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Abstract
Conformal prediction uses past experience to determine precise levels of confidence in new pre-
dictions. Given an error probability ε, together with a method that makes a prediction ŷ of a label
y, it produces a set of labels, typically containing ŷ, that also contains y with probability 1− ε.
Conformal prediction can be applied to any method for producing ŷ: a nearest-neighbor method, a
support-vector machine, ridge regression, etc.

Conformal prediction is designed for an on-line setting in which labels are predicted succes-
sively, each one being revealed before the next is predicted. The most novel and valuable feature of
conformal prediction is that if the successive examples are sampled independently from the same
distribution, then the successive predictions will be right 1− ε of the time, even though they are
based on an accumulating data set rather than on independent data sets.

In addition to the model under which successive examples are sampled independently, other
on-line compression models can also use conformal prediction. The widely used Gaussian linear
model is one of these.

This tutorial presents a self-contained account of the theory of conformal prediction and works
through several numerical examples. A more comprehensive treatment of the topic is provided in
Algorithmic Learning in a Random World, by Vladimir Vovk, Alex Gammerman, and Glenn Shafer
(Springer, 2005).
Keywords: confidence, on-line compression modeling, on-line learning, prediction regions

1. Introduction

How good is your prediction ŷ? If you are predicting the label y of a new object, how confident are
you that y = ŷ? If the label y is a number, how close do you think it is to ŷ? In machine learning,
these questions are usually answered in a fairly rough way from past experience. We expect new
predictions to fare about as well as past predictions.

Conformal prediction uses past experience to determine precise levels of confidence in predic-
tions. Given a method for making a prediction ŷ, conformal prediction produces a 95% prediction
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region—a set Γ0.05 that contains y with probability at least 95%. Typically Γ0.05 also contains the
prediction ŷ. We call ŷ the point prediction, and we call Γ0.05 the region prediction. In the case of
regression, where y is a number, Γ0.05 is typically an interval around ŷ. In the case of classification,
where y has a limited number of possible values, Γ0.05 may consist of a few of these values or, in
the ideal case, just one.

Conformal prediction can be used with any method of point prediction for classification or re-
gression, including support-vector machines, decision trees, boosting, neural networks, and Bayesian
prediction. Starting from the method for point prediction, we construct a nonconformity measure,
which measures how unusual an example looks relative to previous examples, and the conformal
algorithm turns this nonconformity measure into prediction regions.

Given a nonconformity measure, the conformal algorithm produces a prediction region Γε for
every probability of error ε. The region Γε is a (1−ε)-prediction region; it contains y with probabil-
ity at least 1− ε. The regions for different ε are nested: when ε1 ≥ ε2, so that 1− ε1 is a lower level
of confidence than 1− ε2, we have Γε1 ⊆ Γε2 . If Γε contains only a single label (the ideal outcome
in the case of classification), we may ask how small ε can be made before we must enlarge Γε by
adding a second label; the corresponding value of 1− ε is the confidence we assert in the predicted
label.

As we explain in §4, the conformal algorithm is designed for an on-line setting, in which we
predict the labels of objects successively, seeing each label after we have predicted it and before
we predict the next one. Our prediction ŷn of the nth label yn may use observed features xn of the
nth object and the preceding examples (x1,y1), . . . ,(xn−1,yn−1). The size of the prediction region Γε

may also depend on these details. Readers most interested in implementing the conformal algorithm
may wish to look first at the elementary examples in §4.2.1 and §4.3.1 and then turn back to the
earlier more general material as needed.

As we explain in §2, the on-line picture leads to a new concept of validity for prediction with
confidence. Classically, a method for finding 95% prediction regions was considered valid if it had
a 95% probability of containing the label predicted, because by the law of large numbers it would
then be correct 95% of the time when repeatedly applied to independent data sets. But in the on-line
picture, we repeatedly apply a method not to independent data sets but to an accumulating data set.
After using (x1,y1), . . . ,(xn−1,yn−1) and xn to predict yn, we use (x1,y1), . . . ,(xn−1,yn−1),(xn,yn)
and xn+1 to predict yn+1, and so on. For a 95% on-line method to be valid, 95% of these predictions
must be correct. Under minimal assumptions, conformal prediction is valid in this new and powerful
sense.

One setting where conformal prediction is valid in the new on-line sense is the one in which the
examples (xi,yi) are sampled independently from a constant population—that is, from a fixed but
unknown probability distribution Q. It is also valid under the slightly weaker assumption that the
examples are probabilistically exchangeable (see §3) and under other on-line compression models,
including the widely used Gaussian linear model (see §5). The validity of conformal prediction
under these models is demonstrated in Appendix A.

In addition to the validity of a method for producing 95% prediction regions, we are also inter-
ested in its efficiency. It is efficient if the prediction region is usually relatively small and therefore
informative. In classification, we would like to see a 95% prediction region so small that it contains
only the single predicted label ŷn. In regression, we would like to see a very narrow interval around
the predicted number ŷn.
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The claim of 95% confidence for a 95% conformal prediction region is valid under exchange-
ability, no matter what the probability distribution the examples follow and no matter what non-
conformity measure is used to construct the conformal prediction region. But the efficiency of
conformal prediction will depend on the probability distribution and the nonconformity measure. If
we think we know the probability distribution, we may choose a nonconformity measure that will
be efficient if we are right. If we have prior probabilities for Q, we may use these prior probabilities
to construct a point predictor ŷn and a nonconformity measure. In the regression case, we might
use as ŷn the mean of the posterior distribution for yn given the first n− 1 examples and xn; in the
classification case, we might use the label with the greatest posterior probability. This strategy of
first guaranteeing validity under a relatively weak assumption and then seeking efficiency under
stronger assumptions conforms to advice long given by John Tukey and others (Tukey, 1986; Small
et al., 2006).

Conformal prediction is studied in detail in Algorithmic Learning in a Random World, by Vovk,
Gammerman, and Shafer (2005). A recent exposition by Gammerman and Vovk (2007) emphasizes
connections with the theory of randomness, Bayesian methods, and induction. In this article we
emphasize the on-line concept of validity, the meaning of exchangeability, and the generalization
to other on-line compression models. We leave aside many important topics that are treated in
Algorithmic Learning in a Random World, including extensions beyond the on-line picture.

2. Valid Prediction Regions

Our concept of validity is consistent with a tradition that can be traced back to Jerzy Neyman’s
introduction of confidence intervals for parameters (Neyman, 1937) and even to work by Laplace
and others in the late 18th century. But the shift of emphasis to prediction (from estimation of
parameters) and to the on-line setting (where our prediction rule is repeatedly updated) involves
some rearrangement of the furniture.

The most important novelty in conformal prediction is that its successive errors are probabilis-
tically independent. This allows us to interpret “being right 95% of the time” in an unusually direct
way. In §2.1, we illustrate this point with a well-worn example, normally distributed random vari-
ables.

In §2.2, we contrast confidence with full-fledged conditional probability. This contrast has
been the topic of endless debate between those who find confidence methods informative (classical
statisticians) and those who insist that full-fledged probabilities based on all one’s information are
always preferable, even if the only available probabilities are very subjective (Bayesians). Because
the debate usually focuses on estimating parameters rather than predicting future observations, and
because some readers may be unaware of the debate, we take the time to explain that we find the
concept of confidence useful for prediction in spite of its limitations.

2.1 An Example of Valid On-Line Prediction

A 95% prediction region is valid if it contains the truth 95% of the time. To make this more
precise, we must specify the set of repetitions envisioned. In the on-line picture, these are successive
predictions based on accumulating information. We make one prediction after another, always
knowing the outcome of the preceding predictions.

To make clear what validity means and how it can be obtained in this on-line picture, we consider
prediction under an assumption often made in a first course in statistics:
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Random variables z1,z2, . . . are independently drawn from a normal distribution
with unknown mean and variance.

Prediction under this assumption was discussed in 1935 by R. A. Fisher, who explained how to give
a 95% prediction interval for zn based on z1, . . . ,zn−1 that is valid in our sense. We will state Fisher’s
prediction rule, illustrate its application to data, and explain why it is valid in the on-line setting.

As we will see, the predictions given by Fisher’s rule are too weak to be interesting from a
modern machine-learning perspective. This is not surprising, because we are predicting zn based
on old examples z1, . . . ,zn−1 alone. In general, more precise prediction is possible only in the more
favorable but more complicated set-up where we know some features xn of the new example and can
use both xn and the old examples to predict some other feature yn. But the simplicity of the set-up
where we predict zn from z1, . . . ,zn−1 alone will help us make the logic of valid prediction clear.

2.1.1 FISHER’S PREDICTION INTERVAL

Suppose we observe the zi in sequence. After observing z1 and z2, we start predicting; for n =
3,4, . . . , we predict zn after having seen z1, . . . ,zn−1. The natural point predictor for zn is the average
so far:

zn−1 :=
1

n−1

n−1

∑
i=1

zi,

but we want to give an interval that will contain zn 95% of the time. How can we do this? Here is
Fisher’s answer (1935):

1. In addition to calculating the average zn−1, calculate

s2
n−1 :=

1
n−2

n−1

∑
i=1

(zi − zn−1)
2,

which is sometimes called the sample variance. We can usually assume that it is non-zero.

2. In a table of percentiles for t-distributions, find t0.025
n−2 , the point that the t-distribution with

n−2 degrees of freedom exceeds exactly 2.5% of the time.

3. Predict that zn will be in the interval

zn−1 ± t0.025
n−2 sn−1

√

n
n−1

. (1)

Fisher based this procedure on the fact that

zn − zn−1

sn−1

√

n−1
n

has the t-distribution with n− 2 degrees of freedom, which is symmetric about 0. This implies
that (1) will contain zn with probability 95% regardless of the values of the mean and variance.
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2.1.2 A NUMERICAL EXAMPLE

We can illustrate (1) using some numbers generated in 1900 by the students of Emanuel Czuber
(1851–1925). These numbers are integers, but they theoretically have a binomial distribution and
are therefore approximately normally distributed.1

Here are Czuber’s first 19 numbers, z1, . . . ,z19:

17,20,10,17,12,15,19,22,17,19,14,22,18,17,13,12,18,15,17.

From them, we calculate
z19 = 16.53, s19 = 3.31.

The upper 2.5% point for the t-distribution with 18 degrees of freedom, t0.025
18 , is 2.101. So the

prediction interval (1) for z20 comes out to [9.40,24.13].
Taking into account our knowledge that z20 will be an integer, we can say that the 95% prediction

is that z20 will be an integer between 10 and 24, inclusive. This prediction is correct; z20 is 16.

2.1.3 ON-LINE VALIDITY

Fisher did not have the on-line picture in mind. He probably had in mind a picture where the for-
mula (1) is used repeatedly but in entirely separate problems. For example, we might conduct many
separate experiments that each consists of drawing 100 random numbers from a normal distribution
and then predicting a 101st draw using (1). Each experiment might involve a different normal dis-
tribution (a different mean and variance), but provided the experiments are independent from each
other, the law of large numbers will apply. Each time the probability is 95% that z101 will be in the
interval, and so this event will happen approximately 95% of the time.

The on-line story may seem more complicated, because the experiment involved in predicting
z101 from z1, . . . ,z100 is not entirely independent of the experiment involved in predicting, say, z105

from z1, . . . ,z104. The 101 random numbers involved in the first experiment are all also involved
in the second. But as a master of the analytical geometry of the normal distribution (Fisher, 1925;
Efron, 1969), Fisher would have noticed, had he thought about it, that this overlap does not actually
matter. As we show in Appendix A.3, the events

zn−1 − t0.025
n−2 sn−1

√

n
n−1

≤ zn ≤ zn−1 + t0.025
n−2 sn−1

√

n
n−1

(2)

for successive n are probabilistically independent in spite of the overlap. Because of this indepen-
dence, the law of large numbers again applies. Knowing each event has probability 95%, we can
conclude that approximately 95% of them will happen. We call the events (2) hits.

The prediction interval (1) generalizes to linear regression with normally distributed errors, and
on-line hits remain independent in this general setting. Even though formulas for these linear-
regression prediction intervals appear in textbooks, the independence of their on-line hits was not
noted prior to our work on conformal prediction. Like Fisher, the textbook authors did not have the

1. Czuber’s students randomly drew balls from an urn containing six balls, numbered 1 to 6. Each time they drew a
ball, they noted its label and put it back in the urn. After each 100 draws, they recorded the number of times that
the ball labeled with a 1 was drawn (Czuber, 1914, pp. 329–335). This should have a binomial distribution with
parameters 100 and 1/6, and it is therefore approximately normal with mean 100/6 = 16.67 and standard deviation
√

500/36 = 3.73.
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on-line setting in mind. They imagined just one prediction being made in each case where data is
accumulated.

We will return to the generalization to linear regression in §5.3.2. There we will derive the
textbook intervals as conformal prediction regions within the on-line Gaussian linear model, an
on-line compression model that uses slightly weaker assumptions than the classical assumption of
independent and normally distributed errors.

2.2 Confidence Says Less than Probability.

Neyman’s notion of confidence looks at a procedure before observations are made. Before any of
the zi are observed, the event (2) involves multiple uncertainties: zn−1, sn−1, and zn are all uncertain.
The probability that these three quantities will turn out so that (2) holds is 95%.

We might ask for more than this. It is after we observe the first n−1 examples that we calculate
zn−1 and sn−1 and then calculate the interval (1), and we would like to be able to say at this point that
there is still a 95% probability that zn will be in (1). But this, it seems, is asking for too much. The
assumptions we have made are insufficient to enable us to find a numerical probability for (2) that
will be valid at this late date. In theory there is a conditional probability for (2) given z1, . . . ,zn−1,
but it involves the unknown mean and variance of the normal distribution.

Perhaps the matter is best understood from the game-theoretic point of view. A probability can
be thought of as an offer to bet. A 95% probability, for example, is an offer to take either side of
a bet at 19 to 1 odds. The probability is valid if the offer does not put the person making it at a
disadvantage, inasmuch as a long sequence of equally reasonable offers will not allow an opponent
to multiply the capital he or she risks by a large factor (Shafer and Vovk, 2001). When we assume
a probability model (such as the normal model we just used or the on-line compression models we
will study later), we are assuming that the model’s probabilities are valid in this sense before any
examples are observed. Matters may be different afterwards.

In general, a 95% conformal predictor is a rule for using the preceding examples (x1,y1), . . . ,
(xn−1,yn−1) and a new object xn to give a set, say

Γ0.05((x1,y1), . . . ,(xn−1,yn−1),xn), (3)

that we predict will contain yn. If the predictor is valid, the prediction

yn ∈ Γ0.05((x1,y1), . . . ,(xn−1,yn−1),xn)

will have a 95% probability before any of the examples are observed, and it will be safe, at that
point, to offer 19 to 1 odds on it. But after we observe (x1,y1), . . . ,(xn−1,yn−1) and xn and calculate
the set (3), we may want to withdraw the offer.

