i=1RiY

2
i <

∑n
i=1(1 − Ri), namely, the Hessian of sample likelihood function L̄n at 0 is

positive, the function L̄n is bimodal and symmetric around 0. Additionally, θ∗n are different
from 0 and become the solution of the following equation

f(θ∗n)

(
1

n

n∑

i=1

(1−Ri)
)

=

(
1

n

n∑

i=1

RiY
2
i

)
. (93)

On the other hand, when
∑n

i=1RiY
2
i >

∑n
i=1(1 − Ri), the function L̄n is unimodal and

symmetric around 0. Under this case, θ∗n = 0 is the unique global maximum.
Without loss of generality, we assume that θ > 0 and the global maxima are solutions

of equation (93). From the formulation of MNM
n , the inequality MNM

n (θ) > 0 is equivalent
to

θf ′(θ) + f(θ) < f(θ∗n),

which holds for all θ ≥ |θ∗n| since f(θ) < f(θ∗n) and f ′(θ) < 0 as θ ≥ |θ∗n|. Therefore, we
have MNM

n (θ) > 0 for all θ ≥ |θ∗n|. Now, in order to demonstrate that MNM
n (θ) ≥ |θ∗n| for

θ ≥ |θ∗n|, it is equivalent to

(|θ∗n| − θ) θf ′(θ) + |θ∗n| (f(θ)− f(θ∗n)) ≥ 0. (94)

Invoking mean value theorem, we can find some constant θ̄ ∈ (|θ∗n| , θ) such that

f(θ)− f(θ∗n) = f(θ)− f(|θ∗n|) = f ′(θ̄)(θ − |θ∗n|).

Given the above equation, the inequality (94) can be rewritten as

|θ∗n| f ′(θ̄) ≥ θf ′(θ) (95)

for all θ ≥ |θ∗n|. Since the function θf ′(θ) is a decreasing function in (0, 1/2], we have
θf ′(θ) ≤ θ̄f ′(θ̄) for any θ̄ < θ. Since f ′(θ̄) < 0 and θ̄ > |θ∗n|, we find that θ̄f ′(θ̄) ≤ |θ∗n| f ′(θ̄).
In light of these two inequalities, we achieve the inequality (95). As a consequence, we reach
the conclusion of claim (87).

D.2 Proof of Corollary 8

Under the model (28b), the sample EM operator takes the form

GEM
n (θ) =

1

n

n∑

i=1

Xi tanh(θXi),

51



Ho, Khamaru, Dwivedi, Wainwright, Jordan, Yu

where tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x) is the hyperbolic tangent. In our prior work (cf. Theorem

3 in the paper (Dwivedi et al., 2020a)), we studied the sample EM operator for this model.

Accordingly, in this paper, we limit our analysis to the Newton updates; see Ap-
pendix D.2.1 for the details. The sample and population Newton updates take the form

GNM(θ) = θ −
[
L′′(θ)

]−1 L′(θ) = θ +
E [X tanh(Xθ)]− θ
E
[
X2 tanh2(Xθ)

] , and (96a)

GNM
n (θ) = θ −

[
L′′n(θ)

]−1 L′n(θ)

= θ +

(
1
n

∑n
i=1Xi tanh(Xiθ)

)
− θ

1
n

∑n
i=1X

2
i tanh2(Xiθ) + 1− 1

n

∑n
i=1X

2
i

. (96b)

D.2.1 Proofs for Newton operators

We begin by verifying the fast convergence of the operator GNM and then the instability
of the operator GNM

n with respect to GNM in Theorem 6. Then, we demonstrate that the
Newton updates satisfy Assumption (D). Noting that it can be done by establishing that
the Newton updates are monotone decreasing and admit the following lower bound

∣∣GNM
n (θ)

∣∣ ≥ |θ∗n| (97)

for all |θ| ∈ [|θ∗n| , 1/3] for any global maximum θ∗n of Ln.

Fast convergence of the population-level operator GNM We provide the full proof
for the case θ ∈ (0, 1

3 ]; the proof for the case θ ∈ [−1
3 , 0) is analogous. We make use of the

following known bounds (Dwivedi et al., 2020b) on the hyperbolic function x 7→ x tanh(x):

x2 − x4

3
≤ x tanh(x) ≤ x2 − x4

3
+

2x6

15
for all x ∈ R. (98)

Applying this bound, we find that

E [X tanh(Xθ)] ≤ 1

θ
E
[
(Xθ)2 − (Xθ)4/3 + 2(Xθ)6/15

]
= θ − θ3 + 2θ5, as well as

E
[
X2 tanh2(Xθ)

]
≤ 1

θ2
E
[
(Xθ)4

]
= 3θ2,

and consequently that

θ − E [X tanh(Xθ)]

E
[
X2 tanh2(Xθ)

] ≥ θ − (θ − θ3 + 2θ5)

3θ2
=
θ − 2θ3

3

(θ∈(0,
1
3 ])

≥ 2θ

9
.

