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Abstract

Sparsity or parsimony of statistical models is crucial for their proper interpretations, as in sciences
and social sciences. Model selection is a commonly used method to find such models, but usually
involves a computationally heavy combinatorial search. Lasso (Tibshirani, 1996) is now being
used as a computationally feasible alternative to model selection. Therefore it is important to study
Lasso for model selection purposes.

In this paper, we prove that a single condition, which we call the Irrepresentable Condition,
is almost necessary and sufficient for Lasso to select the true model both in the classical fixed p
setting and in the large p setting as the sample size n gets large. Based on these results, sufficient
conditions that are verifiable in practice are given to relate to previous works and help applications
of Lasso for feature selection and sparse representation.

This Irrepresentable Condition, which depends mainly on the covariance of the predictor vari-
ables, states that Lasso selects the true model consistently if and (almost) only if the predictors that
are not in the true model are “irrepresentable” (in a sense to be clarified) by predictors that are in
the true model. Furthermore, simulations are carried out to provide insights and understanding of
this result.
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1. Introduction

A vastly popular and successful approach in statistical modeling is to use regularization penalties in
model fitting (Hoerl and Kennard, 1970). By jointly minimizing the empirical error and penalty, one
seeks a model that not only fits well and is also “simple” to avoid large variation which occurs in
estimating complex models. Lasso (Tibshirani, 1996) is a successful idea that falls into this category.
Its popularity is largely because the regularization resulting from Lasso’s L1 penalty leads to sparse
solutions, that is, there are few nonzero estimates (among all possible choices). Sparse models are
more interpretable and often preferred in the sciences and social sciences. However, obtaining such
models through classical model selection methods usually involves heavy combinatorial search.
Lasso, of which the entire regularization path can be computed in the complexity of one linear
regression (Efron et al., 2004; Osborne et al., 2000b), provides a computationally feasible way for
model selection (also see, for example, Zhao and Yu, 2004; Rosset, 2004). However, in order to use
Lasso for model selection, it is necessary to assess how well the sparse model given by Lasso relates
to the true model. We make this assessment by investigating Lasso’s model selection consistency

c©2006 Peng Zhao and Bin Yu.



ZHAO AND YU

under linear models, that is, when given a large amount of data under what conditions Lasso does
and does not choose the true model.

Assume our data is generated by a linear regression model

Yn = Xnβn + εn.

where εn = (ε1, ...,εn)
T is a vector of i.i.d. random variables with mean 0 and variance σ2. Yn is an

n×1 response and Xn = (Xn
1 , ...,Xn

p) = ((xn
1)

T , ...,(xn
n)

T )T is the n× p design matrix where X n
i is its

ith column (ith predictor) and xn
j is its jth row ( jth sample). βn is the vector of model coefficients.

The model is assumed to be “sparse”, that is, some of the regression coefficients βn are exactly zero
corresponding to predictors that are irrelevant to the response. Unlike classical fixed p settings, the
data and model parameters β are indexed by n to allow them to change as n grows.

The Lasso estimates β̂n = (β̂n
1, ..., β̂

n
j , ...)

T are defined by

β̂n(λ) = argmin
β

‖Yn −Xnβ‖2
2 +λ‖β‖1, (1)

where ‖ · ‖1 stands for the L1 norm of a vector which equals the sum of absolute values of the
vector’s entries.

The parameter λ ≥ 0 controls the amount of regularization applied to the estimate. Setting λ = 0
reverses the Lasso problem to Ordinary Least Squares which minimizes the unregularized empirical
loss. On the other hand, a very large λ will completely shrink β̂n to 0 thus leading to the empty or
null model. In general, moderate values of λ will cause shrinkage of the solutions towards 0, and
some coefficients may end up being exactly 0.

Under some regularity conditions on the design, Knight and Fu (2000) have shown estimation
consistency for Lasso for fixed p and fixed βn (i.e., p and βn are independent of n) as n → ∞. In
particular, they have shown that β̂n(λn) →p β and asymptotic normality of the estimates provided

that λn = o(n). In addition, it is shown in the work that for λn ∝ n
1
2 (on the same order of n

1
2 ), as

n → ∞ there is a non-vanishing positive probability for lasso to select the true model.
On the model selection consistency front, Meinshausen and Buhlmann (2006) have shown that

under a set of conditions, Lasso is consistent in estimating the dependency between Gaussian vari-
ables even when the number of variables p grows faster than n. Addressing a slightly different but
closely related problem, Leng et al. (2004) have shown that for a fixed p and orthogonal designs,
the Lasso estimate that is optimal in terms of parameter estimation does not give consistent model
selection. Furthermore, Osborne et al. (1998), in their work of using Lasso for knot selection for
regression splines, noted that Lasso tend to pick up knots in close proximity to one another. In
general, as we will show, if an irrelevant predictor is highly correlated with the predictors in the true
model, Lasso may not be able to distinguish it from the true predictors with any amount of data and
any amount of regularization.

Since using the Lasso estimate involves choosing the appropriate amount of regularization, to
study the model selection consistency of the Lasso, we consider two problems: whether there ex-
ists a deterministic amount of regularization that gives consistent selection; or, for each random
realization whether there exists a correct amount of regularization that selects the true model. Our
main result shows there exists an Irrepresentable Condition that, except for a minor technicality,
is almost necessary and sufficient for both types of consistency. Based on this condition, we give
sufficient conditions that are verifiable in practice. In particular, in one example our condition co-
incides with the “Coherence” condition in Donoho et al. (2004) where the L2 distance between the
Lasso estimate and true model is studied in a non-asymptotic setting.
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After we had obtained our almost necessary and sufficient condition result, it was brought to our
attention of an independent result in Meinshausen and Buhlmann (2006) where a similar condition
to the Irrepresentable Condition was obtained to prove a model selection consistency result for
Gaussian graphical model selection using the Lasso. Our result is for linear models (with fixed p
and p growing with n) and it could accommodate non-Gaussian errors and non-Gaussian designs.
Our analytical approach is direct and we thoroughly explain through special cases and simulations
the meaning of this condition in various cases. We also make connections to previous theoretical
studies and simulations on Lasso (e.g., Donoho et al., 2004; Zou et al., 2004; Tibshirani, 1996).

The rest of the paper is organized as follows. In Section 2, we describe our main result—
the Irrepresentable Condition for Lasso to achieve consistent selection and prove that it is almost
necessary and sufficient. We then elaborate on the condition by extending to other sufficient con-
ditions that are more intuitive and verifiable to relate to previous theoretical and simulation studies
of Lasso. Sections 3 contains simulation results to illustrate our result and to build heuristic sense
of how strong the condition is. To conclude, Section 4 compares Lasso with thresholding and
discusses alternatives and possible modifications of Lasso to achieve selection consistency when
Irrepresentable Condition fails.