Particularly striking instances of this phenomenon can arise in the case of classification, where
there are only finitely many possible labels. We will see one such instance in §4.3.1, where we
consider a classification problem in which there are only two possible labels, s and v. In this case,
there are only four possibilities for the prediction region:

1. Γ0.05((x1,y1), . . . ,(xn−1,yn−1),xn) contains only s.

2. Γ0.05((x1,y1), . . . ,(xn−1,yn−1),xn) contains only v.

3. Γ0.05((x1,y1), . . . ,(xn−1,yn−1),xn) contains both s and v.
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William S. Gossett
1876–1937

Ronald A. Fisher
1890–1962

Jerzy Neyman
1894–1981

Figure 1: Three influential statisticians. Gossett, who worked as a statistician for the Guinness
brewery in Dublin, introduced the t-distribution to English-speaking statisticians (Stu-
dent, 1908). Fisher, whose applied and theoretical work invigorated mathematical statis-
tics in the 1920s and 1930s, refined, promoted, and extended Gossett’s work. Neyman
was one of the most influential leaders in the subsequent movement to use advanced prob-
ability theory to give statistics a firmer foundation and further extend its applications.

4. Γ0.05((x1,y1), . . . ,(xn−1,yn−1),xn) is empty.

The third and fourth cases can occur even though Γ0.05 is valid. When the third case happens,
the prediction, though uninformative, is certain to be correct. When the fourth case happens, the
prediction is clearly wrong. These cases are consistent with the prediction being right 95% of the
time. But when we see them arise, we know whether the particular value of n is one of the 95%
where we are right or the one of the 5% where we are wrong, and so the 95% will not remain valid
as a probability defining betting odds.

In the case of normally distributed examples, Fisher called the 95% probability for zn being in
the interval (1) a “fiducial probability,” and he seems to have believed that it would not be susceptible
to a gambling opponent who knows the first n−1 examples (see Fisher, 1973, pp. 119–125). But this
turned out not to be the case (Robinson, 1975). For this and related reasons, most scientists who use
Fisher’s methods have adopted the interpretation offered by Neyman, who wrote about “confidence”
rather than fiducial probability and emphasized that a confidence level is a full-fledged probability
only before we acquire data. It is the procedure or method, not the interval or region it produces
when applied to particular data, that has a 95% probability of being correct.

Neyman’s concept of confidence has endured in spite of its shortcomings. It is widely taught
and used in almost every branch of science. Perhaps it is especially useful in the on-line setting. It
is useful to know that 95% of our predictions are correct even if we cannot assert a full-fledged 95%
probability for each prediction when we make it.

3. Exchangeability

Consider variables z1, . . . ,zN . Suppose that for any collection of N values, the N! different orderings
are equally likely. Then we say that z1, . . . ,zN are exchangeable. The assumption that z1, . . . ,zN

are exchangeable is slightly weaker than the more familiar assumption that they are drawn indepen-
dently from a probability distribution.
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In our book (Vovk et al., 2005), conformal prediction is first explained under the assumption
that z1, . . . ,zN are independently drawn from a probability distribution (or that they are “random,”
as we say there), and then it is pointed out that this assumption can be relaxed to the assumption
that z1, . . . ,zN are exchangeable. When we introduce conformal prediction in this article, in §4, we
assume only exchangeability from the outset, hoping that this will make the logic of the method as
clear as possible. Once this logic is clear, it is easy to see that it works not only for the exchange-
ability model but also for other on-line compression models (§5).

In this section we look at the relationship between exchangeability and independence and then
give a backward-looking definition of exchangeability that can be understood game-theoretically.
We conclude with a law of large numbers for exchangeable sequences, which will provide the basis
for our confidence that our 95% prediction regions are right 95% of the time.

3.1 Exchangeability and Independence

Although the definition of exchangeability we just gave may be clear enough at an intuitive level, it
has two technical problems that make it inadequate as a formal mathematical definition: (1) in the
case of continuous distributions, any specific values for z1, . . . ,zN will have probability zero, and (2)
in the case of discrete distributions, two or more of the zi might take the same value, and so a list of
possible values a1, . . . ,aN might contain fewer than n distinct values.

One way of avoiding these technicalities is to use the concept of a permutation, as follows:

Definition of exchangeability using permutations. The variables z1, . . . ,zN are ex-
changeable if for every permutation τ of the integers 1, . . . ,N, the variables w1, . . . ,wN ,
where wi = zτ(i), have the same joint probability distribution as z1, . . . ,zN .

We can extend this to a definition of exchangeability for an infinite sequence of variables: z1,z2, . . .
are exchangeable if z1, . . . ,zN are exchangeable for every N.

This definition makes it easy to see that independent and identically distributed random variables
are exchangeable. Suppose z1, . . . ,zN all take values from the same example space Z, all have the
same probability distribution Q, and are independent. Then their joint distribution satisfies

Pr(z1 ∈ A1 & . . . & zN ∈ AN) = Q(A1) · · ·Q(AN)

for any2 subsets A1, . . . ,AN of Z, where Q(A) is the probability Q assigns to an example being
in A. Because permuting the factors Q(An) does not change their product, and because a joint
probability distribution for z1, . . . ,zN is determined by the probabilities it assigns to events of the
form {z1 ∈ A1 & . . . & zN ∈ AN}, this makes it clear that z1, . . . ,zN are exchangeable.

Exchangeability implies that variables have the same distribution. On the other hand, exchange-
able variables need not be independent. Indeed, when we average two or more distinct joint proba-
bility distributions under which variables are independent, we usually get a joint probability distribu-
tion under which they are exchangeable (averaging preserves exchangeability) but not independent
(averaging usually does not preserve independence). According to a famous theorem by de Finetti,
an exchangeable joint distribution for an infinite sequence of distinct variables is exchangeable only
if it is a mixture of joint distributions under which the variables are independent (Hewitt and Savage,
1955). As Table 1 shows, the picture is more complicated in the finite case.

2. We leave aside technicalities involving measurability.
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Pr(z1 = H & z2 = H) Pr(z1 = H & z2 = T)

Pr(z1 = T & z2 = H) Pr(z1 = T & z2 = T)

0.81 0.09

0.09 0.01

0.41 0.09

0.09 0.41

0.10 0.40

0.40 0.10

Table 1: Examples of exchangeability. We consider variables z1 and z2, each of which comes out H
or T. Exchangeability requires only that Pr(z1 = H & z2 = T) = Pr(z1 = T & z2 = H). Three
examples of distributions for z1 and z2 with this property are shown. On the left, z1 and
z2 are independent and identically distributed; both come out H with probability 0.9. The
middle example is obtained by averaging this distribution with the distribution in which
the two variables are again independent and identically distributed but T’s probability is
0.9. The distribution on the right, in contrast, cannot be obtained by averaging distributions
under which the variables are independent and identically distributed. Examples of this last
type disappear as we ask for a larger and larger number of variables to be exchangeable.

3

4

4 4 7 737

7

4

Figure 2: Ordering the tiles. Joe gives Bill a bag containing five tiles, and Bill arranges them
to form the list 43477. Bill can calculate conditional probabilities for which zi had
which of the five values. His conditional probability for z5 = 4, for example, is 2/5.
There are (5!)/(2!)(2!) = 30 ways of assigning the five values to the five variables;
(z1,z2,z3,z4,z5) = (4,3,4,7,7) is one of these, and they all have the same probability,
1/30.

3.2 Backward-Looking Definitions of Exchangeability

Another way of defining exchangeability looks backwards from a situation where we know the
unordered values of z1, . . . ,zN .

Suppose Joe has observed z1, . . . ,zN . He writes each value on a tile resembling those used in
Scrabble c©, puts the N tiles in a bag, shakes the bag, and gives it to Bill to inspect. Bill sees the N
values (some possibly equal to each other) without knowing their original order. Bill also knows the
joint probability distribution for z1, . . . ,zN . So he obtains probabilities for the ordering of the tiles by
conditioning this joint distribution on his knowledge of the bag. The joint distribution is exchange-
able if and only if these conditional probabilities are the same as the probabilities for the result of
ordering the tiles by successively drawing them at random from the bag without replacement.
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To make this into a definition of exchangeability, we formalize the notion of a bag. A bag (or
multiset, as it is sometimes called) is a collection of elements in which repetition is allowed. It is
like a set inasmuch as its elements are unordered but like a list inasmuch as an element can occur
more than once. We write *a1, . . . ,aN+ for the bag obtained from the list a1, . . . ,aN by removing
information about the ordering.

Here are three equivalent conditions on the joint distribution of a sequence of random variables
z1, . . . ,zN , any of which can be taken as the definition of exchangeability.

1. For any bag B of size N, and for any examples a1, . . . ,aN ,

Pr(z1 = a1 & . . . & zN = aN | *z1, . . . ,zN+ = B)

is equal to the probability that successive random drawings from the bag B without replace-
ment produces first aN , then aN−1, and so on, until the last element remaining in the bag is
a1.

2. For any n, 1 ≤ n ≤ N, zn is independent of zn+1, . . . ,zN given the bag *z1, . . . ,zn+ and for any
bag B of size n,

Pr(zn = a | *z1, . . . ,zn+ = B) =
k
n
, (4)

where k is the number of times a occurs in B.

3. For any bag B of size N, and for any examples a1, . . . ,aN ,

Pr(z1 = a1 & . . . & zN = aN | *z1, . . . ,zN+ = B) =

{

n1!···nk!
N! if B = *a1, . . . ,aN+

0 if B 6= *a1, . . . ,aN+,
(5)

where k is the number of distinct values among the ai, and n1, . . . ,nk are the respective num-
bers of times they occur. (If the ai are all distinct, the expression n1! · · ·nk!/(N!) reduces to
1/(N!).)

We leave it to the reader to verify that these three conditions are equivalent to each other. The second
condition, which we will emphasize, is represented pictorially in Figure 3.

The backward-looking conditions are also equivalent to the definition of exchangeability using
permutations given on p. 378. This equivalence is elementary in the case where every possible
sequence of values a1, . . . ,an has positive probability. But complications arise when this probability
is zero, because the conditional probability on the left-hand side of (5) is then defined only with
probability one by the joint distribution. We do not explore these complications here.

3.3 The Betting Interpretation of Exchangeability

The framework for probability developed in Shafer and Vovk (2001) formalizes classical results
of probability theory, such as the law of large numbers, as theorems of game theory: a bettor can
multiply the capital he risks by a large factor if these results do not hold. This allows us to express
the empirical interpretation of given probabilities in terms of betting, using what we call Cournot’s
principle: the odds determined by the probabilities will not allow a bettor to multiply the capital he
or she risks by a large factor (Shafer, 2007).
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2 *z1+ *z1,z2+ · · · *z1, . . . ,zN−1+ *z1, . . . ,zN+

z1 z2 zN−1 zN

� � � � �

6 6 6 6

Figure 3: Backward probabilities, step by step. The two arrows backwards from each bag
*z1, . . . ,zn+ symbolize drawing an example zn out at random, leaving the smaller bag
*z1, . . . ,zn−1+. The probabilities for the result of the drawing are given by (4). Readers
familiar with Bayes nets (Cowell et al., 1999) will recognize this diagram as an exam-
ple; conditional on each variable, a joint probability distribution is given for its children
(the variables to which arrows from it point), and given the variable, its descendants are
independent of its ancestors.

By applying this idea to the sequence of probabilities (4), we obtain a betting interpretation of
exchangeability. Think of Joe and Bill as two players in a game that moves backwards from point
N in Figure 3. At each step, Joe provides new information and Bill bets. Designate by KN the total
capital Bill risks. He begins with this capital at N, and at each step n he bets on what zn will turn
out to be. When he bets at step n, he cannot risk losing more than he has at that point (because he is
not risking more than KN in the whole game), but otherwise he can bet as much as he wants for or
against each possible value a for zn at the odds (k/n) : (1−k/n), where k is the number of elements
in the current bag equal to a.

For brevity, we write Bn for the bag *z1, . . . ,zn+, and for simplicity, we set the initial capital KN

equal to $1. This gives the following protocol:

THE BACKWARD-LOOKING BETTING PROTOCOL

Players: Joe, Bill

KN := 1.
Joe announces a bag BN of size N.
FOR n = N,N −1, . . . ,2,1

Bill bets on zn at odds set by (4).
Joe announces zn ∈ Bn.
Kn−1 := Kn +Bill’s net gain.
Bn−1 := Bn \ *zn+.

Constraint: Bill must move so that his capital Kn will be nonnegative for all n no matter how Joe
moves.

Our betting interpretation of exchangeability is that Bill will not multiply his initial capital KN by a
large factor in this game.

The permutation definition of exchangeability does not lead to an equally simple betting inter-
pretation, because the probabilities for z1, . . . ,zN to which the permutation definition refers are not
determined by the mere assumption of exchangeability.
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3.4 A Law of Large Numbers for Exchangeable Sequences

As we noted when we studied Fisher’s prediction interval in §2.1.3, the validity of on-line prediction
requires more than having a high probability of a hit for each individual prediction. We also need
a law of large numbers, so that we can conclude that a high proportion of the high-probability
predictions will be correct. As we show in §A.3, the successive hits in the case of Fisher’s region
predictor are independent, so that the usual law of large numbers applies. What can we say in the
case of conformal prediction under exchangeability?

Suppose z1, . . . ,zN are exchangeable, drawn from an example space Z. In this context, we adopt
the following definitions.

• An event E is an n-event, where 1 ≤ n ≤ N, if its happening or failing is determined by the
value of zn and the value of the bag *z1, . . . ,zn−1+.

• An n-event E is ε-rare if
Pr(E | *z1, . . . ,zn+) ≤ ε. (6)

The left-hand side of the inequality (6) is a random variable, because the bag *z1, . . . ,zn+ is random.
The inequality says that this random variable never exceeds ε.

As we will see in the next section, the successive errors for a conformal predictor are ε-rare
n-events. So the validity of conformal prediction follows from the following informal proposition.

Informal Proposition 1 Suppose N is large, and the variables z1, . . . ,zN are exchangeable. Sup-
pose En is an ε-rare n-event for n = 1, . . . ,N. Then the law of large numbers applies; with very high
probability, no more than approximately the fraction ε of the events E1, . . . ,EN will happen.

In Appendix A, we formalize this proposition in two ways: classically and game-theoretically.
The classical approach appeals to the classical weak law of large numbers, which tells us that if

E1, . . . ,EN are mutually independent and each have probability exactly ε, and N is sufficiently large,
then there is a very high probability that the fraction of the events that happen will be close to ε. We
show in §A.1 that if (6) holds with equality, then En are mutually independent and each of them has
unconditional probability ε. Having the inequality instead of equality means that the En are even
less likely to happen, and this will not reverse the conclusion that few of them will happen.

The game-theoretic approach is more straightforward, because the game-theoretic version law
of large numbers does not require independence or exact levels of probability. In the game-theoretic
framework, the only question is whether the probabilities specified for successive events are rates
at which a bettor can place successive bets. The Backward-Looking Betting Protocol says that this
is the case for ε-rare n-events. As Bill moves through the protocol from N to 1, he is allowed
to bet against each error En at a rate corresponding to its having probability ε or less. So the
game-theoretic weak law of large numbers (Shafer and Vovk, 2001, pp. 124–126) applies directly.
Because the game-theoretic framework is not well known, we state and prove this law of large
numbers, specialized to the Backward-Looking Betting Protocol, in §A.2.