Noting that GNM(θ) = θ − θ−E[X tanh(Xθ)]

E[X2 tanh2(Xθ)]
and θ? = 0, we conclude that the population

Newton operator GNM is FAST(7
9)-convergent over the ball B(θ?, 1

3).
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Instability of the sample-level operator GNM
n Let us introduce the shorthand

An :=
1

n

n∑

i=1

Xi tanh(Xiθ), and Bn :=
1

n

n∑

i=1

X2
i tanh2(Xiθ) + 1− 1

n

n∑

i=1

X2
i .

Using the definitions (96b) of the operators GNM
n and GNM, we find that

∣∣GNM
n (θ)−GNM(θ)

∣∣ (99)

=

∣∣∣∣∣
E [X tanh(Xθ)]− θ
E
[
X2 tanh2(Xθ)

] − An − θ
Bn

∣∣∣∣∣

≤ |E [X tanh(Xθ)]−An|
E
[
X2 tanh2(Xθ)

]
︸ ︷︷ ︸

:=J1

+ |An − θ|
∣∣∣∣∣

1

E
[
X2 tanh2(Xθ)

] − 1

Bn

∣∣∣∣∣
︸ ︷︷ ︸

:=J2

.

Thus, in order to bound the difference
∣∣GNM

n (θ)−GNM(θ)
∣∣, it suffices to derive bounds for

the terms J1 and J2.

Upper bound for J1 For a given δ ∈ (0, 1), as long as the sample size n ≥ C log(1/δ) for
some universal constant C, we can apply Lemma 1 from the paper (Dwivedi et al., 2020a)
to assert that

|E [X tanh(Xθ)]−An| ≤ c |θ|
√

log(1/δ)

n
for all |θ| ∈ (0, 1

3) (100)

with probability 1− δ. Moreover, the bound (98) implies that

E
[
X2 tanh2(Xθ)

]
≥ 1

θ2
E
[(

(Xθ)2 − (Xθ)4

3

)2
]

= 3θ2 − 10θ4 +
35θ6

33
≥ 2θ2,

for θ ∈ [−1
3 ,

1
3 ]. Combining the above inequalities yields

J1 =
|E [X tanh(Xθ)]−An|
E
[
X2 tanh2(Xθ)

] ≤ c
|θ|
√

log(1/δ)
n

2θ2
≤ c′ 1

|θ|

√
log(1/δ)

n
, (101)

for all |θ| ∈ (0, 1/3) with probability at least 1− δ.
Upper bound for J2 In order to obtain an upper bound for J2, we claim the following
key bounds appearing in its formulation:

|An − θ| ≤ c1

(
|θ|
√

log(1/δ)

n
+ |θ|3

)
, (102a)

|Bn| ≥ c2

(
θ2 − c log4(3n/δ)√

n

)
, (102b)

∣∣E
[
X2 tanh2(Xθ)

]
−Bn

∣∣ ≤ c3
log(n/δ)√

n
, (102c)
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for all |θ| ∈ (0, 1/3] with probability at least 1−2δ as long as the sample size n ≥ c log(1/δ).
Here, c, c1, c2, c3 in the above probability bounds are universal constants independent of δ.
Assume that the above claims are given at the moment. The results in these claims lead to

J2 = |An|
∣∣∣∣∣
E
[
X2 tanh2(Xθ)

]
−Bn

BnE
[
X2 tanh2(Xθ)

]
∣∣∣∣∣

≤ c′
(
|θ|
√

log(1/δ)

n
+ |θ|3

) log(n/δ)√
n

θ2
(
θ2 − c log4(3n/δ)√

n

)

≤ c′′ 1

|θ|
log(n/δ)√

n
(103)

with probability at least 1− 5δ. Here, the last inequality is due to the facts that

|θ|
√

log(1/δ)

n
+ |θ|3 ≤ |θ|3

(
1 +

1

2c

)
and θ2 − c log4(3n/δ)√

n
≥ |θ|2 /2,

as long as |θ| ≥
√

2c log2(3n/δ)/n1/4. Plugging the bounds (101) and (103) into equa-

tion (99), the operator GNM
n is UNS(−1)-unstable over the annulus A(θ?,

√
2c log2(3n/δ)

n1/4 , 1/3)

with noise function ε(n, δ) = log(n/δ)√
n

as long as the sample size n ≥ C log8(3n/δ)

n1/4 .

