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Abstract

Amid the ongoing advancements in Federated Learning (FL), a machine learning paradigm
that allows collaborative learning with data privacy protection, personalized FL (pFL)
has gained significant prominence as a research direction within the FL domain. Whereas
traditional FL (tFL) focuses on jointly learning a global model, pFL aims to balance each
client’s global and personalized goals in FL settings. To foster the pFL research community,
we started and built PFLlib, a comprehensive pFL library with an integrated benchmark
platform. In PFLlib, we implemented 37 state-of-the-art FL algorithms (8 tFL algorithms
and 29 pFL algorithms) and provided various evaluation environments with three statisti-
cally heterogeneous scenarios and 24 datasets. At present, PFLlib1 has gained more than
1600 stars and 300 forks on GitHub.

Keywords: federated learning, personalization, privacy, benchmark, heterogeneity

1. Introduction

Federated Learning (FL) has gained significant attention due to its ability to perform dis-
tributed machine learning while ensuring privacy preservation (Yang et al., 2019). In tradi-
tional FL (tFL) algorithms, such as FedAvg (McMahan et al., 2017), participating clients
train local models using local data and send only local model updates to a global server,
which then aggregates these updates to obtain a global model. These approaches do not
consider the customization needs of each local client. Personalized FL (pFL) is introduced
to train customized client models to improve their performance on individualized tasks. In
tandem with the burgeoning prominence of pFL, there has been a surge in the develop-

1. https://www.pfllib.com/ and https://github.com/TsingZ0/PFLlib
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ment of various pFL algorithms and associated techniques (Tan et al., 2022a; Zhang et al.,
2023b). However, due to their rapid progress and diverse settings, the difficulties of tracking,
implementing, and benchmarking these methods also grow tremendously.

To alleviate these challenges, we have developed PFLlib, a comprehensive pFL library
with an integrated benchmark platform. PFLlib includes implementations of 37 state-
of-the-art (SOTA) tFL and pFL algorithms, encompassing 8 tFL algorithms and 29 pFL
algorithms. Our library is beginner-friendly and easily extensible, allowing contributors to
seamlessly add new algorithms, scenarios, and datasets, thus ensuring that PFLlib remains
up-to-date and popular. In addition, we have implemented three types of data hetero-
geneity scenarios and incorporated 24 datasets, covering Computer Vision (CV), Natural
Language Processing (NLP), and Sensor Signal Processing (SSP) tasks. We can evaluate FL
algorithms in PFLlib and assess their adaptability to various scenarios, providing valuable
information for algorithm selection and evaluation in practical applications.

2. Related Work

With the rapid development of the FL field, numerous benchmarks and platforms have
emerged in recent years. Most of their latest versions are for practical deployments, such
as FATE (Liu et al., 2021), FedML (He et al., 2020), FederatedScope (Xie et al., 2023),
Flower (Beutel et al., 2020), TensorFlow Federated2, NVIDIA Clara3, SecretFlow4, Fedlearner5,
and PySyft6. Despite the efficient resource management and extensive functionality offered
by these platforms, they can present a challenge for beginners who seek to comprehend
the fundamental mechanisms of FL and delve into the philosophical aspects of existing FL
algorithms. There are also some beginner-friendly platforms, such as LEAF (Caldas et al.,
2018), NIID-Bench (Li et al., 2022), Motley (Wu et al., 2022b), OARF (Hu et al., 2022),
FedEval (Chai et al., 2020), and FedLab (Zeng et al., 2023). However, these benchmarks and
platforms still lack sufficient and up-to-date built-in SOTA pFL algorithms for researchers
to learn, compare, and analyze.

pFL-Bench (Chen et al., 2022) is one of the latest PFL projects, but it supports only 5
SOTA pFL methods while the remaining pFL methods are variants created by combining
them with existing approaches including FedBN (Li et al., 2021c), FedOpt (Asad et al.,
2020), and Fine-tuning (FT). Besides, all the pFL algorithms in pFL-Bench are outdated
(before 2022). In contrast, our PFLlib consists of 29 SOTA pFL algorithms. Moreover, due
to our straightforward file structure, PFLlib is more accessible for beginners to learn and
utilize pFL algorithms compared to the complex pFL-Bench.

3. PFLlib: A Beginner-Friendly and Comprehensive Library

Algorithms. In our PFLlib, the primary focus is on pFL algorithms. In addition, we have
also included a selection of tFL algorithms to facilitate the evaluation of pFL algorithms,
following previous pFL research (Li et al., 2021b; T Dinh et al., 2020; Zhang et al., 2023d).

2. https://www.tensorflow.org/federated
3. https://developer.nvidia.com/industries/healthcare
4. https://github.com/secretflow/secretflow
5. https://github.com/bytedance/fedlearner
6. https://github.com/OpenMined/PySyft
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Based on their foundational techniques, we have categorized 8 tFL algorithms and 29 pFL
algorithms. The detailed classification is presented in Table 1.

