Home Page




Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)




Frequently Asked Questions

Contact Us

RSS Feed

One-Shot-Learning Gesture Recognition using HOG-HOF Features

Jakub Konecny, Michal Hagara; 15(72):2513−2532, 2014.


The purpose of this paper is to describe one-shot-learning gesture recognition systems developed on the ChaLearn Gesture Dataset (ChaLearn). We use RGB and depth images and combine appearance (Histograms of Oriented Gradients) and motion descriptors (Histogram of Optical Flow) for parallel temporal segmentation and recognition. The Quadratic-Chi distance family is used to measure differences between histograms to capture cross-bin relationships. We also propose a new algorithm for trimming videos---to remove all the unimportant frames from videos. We present two methods that use a combination of HOG-HOF descriptors together with variants of a Dynamic Time Warping technique. Both methods outperform other published methods and help narrow the gap between human performance and algorithms on this task. The code is publicly available in the MLOSS repository.

© JMLR 2014. (edit, beta)