Proof of claim (102a) Invoking the concentration bound (100) and applying the triangle
inequality, we find that

|An − θ| ≤
∣∣∣∣∣
1

n

n∑

i=1

Xi tanh(Xiθ)− E [X tanh(Xθ)]

∣∣∣∣∣+ |E [X tanh(Xθ)]− θ|

≤ c
(
|θ|
√

log(1/δ)

n
+

1

|θ|
∣∣E [Xθ tanh(Xθ)]− θ2

∣∣
)

for all |θ| ∈ (0, 1/3] with probability 1 − δ. Next, taking expectation on both sides in the
bounds (98), we find that

E [Xθ tanh(Xθ)]− θ2 ≤ E
[
(Xθ)2 − (Xθ)4

3
+

2(Xθ)6

15

]
− θ2

= −θ4 + 2θ6 ≤ −7θ4

9
, and

E [Xθ tanh(Xθ)]− θ2 ≥ E
[
(Xθ)2 − (Xθ)4

3

]
− θ2 = −θ4.

Putting these pieces together yields the claim (102a).
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Proof of claim (102b) Invoking standard chi-squared concentration bounds and applying
triangle inequality, we obtain that

|Bn| ≥
1

n

n∑

i=1

X2
i tanh2(Xiθ)−

∣∣∣∣∣
1

n

n∑

i=1

X2
i − 1

∣∣∣∣∣

≥ c
(

1

n

n∑

i=1

X2
i tanh2(Xiθ)−

√
log(1/δ)

n

)

with probability at least 1− δ. Using the lower bound from inequality (98), we find that

1

n

n∑

i=1

X2
i tanh2(Xiθ) ≥

1

n

n∑

i=1

(
θX2

i −
θ3X4

i

3

)2

= θ2

(
1

n

n∑

i=1

X4
i

)
− 2θ4

3

(
1

n

n∑

i=1

X6
i

)
+
θ6

9

(
1

n

n∑

i=1

X8
i

)

(i)

≥ θ2

(
3− c′ log2(3n/δ)√

n

)
− 2θ4

3

(
15 + c′

log3(3n/δ)√
n

)

+
θ6

9

(
105− c′ log4(3n/δ)√

n

)

≥ θ2 − c′ log4(3n/δ)√
n

,

with probability at least 1 − δ for some universal constant c. Here step (i) makes use
of the following concentration bound for higher moments of Gaussian random variables
(Lemma 5 (Dwivedi et al., 2020b)):

P

[∣∣∣∣∣
1

n

n∑

i=1

X2k
i − E

[
X2k

]∣∣∣∣∣ ≤ c
′ logk(3n/δ)

n
1
2

]
≥ 1− δ

3
for k ∈ {2, 4, 6}

with probability at least 1 − δ/3 for k ∈ {2, 4, 6}. Putting together the pieces yields the
claim (102b).

Proof of claim (102c) Applying the triangle inequality yields
∣∣E
[
X2 tanh2(Xθ)

]
−Bn

∣∣ (104)

≤
∣∣∣∣∣
1

n

n∑

i=1

X2
i tanh2(Xiθ)− E

[
X2 tanh2(Xθ)

]
∣∣∣∣∣+

∣∣∣∣∣
1

n

n∑

i=1

X2
i − 1

∣∣∣∣∣

≤
∣∣∣∣∣
1

n

n∑

i=1

X2
i tanh2(Xiθ)− E

[
X2 tanh2(Xθ)

]
∣∣∣∣∣+ c

√
log(1/δ)

n

with probability at least 1 − δ. By adapting the truncation argument from the proof of
Lemma 5 in the paper (Dwivedi et al., 2020b) for the random variable X tanh(X) with
X ∼ N (0, 1), it follows that

∣∣∣∣∣
1

n

n∑

i=1

X2
i tanh2(Xiθ)− E

[
X2 tanh2(Xθ)

]
∣∣∣∣∣ ≤ c

′ log(n/δ)√
n

,
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for all |θ| ∈ (0, 1/3] with probability at least 1 − δ. Putting the results together yields the
claim (102c).

Lower bound and monotonicity of Newton updates We first make some observa-
tions about the structure of the log-likelihood function Ln. Define

f(θ) := θ − 1

n

n∑

i=1

Xi tanh(Xiθ).

