Home Page

Papers

Submissions

News

Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)

Search

Statistics

Login

Frequently Asked Questions

Contact Us



RSS Feed

Robust Topological Inference: Distance To a Measure and Kernel Distance

Fr{\'e}d{\'e}ric Chazal, Brittany Fasy, Fabrizio Lecci, Bertr, Michel, Aless, ro Rinaldo, Larry Wasserman; 18(159):1−40, 2018.

Abstract

Let $P$ be a distribution with support $S$. The salient features of $S$ can be quantified with persistent homology, which summarizes topological features of the sublevel sets of the distance function (the distance of any point $x$ to $S$). Given a sample from $P$ we can infer the persistent homology using an empirical version of the distance function. However, the empirical distance function is highly non-robust to noise and outliers. Even one outlier is deadly. The distance-to-a-measure (DTM), introduced by \cite{chazal2011geometric}, and the kernel distance, introduced by \cite{phillips2014goemetric}, are smooth functions that provide useful topological information but are robust to noise and outliers. \cite{massart2014} derived concentration bounds for DTM. Building on these results, we derive limiting distributions and confidence sets, and we propose a method for choosing tuning parameters.

[abs][pdf][bib]       
© JMLR 2018. (edit, beta)

Mastodon