Home Page




Editorial Board

Special Issues

Open Source Software

Proceedings (PMLR)

Data (DMLR)

Transactions (TMLR)




Frequently Asked Questions

Contact Us

RSS Feed

Random Spanning Trees and the Prediction of Weighted Graphs

Nicolò Cesa-Bianchi, Claudio Gentile, Fabio Vitale, Giovanni Zappella; 14(38):1251−1284, 2013.


We investigate the problem of sequentially predicting the binary labels on the nodes of an arbitrary weighted graph. We show that, under a suitable parametrization of the problem, the optimal number of prediction mistakes can be characterized (up to logarithmic factors) by the cutsize of a random spanning tree of the graph. The cutsize is induced by the unknown adversarial labeling of the graph nodes. In deriving our characterization, we obtain a simple randomized algorithm achieving in expectation the optimal mistake bound on any polynomially connected weighted graph. Our algorithm draws a random spanning tree of the original graph and then predicts the nodes of this tree in constant expected amortized time and linear space. Experiments on real-world data sets show that our method compares well to both global (Perceptron) and local (label propagation) methods, while being generally faster in practice.

© JMLR 2013. (edit, beta)