Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Theoretical Convergence of Multi-Step Model-Agnostic Meta-Learning

Kaiyi Ji, Junjie Yang, Yingbin Liang; 23(29):1−41, 2022.

Abstract

As a popular meta-learning approach, the model-agnostic meta-learning (MAML) algorithm has been widely used due to its simplicity and effectiveness. However, the convergence of the general multi-step MAML still remains unexplored. In this paper, we develop a new theoretical framework to provide such convergence guarantee for two types of objective functions that are of interest in practice: (a) resampling case (e.g., reinforcement learning), where loss functions take the form in expectation and new data are sampled as the algorithm runs; and (b) finite-sum case (e.g., supervised learning), where loss functions take the finite-sum form with given samples. For both cases, we characterize the convergence rate and the computational complexity to attain an $\epsilon$-accurate solution for multi-step MAML in the general nonconvex setting. In particular, our results suggest that an inner-stage stepsize needs to be chosen inversely proportional to the number $N$ of inner-stage steps in order for $N$-step MAML to have guaranteed convergence. From the technical perspective, we develop novel techniques to deal with the nested structure of the meta gradient for multi-step MAML, which can be of independent interest.

[abs][pdf][bib]       
© JMLR 2022. (edit, beta)

Mastodon