4. Conformal Prediction under Exchangeability

We are now in a position to state the conformal algorithm under exchangeability and explain why it
produces valid nested prediction regions.
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We distinguish two cases of on-line prediction. In both cases, we observe examples z1, . . . ,zN

one after the other and repeatedly predict what we will observe next. But in the second case we
have more to go on when we make each prediction.

1. Prediction from old examples alone. Just before observing zn, we predict it based on the
previous examples, z1, . . . ,zn−1.

2. Prediction using features of the new object. Each example zi consists of an object xi and a
label yi. In symbols: zi = (xi,yi). We observe in sequence x1,y1, . . . ,xN ,yN . Just before ob-
serving yn, we predict it based on what we have observed so far, xn and the previous examples
z1, . . . ,zn−1.

Prediction from old examples may seem relatively uninteresting. It can be considered a special case
of prediction using features xn of new examples—the case in which the xn provide no information,
and this special case we may have too little information to make useful predictions. But its simplicity
makes prediction with old examples alone advantageous as a setting for explaining the conformal
algorithm, and as we will see, it is then straightforward to take account of the new information xn.

Conformal prediction requires that we first choose a nonconformity measure, which measures
how different a new example is from old examples. In §4.1, we explain how nonconformity mea-
sures can be obtained from methods of point prediction. In §4.2, we state and illustrate the con-
formal algorithm for predicting new examples from old examples alone. In §4.3, we generalize to
prediction with the help of features of a new example. In §4.4, we explain why conformal prediction
produces the best possible valid nested prediction regions under exchangeability. Finally, in §4.5
we discuss the implications of the failure of the assumption of exchangeability.

For some readers, the simplicity of the conformal algorithm may be obscured by its generality
and the scope of our preliminary discussion of nonconformity measures. We encourage such readers
to look first at §4.2.1, §4.3.1, and §4.3.2, which provide largely self-contained accounts of the
algorithm as it applies to some small data sets.

4.1 Nonconformity Measures

The starting point for conformal prediction is what we call a nonconformity measure, a real-valued
function A(B,z) that measures how different an example z is from the examples in a bag B. The
conformal algorithm assumes that a nonconformity measure has been chosen. The algorithm will
produce valid nested prediction regions using any real-valued function A(B,z) as the nonconformity
measure. But the prediction regions will be efficient (small) only if A(B,z) measures well how
different z is from the examples in B.

A method ẑ(B) for obtaining a point prediction ẑ for a new example from a bag B of old examples
usually leads naturally to a nonconformity measure A. In many cases, we only need to add a way of
measuring the distance d(z,z′) between two examples. Then we define A by

A(B,z) := d(ẑ(B),z). (7)

The prediction regions produced by the conformal algorithm do not change when the nonconformity
measure A is transformed monotonically. If A is nonnegative, for example, replacing A with A2

will make no difference. Consequently, the choice of the distance measure d(z,z′) is relatively
unimportant. The important step in determining the nonconformity measure A is choosing the point
predictor ẑ(B).
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To be more concrete, suppose the examples are real numbers, and write zB for the average of
the numbers in B. If we take this average as our point predictor ẑ(B), and we measure the distance
between two real numbers by the absolute value of their difference, then (7) becomes

A(B,z) := |zB − z|. (8)

If we use the median of the numbers in B instead of their average as ẑ(B), we get a different non-
conformity measure, which will produce different prediction regions when we use the conformal
algorithm. On the other hand, as we have already said, it will make no difference if we replace the
absolute difference d(z,z′) = |z− z′| with the squared difference d(z,z′) = (z− z′)2, thus squaring
A.

We can also vary (8) by including the new example in the average:

A(B,z) := |(average of z and all the examples in B)− z| . (9)

This results in the same prediction regions as (8), because if B has n elements, then

|(average of z and all the examples in B)− z| =

∣

∣

∣

∣

nzB + z
n+1

− z

∣

∣

∣

∣

=
n

n+1
|zB − z|,

and as we have said, conformal prediction regions are not changed by a monotonic transformation
of the nonconformity measure. In the numerical example that we give in §4.2.1 below, we use (9)
as our nonconformity measure.

When we turn to the case where features of a new object help us predict a new label, we will
consider, among others, the following two nonconformity measures:

Distance to the nearest neighbors for classification. Suppose B = *z1, . . . ,zn−1+, where each
zi consists of a number xi and a nonnumerical label yi. Again we observe x but not y for a new
example z = (x,y). The nearest-neighbor method finds the xi closest to x and uses its label yi as our
prediction of y. If there are only two labels, or if there is no natural way to measure the distance
between labels, we cannot measure how wrong the prediction is; it is simply right or wrong. But
it is natural to measure the nonconformity of the new example (x,y) to the old examples (xi,yi)
by comparing x’s distance to old objects with the same label to its distance to old objects with a
different label. For example, we can set

A(B,z) : =
min{|xi − x| : 1 ≤ i ≤ n−1,yi = y}
min{|xi − x| : 1 ≤ i ≤ n−1,yi 6= y}

=
distance to z’s nearest neighbor in B with the same label

distance to z’s nearest neighbor in B with a different label
.

(10)

Distance to a regression line. Suppose B = *(x1,y1), . . . ,(xl,yl)+, where the xi and yi are numbers.
The most common way of fitting a line to such pairs of numbers is to calculate the averages

xl :=
l

∑
j=1

x j and yl :=
l

∑
j=1

y j,

and then the coefficients

bl =
∑l

j=1(x j − xl)y j

∑l
j=1(x j − xl)2

and al = yl −blxl .
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This gives the least-squares line y = al +blx. The coefficients al and bl are not affected if we change
the order of the zi; they depend only on the bag B.

If we observe a bag B = *z1, . . . ,zn−1+ of examples of the form zi = (xi,yi) and also x but not y
for a new example z = (x,y), then the least-squares prediction of y is

ŷ = an−1 +bn−1x. (11)

We can use the error in this prediction as a nonconformity measure:

A(B,z) := |y− ŷ| = |y− (an−1 +bn−1x)|.

We can obtain other nonconformity measures by using other methods to estimate a line.
Alternatively, we can include the new example as one of the examples used to estimate the least

squares line or some other regression line. In this case, it is natural to write (xn,yn) for the new
example. Then an and bn designate the coefficients calculated from all n examples, and we can use

|yi − (an +bnxi)| (12)

to measure the nonconformity of each of the (xi,yi) with the others. In general, the inclusion of the
new example simplifies the implementation or at least the explanation of the conformal algorithm.
In the case of least squares, it does not change the prediction regions.

4.2 Conformal Prediction from Old Examples Alone

Suppose we have chosen a nonconformity measure A for our problem. Given A, and given the
assumption that the zi are exchangeable, we now define a valid prediction region

γε(z1, . . . ,zn−1) ⊆ Z,

where Z is the example space. We do this by giving an algorithm for deciding, for each z ∈ Z,
whether z should be included in the region. For simplicity in stating this algorithm, we provisionally
use the symbol zn for z, as if we were assuming that zn is in fact equal to z.

The Conformal Algorithm Using Old Examples Alone

Input: Nonconformity measure A, significance level ε, examples z1, . . . ,zn−1, example z,

Task: Decide whether to include z in γε(z1, . . . ,zn−1).

Algorithm:

1. Provisionally set zn := z.

2. For i = 1, . . . ,n, set αi := A(*z1, . . . ,zn +\ * zi+,zi).

3. Set pz :=
number of i such that 1 ≤ i ≤ n and αi ≥ αn

n
.

4. Include z in γε(z1, . . . ,zn−1) if and only if pz > ε.

If Z has only a few elements, this algorithm can be implemented in a brute-force way: calculate
pz for every z ∈ Z. If Z has many elements, we will need some other way of identifying the z
satisfying pz > ε.
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The number pz is the fraction of the examples in *z1, . . . ,zn−1,z+ that are at least as different
from the others as z is, in the sense measured by A. So the algorithm tells us to form a prediction
region consisting of the z that are not among the fraction ε most out of place when they are added
to the bag of old examples.

The definition of γε(z1, . . . ,zn−1) can be framed as an application of the widely accepted Neyman-
Pearson theory for hypothesis testing and confidence intervals (Lehmann, 1986). In the Neyman-
Pearson theory, we test a hypothesis H using a random variable T that is likely to be large only if H
is false. Once we observe T = t, we calculate pH := Pr(T ≥ t |H). We reject H at level ε if pH ≤ ε.
Because this happens under H with probability no more than ε, we can declare 1−ε confidence that
the true hypothesis H is among those not rejected. Our procedure makes these choices of H and T :

• The hypothesis H says the bag of the first n examples is *z1, . . . ,zn−1,z+.

• The test statistic T is the random value of αn.

Under H—that is, conditional on the bag *z1, . . . ,zn−1,z+, T is equally likely to come out equal to
any of the αi. Its observed value is αn. So

pH = Pr(T ≥ αn | *z1, . . . ,zn−1,z+) = pz.

Since z1, . . . ,zn−1 are known, rejecting the bag *z1, . . . ,zn−1,z+ means rejecting zn = z. So our 1− ε
confidence is in the set of z for which pz > ε.

The regions γε(z1, . . . ,zn−1) for successive n are based on overlapping sequences of examples
rather than independent samples. But the successive errors are ε-rare n-events. The event that our
nth prediction is an error, zn /∈ γε(z1, . . . ,zn−1), is the event pzn ≤ ε. This is an n-event, because the
value of pzn is determined by zn and the bag *z1, . . . ,zn−1+. It is ε-rare because it is the event that
αn is among a fraction ε or fewer of the αi that are strictly larger than all the other αi, and this can
have probability at most ε when the αi are exchangeable. So it follows from Informal Proposition 1
(§3.4) that we can expect at least 1− ε of the γε(z1, . . . ,zn−1), n = 1, . . . ,N, to be correct.

4.2.1 EXAMPLE: PREDICTING A NUMBER WITH AN AVERAGE

In §2.1, we discussed Fisher’s 95% prediction interval for zn based on z1, . . . ,zn−1, which is valid
under the assumption that the zi are independent and normally distributed. We used it to predict z20

when the first 19 zi are

17,20,10,17,12,15,19,22,17,19,14,22,18,17,13,12,18,15,17.

Taking into account our knowledge that the zi are all integers, we arrived at the 95% prediction that
z20 is an integer between 10 to 24, inclusive.

What can we predict about z20 at the 95% level if we drop the assumption of normality and
assume only exchangeability? To produce a 95% prediction interval valid under the exchangeability
assumption alone, we reason as follows. To decide whether to include a particular value z in the
interval, we consider twenty numbers that depend on z:

• First, the deviation of z from the average of it and the other 19 numbers. Because the sum of
the 19 is 314, this is

∣

∣

∣

∣

314+ z
20

− z

∣

∣

∣

∣

=
1
20

|314−19z| . (13)
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• Then, for i = 1, . . . ,19, the deviation of zi from this same average. This is
∣

∣

∣

∣

314+ z
20

− zi

∣

∣

∣

∣

=
1
20

|314+ z−20zi| . (14)

Under the hypothesis that z is the actual value of zn, these 20 numbers are exchangeable. Each of
them is as likely as the other to be the largest. So there is at least a 95% (19 in 20) chance that (13)
will not exceed the largest of the 19 numbers in (14). The largest of the 19 zis being 22 and the
smallest 10, we can write this condition as

|314−19z| ≤ max{|314+ z− (20×22)| , |314+ z− (20×10)|} ,

which reduces to

10 ≤ z ≤
214
9

≈ 23.8.

Taking into account that z20 is an integer, our 95% prediction is that it will be an integer between
10 and 23, inclusive. This is nearly the same prediction we obtained by Fisher’s method. We have
lost nothing by weakening the assumption that the zi are independent and normally distributed to
the assumption that they are exchangeable. But we are still basing our prediction region on the
average of old examples, which is an optimal estimator in various respects under the assumption of
normality.

4.2.2 ARE WE COMPLICATING THE STORY UNNECESSARILY?

The reader may feel that we are vacillating about whether to include the new example in the bag
with which we are comparing it. In our statement of the conformal algorithm, we define the non-
conformity scores by

αi := A(*z1, . . . ,zn +\ * zi+,zi), (15)

apparently signaling that we do not want to include zi in the bag to which it is compared. But then
we use the nonconformity measure

A(B,z) := |(average of z and all the examples in B)− z| ,

which seems to put z back in the bag, reducing (15) to

αi =

∣

∣

∣

∣

∑n
j=1 z j

n
− zi

∣

∣

∣

∣

.

We could have reached this point more easily by writing

αi := A(*z1, . . . ,zn+,zi) (16)

in the conformal algorithm and using A(B,z) := |zB − z| .
The two ways of defining nonconformity scores, (15) and (16), are equivalent, inasmuch as

whatever we can get with one of them we can get from the other by changing the nonconformity
measure. In this case, (16) might be more convenient. But we will see other cases where (15) is
more convenient. We also have another reason for using (15). It is the form that generalizes, as we
will see in §5, to on-line compression models.
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4.3 Conformal Prediction Using a New Object

Now we turn to the case where our example space Z is of the form Z = X×Y. We call X the object
space, Y the label space. We observe in sequence examples z1, . . . ,zN , where zi = (xi,yi). At the
point where we have observed

(z1, . . . ,zn−1,xn) = ((x1,y1), . . . ,(xn−1,yn−1),xn),

we want to predict yn by giving a prediction region

Γε(z1, . . . ,zn−1,xn) ⊆ Y

that is valid at the (1− ε) level. As in the special case where the xi are absent, we start with a
nonconformity measure A(B,z).

We define the prediction region by giving an algorithm for deciding, for each y ∈ Y, whether y
should be included in the region. For simplicity in stating this algorithm, we provisionally use the
symbol zn for (xn,y), as if we were assuming that yn is in fact equal to y.

The Conformal Algorithm

Input: Nonconformity measure A, significance level ε, examples z1, . . . ,zn−1, object xn, label y

Task: Decide whether to include y in Γε(z1, . . . ,zn−1,xn).

Algorithm:

1. Provisionally set zn := (xn,y).

2. For i = 1, . . . ,n, set αi := A(*z1, . . . ,zn +\ * zi+,zi).

3. Set py :=
#{i = 1, . . . ,n |αi ≥ αn}

n
.

4. Include y in Γε(z1, . . . ,zn−1,xn) if and only if py > ε.

This differs only slightly from the conformal algorithm using old examples alone (p. 385). Now
we write py instead of pz, and we say that we are including y in Γε(z1, . . . ,zn−1,xn) instead of saying
that we are including z in γε(z1, . . . ,zn−1).