When
∑n

i=1X
2
i > n, it can be shown (by computing the gradient and Hessian) that the

log-likelihood Ln is bimodal and symmetric around 0. It has multiple global maxima θ∗n
that are non-zero, and are solutions of the equation f(θ) = 0. On the other hand, when∑n

i=1X
2
i ≤ n, the function Ln is unimodal and symmetric around 0, and the point θ∗n = 0

is the unique global maximum of the log likelihood.
Next we verify the lower bound of Newton updates GNM

n (θ) in claim (97); the proof
of monotonicity can be argued similarly. Without loss of generality, we only consider the
setting when the global maxima θ∗n are different from 0 and θ > 0. Under that case, the
Hessian of the function Ln at |θ∗n| is negative. A direct computation with the gradient of
the function f leads to

f ′(θ) = 1− 1

n

n∑

i=1

X2
i sech2(Xiθ) = 1− 1

n

n∑

i=1

X2
i sech2(|Xi| |θ|)

≥ 1− 1

n

n∑

i=1

X2
i sech2(|Xi| |θ∗n|)

= −∇2Ln(θ∗n) > 0

for any θ > |θ∗n|. Therefore, the function f is a strictly increasing function when θ > |θ∗n|. It
leads to the inequality f(θ) ≥ f(θ∗n) = 0 for all θ ≥ |θ∗n|. Further computation with second
derivative of f yields that

f ′′(θ) =
2

n

n∑

i=1

X3
i tanh(Xiθ)sech2(Xiθ) > 0

for all θ > 0. The above inequality is due to Xi tanh(Xiθ) > 0 for all θ > 0 and i ∈ [n].
Thus, the function f ′ is strictly increasing when θ > 0.

Now the inequality GNM
n (θ) ≥ |θ∗n| for all θ ≥ |θ∗n| is equivalent to

f ′(θ)(θ − |θ∗n|) ≥ f(θ)− f(θ∗n). (105)

Invoking the mean value theorem, we find that

f(θ)− f(θ∗n) = f(θ)− f(|θ∗n|) = f ′(θ̄)(θ − |θ∗n|)

for some θ̄ ∈ (|θ∗n| , θ). Given that equality, the equality (105) can be rewritten as f ′(θ) ≥
f ′(θ̄) for all θ ≥ |θ∗n|. This inequality is true since f ′ is an increasing function when θ > 0.
As a consequence, we achieve the conclusion of claim (97).
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D.3 Proof of Corollary 9

In this appendix, we demonstrate the convergence and stability properties of operators from
gradient descent and (cubic-regularized) Newton’s methods in the non-linear regression
model. The sample operators of these methods take the following forms

FGD
n (θ) = θ − ηL̃′n(θ) = θ − η

(
2p

n

n∑

i=1

X4p
i θ

4p−1 − 2p

n

n∑

i=1

YiX
2p
i θ

2p−1

)
, (106a)

FNM
n (θ) = θ −

[
L̃′′n(θ)

]−1
L̃′n(θ)

= θ −

(
1
n

∑n
i=1X

4p
i

)
θ2p+1 −

(
1
n

∑n
i=1 YiX

2p
i

)
θ

(
4p−1
n

∑n
i=1X

4p
i

)
θ2p − 2p−1

n

∑n
i=1 YiX

2p
i

, and (106b)

FCNM
n (θ) = arg min

y∈R

{
L̃′n(θ)(y − θ) +

1

2
L̃′′n(θ)(y − θ)2 + L |y − θ|3

}
, (106c)

where L := (4p − 1)!!(4p − 1)p/3. Noting that the specific choice of L in the formulation
of the cubic-regularized Newton operator FCNM

n arises because the second-order derivative
of L̃n is Lipschitz continuous with constant L. Similarly, the population-level operators are
given by

FGD(θ) = θ − ηL̃′(θ) = θ
[
1− (4p− 1)!!(2p)ηθ4p−2

]
, (107a)

FNM(θ) = θ −
[
L̃′′(θ)

]−1
L̃′(θ) =

(4p− 2)

4p− 1
θ, and (107b)

FCNM(θ) = arg min
y∈R

{
L̃′(θ)(y − θ) +

1

2
L̃′′(θ)(y − θ)2 + L |y − θ|3

}
. (107c)

D.3.1 Proofs for the gradient descent operators

In order to achieve the conclusion of the corollary with convergence rate of updates from
gradient descent method, it is sufficient to demonstrate that the sample gradient operator
FGD
n is STA(2p − 1)-stable over the Euclidean ball B(θ?, 1) with noise function ε(n, δ) =

log2p(n/δ)√
n

. By using the similar truncation argument as that in equation (104), we can

verify the following concentration bound

∣∣∣∣∣
1

n

n∑

i=1

YiX
2p
i

∣∣∣∣∣ ≤ c log2p(n/δ)/
√
n, (108)

with probability 1 − δ where c is some universal constant. An application of triangle in-
equality yields

∣∣FGA(θ)− FGA
n (θ)

∣∣ ≤
∣∣∣∣∣
1

n

n∑

i=1

X4p
i − (4p− 1)!!

∣∣∣∣∣ |θ|
4p−1 + c

log2p(n/δ)√
n

|θ|2p−1 . (109)
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Based on known concentration bounds for moments of Gaussian random variables (cf.
Lemma 5 in (Dwivedi et al., 2020b)), we have

∣∣∣∣∣
1

n

n∑

i=1

X4p
i − (4p− 1)!!