2. Model Selection Consistency and Irrepresentable Conditions

An estimate which is consistent in term of parameter estimation does not necessarily consistently
select the correct model (or even attempt to do so) where the reverse is also true. The former requires

β̂n −βn →p 0, as n → ∞

while the latter requires

P({i : β̂n
i 6= 0} = {i : βn

i 6= 0}) → 1, as n → ∞.

In general, we desire our estimate to have both consistencies. However, to separate the selection
aspect of the consistency from the parameter estimation aspect, we make the following definitions
about Sign Consistency that does not assume the estimates to be estimation consistent.
Definition 1 An estimate β̂n is equal in sign with the true model βn which is written

β̂n =s βn

if and only if
sign(β̂n) = sign(βn)

where sign(·) maps positive entry to 1, negative entry to -1 and zero to zero, that is, β̂n matches the
zeros and signs of β.

Sign consistency is stronger than the usual selection consistency which only requires the zeros
to be matched, but not the signs. The reason for using sign consistency is technical. It is needed
for proving the necessity of the Irrepresentable Condition (to be defined) to avoid dealing with
situations where a model is estimated with matching zeros but reversed signs. We also argue that an
estimated model with reversed signs can be misleading and hardly qualifies as a correctly selected
model.

Now we define two kinds of sign consistencies for Lasso depending on how the amount of
regularization is determined.
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Definition 2 Lasso is Strongly Sign Consistent if there exists λn = f (n), that is, a function of n
and independent of Yn or Xn such that

lim
n→∞

P(β̂n(λn) =s βn) = 1.

Definition 3 The Lasso is General Sign Consistent if

lim
n→∞

P(∃λ ≥ 0, β̂n(λ) =s βn) = 1.

Strong Sign Consistency implies one can use a preselected λ to achieve consistent model se-
lection via Lasso. General Sign Consistency means for a random realization there exists a correct
amount of regularization that selects the true model. Obviously, strong sign consistency implies
general sign consistency. Surprisingly, as implied by our results, the two kinds of sign consistencies
are almost equivalent to one condition. To define this condition we need the following notations on
the design.

Without loss of generality, assume βn = (βn
1, ...,β

n
q,βn

q+1, ...β
n
p)

T where βn
j 6= 0 for j = 1, ..,q

and βn
j = 0 for j = q + 1, ..., p. Let βn

(1) = (βn
1, ...,β

n
q)

T and βn
(2) = (βn

q+1, ...,β
n
p). Now write Xn(1)

and Xn(2) as the first q and last p−q columns of Xn respectively and let Cn = 1
n Xn

T Xn. By setting
Cn

11 = 1
n Xn(1)′Xn(1), Cn

22 = 1
n Xn(2)′Xn(2), Cn

12 = 1
n Xn(1)′Xn(2) and Cn

21 = 1
n Xn(2)′Xn(1). Cn can

then be expressed in a block-wise form as follows:

Cn =

(

Cn
11 Cn

12
Cn

21 Cn
22

)

.

Assuming Cn
11 is invertible, we define the following Irrepresentable Conditions

Strong Irrepresentable Condition. There exists a positive constant vector η

|Cn
21(C

n
11)

−1sign(βn
(1))| ≤ 1−η,

where 1 is a p−q by 1 vector of 1’s and the inequality holds element-wise.
Weak Irrepresentable Condition.

|Cn
21(C

n
11)

−1sign(βn
(1))| < 1,

where the inequality holds element-wise.
Weak Irrepresentable Condition is slightly weaker than Strong Irrepresentable Condition. Cn

can converge in ways that entries of |Cn
21(C

n
11)

−1sign(βn
(1))| approach 1 from the below so that Weak

Condition holds but the strict inequality fails in the limit. For a fixed p and βn = β, the distinction
disappears for random designs when, for example, xn

i ’s are i.i.d. realizations with covariance matrix
C, since then the two conditions are equivalent to |C21(C11)

−1sign(β(1))| < 1 almost surely.
The Irrepresentable Conditions closely resembles a regularization constraint on the regression

coefficients of the irrelevant covariates (Xn(2))) on the relevant covariates (Xn(1)). In particular,
when signs of the true β are unknown, for the Irrepresentable Condition to hold for all possible
signs, we need the L1 norms of the regression coefficients to be smaller than 1. To see this, recall
for (2) to hold for all possible sign(β(1)), we need

|((Xn(1)T Xn(1))−1Xn(1)T Xn(2)| = |(Cn
11)

−1Cn
12| < 1−η, (2)
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that is, the total amount of an irrelevant covariate represented by the covariates in the true model is
not to reach 1 (therefore the name “irrepresentable” ).

As a preparatory result, the following proposition puts a lower bound on the probability of
Lasso picking the true model which quantitatively relates the probability of Lasso selecting the
correct model and how well Strong Irrepresentable Condition holds:
Proposition 1. Assume Strong Irrepresentable Condition holds with a constant η > 0 then

P(β̂n(λn)) =s βn) ≥ P(An ∩Bn)

for

An = {|(Cn
11)

−1W n(1)| <
√

n(|βn
(1)|−

λn

2n
|(C11

n )−1sign(βn
(1))|)},

Bn = {|Cn
21(C

n
11)

−1W n(1)−W n(2)| ≤ λn

2
√

n
η},

where

W n(1) =
1√
n

Xn(1)′εn and
1√
n

W n(2) = Xn(2)′εn.

It can be argued (see the proof of Proposition 1 in the appendix) that An implies the signs of
of those of βn

(1) are estimated correctly. And given An, Bn further imply β̂n
(2) are shrunk to zero.

The regularization parameter λn trades off the size of these two events. Smaller λn leads to larger
An but smaller Bn which makes it likely to have Lasso pick more irrelevant variables. On the other
hand, larger constant η always leads to larger Bn and have no impact on An. So when Strong
Irrepresentable Condition holds with a larger constant η, it is easier for Lasso to pick up the true
model. This is quantitatively illustrated in Simulation 3.2.

Our main results relate Strong and Weak Irrepresentable Conditions with strong and general
sign consistency. We describe the results for small q and p case next followed by results for large q
and p in Section 2.2. Then, analysis and sufficient conditions are given in Section 2.3 to achieve a
better understanding of the Irrepresentable Conditions and relate to previous works.