To see that this algorithm produces valid prediction regions, it suffices to see that it consists of
the algorithm for old examples alone together with a further step that does not change the frequency
of hits. We know that the region the old algorithm produces,

γε(z1, . . . ,zn−1) ⊆ Z, (17)

contains the new example zn = (xn,yn) at least 95% of the time. Once we know xn, we can rule out
all z = (x,y) in (17) with x 6= xn. The y not ruled out, those such that (xn,y) is in (17), are precisely
those in the set

Γε(z1, . . . ,zn−1,xn) ⊆ Y (18)

produced by our new algorithm. Having (xn,yn) in (17) 1− ε of the time is equivalent to having yn

in (18) 1− ε of the time.
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4.3.1 EXAMPLE: CLASSIFYING IRIS FLOWERS

In 1936, R. A. Fisher used discriminant analysis to distinguish different species of iris on the basis
of measurements of their flowers. The data he used included measurements by Edgar Anderson of
flowers from 50 plants each of two species, iris setosa and iris versicolor. Two of the measurements,
sepal length and petal width, are plotted in Figure 4.

To illustrate how the conformal algorithm can be used for classification, we have randomly
chosen 25 of the 100 plants. The sepal lengths and species for the first 24 of them are listed in
Table 2 and plotted in Figure 5. The 25th plant in the sample has sepal length 6.8. On the basis
of this information, would you classify it as setosa or versicolor, and how confident would you be
in the classification? Because 6.8 is the longest sepal in the sample, nearly any reasonable method
will classify the plant as versicolor, and this is in fact the correct answer. But the appropriate level
of confidence is not so obvious.

We calculate conformal prediction regions using three different nonconformity measures: one
based on distance to the nearest neighbors, one based on distance to the species average, and one
based on a support-vector machine. Because our evidence is relatively weak, we do not achieve the
high precision with high confidence that can be achieved in many applications of machine learn-
ing (see, for example, §4.5). But we get a clear view of the details of the calculations and the
interpretation of the results.

Distance to the nearest neighbor belonging to each species. Here we use the nonconformity
measure (10). The fourth and fifth columns of Table 2 (labeled NN for nearest neighbor) give
nonconformity scores αi obtained with y25 = s and y25 = v, respectively. In both cases, these scores
are given by

αi = A(*z1, . . . ,z25 +\ * zi+,zi)

=
min{|x j − xi| : 1 ≤ j ≤ 25 & j 6= i & y j = yi}

min{|x j − xi| : 1 ≤ j ≤ 25 & j 6= i & y j 6= yi}
,

(19)

but for the fourth column z25 = (6.8,s), while for the fifth column z25 = (6.8,v).
If both the numerator and the denominator in (19) are equal to zero, we take the ratio also to be

zero. This happens in the case of the first plant, for example. It has the same sepal length, 5.0, as
the 7th and 13th plants, which are setosa, and the 15th plant, which is versicolor.

Step 3 of the conformal algorithm yields ps = 0.08 and pv = 0.32. Step 4 tells us that

• s is in the 1− ε prediction region when 1− ε > 0.92, and

• v is in the 1− ε prediction region when 1− ε > 0.68.

Here are prediction regions for a few levels of ε.

• Γ0.08 = {v}. With 92% confidence, we predict that y25 = v.

• Γ0.05 = {s,v}. If we raise the confidence with which we want to predict y25 to 95%, the
prediction is completely uninformative.

• Γ1/3 = /0. If we lower the confidence to 2/3, we get a prediction we know is false: y25 will be
in the empty set.
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Data Nonconformity scores
NN Species Average SVM

sepal species αi for αi for αi for αi for αi for αi for
length y25 = s y25 = v y25 = s y25 = v y25 = s y25 = v

z1 5.0 s 0 0 0.06 0.06 0 0
z2 4.4 s 0 0 0.66 0.54 0 0
z3 4.9 s 1 1 0.16 0.04 0 0
z4 4.4 s 0 0 0.66 0.54 0 0
z5 5.1 s 0 0 0.04 0.16 0 0
z6 5.9 v 0.25 0.25 0.12 0.20 0 0
z7 5.0 s 0 0 0.06 0.06 0 0
z8 6.4 v 0.50 0.22 0.38 0.30 0 0
z9 6.7 v 0 0 0.68 0.60 0 0
z10 6.2 v 0.33 0.29 0.18 0.10 0 0
z11 5.1 s 0 0 0.04 0.16 0 0
z12 4.6 s 0 0 0.46 0.34 0 0
z13 5.0 s 0 0 0.06 0.06 0 0
z14 5.4 s 0 0 0.34 0.46 0 0
z15 5.0 v ∞ ∞ 1.02 1.10 ∞ ∞
z16 6.7 v 0 0 0.68 0.60 0 0
z17 5.8 v 0 0 0.22 0.30 0 0
z18 5.5 s 0.50 0.50 0.44 0.56 0 0
z19 5.8 v 0 0 0.22 0.30 0 0
z20 5.4 s 0 0 0.34 0.46 0 0
z21 5.1 s 0 0 0.04 0.16 0 0
z22 5.7 v 0.50 0.50 0.32 0.40 0 0
z23 4.6 s 0 0 0.46 0.34 0 0
z24 4.6 s 0 0 0.46 0.34 0 0
z25 6.8 s 13 1.74 ∞
z25 6.8 v 0.077 0.7 0
ps 0.08 0.04 0.08
pv 0.32 0.08 1

Table 2: Conformal prediction of iris species from sepal length, using three different noncon-
formity measures. The data used are sepal length and species for a random sample of
25 of the 100 plants measured by Edgar Anderson. The second column gives xi, the sepal
length. The third column gives yi, the species. The 25th plant has sepal length x25 = 6.8,
and our task is to predict its species y25. For each nonconformity measure, we calculate
nonconformity scores under each hypothesis, y25 = s and y25 = v. The p-value in each
column is computed from the 25 nonconformity scores in that column; it is the fraction of
them equal to or larger than the 25th. The results from the three nonconformity measures
are consistent, inasmuch as the p-value for v is always larger than the p-value for s.
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Figure 4: Sepal length, petal width, and species for Edgar Anderson’s 100 flowers. The 50 iris
setosa are clustered at the lower left, while the 50 iris versicolor are clustered at the upper
right. The numbers indicate how many plants have exactly the same measurement; for
example, there are 5 plants that have sepals 5 inches long and petals 0.2 inches wide.
Petal width separates the two species perfectly; all 50 versicolor petals are 1 inch wide or
wider, while all setosa petals are narrower than 1 inch. But there is substantial overlap in
sepal length.

In fact, y25 = v. Our 92% prediction is correct.

The fact that we are making a known-to-be-false prediction with 2/3 confidence is a signal that
the 25th sepal length, 6.8, is unusual for either species. A close look at the nonconformity scores
reveals that it is being perceived as unusual simply because 2/3 of the plants have other plants in
the sample with exactly the same sepal length, whereas there is no other plant with the sepal length
6.8.

In classification problems, it is natural to report the greatest 1− ε for which Γε is a single label.
In our example, this produces the statement that we are 92% confident that y25 is v. But in order
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Figure 5: Sepal length and species for the first 24 plants in our random sample of size 25. Ex-
cept for one versicolor with sepal length 5.0, the versicolor in this sample all have longer
sepals than the setosa. This high degree of separation is an accident of the sampling.

to avoid overconfidence when the object xn is unusual, it is wise to report also the largest ε for
which Γε is empty. We call this the credibility of the prediction (Vovk et al., 2005, p. 96).3 In our
example, the prediction that y25 will be v has credibility of only 32%, indicating that the example
is somewhat unusual for the method that produces the prediction—so unusual that the method has
68% confidence in a prediction of y25 that we know is false before we observe y25 (Γ0.68 = /0).
Distance to the average of each species. The nearest-neighbor nonconformity measure, because
it considers only nearby sepal lengths, does not take full advantage of the fact that a versicolor
flower typically has longer sepals than a setosa flower. We can expect to obtain a more efficient
conformal predictor (one that produces smaller regions for a given level of confidence) if we use a
nonconformity measure that takes account of average sepal length for the two species.

We use the nonconformity measure A defined by

A(B,(x,y)) = |xB∪*(x,y)+,y − x|, (20)

where xB,y denotes the average sepal length of all plants of species y in the bag B, and B∪ *z+
denotes the bag obtained by adding z to B. To test y25 = s, we consider the bag consisting of the 24
old examples together with (6.8,s), and we calculate the average sepal lengths for the two species in
this bag: 5.06 for setosa and 6.02 for versicolor. Then we use (20) to calculate the nonconformity
scores shown in the sixth column of Table 2:

αi =

{

|5.06− xi| if yi = s

|6.02− xi| if yi = v

for i = 1, . . . ,25, where we take y25 to be s. To test y25 = v, we consider the bag consisting of the 24
old examples together with (6.8,v), and we calculate the average sepal lengths for the two species
in this bag: 4.94 for setosa and 6.1 for versicolor. Then we use (20) to calculate the nonconformity
scores shown in the seventh column of Table 2:

αi =

{

|4.94− xi| if yi = s

|6.1− xi| if yi = v

for i = 1, . . . ,25, where we take y25 to be v.
We obtain ps = 0.04 and pv = 0.08, so that

3. This notion of credibility is one of the novelties of the theory of conformal prediction. It is not found in the prior
literature on confidence and prediction regions.
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• s is in the 1− ε prediction region when 1− ε > 0.96, and

• v is in the 1− ε prediction region when 1− ε > 0.92.

Here are the prediction regions for some different levels of ε.

• Γ0.04 = {v}. With 96% confidence, we predict that y25 = v.

• Γ0.03 = {s,v}. If we raise the confidence with which we want to predict y25 to 97%, the
prediction is completely uninformative.

• Γ0.08 = /0. If we lower the confidence to 92%, we get a prediction we know is false: y25 will
be in the empty set.

In this case, we predict y25 = v with confidence 96% but credibility only 8%. The credibility is
lower with this nonconformity measure because it perceives 6.8 as being even more unusual than
the nearest-neighbor measure did. It is unusually far from the average sepal lengths for both species.

A support-vector machine. As Vladimir Vapnik explains on pp. 408–410 of his Statistical Learn-
ing Theory (1998), support-vector machines grew out of the idea of separating two groups of ex-
amples with a hyperplane in a way that makes as few mistakes as possible—that is, puts as few
examples as possible on the wrong side. This idea springs to mind when we look at Figure 5. In
this one-dimensional picture, a hyperplane is a point. We are tempted to separate the setosa from
the versicolor with a point between 5.5 and 5.7.

Vapnik proposed to separate two groups not with a single hyperplane but with a band: two
hyperplanes with few or no examples between them that separate the two groups as well as possible.
Examples on the wrong side of both hyperplanes would be considered very strange; those between
the hyperplanes would also be considered strange but less so. In our one-dimensional example, the
obvious separating band is the interval from 5.5 to 5.7. The only strange example is the versicolor
with sepal length 5.0.

Here is one way of making Vapnik’s idea into an algorithm for calculating nonconformity scores
for all the examples in a bag *(x1,y1), . . .(xn,yn)+. First plot all the examples as in Figure 5. Then
find numbers a and b such that a ≤ b and the interval [a,b] separates the two groups with the fewest
mistakes—that is, minimizes4

#{i |1 ≤ i ≤ n,xi < b, and yi = v}+#{i |1 ≤ i ≤ n,xi > a, and yi = s}.

There may be many intervals that minimize this count; choose one that is widest. Then give the ith
example the score

αi =







∞ if yi = v and xi < a or yi = s and b < xi

1 if yi = v and a ≤ xi < b or yi = s and a < xi ≤ b
0 if yi = v and b ≤ xi or yi = s and xi ≤ a.

When applied to the bags in Figure 6, this algorithm gives the circled examples the score ∞ and all
the others the score 0. These scores are listed in the last two columns of Table 2.

4. Here we are implicitly assuming that the setosa flowers will be on the left, with shorter sepal lengths. A general
algorithm should also check the possibility of a separation with the versicolor flowers on the left.
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The bag containing the 24 old examples

The bag of 25 examples, assuming the new example is setosa

The bag of 25 examples, assuming the new example is versicolor

Figure 6: Separation for three bags. In each case, the separating band is the interval [5.5,5.7].
Examples on the wrong side of the interval are considered strange and are circled.

As we see from the table, the resulting p-values are ps = 0.08 and pv = 1. So this time we
obtain 92% confidence in y25 = v, with 100% credibility.

The algorithm just described is too complex to implement when there are thousands of exam-
ples. For this reason, Vapnik and his collaborators proposed instead a quadratic minimization that
balances the width of the separating band against the number and size of the mistakes it makes.
Support-vector machines of this type have been widely used. They usually solve the dual opti-
mization problem, and the Lagrange multipliers they calculate can serve as nonconformity scores.
Implementations sometimes fail to treat the old examples symmetrically because they make var-
ious uses of the order in which examples are presented, but this difficulty can be overcome by a
preliminary randomization (Vovk et al., 2005, p. 58).

A systematic comparison. The random sample of 25 plants we have considered is odd in two
ways: (1) except for the one versicolor with sepal length of only 5.0, the two species do not overlap
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NN Species average SVM
singleton hits 164 441 195
uncertain 795 477 762
total hits 959 918 957
empty 9 49 1
singleton errors 32 33 42
total errors 41 82 43
total examples 1000 1000 1000
% hits 96% 92% 96%
total singletons 196 474 237
% hits 84% 93% 82%
total errors 41 82 43
% empty 22% 60% 2%

Table 3: Performance of 92% prediction regions based on three nonconformity measures. For
each nonconformity measure, we have found 1,000 prediction regions at the 92% level,
using each time a different random sample of 25 from Anderson’s 100 flowers. The “un-
certain” regions are those equal to the whole label space, Y = {s,v}.

in sepal length, and (2) the flower whose species we are trying to predict has a sepal that is unusually
long for either species.

In order to get a fuller picture of how the three nonconformity measures perform in general on
the iris data, we have applied each of them to 1,000 different samples of size 25 selected from the
population of Anderson’s 100 plants. The results are shown in Table 3.

The 92% regions based on the species average were correct about 92% of the time (918 times
out of 1000), as advertised. The regions based on the other two measures were correct more often,
about 96% of the time. The reason for this difference is visible in Table 2; the nonconformity scores
based on the species average take a greater variety of values and therefore produce ties less often.
The regions based on the species averages are also more efficient (smaller); 441 of its hits were
informative, as opposed to fewer than 200 for each of the other two nonconformity measures. This
efficiency also shows up in more empty regions among the errors. The species average produced an
empty 92% prediction region for the random sample used in Table 2, and Table 3 shows that this
happens 5% of the time.

As a practical matter, the uncertain prediction regions (Γ0.08 = {s,v}) and the empty ones
(Γ0.08 = /0) are equally uninformative. The only errors that mislead are the singletons that are wrong,
and the three methods all produce these at about the same rate—3 or 4%.