∣∣∣∣∣ ≤ c
′ log2p(n/δ)/

√
n (110)

with probability 1−δ where c′ is some universal constant. Substituting the inequality (110)
into equation (109) yields the above claim with the stability of FGD

n .

D.3.2 Proofs for the Newton operators

Moving to the convergence rates of updates from Newton’s method, it is sufficient to estab-
lish the instability of FNM

n with respect to FNM, and moreover that, for any global minimum
θ∗n of the sample least-squares function L̃n in equation (34b), we have

∣∣FNM
n (θ)

∣∣ ≥ |θ∗n| , (111)

for all |θ| ∈ [|θ∗n| , 1].

Instability of the sample Newton operator FNM
n Let us introduce the following

shorthand notation:

An :=

(
2p

n

n∑

i=1

X4p
i

)
θ4p−1 −

(
2p

n

n∑

i=1

YiX
2p
i

)
θ2p−1,

Bn :=

(
2p(4p− 1)

n

n∑

i=1

X4p
i

)
θ4p−2 −

(
2p(2p− 1)

n

n∑

i=1

YiX
2p
i

)
θ2p−2.

Applying the triangle inequality yields

∣∣FNM
n (θ)− FNM(θ)

∣∣ ≤
∣∣(4p− 1)!!(2p)θ4p−1 −An

∣∣
(4p− 1)!!(2p)(4p− 1)θ4p−2

︸ ︷︷ ︸
:=J1

+ |An|
∣∣∣∣

1

(4p− 1)!!(2p)(4p− 1)θ4p−2
− 1

Bn

∣∣∣∣
︸ ︷︷ ︸

:=J2

.

Upper bound for J1 Invoking triangle inequality, we obtain that

∣∣An − (4p− 1)!!(2p)θ4p−1
∣∣

≤ 2p

∣∣∣∣∣
1

n

n∑

i=1

X4p
i − (4p− 1)!!

∣∣∣∣∣ |θ|
4p−1 +

∣∣∣∣∣
2p

n

n∑

i=1

YiX
2p
i

∣∣∣∣∣ |θ|
2p−1

≤ c log2p(n/δ)√
n

(
|θ|4p−1 + |θ|2p−1

)
,
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where the last inequality is due to concentration bounds for moments of Gaussian random
variables (108). With the above inequality, we have

J1 ≤
c log2p(n/δ)

(
|θ|4p−1 + |θ|2p−1

)

(4p− 1)!!(2p)(4p− 1)
√
n |θ|4p−2 ≤

2c

|θ|2p−1

log2p(n/δ)√
n

, (112)

for all |θ| ≤ 1 with probability at least 1− 2δ.

Upper bound for J2 In order to obtain an upper bound for J2, we exploit the following
concentration bounds

|An| ≤ c1

(
|θ|4p−1 +

log2p(n/δ)√
n

|θ|2p−1

)
, (113a)

∣∣Bn − (4p− 1)!!(2p)(4p− 1)θ4p−2
∣∣ ≤ c2

log2p(n/δ)√
n

, (113b)

|Bn| ≥ c3

(
(4p− 1)!!(2p)(4p− 1)θ4p−2 − c log2p(n/δ)√

n

)
, (113c)

for all |θ| ≤ 1 with probability at least 1 − 2δ. Here, c, c1, c2, c3 are universal constants
independent of δ. The proofs of the above claims are direct applications of triangle in-
equalities and concentration bounds we utilized earlier with gradient descent operators in
Appendix D.3.1; therefore, they are omitted. In light of the above bounds, we can bound
J2 as follows:

J2 ≤
c1c2

c3

(
|θ|4p−1 +

log2p(n/δ)√
n

|θ|2p−1

)

×
log2p(n/δ)√

n

θ4p−2
(

(4p− 1)!!(2p)(4p− 1)θ4p−2 − c log2p(n/δ)√
n

)

≤ 2c1c2

c3c

1

|θ|2p−1

log2p(n/δ)√
n

, (114)

for all |θ| ∈ [C · logp/(2p−1)(n/δ)/n1/4(2p−1), 1] with probability 1 − 6δ where C is solution

of the equation (4p − 1)!!(2p)(4p − 1)θ4p−2 = 2c log2p(n/δ)√
n

. Combining the results from

equations (112) and (114), we achieve that

∣∣FNM
n (θ)− FNM(θ)

∣∣ ≤ c′ 1

|θ|2p−1

log2p(n/δ)√
n

(115)

for all |θ| ∈ [C logp/(2p−1)(n/δ)/n1/4(2p−1), 1] with probability 1 − 8δ where c′ is some uni-
versal constant.