Table 1: FL Algorithm Taxonomy in our PFLlib.

Category Algorithms
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s Basic tFL FedAvg (McMahan et al., 2017)

Update-correction-based tFL SCAFFOLD (Karimireddy et al., 2020)

Regularization-based tFL FedProx (Li et al., 2020) and FedDyn (Acar et al., 2021)

Model-splitting-based tFL MOON (Li et al., 2021a) and FedLC (Zhang et al., 2022)

Knowledge-distillation-based tFL FedGen (Zhu et al., 2021) and FedNTD (Lee et al., 2022)
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Meta-learning-based pFL Per-FedAvg (Fallah et al., 2020)

Regularization-based pFL pFedMe (T Dinh et al., 2020) and Ditto (Li et al., 2021b)

Personalized-aggregation-based pFL
APFL (Deng et al., 2020), FedFomo (Zhang et al., 2020),
FedAMP (Huang et al., 2021), FedPHP (Li et al., 2021d), AP-
PLE (Luo and Wu, 2022), and FedALA (Zhang et al., 2023d)

Model-splitting-based pFL

FedPer (Arivazhagan et al., 2019), LG-FedAvg (Liang et al.,
2020), FedRep (Collins et al., 2021), FedRoD (Chen and Chao,
2021), FedBABU (Oh et al., 2022), FedGC (Niu and Deng,
2022), FedCP (Zhang et al., 2023c), GPFL (Zhang et al.,
2023b), FedGH (Yi et al., 2023), DBE (Zhang et al., 2023a),
FedCAC (Wu et al., 2023), and PFL-DA (Shi and Kontar, 2023)

Knowledge-distillation-based pFL
FedDistill (Seo et al., 2022), FML (Shen et al., 2020),
FedKD (Wu et al., 2022a), FedProto (Tan et al., 2022b), Fed-
PCL (Tan et al., 2022c), and FedPAC (Xu et al., 2022)

Other pFL FedMTL (Seo et al., 2022) and FedBN (Li et al., 2021c)

Scenarios and Datasets. In PFLlib, we first consider two types of scenarios for data
heterogeneity: label skew and feature shift, where different client datasets differ in label
categories and feature categories, respectively (Zhang et al., 2023b). Both CV and NLP
classification tasks are considered in these two scenarios. Moreover, we also introduce a real
world scenario with naturally collected datasets from distributed sensors (HAR (Anguita
et al., 2012) and PAMAP2 (Reiss and Stricker, 2012) for SSP tasks), hospitals (Came-
lyon17 (Koh et al., 2021) for CV tasks), and camera traps (iWildCam (Koh et al., 2021)
for CV tasks) to evaluate algorithms’ performance in realistic scenarios.
Privacy Evaluation. We implement the popular Deep Leakage from Gradients (DLG)
attack (Zhu et al., 2019) and the Peak Signal-to-Noise Ratio (PSNR) metric (Wu et al.,
2022c) to evaluate the privacy-preserving abilities of existing tFL/pFL algorithms.
Easy to Use and Extend. In PFLlib, algorithms are implemented by three critical
files: serverX.py for server creation, clientX.py for client creation, and main.py for

hyperparameter configuration. Here, “ X ” represents some algorithm name. We can simply
create a new algorithm Y by only adding specific features to serverY.py and clientY.py

and while utilizing the core APIs in serverbase.py and clientbase.py . To create a
scenario, users simply need one command line and run the evaluation with another one
command line. We show an example of using FedALA on MNIST (LeCun et al., 1998):
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1 # generate a practical non -iid and unbalanced scenario using MNIST

2 python generate_MNIST.py noniid - dir # in ./ dataset

3 # evaluate the FedALA algorithm using a CNN with default hyperparameters

4 python main.py -data MNIST -m CNN -algo FedALA -gr 2000 -did 0 # in ./ system

Impacts. Our PFLlib is active and popular in the pFL community, as shown by the
increasing number of GitHub stars, forks, and active discussions. Due to its simplicity and
extensibility, numerous new platforms and projects have been built upon it, such as the FL-
bench7, the HtFLlib8, and the FL-IoT9. Besides, the experiments of several latest SOTA
methods (Zhang et al., 2023d,c,b,a, 2024a,b,c) are also conducted using our PFLlib.
Benchmark. Due to limited space here, we only evaluate 20 algorithms in two label skew
scenarios following the default settings10 of GPFL (Zhang et al., 2023b). Please refer to our
official website11 for more documents, details, and results. In Table 2, we use the 4-layer
CNN (McMahan et al., 2017) for CV tasks on Fashion-MNIST (FMNIST) (Xiao et al.,
2017), Cifar100, and Tiny-ImageNet (Chrabaszcz et al., 2017) (TINY for short) datasets
and use the fastText (Joulin et al., 2017) for NLP tasks on AG News (Zhang et al., 2015)
dataset. We also use ResNet-18 (He et al., 2016) on Tiny-ImageNet and denote it TINY*.