4.3.2 EXAMPLE: PREDICTING PETAL WIDTH FROM SEPAL LENGTH

We now turn to the use of the conformal algorithm to predict a number. We use the same 25 plants,
but now we use the data in the second and third columns of Table 4: the sepal length and petal width
for the first 24 plants, and the sepal length for the 25th. Our task is to predict the petal width for the
25th.
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sepal length petal width Nearest neighbor Linear regression
z1 5.0 0.3 0.3 |0.003y25 −0.149|
z2 4.4 0.2 0 |0.069y25 +0.050|
z3 4.9 0.2 0.25 |0.014y25 −0.199|
z4 4.4 0.2 0 |0.069y25 +0.050|
z5 5.1 0.4 0.15 |0.008y25 +0.099|
z6 5.9 1.5 0.3 |0.096y25 −0.603|
z7 5.0 0.2 0.4 |0.003y25 −0.249|
z8 6.4 1.3 0.2 |0.151y25 −0.154|
z9 6.7 1.4 0.3 |0.184y25 −0.104|
z10 6.2 1.5 0.2 |0.129y25 −0.453|
z11 5.1 0.2 0.15 |0.008y25 +0.299|
z12 4.6 0.2 0.05 |0.047y25 −0.050|
z13 5.0 0.6 0.3 |0.003y25 +0.151|
z14 5.4 0.4 0 |0.041y25 +0.248|
z15 5.0 1.0 0.75 |0.003y25 +0.551|
z16 6.7 1.7 0.3 |0.184y25 −0.404|
z17 5.8 1.2 0.2 |0.085y25 −0.353|
z18 5.5 0.2 0.2 |0.052y25 +0.498|
z19 5.8 1.0 0.2 |0.085y25 −0.153|
z20 5.4 0.4 0 |0.041y25 +0.248|
z21 5.1 0.3 0 |0.008y25 +0.199|
z22 5.7 1.3 0.2 |0.074y25 −0.502|
z23 4.6 0.3 0.1 |0.047y25 +0.050|
z24 4.6 0.2 0.05 |0.047y25 −0.050|
z25 6.8 y25 |y25 −1.55| |0.805y25 −1.345|

Table 4: Conformal prediction of petal width from sepal length. We use the same random 25
plants that we used for predicting the species. The actual value of y25 is 1.4.

The most conventional way of analyzing this data is to calculate the least-squares line (11):

ŷ = a24 +b24x = −2.96+0.68x.

The sepal length for the 25th plant being x25 = 6.8, the line predicts that y25 should be near −2.96+
0.68× 6.8 = 1.66. Under the textbook assumption that the yi are all independent and normally
distributed with means on the line and a common variance, we estimate the common variance by

s2
24 =

∑24
i=1(yi − (a24 +b24xi))

2

22
= 0.0780.

The textbook 1− ε interval for y25 based on *(x1,y1), . . . ,(x24,y24)+ and x25 is

1.66± tε/2
22 s24

√

1+
1
24

+
(x25 − x24)2

∑24
j=1(x j − x24)2

= 1.66±0.311tε/2
22 (21)
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(Draper and Smith 1998, p. 82; Ryan 1997, pp. 21–22; Seber and Lee 2003, p. 145). Taking into
account the fact y25 is measured to only one decimal place, we obtain [1.0,2.3] for the 96% interval
and [1.1,2.2] for the 92% interval.

The prediction interval (21) is analogous to Fisher’s interval for a new example from the same
normally distributed population as a bag of old examples (§2.1.1). In §5.3.2 we will review the
general model of which both are special cases.

As we will now see, the conformal algorithm under exchangeability gives confidence intervals
comparable to (21), without the assumption that the errors are normal. We use two different non-
conformity measures: one based on the nearest neighbor, and one based on the least-squares line.

Conformal prediction using the nearest neighbor. Suppose B is a bag of old examples and (x,y)
is a new example, for which we know the sepal length x but not the petal width y. We can predict
y using the nearest neighbor in an obvious way: We find the z′ ∈ B for which the sepal length x′ is
closest to x, and we predict that y will be the same as the petal width y′. If there are several examples
in the bag with sepal length equally close to x, then we take the median of their petal widths as our
predictor ŷ. The associated nonconformity measure is |y− ŷ|.

The fourth column of Table 4 gives the nonconformity scores for our sample using this noncon-
formity measure. We see that α25 = |y25 − 1.55|. The other nonconformity scores do not involve
y25; the largest is 0.75, and the second largest is 0.40. So we obtain these prediction regions y25:

• The 96% prediction region consists of all the y for which py > 0.04, which requires that at
least one of the other αi be as large as α25, or that 0.75 ≥ |y− 1.55|. This is the interval
[0.8,2.3].

• The 92% prediction region consists of all the y for which py > 0.08, which requires that at
least two of the other αi be as large as α25, or that 0.40 ≥ |y− 1.55|. This is the interval
[1.2,1.9].

Conformal prediction using least-squares. Now we use the least-squares nonconformity mea-
sure with inclusion, given by (12). In our case, n = 25, so our nonconformity scores are

αi = |yi − (a25 +b25xi)|

=

∣

∣

∣

∣

∣

yi −
∑25

j=1 y j

25
−

∑25
j=1(x j − x25)y j

∑25
j=1(x j − x25)2

(

xi −
∑25

j=1 x j

25

)∣

∣

∣

∣

∣

.

When we substitute values of ∑24
j=1 y j, ∑24

j=1(x j − x25)y j, ∑25
j=1(x j − x25)

2, and ∑25
j=1 x j calculated

from Table 4, this becomes

αi = |yi +(0.553−0.110xi)y25 −0.498xi +2.04| .

For i = 1, . . . ,24, we can further evaluate this by substituting the values of xi and yi. For i = 25, we
can substitute 6.8 for x25. These substitutions produce the expressions of the form |ciy25 +di| listed
in the last column of Table 4. We have made sure that ci is always positive by multiplying by −1
within the absolute value when need be.

Table 5 shows calculations required to find the conformal prediction region. The task is to
identify, for i = 1, . . . ,24, the y for which |ciy+di| ≥ |0.805y−1.345|. We first find the solutions of
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the equation |ciy+di| = |0.805y−1.345|, which are

−
di +1.345
ci −0.805

and −
di −1.345
ci +0.805

.

As it happens, ci < 0.805 for i = 1, . . . ,24, and in this case the y satisfying |ciy+di| ≥ |0.805−1.345|
form the interval between these two points. This interval is shown in the last column of the table.

In order to be in the 96% interval, y must be in at least one of the 24 intervals in the table; in
order to be in the 92% interval, it must be in at least two of them. So the 96% interval is [1.0,2.4],
and the 92% interval is [1.0,2.3].

An algorithm for finding conformal prediction intervals using a least-squares or ridge-regression
nonconformity measure with an object space of any finite dimension is spelled out on pp. 32–33 of
our book (Vovk et al., 2005).

4.4 Optimality

The predictions produced by the conformal algorithm are invariant with respect to the old examples,
correct with the advertised probability, and nested. As we now show, they are optimal among all
region predictors with these properties.

Here is a more precise statement of the three properties:

1. The predictions are invariant with respect to the ordering of the old examples. Formally, this
means that the predictor γ is a function of two variables, the significance level ε and the bag B
of old examples. We write γε(B) for the prediction, which is a subset of the example space Z.

2. The probability of a hit is always at least the advertised confidence level. For every positive
integer n and every probability distribution under which z1, . . . ,zn are exchangeable,

Pr{zn ∈ γε(*z1, . . . ,zn−1+)} ≥ 1− ε.

3. The prediction regions are nested. If ε1 ≥ ε2, then γε1(B) ⊆ γε2(B).

Conformal predictors satisfy these three conditions. Other region predictors can also satisfy them.
But as we now demonstrate, any γ satisfying them can be improved on by a conformal predictor:
there always exists a nonconformity measure A such that the predictor γA constructed from A by the
conformal algorithm satisfies γε

A(B) ⊆ γε(B) for all B and ε.
The key to the demonstration is the following lemma:

Lemma 1 Suppose γ is a region predictor satisfying the three conditions, *a1, . . . ,an+ is a bag of
examples, and 0 < ε ≤ 1. Then nε or fewer of the n elements of the bag satisfy

ai /∈ γε(*a1, . . . ,an +\ *ai+). (22)

Proof Consider the unique exchangeable probability distribution for z1, . . . ,zn that gives probability
1 to *z1, . . . ,zn+ = *a1, . . . ,an+. Under this distribution, each element of *a1, . . . ,an+ has an equal
probability of being zn, and in this case, (22) is a mistake. By the second condition, the probability
of a mistake is ε or less. So the fraction of the bag’s elements for which (22) holds is ε or less.
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αi = |ciy25 +di| −
di +1.345
ci −0.805

−
di −1.345
ci +0.805

y satisfying
|ciy+di| ≥

|0.805−1.345|
z1 |0.003y25 −0.149| 1.49 1.85 [1.49,1.85]
z2 |0.069y25 +0.050| 1.90 1.48 [1.48,1.90]
z3 |0.014y25 −0.199| 1.45 1.89 [1.45,1.89]
z4 |0.069y25 +0.050| 1.90 1.48 [1.48,1.90]
z5 |0.008y25 +0.099| 1.81 1.53 [1.53,1.81]
z6 |0.096y25 −0.603| 1.05 2.16 [1.05,2.16]
z7 |0.003y25 −0.249| 1.37 1.97 [1.37,1.97]
z8 |0.151y25 −0.154| 1.82 1.57 [1.57,1.82]
z9 |0.184y25 −0.104| 2.00 1.47 [1.47,2.00]
z10 |0.129y25 −0.453| 1.32 1.93 [1.32,1.93]
z11 |0.008y25 +0.299| 2.06 1.29 [1.29,2.06]
z12 |0.047y25 −0.050| 1.71 1.64 [1.64,1.71]
z13 |0.003y25 +0.151| 1.87 1.48 [1.48,1.87]
z14 |0.041y25 +0.248| 2.09 1.30 [1.30,2.09]
z15 |0.003y25 +0.551| 2.36 0.98 [0.98,2.36]
z16 |0.184y25 −0.404| 1.52 1.77 [1.52,1.77]
z17 |0.085y25 −0.353| 1.38 1.91 [1.38,1.91]
z18 |0.052y25 +0.498| 2.45 0.99 [0.99,2.45]
z19 |0.085y25 −0.153| 1.66 1.68 [1.66,1.68]
z20 |0.041y25 +0.248| 2.09 1.30 [1.30,2.09]
z21 |0.008y25 +0.199| 1.94 1.41 [1.41,1.94]
z22 |0.074y25 −0.502| 1.15 2.10 [1.15,2.10]
z23 |0.047y25 +0.050| 1.84 1.52 [1.52,1.84]
z24 |0.047y25 −0.050| 1.71 1.64 [1.64,1.71]
z25 |0.805y25 −1.345|

Table 5: Calculations with least-squares nonconformity scores. The column on the right gives
the values of y for which the example’s nonconformity score will exceed that of the 25th
example.

Given the region predictor γ, what nonconformity measure will give us a conformal predictor
that improves on it? If

z /∈ γδ(B), (23)

then γ is asserting confidence 1− δ that z should not appear next because it is so different from B.
So the largest 1−δ for which (23) holds is a natural nonconformity measure:

A(B,z) = sup{1−δ |z /∈ γδ(B)}.
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Least-squares Conformal prediction with two
prediction with different nonconformity measures
normal errors NN Least squares

96% [1.0,2.3] [0.8,2.3] [1.0,2.4]
92% [1.1,2.2] [1.2,1.9] [1.0,2.3]

Table 6: Prediction intervals for the 25th plant’s petal width, calculated by three different
methods. The conformal prediction intervals using the least-squares nonconformity mea-
sure are quite close to the standard intervals based on least-squares with normal errors. All
the intervals contain the actual value, 1.4.

The conformal predictor γA obtained from this nonconformity measure, though it agrees with γ on
how to rank different z with respect to their nonconformity with B, may produce tighter prediction
regions if γ is too conservative in the levels of confidence it asserts.

To show that γε
A(B) ⊆ γε(B) for every ε and every B, we assume that

z ∈ γε
A(*z1, . . . ,zn−1+) (24)

and show that z ∈ γε(*z1, . . . ,zn−1+). According to the conformal algorithm, (24) means that when
we provisionally set zn equal to z and calculate the nonconformity scores

αi = sup{1−δ |zi /∈ γδ(*z1, . . . ,zn +\ * zi+)}

for i = 1, . . . ,n, we find that strictly more than nε of these scores are greater than or equal to αn.
Because γ’s prediction regions are nested (condition 3), it follows that if zn /∈ γε(*z1, . . . ,zn−1+), then
zi /∈ γε(*z1, . . . ,zn +\ * zi+) for strictly more than nε of the zi. But by Lemma 1, nε or fewer of the zi

can satisfy this condition. So zn ∈ γε(*z1, . . . ,zn−1+).
There are sensible reasons to use region predictors that are not invariant. We may want to exploit

possible departures from exchangeability even while insisting on validity under exchangeability. Or
it may simply be more practical to use a predictor that is not invariant. But invariance is a natural
condition when we want to rely only on exchangeability, and in this case our optimality result is
persuasive. For further discussion, see §2.4 of our book (Vovk et al., 2005).

4.5 Examples Are Seldom Exactly Exchangeable

Although the assumption of exchangeability is weak compared to the assumptions embodied in most
statistical models, it is still an idealization, seldom matched exactly by what we see in the world. So
we should not expect conclusions derived from this assumption to be exactly true. In particular, we
should not be surprised if a 95% conformal predictor is wrong more than 5% of the time.

We can make this point with the USPS data set so often used to illustrate machine learning
methods. This data set consists of 9298 examples of the form (x,y), where x is a 16× 16 gray-
scale matrix and y is one of the ten digits 0,1, . . . ,9. It has been used in hundreds of books and
articles. In our book (Vovk et al., 2005), it is used to illustrate conformal prediction with a number
of different nonconformity measures. It is well known that the examples in this data set are not
perfectly exchangeable. In particular, the first 7291 examples, which are often treated as a training
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Figure 7: Errors in 95% nearest-neighbor conformal prediction on the classical USPS data
set. When the 9298 examples are predicted in a randomly chosen order, so that the
exchangeability assumption is satisfied for sure, the error rate is approximately 5% as
advertised. When they are taken in their original order, first the 7291 in the training set,
and then the 2007 in the test set, the error rate is higher, especially in the test set.

set, are systematically different in some respects from the remaining 2007 examples, which are
usually treated as a test set.

Figure 7 illustrates how the non-exchangeability of the USPS data affects conformal prediction.
The figure records the performance of the 95% conformal predictor using the nearest-neighbor
nonconformity measure (10), applied to the USPS data in two ways. First we use the 9298 examples
in the order in which they are given in the data set. (We ignore the distinction between training
and test examples, but since the training examples are given first we do go through them first.)
Working through the examples in this order, we predict each yn using the previous examples and xn.
Second, we randomly permute all 9298 examples, thus producing an order with respect to which the
examples are necessarily exchangeable. The law of large numbers works when we go through the
examples in the permuted order: we make mistakes at a steady rate, about equal to the expected 5%.
But when we go through the examples in the original order, the fraction of mistakes is less stable,
and it worsens as we move into the test set. As Table 7 shows, the fraction of mistakes is 5%, as
desired, in the first 7291 examples (the training set) but jumps to 8% in the last 2007 examples.