As a consequence, the sample operator FNM
n is UNS(−2p+ 1)-unstable over the annulus

A(θ?, c1 logp/(2p−1)(n/δ)/n1/4(2p−1), 1) with noise function ε(n, δ) =
log2p(n/δ)√

n
.
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Lower bound and monotonicity of Newton updates Moving to the claim (111), we
first study the global minima θ∗n of the sample least-squares function L̃n in equation (34b).
In particular, they satisfy the equation ∇L̃n(θ∗n) = 0, which is equivalent to

(
1

n

n∑

i=1

X4p
i

)
(θ∗n)4p−1 −

(
1

n

n∑

i=1

YiX
2p
i

)
(θ∗n)2p−1 = 0.

Given the above equation, the specific form of θ∗n depends on the sign of second derivative
of L̃n at 0. In particular, when

∑n
i=1 YiX

2p
i > 0, the function L̃n is bimodal and symmetric

around 0. Additionally, global mimima θ∗n have the form

(θ∗n)2p =

(
1

n

n∑

i=1

YiX
2p
i

)/(
1

n

n∑

i=1

X4p
i

)
. (116)

On the other hand, when 1
n

∑n
i=1 YiX

2p
i ≤ 0, the function L̃n is unimodal and symmetric

around 0. Furthermore, it has only global minimum θ∗n = 0.

Now, we focus on the case θ > 0 and
∑n

i=1 YiX
2p
i > 0, i.e., the global minima θ∗n are

different from 0 and the solutions of equation (116). A simple calculation demonstrates
that Bn > 0 and FNM

n (θ) > 0 as long as θ > |θ∗n|. Now, the inequality FNM
n (θ) ≥ |θ∗n| is

equivalent to

(
4p− 2

n

n∑

i=1

X4p
i

)
θ2p+1 +

(
2p− 1

n

n∑

i=1

YiX
2p
i

)
|θ∗n|

≥
(

4p− 1

n

n∑

i=1

X4p
i

)
θ2p |θ∗n|+

(
2p− 2

n

n∑

i=1

YiX
2p
i

)
θ

for θ ≥ |θ∗n|. In light of the closed form expression of |θ∗n| in equation (116), a simple algebra
with the above inequality leads to the inequality

(4p− 2)θ2p+1 + (2p− 1) |θ∗n|2p+1 ≥ (2p− 2) (θ∗n)2p θ + (4p− 1) |θ∗n| θ2p,

which holds true due to AM-GM inequality. Thus, we have established the claim (111).

D.3.3 Proofs for the cubic-regularized Newton operators

Our proof is divided into three separate steps. First, we establish the slow convergence
of operator FCNM. Then, we proceed to establishing the instability of operator FCNM

n .
Finally, we demonstrate the monotonicity of cubic-regularized Newton updates and their
lower bound

∣∣FCNM
n (θ)

∣∣ ≥ |θ∗n| , (117)

for all |θ| ∈ [|θ∗n| , 1] for any global minima θ∗n of the sample least-squares function L̃n in
equation (34b).
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Slow convergence of FCNM Without loss of generality, we assume that θ ∈ (0, 1]. Direct
computation leads to

FCNM(θ) = θ + θ4p−2 −
√
θ8p−4 +

2

4p− 1
θ4p−1

= θ −
2

4p−1θ
4p−1

θ2 +
√
θ8p−4 + 2

4p−1θ
4p−1

≤ θ
(

1− c1θ
(4p−3)/2

)
,

for any θ ∈ (0, 1] where c1 < 1 is some universal constant. As a consequence, the operator
FCNM satisfies slow convergence condition SLOW(2/(4p−3)) over the Euclidean ball B(θ?, 1).

Instability of the sample operator FCNM
n Suppose that θ > |θ∗n|, where θ∗n are global

minima of the sample least-squares function L̃n. With this condition, direct computation
of FCNM

n (θ) leads to

FCNM
n (θ) = θ − 2L̃′n(θ)

L̃′′n(θ) +

√(
L̃′′n(θ)

)2
+ 12L · L̃′n(θ)

:= θ − 2L̃′n(θ)

Tn
.