2.1 Model Selection Consistency for Small q and p

In this section, we work under the classical setting where q, p and βn are all fixed as n → ∞. In this
setting, it is natural to assume the following regularity conditions:

Cn →C, as n → ∞. (3)

where C is a positive definite matrix. And,

1
n

max
1≤i≤n

((xn
i )

T xn
i ) → 0, as n → ∞. (4)

In practice, the covariates are usually scaled so that the diagonal elements of Cn are all 1’s. The
convergence in (3) and (4) are deterministic. However, the results in this is section also holds quite
generally for random designs. Specifically, in the case of a random design, X can be conditioned
on and the asymptotic results still apply if the probability of the set where (3) and (4) hold is 1. In
general, (3) and (4) are weak in the sense that if one assumes xi are i.i.d. with finite second moments
then C = E((xn

i )
T xn

i ),
1
n Xn

T Xn →a.s. C and max1≤i≤n xT
i xi = op(n), thus (3) and (4) hold naturally.
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Under these conditions we have the following result.
Theorem 1. For fixed q, p and βn = β, under regularity conditions (3) and (4), Lasso is strongly sign
consistent if Strong Irrepresentable Condition holds. That is, when Strong Irrepresentable Condition
holds, for ∀λn that satisfies λn/n → 0 and λn/n

1+c
2 → ∞ with 0 ≤ c < 1, we have

P(β̂n(λn) =s βn) = 1−o(e−nc
).

A proof of Theorem 1 can be found in the appendix.
Theorem 1 states that, if Strong Irrepresentable Condition holds, then the probability of Lasso

selecting the true model approaches 1 at an exponential rate while only the finite second moment
of the noise terms is assumed. In addition, from Knight and Fu (2000) we know that for λn = o(n)
Lasso also has consistent estimation and asymptotic normality. Therefore Strong Irrepresentable
Condition allows for consistent model selection and parameter estimation simultaneously. On the
other hand, Theorem 2 shows that Weak Irrepresentable Condition is also necessary even for the
weaker general sign consistency.
Theorem 2. For fixed p, q and βn = β, under regularity conditions (3) and (4), Lasso is general sign
consistent only if there exists N so that Weak Irrepresentable Condition holds for n > N.

A proof of Theorem 2 can be found in the appendix.
Therefore, Strong Irrepresentable Condition implies strong sign consistency implies general

sign consistency implies Weak Irrepresentable Condition. So except for the technical difference
between the two conditions, Irrepresentable Condition is almost necessary and sufficient for both
strong sign consistency and general sign consistency.

Furthermore, under additional regularity conditions on the noise terms εn
i , this “small” p result

can be extended to the “large” p case. That is, when p also tends to infinity “not too fast” as n tends
to infinity, we show that Strong Irrepresentable Condition, again, implies Strong Sign Consistency
for Lasso.

2.2 Model Selection Consistency for Large p and q

In the large p and q case, we allow the dimension of the designs Cn and model parameters βn grow as
n grows, that is, p = pn and q = qn are allowed to grow with n. Consequently, the assumptions and
regularity conditions in Section 2.1 becomes inappropriate as Cn do not converge and βn may change
as n grows. Thus we need to control the size of the smallest entry of βn

(1), bound the eigenvalues of
Cn

11 and have the design scale properly. Specifically, we assume:
There exists 0 ≤ c1 < c2 ≤ 1 and M1,M2,M3,M4 > 0 so the following holds:

1
n
(Xn

i )′Xn
i ≤ M1 for ∀i, (5)

α′Cn
11α ≥ M2, for ∀‖α‖2

2 = 1, (6)

qn = O(nc1), (7)

n
1−c2

2 min
i=1,..,q

|βn
i | ≥ M3. (8)

Condition (5) is trivial since it can always be achieved by normalizing the covariates. (6) re-
quires the design of the relevant covariates have eigenvalues bounded from below so that the inverse
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of Cn
11 behaves well. For a random design, if the eigenvalues of the population covariance matrix

are bounded from below and qn/n → ρ < 1 then (6) usually follows Bai (1999).
The main conditions are (7) and (8) which are similar to the ones in Meinshausen (2005) for

Gaussian graphical models. (8) requires a gap of size nc2 between the decay rate of βn
(1) and n−

1
2 .

Since the noise terms aggregate at a rate of n− 1
2 , this prevents the estimation to be dominated by the

noise terms. Condition (7) is a sparsity assumption which requires square root of the size of the true
model

√
qn to grow at a rate slower than the rate gap which consequently prevents the estimation

bias of the Lasso solutions from dominating the model parameters.
Under these conditions, we have the following result:

Theorem 3. Assume εn
i are i.i.d. random variables with finite 2k’th moment E(εn

i )
2k < ∞ for

an integer k > 0. Under conditions (5), (6), (7) and (8), Strong Irrepresentable Condition implies
that Lasso has strong sign consistency for pn = o(n(c2−c1)k). In particular, for ∀λn that satisfies
λn√

n = o(n
c2−c1

2 ) and 1
pn

( λn√
n)2k → ∞, we have

P(β̂n(λn) =s βn) ≥ 1−O(
pnnk

λ2k
n

) → 1 as n → ∞.

A proof of Theorem 3 can be found in the appendix.
Theorem 3 states that Lasso can select the true model consistently given that Strong Irrepre-

sentable Condition holds and the noise terms have some finite moments. For example, if only the
second moment is assumed, p is allowed to grow slower than nc2−c1 . If all moments of the noise
exist then, by Theorem 3, p can grow at any polynomial rate and the probability of Lasso selecting
the true model converges to 1 at a faster rate than any polynomial rate. In particular, for Gaussian
noises, we have:
Theorem 4 (Gaussian Noise). Assume εn

i are i.i.d. Gaussian random variables. Under conditions
(5), (6), (7) and (8), if there exists 0≤ c3 < c2−c1 for which pn = O(enc3 ) then strong Irrepresentable

Condition implies that Lasso has strong sign consistency. In particular, for λn ∝ n
1+c4

2 with c3 < c4 <
c2 − c1,

P(β̂n(λn) =s βn) ≥ 1−o(e−nc3
) → 1 as n → ∞.

A proof of Theorem 4 can be found in the appendix. As discussed in the introduction, this result
has also been obtained independently by Meinshausen and Buhlmann (2006) in their study of high
dimensional multivariate Gaussian random variables. This result is obtained more directly for linear
models and differs from theirs by the use of fixed designs to accommodate non-Gaussian designs.
pn is also allowed to grow slightly faster than the polynomial rates used in that work.

It is an encouraging result that using Lasso we can allow p to grow much faster than n (up to
exponentially fast) while still allow for fast convergence of the probability of correct model selection
to 1. However, we note that this fast rate is not achievable for all noise distributions. In general,
the result of Theorem 3 is tight in the sense that if higher moments of the noise distribution do not
exist then the tail probability of the noise terms does not vanish quick enough to allow p to grow at
higher degree polynomial rates.

Through Theorem 3 and 4, we have shown, for cases with large p—(polynomial in n given that
noise have finite moments, exponential in n for Gaussian noises), Strong Irrepresentable Condition
still implies the probability of Lasso selecting the true model converges to 1 at a fast rate. We
have found it difficult to show necessariness of Irrepresentable Condition for the large p setting in
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a meaningful way. This is mainly due to the technical difficulty that arises from dealing with high
dimensional design matrices. However, by the results for the small p case, the necessariness of
Irrepresentable Condition is implied to some extent.