Table 2: The test accuracy (%) on the CV and NLP tasks in label skew settings.

Settings Pathological Label Skew Setting Practical Label Skew Setting

FMNIST Cifar100 TINY FMNIST Cifar100 TINY TINY* AG News

FedAvg 80.41±0.08 25.98±0.13 14.20±0.47 85.85±0.19 31.89±0.47 19.46±0.20 19.45±0.13 87.12±0.19
FedProx 78.08±0.15 25.94±0.16 13.85±0.25 85.63±0.57 31.99±0.41 19.37±0.22 19.27±0.23 87.21±0.13
FedGen 79.76±0.60 20.80±1.00 13.82±0.09 84.90±0.31 30.96±0.54 19.39±0.18 18.53±0.32 89.86±0.83

Per-FedAvg 99.18±0.08 56.80±0.26 28.06±0.40 95.10±0.10 44.28±0.33 25.07±0.07 21.81±0.54 87.08±0.26

pFedMe 99.35±0.14 58.20±0.14 27.71±0.40 97.25±0.17 47.34±0.46 26.93±0.19 33.44±0.33 87.08±0.18
Ditto 99.44±0.06 67.23±0.07 39.90±0.42 97.47±0.04 52.87±0.64 32.15±0.04 35.92±0.43 91.89±0.17

APFL 99.41±0.02 64.26±0.13 36.47±0.44 97.25±0.08 46.74±0.60 34.86±0.43 35.81±0.37 89.37±0.86
FedFomo 99.46±0.01 62.49±0.22 36.55±0.50 97.21±0.02 45.39±0.45 26.33±0.22 26.84±0.11 91.20±0.18
FedAMP 99.42±0.03 64.34±0.37 36.12±0.30 97.20±0.06 47.69±0.49 27.99±0.11 29.11±0.15 83.35±0.05
APPLE 99.30±0.01 65.80±0.08 36.22±0.40 97.06±0.07 53.22±0.20 35.04±0.47 39.93±0.52 84.10±0.18
FedALA 99.57±0.01 67.83±0.06 40.31±0.30 97.66±0.02 55.92±0.03 40.54±0.02 41.94±0.02 92.45±0.10

FedPer 99.47±0.03 63.53±0.21 39.80±0.39 97.44±0.06 49.63±0.54 33.84±0.34 38.45±0.85 91.85±0.24
FedRep 99.56±0.03 67.56±0.31 40.85±0.37 97.56±0.04 52.39±0.35 37.27±0.20 39.95±0.61 92.25±0.20
FedRoD 99.52±0.05 62.30±0.02 37.95±0.22 97.52±0.04 50.94±0.11 36.43±0.05 37.99±0.26 92.16±0.12
FedBABU 99.41±0.05 66.85±0.07 40.72±0.64 97.46±0.07 55.02±0.33 36.82±0.45 34.50±0.62 95.86±0.41
FedCP 99.66±0.04 71.80±0.16 44.52±0.22 97.89±0.05 59.56±0.08 43.49±0.04 44.18±0.21 92.89±0.10
GPFL 99.85±0.08 71.78±0.26 44.58±0.06 97.81±0.09 61.86±0.31 43.37±0.53 43.70±0.44 97.97±0.14
FedDBE 99.74±0.04 73.38±0.18 42.89±0.29 97.69±0.05 64.39±0.27 43.32±0.37 42.98±0.52 96.87±0.18

FedDistill 99.51±0.03 66.78±0.15 37.21±0.25 97.43±0.04 49.93±0.23 30.02±0.09 29.88±0.41 85.76±0.09
FedProto 99.49±0.04 69.18±0.03 36.78±0.07 97.40±0.02 52.70±0.33 31.21±0.16 26.38±0.40 96.34±0.58

4. Conclusion

To support the rapidly evolving pFL research community, we built PFLlib, a beginner-
friendly library that includes 37 cutting-edge tFL / pFL algorithms. Besides, we also built
a benchmark platform in PFLlib with comprehensive features, datasets, and scenarios.

7. https://github.com/KarhouTam/FL-bench/tree/c11efc286dab4565245da34d7300d5bb07b87a0a
8. https://github.com/TsingZ0/HtFLlib
9. https://github.com/TsingZ0/FL-IoT

10. Due to frequent updates, some default settings and codes for scenario creation may change in PFLlib.
11. https://www.pfllib.com/
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