Similar to the previous proofs with cubic-regularized Newton operators, we find that

∣∣FCNM(θ)− FCNM
n (θ)

∣∣ ≤ 2
L̃′(θ) |Tn − T |+ T

∣∣∣L̃′n(θ)− L̃′(θ)
∣∣∣

TTn
,

where T := L̃′′(θ)+
√(
L̃′′(θ)

)2
+ 12L · L̃′(θ) ≥

√
12LL̃′(θ) ≥ C ·θ(4p−1)/2 for some universal

constant C > 0. Additionally, we have

|Tn − T | ≤ c′ · θ−1/2 log2p(n/δ)√
n

when θ ≥ c ·max
{
|θ∗n| , logp/(2p−1)(n/δ)

n1/4(2p−1)

}
with probability 1−10δ for some universal constants

c and c′. Furthermore, we can check that Tn ≥
√

12L · L̃′n(θ) ≥ c′′θ(4p−1)/2 as long as

θ ≥ c · max
{
|θ∗n| , logp/(2p−1)(n/δ)

n1/4(2p−1)

}
with probability 1 − 2δ for some universal constant c′′.

These inequalities guarantee that

∣∣FCNM(θ)− FCNM
n (θ)

∣∣ ≤ c1θ
−1/2 log2p(n/δ)√

n

for all θ ≥ c ·max
{
|θ∗n| , logp/(2p−1)(n/δ)

n1/4(2p−1)

}
with probability 1−14δ. As a consequence, we con-

clude that the operator FCNM
n is UNS(−1/2)-unstable over the annulus A(θ?, c logp/(2p−1)(n/δ)

n1/4(2p−1) , 1)

with noise function ε = log2p(n/δ)√
n

where c is some universal constant.
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Lower bound and monotonicity of cubic-regularized Newton updates To simplify
the presentation, we only consider θ > 0 and the setting when global minima θ∗n are different
from 0. As θ ≥ |θ∗n|, the inequality FCNM

n (θ) ≥ |θ∗n| is equivalent to

L̃′′n(θ) +

√(
L̃′′n(θ)

)2
+ 12LL̃′n(θ) > 2L̃′′n(θ̃)

for some θ̃ ∈ (|θ∗n| , θ). This inequality holds since L̃′n and L̃′′n are positive and strictly
increasing when θ > |θ∗n|, thereby completing the proof of claim (117).

Appendix E. Extension to multivariate settings

In this appendix, we discuss some extensions of the theoretical results in Section 4 to
multivariate settings. Here we state detailed theoretical results for the EM algorithm and
gradient descent for multivariate versions of the over-specified mixture model and the non-
linear regression model. We explore the behavior of Newton’s method via experimental
studies in both Figures 4 and 6.

E.1 Over-specified mixture model

We denote by φ(·; θ, σ2Id) the density of N (θ, σ2Id) random variable, i.e.,

φ(x; θ, σ2Id) = (2πσ2)−d/2e−
‖x−θ‖2

2σ2 .

Assume that X1, . . . , Xn be n are i.i.d. samples from N (0, Id). We then fit a two-component
symmetric Gaussian mixture with equal fixed weights whose density is given by:

fθ(x) =
1

2
φ(x;−θ, Id) +

1

2
φ(x; θ, Id), (118)

where θ ∈ Rd is the parameter to be estimated. Given the model, the true parameter is
unique and given by θ∗ = 0. Similar to the univariate setting in Section 4.2, we also use
the EM algorithm to estimate θ∗ = 0. Direct calculation of the sample EM operator yields
that

GEM
n (θ) =

1

n

n∑

i=1

Xi tanh(θ>Xi),

where tanh(x) = exp(x)−exp(−x)
exp(x)+exp(−x) for all x ∈ R. The result characterizing the behavior

of sample EM operator in the multivariate setting (118) is already proven in our prior
work (Dwivedi et al., 2020a) (see Theorem 3 in that paper). So as to keep our discussion
self-contrained, we restate it here:

Corollary 13 For the over-specified Gaussian mixture model (118) with θ? = 0, given some
δ ∈ (0, 1) and for any fixed α ∈ (0, 1/4) and initialization θ0 ∈ B(θ?, 1), with probability at
least 1− δ the sequence θt := (GEM

n )t(θ0) of EM iterates satisfies the bound

‖θt − θ?‖ ≤ c1

(
d+ log( log(1/α)

δ )

n

) 1
4
−α

for all iterates t ≥ c′1
√

n
d log 1

α ,

as long as n ≥ c′′1(d+ log log(1/α)
δ ).
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The result of Corollary 13 shows that the EM iterates converge to a radius of convergence
(d/n)1/4 around the true parameter θ? = 0 after

√
n/d number of iterations. Note that

our simulation results for EM, as shown in Figure 4, are consistent with this theoretical
prediction.

E.2 Non-linear regression model

We now turn to the multivariate instantiation of the non-linear regression model considered
in the main text. Suppose that we observe pairs (Xi, Yi) ∈ Rd×R generated from the model

Yi = g
(
X>i θ

∗
)

+ ξi for i = 1, . . . , n, (119)

where ξi ∼ N (0, 1).