Non-exchangeability can be tested statistically, using conventional or game-theoretic methods
(Vovk et al., 2005, §7.1). In the case of this data, any reasonable test will reject exchangeability
decisively. Whether the deviation from exchangeability is of practical importance for prediction
depends, of course, on circumstances. An error rate of 8% when 5% has been promised may or may
not be acceptable.
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Original data Permuted data
Training Test Total Training Test Total

singleton hits 6798 1838 8636 6800 1905 8705
uncertain hits 111 0 111 123 0 123
total hits 6909 1838 8747 6923 1905 8828
empty 265 142 407 205 81 286
singleton errors 102 27 129 160 21 181
uncertain errors 15 0 15 3 0 3
total errors 382 169 551 368 102 470
total examples 7291 2007 9298 7291 2007 9298
% hits 95% 92% 94% 95% 95% 95%
total singletons 6900 1865 8765 6960 1926 8880
% hits 99% 99% 99% 98% 99% 98%
total uncertain 126 0 126 126 0 126
% hits 82% 82% 98% 98%
total errors 382 169 551 368 102 470
% empty 69% 85% 74% 57% 79% 61%

Table 7: Details of the performance of 95% nearest-neighbor conformal prediction on the clas-
sical USPS data set. Because there are 10 labels, the uncertain predictions, those contain-
ing more than one label, can be hits or errors.

5. On-Line Compression Models

In this section, we generalize conformal prediction from the exchangeability model to a whole class
of models, which we call on-line compression models.

In the exchangeability model, we compress or summarize examples by omitting information
about their order. We then look backwards from the summary (the bag of unordered examples)
and give probabilities for the different orderings that could have produced it. The compression can
be done on-line: each time we see a new example, we add it to the bag. The backward-looking
probabilities can also be given step by step. Other on-line compression models compress more or
less drastically but have a similar structure.

On-line compression models were studied in the 1970s and 1980s, under various names, by Per
Martin-Löf (1974), Steffen Lauritzen (1988), and Eugene Asarin (1987; 1988). Different authors
had different motivations. Lauritzen and Martin-Löf started from statistical mechanics, whereas
Asarin started from Kolmogorov’s thinking about the meaning of randomness. But the models
they studied all summarize past examples using statistics that contain all the information useful for
predicting future examples. The summary is updated each time one observes a new example, and
the probabilistic content of the structure is expressed by Markov kernels that give probabilities for
summarized examples conditional on the summaries.

In general, a Markov kernel is a mapping that specifies, as a function of one variable, a proba-
bility distribution for some other variable or variables. A Markov kernel for w given u, for example,
gives a probability distribution for w for each value of u. It is conventional to write P(w |u) for this
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distribution. We are interested in Markov kernels of the form P(z1, . . . ,zn |σn), where σn summa-
rizes the examples z1, . . . ,zn. Such a kernel gives probabilities for the different z1, . . . ,zn that could
have produced σn.

Martin-Löf, Lauritzen, and Asarin were interested in justifying widely used statistical models
from principles that seem less arbitrary than the models themselves. On-line compression models
offer an opportunity to do this, because they typically limit their use of probability to representing
ignorance with a uniform distribution but lead to statistical models that seem to say something more.
Suppose, for example, that Joe summarizes numbers z1, . . . ,zn by

z =
1
n

n

∑
i=1

zi and r2 =
n

∑
i=1

(zi − z)2

and gives these summaries to Bill, who does not know z1, . . . ,zn. Bill might adopt a probability
distribution for z1, . . . ,zn that is uniform over the possibilities, which form the (n−1)-dimensional
sphere of radius r centered around (z, . . . ,z). As we will see in §5.3.2, this is an on-line compression
model. It was shown, by Freedman and Smith (see Vovk et al., 2005, p. 217) and then by Lauritzen
(1988, pp. 238–247), that if we assume this model is valid for all n, then the distribution of z1,z2, . . .
must be a mixture of distributions under which z1,z2, . . . are independent and normal with a common
mean and variance. This is analogous to de Finetti’s theorem, which says that if z1, . . . ,zn are
exchangeable for all n, then the distribution of z1,z2, . . . must be a mixture of distributions under
which z1,z2, . . . are independent and identically distributed.

For our own part, we are interested in using an on-line compression model directly for prediction
rather than as a step towards a model that specifies probabilities for examples more fully. We have
already seen how the exchangeability model can be used directly for prediction: we establish a
law of large numbers for backward-looking probabilities (§3.4), and we use it to justify confidence
in conformal prediction regions (§4.2). The argument extends to on-line compression models in
general.

For the exchangeability model, conformal prediction is optimal for obtaining prediction regions
(§4.4). No such statement can be made for on-line compression models in general. In fact, there
are other on-line compression models in which conformal prediction is very inefficient (Vovk et al.,
2005, p. 220).

After developing the general theory of conformal prediction for on-line compression models
(§5.1 and §5.2), we consider two examples: the exchangeability-within-label model (§5.3.1) and
on-line Gaussian linear model (§5.3.2).

5.1 Definitions

A more formal look at the exchangeability model will suffice to bring the general notion of an
on-line compression model into focus.

In the exchangeability model, we summarize examples simply by omitting information about
their ordering; the ordered examples are summarized by a bag containing them. The backward-
looking probabilities are equally simple; given the bag, the different possible orderings all have
equal probability, as if the ordering resulted from drawing the examples successively at random
from the bag without replacement. Although this picture is very simple, we can distinguish four
distinct mathematical operations within it:
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1. Summarizing. The examples z1, . . . ,zn are summarized by the bag *z1, . . . ,zn+. We can say
that the summarization is accomplished by a summarizing function Σn that maps an n-tuple
of examples (z1, . . . ,zn) to the bag containing these examples:

Σn(z1, . . . ,zn) := *z1, . . . ,zn + .

We write σn for the summary—that is, the bag *z1, . . . ,zn+.

2. Updating. The summary can be formed step by step as the examples are observed. Once
you have the bag containing the first n− 1 examples, you just add the nth. This defines an
updating function Un(σ,z) that satisfies

Σn(z1, . . . ,zn) = Un(Σn−1(z1, . . . ,zn−1),zn).

The top panel in Figure 8 depicts how the summary σn is built up step by step from z1, . . . ,zn

using the updating functions U1, . . . ,Un. First σ1 =U1(2,z1), where 2 is the empty bag. Then
σ2 = U2(σ1,z2), and so on.

3. Looking back all the way. Given the bag σn, the n! different orderings of the elements of the
bag are equally likely, just as they would be if we ordered the contents of the bag randomly.
As we learned in §3.2, we can say this with a formula that takes explicit account of the
possibility of repetitions in the bag: the probability of the event {z1 = a1, . . . ,zn = an} is

Pn(a1, . . . ,an |σn) =

{

n1!···nk!
n! if *a1, . . . ,an+ = σn

0 if *a1, . . . ,an+ 6= σn,

where k is the number of distinct elements in σn, and n1, . . . ,nk are the numbers of times these
distinct elements occur. We call P1,P2, . . . the full kernels.

4. Looking back one step. We can also look back one step. Given the bag σn, what are the
probabilities for zn and σn−1? They are the same as if we drew zn out of σn at random. In other
words, for each z that appears in σn, there is a probability k/n, where k is the number of times
z appears in σn, that (1) zn = z and (2) σn−1 is the bag obtained by removing one instance of z
from σn. The kernel defined in this way is represented by the two arrows backward from σn

in the bottom panel of Figure 8. Let us designate it by Rn. We similarly obtain a kernel Rn−1

backward from σn−1 and so on. These are the one-step kernels for the model. We can obtain
the full kernel Pn by combining the one-step kernels Rn,Rn−1, . . . ,R1. This is most readily
understood not in terms of formulas but in terms of a sequence of drawings whose outcomes
have the probability distributions given by the kernels. The drawing from σn (which goes by
the probabilities given by Rn(· |σn)) gives us zn and σn−1, the drawing from σn−1 (which goes
by the probabilities given by Rn−1(· |σn−1)) gives us zn−1 and σn−2, and so on; we finally
obtain the whole random sequence z1, . . . ,zn, which has the distribution Pn(· |σn). This is the
meaning of the bottom panel in Figure 8.

All four operations are important. The second and fourth, updating and looking back one step, can
be thought of as the most fundamental, because we can derive the other two from them. Sum-
marization can be carried out by composing updates, and looking back all the way can be carried
out by composing one-step look-backs. Moreover, the conformal algorithm uses the one-step back
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2 σ1 σ2 · · · σn−1 σn

z1 z2 zn−1 zn

- - - - -
? ? ? ?

Updating. We speak of “on-line” compression models because the summary can be updated with
each new example. In the case of the exchangeability model, we obtain the bag σi by adding the
new example zi to the old bag σi−1.

2 σ1 σ2 · · · σn−1 σn

z1 z2 zn−1 zn

� � � � �

6 6 6 6

Backward probabilities. The two arrows backwards from σi symbolize our probabilities, condi-
tional on σi, for what example zi and what previous summary σi−1 were combined to produce
σi. Like the diagram in Figure 3 that it generalizes, this diagram is a Bayes net.

Figure 8: Elements of an on-line compression model. The top diagram represents the updating
functions U1, . . . ,Un. The bottom diagram represents the one-step kernels R1, . . . ,Rn.

probabilities. But when we turn to particular on-line compression models, we will find it initially
most convenient to describe them in terms of their summarizing functions and full kernels.

In general, an on-line compression model for an example space Z consists of a space S, whose
elements we call summaries, and two sequences of mappings:

• Updating functions U1,U2, . . . . The function Un maps a summary s and an example z to a new
summary Un(s,z).

• One-step kernels R1,R2, . . . . For each summary s, the kernel Rn gives a joint probability
distribution Rn(s′,z | s) for an unknown summary s′ and unknown example z. We require that
Rn(· | s) give probability one to the set of pairs (s′,z) such that Un(s′,z) = s.

We also require that the summary space S include the empty summary 2.
The recipes for constructing the summarizing functions Σ1,Σ2, . . . and the full kernels P1,P2, . . .

are the same in general as in the exchangeability model:

• The summary σn = Σn(z1, . . . ,zn) is built up step by step from z1, . . . ,zn using the updating
functions. First σ1 = U1(2,z1), then σ2 = U2(σ1,z2), and so on.
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• We obtain the full kernel Pn by combining, backwards from σn, the random experiments
represented by the one-step kernels Rn,Rn−1, . . . ,R1. First we draw zn and σn−1 from Rn(· |
σn), then we draw zn−1 and σn−2 from Rn−1(· |σn−1), and so on. The sequence z1, . . . ,zn

obtained in this way has the distribution Pn(· |σn).

On-line compression models are usually initially specified in terms of their summarizing func-
tions Σn and their full kernels Pn, because these are usually easy to describe. One must then verify
that these easily described objects do define an on-line compression model. This requires verifying
two points:

1. Σ1,Σ2, . . . can be defined successively by means of updating functions:

Σn(z1, . . . ,zn) = Un(Σn−1(z1, . . . ,zn−1),zn).

In words: σn depends on z1, . . . ,zn−1 only through the earlier summary σn−1.

2. Each Pn can be obtained as required using one-step kernels. One way to verify this is to exhibit
the one-step kernels R1, . . . ,Rn and then to check that drawing zn and σn−1 from Rn(· |σn),
then drawing zn−1 and σn−2 from Rn−1(· |σn−1), and so on produces a sequence z1, . . . ,zn

with the distribution Pn(· |σn). Another way to verify it, without necessarily exhibiting the
one-step kernels, is to verify the conditional independence relations represented by Figure 8:
zn (and hence also σn) is probabilistically independent of z1, . . . ,zn−1 given σn−1.

5.2 Conformal Prediction

In the context of an on-line compression model, a nonconformity measure is an arbitrary real-valued
function A(σ,z), where σ is a summary and z is an example. We choose A so that A(σ,z) is large
when z seems very different from the examples that might be summarized by σ.

In order to state the conformal algorithm, we write σ̃n−1 and z̃n for random variables with a joint
probability distribution given by the one-step kernel R(· |σn). The algorithm using old examples
alone can then be stated as follows:

The Conformal Algorithm Using Old Examples Alone

Input: Nonconformity measure A, significance level ε, examples z1, . . . ,zn−1, example z

Task: Decide whether to include z in γε(z1, . . . ,zn−1).

Algorithm:

1. Provisionally set zn := z.

2. Set pz := Rn(A(σ̃n−1, z̃n) ≥ A(σn−1,zn) |σn).

3. Include z in γε(z1, . . . ,zn−1) if and only if pz > ε.

To see that this reduces to the algorithm we gave for the exchangeability model on p. 385, recall
that σn = *z, . . . ,zn+ and σ̃n−1 = *z1, . . . ,zn +\ * z̃n+ in that model, so that

A(σ̃n−1, z̃n) = A(*z1, . . . ,zn +\ * z̃n+, z̃n) (25)

and
A(σn−1,zn) = A(*z1, . . . ,zn−1+,zn). (26)
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Under Rn(· |*z1, . . . ,zn+), the random variable z̃n has equal chances of being any of the zi, so that the
probability of (25) being greater than or equal to (26) is simply the fraction of the zi for which

A(*z1, . . . ,zn +\ * zi+,zi) ≥ A(*z1, . . . ,zn−1+,zn),

and this is how pz is defined on p. 385.
Our arguments for the validity of the regions γε(z1, . . . ,zn−1) in the exchangeability model gen-

eralize readily. The definitions of n-event and ε-rare generalize in an obvious way:

• An event E is an n-event if its happening or failing is determined by the value of zn and the
value of the summary σn−1.

• An n-event E is ε-rare if Rn(E |σn) ≤ ε.

The event zn /∈ γε(z1, . . . ,zn−1) is an n-event, and it is ε-rare (the probability is ε or less that a
random variable will take a value that it equals or exceeds with a probability of ε or less). So
working backwards from the summary σN for a large value of N, Bill can still bet against the errors
successively at rates corresponding to their probabilities under σn, which are always ε or less. This
produces an exact analog to Informal Proposition 1:

Informal Proposition 2 Suppose N is large, and the variables z1, . . . ,zN obey an on-line compres-
sion model. Suppose En is an ε-rare n-event for n = 1, . . . ,N. Then the law of large numbers applies;
with very high probability, no more than approximately the fraction ε of the events E1, . . . ,EN will
happen.

The conformal algorithm using features of the new example generalizes similarly:

The Conformal Algorithm

Input: Nonconformity measure A, significance level ε, examples z1, . . . ,zn−1, object xn, label y

Task: Decide whether to include y in Γε(z1, . . . ,zn−1,xn).

Algorithm:

1. Provisionally set zn := (xn,y).

2. Set py := Rn(A(σ̃n−1, z̃n) ≥ A(σn−1,zn) |σn).

3. Include y in Γε(z1, . . . ,zn−1,xn) if and only if py > ε.

The validity of this algorithm follows from the validity of the algorithm using old examples
alone by the same argument as in the case of exchangeability.