2.3 Analysis and Sufficient Conditions for Strong Irrepresentable Condition

In general, the Irrepresentable Condition is non-trivial when the numbers of zeros and nonzeros
are of moderate sizes, for example, 3. Particularly since we do not know sign(β) before hand, we
need the Irrepresentable Condition to hold for every possible combination of different signs and
placement of zeros. A closer look discloses that (2) does not depend on Cn

22, that is, the covariance
of the covariates that are not in the true model. It linearly depends on Cn

21, the correlations between
the covariates that are in the model and the ones that are not. For the Cn

11 part, except for special
cases (Corollary 1) we also want the correlations between covariates that are in the model to be
small otherwise Cn

11 may contain small eigenvalues which leads to large eigenvalues for (Cn
11)

−1

and results in the violation of (2).
To further elaborate and relate to previous works, we give some sufficient conditions in the fol-

lowing corollaries such that Strong Irrepresentable Condition is guaranteed. All diagonal elements
of Cn are assumed to be 1 which is equivalent to normalizing all covariates in the model to the same
scale since Strong Irrepresentable Condition is invariant under any common scaling of Cn. Proofs
of the corollaries are included in the appendix.
Corollary 1. (Constant Positive Correlation) Suppose

Cn =







1 . . . rn
...

. . .
...

rn . . . 1







and there exists c > 0 such that 0 < rn ≤ 1
1+cq , then Strong Irrepresentable Condition holds.

Corollary 1 has particularly strong implications for applications of Lasso where the covariates
of the regression are designed with a symmetry so that the covariates share a constant correlation.
Under such a design, this result implies that Strong Irrepresentable Condition holds even for p
growing with n as long as q remains fixed and consequently ensures that Lasso selects the true model
asymptotically. However, when the design is random or, for example, arises from an observational
study we usually do not have the constant correlation. Correspondingly, we have the following
result on bounded correlations.
Corollary 2. (Bounded Correlation) Suppose β has q nonzero entries. Cn has 1’s on the diagonal
and bounded correlation |ri j| ≤ c

2q−1 for a constant 0 ≤ c < 1 then Strong Irrepresentable Condition
holds.

Corollary 2 verifies the common intuition that when the design matrix is slightly correlated
Lasso works consistently. And the larger q is, the smaller the bound on correlation becomes. For a
q of considerable size, the bound becomes too small to meet in practice. Unfortunately, this bound
is also tight in the following sense: when the bound is violated, one can construct

Cn =







1 . . . r
...

. . .
...

r . . . 1
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with r ≤ − 1
2q−1 and make the nonzero βi’s all positive then |C21(C11)

−1sign(β(1))| ≥ 1 holds
element-wise which fails Strong Irrepresentable Condition.

In comparison, Donoho et al. (2004) showed that, in a non-asymptotic setup, the L2 distance
between the sparsest estimate and the true model is bounded by a linear multiple of the noise level
if

q < (1/r +1)/2,

where r = maxi, j |Cn
i j| (called Coherence). This is equivalent to

max
i, j

|Cn
i j| <

1
2q−1

which coincides with the condition of Corollary 2. Interestingly, for the same result to apply to the
Lasso estimates, Donoho et al. (2004) required tighter bound on the correlation, that is, maxi, j |Cn

i j|<
1

4q−1 .
Another typical design used for Lasso simulations (e.g., Tibshirani, 1996; Zou et al., 2004) is

setting the correlation between X n
i and Xn

j to be ρ|i− j| with an constant 0 < ρ < 1. Although this
design introduces more sophisticated correlation structure between the predictors and does not seem
restrictive, the following corollary states under this design Strong Irrepresentable Condition holds
for any q.
Corollary 3. (Power Decay Correlation) Suppose for any i, j = 1, ..., p, Cn

i j = (ρn)
|i− j|, for |ρn| ≤

c < 1, then Strong Irrepresentable Condition holds.
In addition, as instances of Corollary 2, under some simplified designs which are often used for

theoretical studies, Lasso is consistent for model selection.
Corollary 4. If

• the design is orthogonal, or

• q = 1 and the predictors are normalized with correlations bounded from 1, or

• p = 2 and the predictors are normalized with correlations bounded from 1

then Strong Irrepresentable Condition holds.
One additional informative scenario to consider is a block-wise design. As it is commonly

assumed in practice, this assumed scenario is a hybrid between the most highly structured designs
like the orthogonal design and a general design. For this design, it can be shown that
Corollary 5. For a block-wise design such that

Cn =







Bn
1 . . . 0
...

. . .
...

0 . . . Bn
k







with βn written as βn = (bn
1, ...,b

n
k) to correspond to different blocks, Strong Irrepresentable Condi-

tion holds if and only if there exists a common 0 < η≤ 1 for which Strong Irrepresentable Condition
holds for all Bn

j and bn
j , j = 1, ...,k.

Combinations of Corollary 5 and Corollary 1-4 cover some interesting cases such as models
with 2×2 design blocks and models where 0, 1 or all parameters out of each block are nonzero.
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Through Corollaries 1 - 5, we have shown that under specific designs, which are commonly used
or assumed in previous works, Irrepresentable Condition holds which leads to Lasso’s consistency in
model selection. Next, we demonstrate Lasso’s model selection consistency and the Irrepresentable
Conditions using simulations.

3. Simulation Studies

In this section, we give simulation examples to illustrate the established results. The first simulation
illustrates the simplest case (p = 3, q = 2, cf. Corollary 4) under which Lasso is inconsistent
for model selection. We also analyze the Lasso algorithm to explain how Lasso is misled into
inconsistency when Irrepresentable Conditions fail. The second simulation quantitatively relates
the consistency (inconsistency) of Lasso to how well the Strong Irrepresentable Condition holds
(fails) by counting the percentages of Lasso selecting the true model and comparing it to η∞ =
1−‖Cn

21(C
n
11)

−1sign(βn
(1))‖∞. In the last simulation, we establish a heuristic sense of how strong

our Strong Irrepresentable Condition is for different values of p and q by observing how often the
condition holds when C is sampled from Wishart(p, p) distribution.

3.1 Simulation Example 1: Consistency and Inconsistency with 3 Variables

In this simple example, we aim to give some practical sense of the Lasso algorithm’s behaviors
when Strong Irrepresentable Condition holds and fails. We first generate i.i.d. random variables
xi1, xi2, ei and εi with variance 1 and mean 0 for i = 1, ...,n and n = 1000. A third predictor xi3 is
generated to be correlated with xi1 and xi2 by

xi3 =
2
3

xi1 +
2
3

xi2 +
1
3

ei,

then by construction, xi3 is also i.i.d. with mean 0 and variance 1.
The response is generated by

Yi = xi1β1 + xi2β2 + εi.