We assume that the covariate vectors Xi are drawn i.i.d. from the multivariate Gaussian
N (0, Id). As in our study of the univariate case, we consider the family of link functions
g(x) = x2p for p ≥ 1 and the unknown parameter θ∗ = 0. With this set-up, the maximum
likelihood estimate for θ∗ is based on the minimization problem

min
θ∈Rd
L̃n(θ) where L̃n(θ) :=

1

2n

n∑

i=1

(
Yi −

(
X>i θ

)2p
)2

. (120)

By taking the expectation of L̃n with respect to X1, . . . , Xn ∼ N (0, Id), we find that the
corresponding population version of L̃ takes the form

L̃(θ) :=
1

2
E

[(
Y −

(
X>θ

)2p
)2
]

=
1 + (4p− 1)!!‖θ − θ∗‖4p

2
. (121)

The sample operator for the gradient method is given by

FGD
n (θ) = θ − η∇L̃n(θ)

= θ − η
(

2p

n

n∑

i=1

Xi(X
>
i θ)

4p−1 − 2p

n

n∑

i=1

YiXi(X
>
i θ)

2p−1

)
, (122)

whereas the population level operator corresponding to the operator FGD
n takes the form

FGD(θ) = θ − η∇L̃(θ) = θ
(
1− (4p− 1)!!2pη‖θ‖4p−2

)
, (123)

where Id denotes the identity matrix in d dimension.

We first state a result concerning the contraction and stability properties of the popu-
lation and sample operators FGD and FGD

n .

Lemma 14 (a) For any step size η ∈ (0, 1
(4p−1)!!(2p) ], the gradient operator FGD is SLOW( 1

4p−2)-

convergent over the ball B(θ?, 1).
(b) The operator FGD

n is STA(2p−1)-stable over the ball B(θ?, 1) with noise function ε(n, δ) =√
d+log(1/δ)

n .
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Figure 6. Plots characterizing the behavior of Gradient Descent (GD) and Newton’s method
(NM) for the non-linear regression with p = 1 for d = 2 and d = 4 dimensions. (a) Log-log

plots of the Euclidean distance ‖θ̂n − θ?‖2 versus the sample size. It shows that all the
algorithms converge to an estimate at Euclidean distance of the order n−1/4 from the true
parameter θ?. (b) Log-log plots for the number of iterations taken by different algorithms to
converge to the final estimate.

The proof of Lemma 14 is deferred to the end of this appendix. Based on the result of that
lemma, we have the following result characterizing the behavior of the updates from the
gradient descent algorithm for solving L̃n.

Corollary 15 For the non-linear regression model (119) with θ? = 0, given some δ ∈ (0, 1)
and for any fixed α ∈ (0, 1/4) and initialization θ0 ∈ B(θ?, 1), with probability at least 1− δ
the sequence θt := (FGD

n )t(θ0) generated by gradient descent satisfies the bound

‖θt − θ?‖ ≤ c1

(
d+ log( log(1/α)

δ )

n

) 1
4p
−α

for all iterates t ≥ c′1
(
n
d

) 2p−1
2p log 1

α ,

as long as n ≥ c′′1(d+ log log(1/α)
δ )4p.

Based on the result of Corollary 15, the updates from the gradient method converge to a
ball of radius of the order of (d/n)1/4p around the true parameter θ? = 0 after an order of
(n/d)(2p−1)/2p number of iterations. We further illustrate these behaviors of the gradient
method when p = 1 in Figure 6. Based on these results, the computational complexity of

the gradient method is at the order of n
4p−1

2p d
1
2p . For the Newton’s method, the experimen-

tal results in Figure 6 show that the Newton iterates also converge to the similar radius of
convergence (d/n)1/4p after log(n) number of iterations. Since each iteration of the New-
ton’s method takes an order of n · d + d3 arithmetic operations where d3 is computational
complexity of computing inverse of an d×d matrix via Gauss-Jordan elimination, the over-
all complexity required to reach to the final estimate scales as (nd+ d3) log n. Thus, when

d
6p−1
4p−1 � n, Newton’s method is computationally more efficient than the gradient descent

method.
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E.2.1 Proof of Lemma 14

The slow contraction of the population gradient operator FGD follows immediately from its
definition. Furthermore, the proof of the stability of the sample operator FGD

n follows from
the concentration bound in Corollary 3 in (Mou et al., 2019). In fact, from the proof of
Corollary 3 in (Mou et al., 2019), as long as r ≤ 1 we have

sup
θ∈B(θ∗,r)

∣∣FGD
n (θ)− FGD(θ)

∣∣ ≤ Cr2p−1

√
d+ log(1/δ)

n
,

as long as n ≥ C ′(d + log(d/δ))4p where C and C ′ are some universal constants. As a
consequence, we obtain the conclusion of the lemma with the contraction and stability of
the operators FGD and FGD

n .
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