5.3 Examples

We now look at two on-line compression models: the exchangeability-within-label model and the
on-line Gaussian linear model.

The exchangeability-within-label model was first introduced in work leading up to our book
(Vovk et al., 2005). It weakens the assumption of exchangeability.

The on-line Gaussian linear model, as we have already mentioned, has been widely studied. It
overlaps the exchangeability model, in the sense that the assumptions for both of the models can
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hold at the same time, but the assumptions for one of them can hold without the assumptions for the
other holding. It is closely related to the classical Gaussian linear model. Conformal prediction in
the on-line model leads to the same prediction regions that are usually used for the classical model.
But the conformal prediction theory adds the new information that these intervals are valid in the
sense of this article: they are right 1− ε of the time when used on accumulating data.

5.3.1 THE EXCHANGEABILITY-WITHIN-LABEL MODEL

The assumption of exchangeability can be weakened in many ways. In the case of classification,
one interesting possibility is to assume only that the examples for each label are exchangeable with
each other. For each label, the objects with that label are as likely to appear in one order as in
another. This assumption leaves open the possibility that the appearance of one label might change
the probabilities for the next label.

Suppose the label space has k elements, say Y = {1, . . . ,k}. Then we define the exchangeability-
within-label model as follows:

Summarizing Functions The nth summarizing function is

Σn(z1, . . . ,zn) := (y1, . . . ,yn,B
n
1, . . . ,B

n
k) ,

where Bn
j is the bag consisting of the objects in the list x1, . . . ,xn that have the label j.

Full Kernels The full kernel Pn(z1, . . . ,zn | y1, . . . ,yn,Bn
1, . . . ,B

n
k) is most easily described in terms

the random action for which it gives the probabilities: independently for each label j, dis-
tribute the objects in Bn

j randomly among the positions i for which yi is equal to j.

To check that this is an on-line compression model, we exhibit the updating function and the
one-step kernels:

Updating When (xn,yn) is observed, the summary

(y1, . . . ,yn−1,B
n−1
1 , . . . ,Bn−1

k )

is updated by inserting yn after yn−1 and adding xn to Bn−1
yn

.

One step back The one-step kernel Rn is given by

Rn(summary,(x,y) | y1, . . . ,yn,B
n
1, . . . ,B

n
k) =

{

k
|Bn

yn |
if y = yn

0 otherwise,

where k is the number of xs in Bn
yn

. This is the same as the probability the one-step kernel for
the exchangeability model would give for x on the basis of a bag of size |Bn

yn
| that includes k

xs.

Because the true labels are part of the summary, our imaginary bettor Bill can choose to bet
just on those rounds of his game with Joe where the label has a particular value, and this implies
that a 95% conformal predictor under the exchangeability-within-label model will make errors at no
more than a 5% rate for examples with that label. This is not necessarily true for a 95% conformal
predictor under the exchangeability model; although it can make errors no more than about 5% of
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the time overall, its error rate may be higher for some labels and lower for others. As Figure 9
shows, this happens in the case of the USPS data set. The graph in the top panel of the figure shows
the cumulative errors for examples with the label 5, which is particularly easy to confuse with other
digits, when the nearest-neighbor conformal predictor is applied to that data in permuted form. The
error rate for 5 is over 11%. The graph in the bottom panel shows the results of the exchangeability-
within-label conformal predictor using the same nearest-neighbor nonconformity measure; here the
error rate stays close to 5%. As this graph makes clear, the predictor holds the error rate down to
5% in this case by producing many prediction regions containing more than one label (“uncertain
predictions”).

As we explain in §4.5 and §8.4 of our book (Vovk et al., 2005), the exchangeability-within-label
model is a Mondrian model. In general, a Mondrian model decomposes the space Z×N, where N

is set of the natural numbers, into non-overlapping rectangles, and it asks for exchangeability only
within these rectangles. For each example zi, it then records, as part of the summary, the rectangle
into which (zi, i) falls. Mondrian models can be useful when we need to weaken the assumption of
exchangeability. They can also be attractive even if we are willing to assume exchangeability across
the categories, because the conformal predictions they produce will be calibrated within categories.

5.3.2 THE ON-LINE GAUSSIAN LINEAR MODEL

Consider examples z1, . . . ,zN , of the form zn = (xn,yn), where yn is a number and xn is a row vector
consisting of p numbers. For each n between 1 and N, set

Xn :=







x1
...

xn






and Yn :=







y1
...

yn






.

Thus Xn is an n× p matrix, and Yn is a column vector of length n.
In this context, the on-line Gaussian linear model is the on-line compression model defined by

the following summarizing functions and full kernels:

Summarizing Functions The nth summarizing function is

Σn(z1, . . . ,zn) : =

(

x1, . . . ,xn,
n

∑
i=1

yixi,
n

∑
i=1

y2
i

)

=
(

Xn,X
′
nYn,Y

′
nYn
)

.

Full Kernels The full kernel Pn(z1, . . . ,zn | σn) distributes its probability uniformly over the set
of vectors (y1, . . . ,yn) consistent with the summary σn. (We consider probabilities only for
y1, . . . ,yn, because x1, . . . ,xn are fixed by σn.)

We can write σn = (Xn,C,r2), where C is a column vector of length p, and r is a nonnegative
number. A vector (y1, . . . ,yn) is consistent with σn if

n

∑
j=1

y jx j = C and
n

∑
j=1

y2
j = r2.

This is the intersection of a hyperplane with a sphere. Not being empty, the intersection is either a
point (in the exceptional case where the hyperplane is tangent to the sphere) or a lower-dimensional
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Figure 9: Errors for 95% conformal prediction using nearest neighbors in the permuted USPS
data when the true label is 5. In both figures, the dotted line represents the overall
expected error rate of 5%. The actual error rate for 5s with the exchangeability-within-
label model tracks this line, but with the exchangeability model it is much higher. The
exchangeability-within-label predictor keeps its error rate down by issuing more predic-
tion regions containing more than one digit (“uncertain predictions”).
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sphere. (Imagine intersecting a plane and a 2-dimensional sphere; the result is a circle.) The ker-
nel Pn(· | σn) puts all its probability on the point or distributes it uniformly over the the lower-
dimensional sphere.

To see that the summarizing functions and full kernels define an on-line compression model, we
must check that the summaries can be updated and that the full kernels have the required conditional
independence property: conditioning Pn(· |σn) on zi+1, . . . ,zn gives Pi(· |σi). (We do not condition
on σi since it can be computed from zi+1, . . . ,zn and σn.) Updating is straightforward; when we
observe (xn,yn), we update the summary

(

x1, . . . ,xn−1,
n−1

∑
i=1

yixi,
n−1

∑
i=1

y2
i

)

by inserting xn after xn−1 and adding a term to each of the sums. To see that conditioning Pn(· |σn) on
zi+1, . . . ,zn gives Pi(· |σi), we note that conditioning the uniform distribution on a sphere on values
yi+1 = ai+1, . . . ,yn = an involves intersecting the sphere with the hyperplanes defined by these n− i
equations. This produces the uniform distribution on the possibly lower-dimensional sphere defined
by

i

∑
j=1

y2
j = r2 −

n

∑
j=i+1

y2
j and

i

∑
j=1

y jx j = C−
n

∑
j=i+1

y jx j;

this is indeed Pi(y1, . . . ,yi |σi).
The on-line Gaussian linear model is closely related to the classical Gaussian linear model. In

the classical model,5

yi = xiβ+ ei, (27)

where the xi are row vectors of known numbers, β is a column vector of unknown numbers (the
regression coefficients), and the ei are independent of each other and normally distributed with mean
zero and a common variance. When n−1 > p and Rank(Xn−1) = p, the theory of the classical model
tells us the following:

• After observing examples (x1,y1, . . . ,xn−1,yn−1), estimate the vector of coefficients β by

β̂n−1 := (X ′
n−1Xn−1)

−1X ′
n−1Yn−1

and after further observing xn, predict yn by

ŷn := xnβ̂n−1 = xn(X
′
n−1Xn−1)

−1X ′
n−1Yn−1.

• Estimate the variance of the ei by

s2
n−1 :=

Y ′
n−1Yn−1 −β′

n−1X ′
n−1Yn−1

n− p−1
.

5. There are many names for the classical model. The name “classical Gaussian linear model” is used by Bickel and
Doksum (2001, p. 366).
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• The random variable

tn :=
yn − ŷn

sn−1

√

1+ x′n(X
′
n−1Xn−1)−1xn

(28)

has a t-distribution with n− p−1 degrees of freedom, and so

ŷn ± tε/2
n−p−1sn−1

√

1+ x′n(X
′
n−1Xn−1)−1xn (29)

has probability 1− ε of containing yn (Ryan 1997, p. 127; Seber and Lee 2003, p. 132).

The assumption Rank(Xn−1) = p can be relaxed, at the price of complicating the formulas involving
(X ′

n−1Xn−1)
−1. But the assumption n−1 > Rank(Xn−1) is essential to finding a prediction interval

of the type (29); when it fails there are values for the coefficients β such that yn−1 = Xn−1β, and
consequently there is no residual variance with which to estimate the variance of the ei.

We have already used two special cases of (29) in this article. Formula (1) in §2.1.1 is the special
case with p = 1 and each xi equal to 1, and formula (21) at the beginning of §4.3.2 is the special
case with p = 2 and the first entry of each xi equal to 1.

The relation between the classical and on-line models, fully understood in the theoretical litera-
ture since the 1980s, can be summarized as follows:

• If z1, . . . ,zN satisfy the assumptions of the classical Gaussian linear model, then they satisfy
the assumptions of the on-line Gaussian linear model. In other words, the assumption that the
errors ei in (27) are independent and normal with mean zero and a common variance implies
that conditional on X ′

nYn = C and Y ′
nYn = r2, the vector Yn is distributed uniformly over the

sphere defined by C and r2. This was already noted by R. A. Fisher in 1925.

• The assumption of the on-line Gaussian linear model, that conditional on X ′
nYn =C and Y ′

nYn =
r2, the vector Yn is distributed uniformly over the sphere defined by C and r2, is sufficient to
guarantee that (28) has the t-distribution with n− p−1 degrees of freedom (Dempster, 1969;
Efron, 1969).

• Suppose z1,z2, . . . is an infinite sequence of random variables. Then z1, . . . ,zN satisfy the
assumptions of the on-line Gaussian linear model for every integer N if and only if the joint
distribution of z1,z2, . . . is a mixture of distributions given by the classical Gaussian linear
model, each model in the mixture possibly having a different β and a different variance for
the ei (Lauritzen, 1988).

A natural nonconformity measure A for the on-line Gaussian linear model is given, for σ =
(X ,X ′Y,Y ′Y ) and z = (x,y), by

A(σ,z) := |y− ŷ|, (30)

where ŷ = x(X ′X)−1X ′Y .

Proposition 2 When (30) is used as the nonconformity measure, the 1− ε conformal prediction
region for yn is (29), the interval given by the t-distribution in the classical theory.

Proof When (30) is used as the nonconformity measure, the test statistic A(σn−1,zn) used in the
conformal algorithm becomes |yn − ŷn|. The conformal algorithm considers the distribution of this
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statistic under Rn(· |σn). But when σn is fixed and tn is given by (28), |tn| is a monotonically in-
creasing function of |yn − ŷn| (see Vovk et al., 2005, pp. 202–203, for details). So the conformal
prediction region is the interval of values of yn for which |tn| does not take its most extreme values.
Since tn has the t-distribution with n− p− 1 degrees of freedom under Rn(· |σn), this is the inter-
val (29).

Together with Informal Proposition 2, Proposition 2 implies that when we use (29) for a large
number of successive values of n, yn will be in the interval 1− ε of the time. In fact, because the
probability of error each time is exactly ε, we can say simply that the errors are independent and for
this reason the classical law of large numbers applies.

In our example involving the prediction of petal width from sepal length, the exchangeability
and Gaussian linear models gave roughly comparable results (see Table 6 in §4.3.2). This will
often be the case. Each model makes an assumption, however, that the other does not make. The
exchangeability model assumes that the xs, as well as the ys, are exchangeable. The Gaussian linear
model assumes that given the xs, the ys are normally distributed.
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Appendix A. Validity

The main purpose of this appendix is to formalize and prove the following informal proposition:

Informal Proposition 1 Suppose N is large, and the variables z1, . . . ,zN are exchangeable. Sup-
pose En is an ε-rare n-event for n = 1, . . . ,N. Then the law of large numbers applies; with very high
probability, no more than approximately the fraction ε of the events E1, . . . ,EN will happen.

We used this informal proposition in §3.4 to establish the validity of conformal prediction in the ex-
changeability model. As we promised then, we will discuss two different approaches to formalizing
it: a classical approach and a game-theoretical approach. The classical approach shows that the En

are mutually independent in the case where they are exactly ε-rare and then appeals to the classical
weak law of large numbers for independent events. The game-theoretic approach appeals directly
to the more flexible game-theoretic weak law of large numbers.

Our proofs will also establish the analogous Informal Proposition 2, which we used to establish
the validity of conformal prediction in on-line compression models in general.

In §A.3, we return to R. A. Fisher’s prediction interval for a normal random variable, which we
discussed in §2.1.1. We show that this prediction interval’s successive hits are independent, so that
validity follows from the usual law of large numbers. Fisher’s prediction interval is a special case
of conformal prediction for the Gaussian linear model, and so it is covered by the general result
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for on-line compression models. But the proof in §A.3, being self-contained and elementary and
making no reference to conformal prediction, may be especially informative for many readers.

A.1 A Classical Argument for Independence

Recall the definitions we gave in §3.4 in the case where z1, . . . ,zN are exchangeable: An event E
is an n-event if its happening or failing is determined by the value of zn and the value of the bag
*z1, . . . ,zn−1+, and an n-event E is ε-rare if Pr(E |*z1, . . . ,zn+) ≤ ε. Let us further say that n-event E
is exactly ε-rare if

Pr(E | *z1, . . . ,zn+) = ε. (31)

The conditional probability in this equation is a random variable, depending on the random bag
*z1, . . . ,zn+, but the equation says that it is not really random, for it is always equal to ε. Its expected
value, the unconditional probability of E, is therefore also equal to ε.

Proposition 3 Suppose En is an exactly ε-rare n-event for n = 1, . . . ,N. Then E1, . . . ,EN are mutu-
ally independent.

Proof Consider (31) for n = N −1:

Pr(EN−1 | *z1, . . . ,zN−1+) = ε. (32)

Given *z1, . . . ,zN−1+, knowledge of zN does not change the probabilities for zN−1 and *z1, . . . ,zN−2+,
and zN−1 and *z1, . . . ,zN−2+ determine the (N −1)-event EN−1. So adding knowledge of zN will not
change the probability in (32):

Pr(EN−1 | *z1, . . . ,zN−1 + & zN) = ε.