Lasso is applied (through the LARS algorithm by Efron et al., 2004) on Y , X1, X2 and X3 in two
settings: (a) β1 = 2, β2 = 3 ; and (b) β1 = −2, β2 = 3. In both settings, X(1) = (X1,X2), X(2) = X3

and through (2), it is easy to get C21C−1
11 = ( 2

3 , 2
3). Therefore Strong Irrepresentable Condition fails

for setting (a) and holds for setting (b).
Now we investigate how these two set-ups lead to Lasso’s sign consistency and inconsistency

respectively. As we vary the amount of regularization (controlled by λ), we get different Lasso solu-
tions which form the Lasso path (as illustrated by the left and right panels of Figure 1). This Lasso
path follows the least angle direction (as described in for example, Efron et al. (2004) and Zhao and
Yu (2004)), that is, β̂(λ) progresses in coordinates on which the absolute values of inner products
between Y ∗(λ) := Y −X β̂(λ) and the predictors are the largest while entries of β̂(λ) corresponding
to smaller inner products are left at zero.

In this example,

|X ′
3Y ∗| = |(2

3
X1 +

2
3

X2 +
1
3

e)′Y ∗|

≥ 4
3

min(|X ′
1Y

∗|, |X ′
2Y

∗|)(sign(X ′
1Y ∗)+ sign(X ′

2Y ∗)
2

)− 1
3
|e′Y ∗|.
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(a) β1 = 2, β2 = 3 (b) β1 = −2, β2 = 3

Figure 1: An example to illustrate Lasso’s (in)consistency in Model Selection. The Lasso paths for
settings (a) and (b) are plotted in the left and right panel respectively.

For large n, e′ ∗Y ∗ is on a smaller order than the rest of the terms. If β̂3 is zero, the signs of X1’s
and X2’s inner products with Y agree with the signs of β̂1 and β̂2. Therefore for Lasso to be sign
consistent, the signs of β1 and β2 has to disagree which happens in setting (b) but not setting (a).

Consequently, in setting (a) Lasso does not shrink β̂3 to 0. Instead, the L1 regularization prefers
X3 over X1 and X2 as Lasso picks up X3 first and never shrinks it back to zero. For setting (b), Strong
Irrepresentable Condition holds and with a proper amount of regularization, Lasso correctly shrinks
β̂3 to 0.

3.2 Simulation Example 2: Quantitative Evaluation of Impact of Strong Irrepresentable
Condition on Model Selection

In this example, we give some quantitative sense on the relationship between the probability of
Lasso selecting the correct model and how well Strong Irrepresentable Condition holds (or fails).
First, we take n = 100 ,p = 32, q = 5 and β1 = (7,4,2,1,1)T and choose a small σ2 = 0.1 to allow
us to go into asymptotic quickly.

Then we would like to generate 100 designs of X as follows. We first sample a covariance
matrix S from Wishart(p,p) (see section 3.3 for details), then take n samples of Xi from N(0,S), and
finally normalize them to have mean squares 1 as in common applications of Lasso. Such generated
samples represent a variety of designs: some satisfy Strong Irrepresentable Condition with a large
η, while others fail the condition badly. To evaluate how well the Irrepresentable condition holds we
calculate η∞ = 1−‖Cn

21(C
n
11)

−1sign(βn
(1))‖∞. So if η∞ > 0, Strong Irrepresentable holds otherwise it
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Figure 2: Comparison of Percentage of Lasso Selecting the Correct Model and η∞. X-axis: η∞.
Y -axis: Percentage of Lasso Selecting the Correct Model.

fails. The η∞’s of the 100 simulated designs are within [−1.02,0.33] with 67 of them being smaller
than 0 and 33 of them bigger than 0.

For each design, we run the simulation 1000 times and examine general sign consistencies. Each
time, n samples of ε are generated from N(0,σ2) and Y = Xβ+ε are calculated. We then run Lasso
(through the LARS algorithm by Efron et al., 2004) to calculate the Lasso path. The entire path is
examined to see if there exists a model estimate that matches the signs of the true model. Then we
compute the percentage of runs that generated matched models for each design and compare it to
η∞ as shown in Figure 2.

As can be seen from Figure 2, when η∞ gets large, the percentage of Lasso selecting the correct
model goes up with the steepest increase happening around 0. For η∞ considerably larger than 0
(> 0.2) the percentage is close to 1. On the other hand, for η∞ considerably smaller than 0 (<−0.3)
there is little chance for Lasso to select the true model. In general, this is consistent with our result
(Proposition 1 and Theorem 1 to 4), as for η∞ > 0, if n is large enough, the probability of Lasso
selects the true model gets close to 1 which does not happen if η∞ < 0. This quantitatively illustrates
the importance of Strong Irrepresentable Condition for Lasso’s model selection performance.

3.3 Simulation Example 3: How Strong is Irrepresentable Condition?

As illustrated by Corollaries 1 to 4, Strong Irrepresentable Condition holds for some constrained
special settings. While in Section 3.1 and 3.2, we have seen cases where Irrepresentable Condition
fails. In this simulation, we establish some heuristic sense of how strong our Strong Irrepresentable
Condition is for different values of p and q.

For a given p, the set of Cn is the set of nonnegative definite matrix of size p. To measure the
size of the subset of Cn’s on which Irrepresentable Condition holds, the Wishart measure family
can be used. Since Strong Irrepresentable Condition holds for designs that are close to orthogonal
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p = 23 p = 24 p = 25 p = 26 p = 27 p = 28

q = 1
8 p 100% 93.7% 83.1% 68.6% 43.0% 19.5%

q = 2
8 p 72.7% 44.9% 22.3% 4.3% < 1% 0%

q = 3
8 p 48.3% 19.2% 3.4% < 1% 0% 0%

q = 4
8 p 33.8% 8.9% 1.3% 0% 0% 0%

q = 5
8 p 23.8% 6.7% < 1% 0% 0% 0%

q = 6
8 p 26.4% 7.1% < 1% 0% 0% 0%

q = 7
8 p 36.3% 12.0% 1.8% 0% 0% 0%

Table 1: Percentage of Simulated Cn that meet Strong Irrepresentable Condition.

(Corollary 2), we take the Wishart(p, p) measure which centers but does not concentrate around the
identity matrix.

In this simulation study, we sample Cn’s from white Wishart(p, p) and examine how often Irrep-
resentable Condition holds. For each p = 23,24,25,26,27,28 and correspondingly q = 1

8 p, 2
8 p, ..., 7

8 p
we generate 1000 Cn’s from Wishart and re-normalize it to have 1’s on the diagonal. Then we ex-
amine how often Irrepresentable Condition holds. The entries of β(1) are assumed to be positive,
otherwise a sign flip of the corresponding Xi’s can make the corresponding βi positive. The result is
shown in Table 1.

Table 1 shows that, when the true model is very sparse (q small), Strong Irrepresentable Con-
dition has some probability to hold which illustrates Corollary 2’s conclusion. For the extreme
case, q = 1, it has been proved to hold (see Corollary 4). However, in general, for large p and q,
Irrepresentable Condition rarely (measured by Wishart(p, p)) holds.

4. Discussions

In this paper, we have provided Strong and Weak Irrepresentable Conditions that are almost neces-
sary and sufficient for model selection consistency of Lasso under both small p and large p settings.
We have explored the meaning of the conditions through theoretical and empirical studies. Al-
though much of Lasso’s strength lies in its finite sample performance which is not the focus here,
our asymptotic results offer insights and guidance to applications of Lasso as a feature selection
tool, assuming that the typical regularity conditions are satisfied on the design matrix as in Knight
and Fu (2000). As a precaution, for data sets that can not be verified to satisfy the Irrepresentable
Conditions, Lasso may not select the model correctly. In comparison, traditional all subset meth-
ods like BIC and MDL are always consistent but computationally intractable for p of moderate
sizes. Thus, alternative computationally feasible methods that lead to selection consistency when
the condition fails are of interest.

In particular, for small p cases, if consistency is the only concern then thresholding (either
hard or soft) is an obvious choice that guarantees consistent selection. Since the OLS estimate
β̂OLS converges at a 1/

√
n rate, therefore a threshold that satisfies tn/

√
n → ∞ and tn → 0 leads to

consistent selection. However, as emphasized earlier, consistency does not mean good performance
in finite sample which is what matters in many applications where Lasso-type of technique is used.
In particular, when the linear system is over determined p > n, the approach is no longer applicable
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since the OLS estimates are not well defined. On the other hand, Theorem 3 and Theorem 4 indicate
that for cases where p may grow much faster then n, the Lasso still perform well.

To get some intuitive sense of how the thresholding performs comparing to the Lasso in finite
sample, we ran the same simulations as in Section 3.2 and examined the sign matching rate of
thresholding and compare it to the Lasso’s performance. Our observation is, when the sample size
is large, that is, in the asymptotic domain, even when Strong Irrepresentable Condition holds, Lasso
does not perform better than simple thresholding in term of variable selection. In the small sample
domain, however, Lasso seems to show an advantage which is consistent with the results reported
in other publications (e.g., Tibshirani, 1996).

Another alternative that selects model consistently in our simulations is given by Osborne et al.
(1998). They advise to use Lasso to do initial selection. Then a best subset selection (or a similar
procedure, for example, forward selection) should be performed on the initial set selected by Lasso.
This is loosely justified since, for instance, from Knight and Fu (2000) we know Lasso is consistent
for λ = o(n) and therefore can pick up all the true predictors if the amount of data is sufficient
(although it may over-select).

Finally, we think it is possible to directly construct an alternative regularization to Lasso that se-
lects model consistently under much weaker conditions and at the same time remains computation-
ally feasible. This relies on understanding why Lasso is inconsistent when Strong Irrepresentable
Condition fails: to induce sparsity, Lasso shrinks the estimates for the nonzero β’s too heavily.
When Strong Irrepresentable Condition fails, the irrelevant covariates are correlated with the rele-
vant covariates enough to be picked up by Lasso to compensate the over-shrinkage of the nonzero
β’s. Therefore, to get universal consistency, we need to reduce the amount of shrinkage on the β
estimates that are away from zero and regularize in a more similar fashion as l0 penalty. However,
as a consequence, this breaks the convexity of the Lasso penalty, therefore more sophisticated algo-
rithms are needed for solving the minimization problems. A different set of analysis is also needed
to deal with the local minima. This points towards our future work.
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Appendix A. Proofs

To prove Proposition 1 and the rest of the theorems, we state Lemma 1 which is a direct consequence
of KKT (Karush-Kuhn-Tucker) conditions:
Lemma 1. β̂n(λ) = (β̂n

1, ..., β̂
n
j , ...) are the Lasso estimates as defined by (1) if and only if

d‖Yn −Xnβ‖2
2

dβ j
|β j=β̂n

j
= λsign(β̂n

j) for j s.t. β̂n
j 6= 0

|d‖Yn −Xnβ‖2
2

dβ j
|β j=β̂n

j
| ≤ λ for j s.t. β̂n

j = 0.

With Lemma 1, we now prove Proposition 1.
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Proof of Proposition 1. First, by definition

β̂n = argmin
β

[
n

∑
i=1

(Yi −Xiβ)2 +λn‖β‖1].

Let ûn = β̂n −βn, and define

Vn(u
n) =

n

∑
i=1

[(εi −Xiu
n)2 − ε2

i ]+λn‖un +β‖1,

we have

ûn = argmin
un

[
n

∑
i=1

(εi −Xiu
n)2 +λn‖un +β‖1].

= argmin
un

Vn(u
n). (9)

The first summation in Vn(un) can be simplified as follows:

n

∑
i=1

[(εi −Xiu
n)2 − ε2

i ]

=
n

∑
i=1

[−2εiXiu
n +(un)T XT

i Xiu
n],

= −2W n(
√

nun)+(
√

nun)TCn(
√

nun), (10)

where W n = (Xn)T εn/
√

n. Notice that (10) is always differentiable w.r.t. un and

d[−2W n(
√

nun)+(
√

nun)TCn(
√

nun)]

dun = 2
√

n(Cn(
√

nun)−W n). (11)

Let ûn(1), W n(1) and ûn(2), W n(2) denote the first q and last p−q entries of ûn and W n respec-
tively. Then by definition we have:

{sign(β̂n
j) = sign(βn

j), for j = 1, ...,q.} ∈ {sign(βn
(1))û

n(1) > −|βn
(1)|}.

Then by Lemma 1, (9), (11) and uniqueness of Lasso solutions, if there exists ûn, the following
holds

Cn
11(

√
nûn(1))−W n(1) = − λn

2
√

n
sign(βn

(1)),

|ûn(1)| < |βn
(1)|,

− λn

2
√

n
1 ≤Cn

21(
√

nûn(1))−W n(2) ≤ λn

2
√

n
1.

then sign(β̂n
(1)) = sign(βn

(1)) and β̂n
(2) = un(2) = 0.

Substitute ûn(1), ûn(2) and bound the absolute values, the existence of such µ̂n is implied by

|(Cn
11)

−1W n(1)| <
√

n(|βn
(1)|−

λn

2n
|(Cn

11)
−1sign(βn

(1))|), (12)
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|Cn
21(C

n
11)

−1W n(1)−W n(2)| ≤ λn

2
√

n
(1−|Cn

21(C
n
11)

−1sign(βn
(1))|) (13)

(12) coincides with An and (13)∈ Bn. This proves Proposition 1.
Using Proposition 1, we now prove Theorem 1.