Because EN is determined by zN once *z1, . . . ,zN−1+ is given, it follows that

Pr(EN−1 | *z1, . . . ,zN−1 + & EN) = ε,

and from this it follows that Pr(EN−1 |EN) = ε. The unconditional probability of EN−1 is also ε. So
EN and EN−1 are independent. Continuing the reasoning backwards to E1, we find that the En are
all mutually independent.

This proof generalizes immediately to the general case of on-line compression models (see p. 407);
we simply replace *z1, . . . ,zn+ with σn.

If N is sufficiently large, and En is an exactly ε-rare n-event for n = 1, . . . ,N, then the law of
large numbers applies; with very high probability, no more than approximately the fraction ε of
the N events will happen. It is intuitively clear that this conclusion will also hold if we have an
inequality instead of an equality in (31), because making the En even less likely to happen cannot
reverse the conclusion that few of them will happen.

The preceding argument is less than rigorous on two counts. First, the proof of Proposition 3
does not consider the existence of the conditional probabilities it uses. Second, the argument from
the case where (31) is an equality to that where it is merely an inequality, though entirely convincing,
is only intuitive. A fully rigorous proof, which uses Doob’s measure-theoretic framework to deal
with the conditional probabilities and uses a randomization to bring the inequality up to an equality,
is provided on pp. 211–213 of our book (Vovk et al., 2005).
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A.2 A Game-theoretic Law of Large Numbers

As we explained in §3.3, the game-theoretic interpretation of exchangeability involves a backward-
looking protocol, in which Bill observes first the bag *z1, . . . ,zN+ and then successively zN , zN−1,
and so on, finally observing z1. Just before he observes zn, he knows the bag *z1, . . . ,zn+ and can bet
on the value of zn at odds corresponding to the probabilities the bag determines:

Pr(zn = a | *z1, . . . ,zn+ = B) =
k
n
, (33)

where k is the number of times a occurs in B.

THE BACKWARD-LOOKING BETTING PROTOCOL

Players: Joe, Bill
KN := 1.
Joe announces a bag BN of size N.
FOR n = N,N −1, . . . ,2,1

Bill bets on zn at odds set by (33).
Joe announces zn ∈ Bn.
Kn−1 := Kn +Bill’s net gain.
Bn−1 := Bn \ *zn+.

Bill’s initial capital KN is 1. His final capital is K0.
Given an event E, set

e :=

{

1 if E happens

0 if E fails.

Given events E1, . . . ,EN , set

FreqN :=
1
N

N

∑
j=1

e j.

This is the fraction of the events that happen—the frequency with which they happen. Our game-
theoretic law of large numbers will say that if each En is an ε-rare n-event, then it is very unlikely
that FreqN will substantially exceed ε.

In game-theoretic probability, what do we mean when we say an event E is “very unlikely”? We
mean that the bettor, Bill in this protocol, has a betting strategy that guarantees

K0 ≥

{

C if E happens

0 if E fails,
(34)

where C is a large positive number. Cournot’s principle, which says that Bill will not multiply his
initial unit capital by a large factor without risking bankruptcy, justifies our thinking E unlikely. The
larger C, the more unlikely E. We call the quantity

PE := inf

{

1
C

∣

∣

∣

∣

Bill can guarantee (34)

}

(35)

E’s upper probability. An unlikely event is one with small upper probability.
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Proposition 4 (Game-theoretic weak law of large numbers) Suppose En is an ε-rare n-event, for
n = 1, . . . ,N. Suppose ε < 1/2, δ1 > 0, δ2 > 0, and N ≥ 1/δ1δ2

2. Then

P(FreqN ≥ ε+δ2) ≤ δ1.

In words: If N is sufficiently large, there is a small (less than δ1) upper probability that the frequency
will exceed ε substantially (by more than δ2).

Readers familiar with game-theoretic probability will recognize Proposition 4 as a form of the
game-theoretic weak law of large numbers (Shafer and Vovk, 2001, pp. 124–126). The bound it
gives for the upper probability of the event FreqN ≥ ε+δ2 is the same as the bound that Chebyshev’s
inequality gives for the probability of this event in classical probability theory when the En are
independent and all have probability ε.

For the benefit of those not familiar with the concepts of game-theoretic probability used in the
proof just cited, we now give an elementary and self-contained proof of Proposition 4.

Lemma 5 Suppose, for n = 1, . . . ,N, that En is an ε-rare n-event. Then Bill has a strategy that
guarantees that his capital Kn will satisfy

Kn ≥
n
N

+
1
N

((

N

∑
j=n+1

(e j − ε)

)+)2

(36)

for n = 1, . . . ,N, where t+ := max(t,0).

Proof When n = N, (36) reduces to KN ≥ 1, and this certainly holds; Bill’s initial capital KN is
equal to 1. So it suffices to show that if (36) hold for n, then Bill can bet on En in such a way that
the corresponding inequality for n−1,

Kn−1 ≥
n−1

N
+

1
N

((

N

∑
j=n

(e j − ε)

)+)2

, (37)

also holds. Here is how Bill bets.

• If ∑N
j=n+1(e j − ε) ≥ ε, then Bill buys (2/N)∑N

j=n+1(e j − ε) units of en. By assumption, he
pays no more than ε for each unit. So we have a lower bound on his net gain, Kn−1 −Kn:

Kn−1 −Kn ≥
2
N

(

N

∑
j=n+1

(e j − ε)

)

(en − ε)

≥
1
N

(

N

∑
j=n

(e j − ε)

)2

−
1
N

(

N

∑
j=n+1

(e j − ε)

)2

−
1
N

(38)

≥
1
N

((

N

∑
j=n

(e j − ε)

)+)2

−
1
N

((

N

∑
j=n+1

(e j − ε)

)+)2

−
1
N

.

Adding (38) and (36), we obtain (37).
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• If ∑N
j=n+1(e j − ε) < ε, then Bill does not bet at all, and Kn−1 = Kn. Because

((

N

∑
j=n

(e j − ε)

)+)2

−

((

N

∑
j=n+1

(e j − ε)

)+)2

≤ (ε+(en − ε))2 ≤ 1,

we again obtain (37) from (36).

Proof of Proposition 4 The inequality FreqN ≥ ε+δ2 is equivalent to

1
N

((

N

∑
j=1

(e j − ε)

)+)2

≥ Nδ2
2. (39)

Bill’s strategy in Lemma 5 does not risk bankruptcy (it is obvious that Kn ≥ 0 for all n), and (36)
says

K0 ≥
1
N

((

N

∑
j=1

(e j − ε)

)+)2

. (40)

Combining (39) and (40) with the assumption that N ≥ 1/δ1δ2
2, we see that when the event

FreqN ≥ ε+δ2 happens, K0 ≥ 1/δ1. So by (34) and (35), P(FreqN ≥ ε+δ2) ≤ δ1.

A.3 The Independence of Hits for Fisher’s Interval

Recall that if z1, . . . ,zn,zn+1 are independent normal random variables with mean 0 and standard
deviation 1, the distribution of the ratio

zn+1
√

∑n
i=1 z2

i /n
(41)

is called the t-distribution with n degrees of freedom. The upper percentile points for this distribu-
tion, the points tε

n exceeded by (41) with probability exactly ε, are readily available from textbooks
and standard computer programs.

Given a sequence of numbers z1, . . . ,zl , where l ≥ 2, we set

zl :=
1
l

l

∑
i=1

zi and s2
l :=

1
l −1

l

∑
i=1

(zi − zl)
2.

As we recalled in §2.1.1, R. A. Fisher proved that if n ≥ 3 and z1, . . . ,zn are independent and normal
with a common mean and standard deviation, then the ratio tn given by

tn :=
zn − zn−1

sn−1

√

n−1
n

(42)
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has the t-distribution with n−2 degrees of freedom (Fisher, 1935). It follows that the event

zn−1 − tε/2
n−2 sn−1

√

n
n−1

≤ zn ≤ zn−1 + tε/2
n−2 sn−1

√

n
n−1

(43)

has probability 1− ε. We will now prove that the tn for successive n are independent. This implies
that the events (43) for successive values of n are independent, so that the law of large numbers
applies: with very high probability approximately 1− ε of these events will happen. This indepen-
dence was overlooked by Fisher and subsequent authors.

We begin with two purely arithmetic lemmas, which do not rely on any assumption about the
probability distribution of z1, . . . ,zn.

Lemma 6 The ratio tn given by (42) depends on z1, . . . ,zn only through the ratios among themselves
of the differences

z1 − zn, . . . ,zn − zn.

Proof It is straightforward to verify that

zn − zn−1 =
n

n−1
(zn − zn) (44)

and

s2
n−1 =

(n−1)s2
n

n−2
−

n(zn − zn)
2

(n−1)(n−2)
. (45)

Substituting (44) and (45) in (42) produces

tn =

√

n(n−2)(zn − zn)
√

(n−1)2s2
n −n(zn − zn)2

(46)

or

tn =

√

n(n−2)(zn − zn)
√

(n−1)∑n
i=1(zi − zn)2 −n(zn − zn)2

. (47)

The value of (47) is unaffected if all the zi − zn are multiplied by a nonzero constant.

Lemma 7 Suppose zn and sn are known. Then the following three additional items of information
are equivalent, inasmuch as the other two can be calculated from any of the three:

1. zn

2. zn−1 and sn−1

3. tn

Proof Given zn, we can calculate zn−1 and sn−1 from (44) and (45) and then calculate tn from (42).
Given zn−1 and sn−1, we can calculate zn from (44) or (45) and then tn from (42). Given tn, we
can invert (46) to find zn (when zn and sn are fixed, this equation expresses tn as a monotonically
increasing function of zn) and then calculate zn−1 and sn−1 from (44) and (45).

Now we consider probability distributions for z1, . . . ,zn.
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Lemma 8 If z1, . . . ,zn are independent and normal with a common mean and standard deviation,
then conditional on zn = w and ∑n

i=1(zi − zn)
2 = r2, the vector (z1, . . . ,zn) is distributed uniformly

over the (n− 2)-dimensional sphere of vectors satisfying these conditions (the intersection of the
hyperplane zn = w with the (n−1)-dimensional sphere of radius r centered on the point (w, . . . ,w)
in R

n).

Proof The logarithm of the joint density of z1, . . . ,zn is

−
n
2

log(2πσ2)−
1

2σ2

n

∑
i=1

(zi −µ)2 = −
n
2

log(2πσ2)−
1

2σ2

(

n

∑
i=1

(zi − zn)
2 +n(zn −µ)2

)

, (48)

where µ and σ are the mean and standard deviation, respectively. Because this depends on (z1, . . . ,zn)
only through zn and ∑n

i=1(zi−zn)
2, the distribution of (z1, . . . ,zn) conditional on zn = w and ∑n

i=1(zi−
zn)

2 = r2 is uniform over the set of vectors satisfying these conditions.

Lemma 9 If the vector (z1, . . . ,zn) is distributed uniformly over the (n− 2)-dimensional sphere
defined by the conditions zn = w and ∑n

i=1(zi − zn)
2 = r2, then tn has the t-distribution with n− 2

degrees of freedom.

Proof The distribution of tn does not depend on w or r. This is because we can transform the
uniform distribution over one (n− 2)-dimensional sphere in R

n into a uniform distribution over
another by adding a constant to all the zi and then multiplying the differences zi − zn by a constant,
and by Lemma 6, this will not change tn.

Now suppose z1, . . . ,zn are independent and normal with a common mean and standard devia-
tion. Lemma 8 says that conditional on zn = w and (n−1)s2

n = r2, the vector (z1, . . . ,zn) is distributed
uniformly over the sphere of radius r centered on w, . . . ,w. Since the resulting distribution for tn does
not depend on w or r, it must be the same as the unconditional distribution.

Lemma 10 Suppose (z1, . . . ,zN) is distributed uniformly over the N−2-dimensional sphere defined
by the conditions zn = w and ∑n

i=1(zi − zn)
2 = r2. Then t3, . . . , tN are mutually independent.

Proof It suffices to show that tn still has the t-distribution with n−2 degrees of freedom conditional
on tn+1, . . . , tN . This will imply that tn is independent of tn+1, . . . , tN and hence that all the tn are
mutually independent.

We start knowing zN = r and sN = w. So by Lemma 7, learning tn+1, . . . , tN is the same as learn-
ing zn+1, . . . ,zN . Geometrically, when we learn zN we intersect our (N − 1)-dimensional sphere in
R

N with a hyperplane, reducing it to an (N − 2)-dimensional sphere in R
N−1. (Imagine, for ex-

ample, intersecting a sphere in R
3 with a plane: the result is a circle.) When we learn zN−1, we

reduce the dimension again, and so on. In each case, we obtain a uniform distribution on the lower-
dimensional sphere for the remaining zi. In the end, we find that (z1, . . . ,zn) is distributed uniformly
over an (n− 1)-dimensional sphere in R

n, and so tn has the t-distribution with n− 2 degrees of
freedom by Lemma 9.
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Proposition 11 Suppose z1, . . . ,zN are independent and normal with a common mean and standard
deviation. Then t3, . . . , tN are mutually independent.

Proof By Lemma 10, t3, . . . , tN are mutually independent conditional on zN = w and sN = r, each tn
having the t-distribution with n−2 degrees of freedom. Because this joint distribution for t3, . . . , tN
does not depend on w or r, it is also their unconditional joint distribution.
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Per Martin-Löf. Repetitive structures and the relation between canonical and microcanonical dis-
tributions in statistics and statistical mechanics. In Ole E. Barndorff-Nielsen, Preben Blæsild,
and Geert Schou, editors, Proceedings of Conference on Foundational Questions in Statistical
Inference, pages 271–294, Aarhus, 1974. Memoirs 1.

Jerzy Neyman. Outline of a theory of statistical estimation based on the classical theory of proba-
bility. Philosophical Transactions of the Royal Society, Series A, 237:333–380, 1937.

Geoff K. Robinson. Some counterexamples to the theory of confidence intervals. Biometrika, 62:
155–161, 1975.

Thomas P. Ryan. Modern Regression Methods. Wiley, New York, 1997.

George A. F. Seber and Alan J. Lee. Linear Regression Analysis. Wiley, Hoboken, NJ, second
edition, 2003.

Glenn Shafer. From Cournot’s principle to market efficiency. In Jean-Philippe Touffut, editor,
Augustin Cournot, Economic Models and Rationality. Edward Elgar, Cheltenham, 2007.

Glenn Shafer and Vladimir Vovk. Probability and Finance: It’s only a Game! Wiley, New York,
2001.

Dylan S. Small, Joseph L. Gastwirth, Abba M. Krieger, and Paul R. Rosenbaum. R-estimates vs.
GMM: A theoretical case study of validity and efficiency. Statistical Science, 21:363–375, 2006.

Student (William S. Gossett). On the probable error of a mean. Biometrika, 6:1–25, 1908.

John W. Tukey. Sunset salvo. American Statistician, 40:72–76, 1986.

Vladimir N. Vapnik. Statistical Learning Theory. Wiley, New York, 1998.

Vladimir Vovk, Alex Gammerman, and Glenn Shafer. Algorithmic Learning in a Random World.
Springer, New York, 2005.

421