Proof of Theorem 1. First, by Proposition 1 we have By Proposition 1, we have

P(β̂n(λn) =s β) ≥ P(An ∩Bn).

Whereas

1−P(An ∩Bn) ≤ P(Ac
n)+P(Bc

n)

≤
q

∑
i=1

P(|zn
i | ≥

√
n(|βn

i |−
λn

2n
bn

i )+
p−q

∑
i=1

P(|ζn
i | ≥

λn

2
√

n
ηi).

where zn = (zn
1, ...,z

n
p)

′ = (Cn
11)

−1W n(1), ζn = (ζn
1, ...,ζ

n
p−q)

′ = Cn
21(C

n
11)

−1W n(1)−W n(2) and b =

(bn
1, ...,b

n) = (Cn
11)

−1sign(βn
(1)).

It is standard result (see for example, Knight and Fu, 2000) that under regularity conditions (3)
and (4),

(Cn
11)

−1W n(1) →d N(0,C−1
11 ),

and
Cn

21(C
n
11)

−1W n(1)−W n(2) →d N(0,C22 −C21C−1
11 C12).

Therefore all zn
i ’s and ζn

i ’s converge in distribution to Gaussian random variables with mean 0 and
finite variance E(zn

i )
2,E(ζn

i )
2 ≤ s2 for some constant S > 0.

For t > 0, the Gaussian distribution has its tail probability bounded by

1−Φ(t) < t−1e−
1
2 t2

. (14)

Since λn
n → 0, λn

n
1+c

2
→ ∞ with 0 ≤ c < 1, p, q and βn are all fixed, therefore

q

∑
i=1

P(|zn
i | ≥

√
n(|βn

i |−
λn

2n
bn

i )

≤ (1+o(1))
q

∑
i=1

(1−Φ((1+o(1))
1
s

n
1
2 |βi|))

= o(e−nc
),

and

p−q

∑
i=1

P(|ζn
i | ≥

λn

2
√

n
ηi) =

p−q

∑
i=1

(1−Φ(
1
s

λn

2
√

n
ηi)) = o(e−nc

).

Theorem 1 follows immediately.
Proof of Theorem 2. Consider the set Fn

1 , on which there exists λn such that,

sign(β̂n
(1)) = sign(βn

(1))

(β̂n
(2)) = 0.
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General Sign Consistency implies that P(Fn
1 ) → 1 as n → 1.

Conditions of Fn
1 imply that β̂n

(1) 6= 0 and β̂n
(2) = 0. Therefore by Lemma 1 and (11) from the

proof of Proposition 1, we have

Cn
11(

√
nûn(1))−W n(1) = − λn

2
√

n
sign(β̂n

(1)) = − λn

2
√

n
sign(βn

(1)) (15)

|Cn
21(

√
nûn(1))−W n(2)| ≤ λn

2
√

n
1 (16)

which hold over Fn
1 .

Re-write (16) by replacing ûn(1) using (15), we get

Fn
1 ⊂ Fn

2 := {(λn/2
√

n)Ln ≤Cn
21(C

n
11)

−1W n(1)−W n(2) ≤ (λn/2
√

n)Un}

where

Ln = −1+Cn
21(C

n
11)

−1sign(βn
(1)),

Un = 1+Cn
21(C

n
11)

−1sign(βn
(1)).

To prove by contradiction, if Weak Irrepresentable Condition fails, then for any N there always
exists n > N such that at least one element of |Cn

21(C
n
11)

−1sign(βn
(1))| ≥ 1. Without loss of generality,

assume the first element of Cn
21(C

n
11)

−1sign(βn
(1)) ≥ 1, then

[(λn/2
√

n)Ln
1,(λn/2

√
n)Un

1 ] ⊂ [0,+∞),

for any λn ≥ 0. Since Cn
21(C

n
11)

−1W n(1)−W n(2)→d N(0,C22−C21C−1
11 C12), there is a non-vanishing

probability that the first element is negative, then the probability of F n
2 holds does not go to 1, there-

fore
liminfP(Fn

1 ) ≤ liminfP(Fn
2 ) < 1.

This contradicts with the General Sign Consistency assumption. Therefore Weak Irrepresentable
Condition is necessary for General Sign Consistency.

This completes the proof.
Proofs of Theorem 3 and 4 are similar to that of Theorem 1. The goal is to bound the tail

probabilities in Proposition 1 using different conditions on the noise terms. We first derive the
following inequalities for both Theorem 3 and 4.
Proof of Theorem 3 and Theorem 4. As in the proof of Theorem 1, we have

1−P(An ∩Bn) ≤ P(Ac
n)+P(Bc

n)

≤
q

∑
i=1

P(|zn
i | ≥

√
n(|βn

i |−
λn

2n
bn

i )+
p−q

∑
i=1

P(|ζn
i | ≥

λn

2
√

n
ηi).

where zn = (zn
1, ...,z

n
p)

′ = (Cn
11)

−1W n(1), ζn = (ζn
1, ...,ζ

n
p−q)

′ = Cn
21(C

n
11)

−1W n(1)−W n(2) and b =

(bn
1, ...,b

n) = (Cn
11)

−1sign(βn
(1)).

Now if we write zn
i = H ′

Aεn where H ′
A = (ha

1, ...,h
a
q)

′ = (Cn
11)

−1(n−
1
2 Xn(1)), then

H ′
AHA = (Cn

11)
−1(n−

1
2 Xn(1)′)((Cn

11)
−1(n−

1
2 Xn(1))′)′ = (Cn

11)
−1.
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Therefore zn
i = (ha

i )
′ε with

‖ha
i ‖2

2 ≤
1

M2
for ∀i = 1, ..,q. (17)

Similarly if we write ζn = H ′
Bεn where H ′

B = (hb
1, ...,h

b
p−q)

′ = Cn
21(C

n
11)

−1(n−
1
2 Xn(1)′)

−n−
1
2 Xn(2)′, then

H ′
BHB =

1
n
(Xn(2))′(I −Xn(1)((Xn(1)′(Xn(1))−1Xn(1)′)Xn(2).

Since I −Xn(1)((Xn(1)′(Xn(1))−1Xn(1)′ has eigenvalues between 0 and 1, therefore ζn
i = (hb

i )
′ε

with
‖hb

i ‖2
2 ≤ M1 for ∀i = 1, ..,q. (18)

Also notice that,

|λn

n
bn| =

λn

n
|(Cn

11)
−1sign(βn

(1))| ≤
λn

nM2
‖sign(βn

(1))‖2 =
λn

nM2

√
q (19)

Proof of Theorem 3. Now, given (17) and (18), it can be shown that E(εn
i )

2k < ∞ implies E(zn
i )

2k <
∞ and E(ζn

i )
2k < ∞. In fact, given constant n-dimensional vector α,

E(α′εn)2k ≤ (2k−1)!!‖α‖2
2E(εn

i )
2k.

For radome variables with bounded 2k’th moments, we have their tail probability bounded by

P(zn
i > t) = O(t−2k).

Therefore, for λ/
√

n = o(n
c2−c1

2 ), using (19), we get

q

∑
i=1

P(|zn
i | >

√
n(|βn

i |−
λn

2n
bn

i )

= qO(n−kc2) = o(
pnk

λ2k
n

).

Whereas

p−q

∑
i=1

P(|ζn
i | >

λn

2
√

n
ηi)

= (p−q)O(
nk

λ2k
n

) = O(
pnk

λ2k
n

).

Sum these two terms and notice for p = o(nc2−c1), there exists a sequence of λn s.t. λ/
√

n =

o(n
c2−c1

2 ) and = o( pnk

λ2k
n

). This completes the proof for Theorem 3.

Proof of Theorem 4. Since εn
i ’s are i.i.d. Gaussian, therefore by (17) and (18), zi’s and ζi’s are

Gaussian with bounded second moments.
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Using the tail probability bound (14) on Gaussian random variables , for λn ∝ n
1+c4

2 , by (19) we
immediately have

q

∑
i=1

P(|zn
i | >

√
n(|βn

i |−
λn

2n
bn

i )

= q ·O(1−Φ( (1+o(1))M3M2nc2/2 ) = o(e−nc3
).

(since q < n = elogn) and

p−q

∑
i=1

P(|ζn
i | >

λn

2
√

n
ηi)

= (p−q) ·O(1−Φ(
1

M1

λn√
n
)η) = o(e−nc3

).

This completes the proof for Theorem 4.
Proof of Corollary 1. First we recall, for a positive definite matrix of the form















a b · · · b b
b a · · · b b
...

...
. . .

...
...

b b · · · a b
b b · · · b a















q×q

.

The eigenvalues are e1 = a+(q−1)b and ei = a−b for i ≥ 2. Therefore the inversion of

Cn
11 =















1 rn · · · rn rn

rn 1 · · · rn rn
...

...
. . .

...
...

rn rn · · · 1 rn

rn rn · · · rn 1















q×q

can be obtained by applying the formula and taking reciprocal of the eigenvalues which gets us

(Cn
11)

−1 =















c d · · · d d
d c · · · d d
...

...
. . .

...
...

d d · · · c d
d d · · · d c















q×q

for which e′1 = c+(q−1)d = 1
e1

= 1
1+(q−1)rn

.
Now since Cn

21 = rn ×1(p−q)×q so

Cn
21(C

n
11)

−1 = rn(c+(q−1)d)1(p−q)×q =
rn

1+(q−1)rn
1(p−q)×q.
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By which, we get

|Cn
21(C

n
11)

−1sign(βn
(1))| =

rn

1+(q−1)rn
|∑sign(βi)|1q×1

≤ qrn

1+(q−1)rn
1q×1 ≤

q
1+cq

1+ q−1
1+cq

=
1

1+ c
,

that is, Strong Irrepresentable Condition holds.
Proof of Corollary 2. Without loss of generality, consider the first entry of |Cn

21(C
n
11)

−1sign(βn
(1))|

which takes the form |α′(Cn
11)

−1sign(βn
(1))| where α′ is the first row of Cn

21. After proper scaling,

this is bounded by the largest eigenvalue of (Cn
11)

−1 or equivalently the reciprocal of the smallest
eigenvalue of Cn

11, that is,

|α′(Cn
11)

−1sign(βn
(1))| ≤ ‖α‖‖sign(βn

(1))‖
1
e1

<
cq

2q−1
1
e1

. (20)

To bound e1, we assume Cn
11 = ci jq×q. Then for a unit length q× 1 vector x = (x1, ...,xq)

′, we
consider

x′Cn
11x = ∑

i, j

xici jx j = 1+ ∑
i6= j

xici jx j

≥ 1−∑
i6= j

|xi||ci j||x j|

≥ 1− 1
2q−1 ∑

i6= j

|xi||x j|

= 1− 1
2q−1

(∑
i, j

|xi||x j|−1)

≥ 1− q−1
2q−1

=
q

2q−1
, (21)

where the last inequality is by Cauchy-Schwartz. Now put (21) through (20), we have
|Cn

21(C
n
11)

−1sign(βn
(1))| < c1. This completes the proof for Corollary 2.

Proof of Corollary 3. Without loss of generality, let us assume x j, j = 1, ...,n are i.i.d. N(0,Cn)
random variables. Then the power decay design implies an AR(1) model where

x j1 = η j1

x j2 = ρx j1 +(1−ρ2)
1
2 η j2

...

x jp = ρx j(p−1) +(1−ρ2)
1
2 η jp

where ηi j are i.i.d. N(0,1) random variables. Thus, the predictors follow a Markov Chain:

x j1 → x j2 → ·· · → x jp.

Now let

I1 = i : βi 6= 0

I2 = i : βi = 0.
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For ∀k ∈ I2, assume

kl = {i : i < k}∩ I1

kh = {i : i > k}∩ I1.

Then by the Markov property, we have

x jk ⊥ x jg|(x jkl ,x jkh)

for j = 1, ..,n and ∀g ∈ I1/{kl ,kh}. Therefore by the regression interpretation as in (2), to check
Strong Irrepresentable Condition for x jk we only need to consider x jkl and x jkh since the rest of the
entries are zero by the conditional independence. To further simplify, we assume ρ ≥ 0 (otherwise
ρ can be modified to be positive by flipping the signs of predictors 1,3,5, ...). Now regressing x jk

on (x jkl ,x jkh) we get

Cov(

(

x jkl

x jkh

)

)−1Cov(x jk,

(

x jkl

x jkh

)

)

=

(

1 ρkh−kl

ρkh−kl 1

)−1 (

ρkh−k

ρk−kl

)

=





ρkl−k−ρk−kl

ρkl−kh−ρkh−kl

ρk−kh−ρkh−k

ρkl−kh−ρkh−kl



 .

Then sum of both entries follow

ρkl−k −ρk−kl

ρkl−kh −ρkh−kl
+

ρk−kh −ρkh−k

ρkl−kh −ρkh−kl
=

ρkl−k +ρk−kh

1+ρkl−kh
= 1− (1−ρkl−k)(1−ρk−kh)

1+ρkl−kh
< 1− (1− c)2

2
.

Therefore Strong Irrepresentable Condition holds entry-wise. This completes the proof.

Proof of Corollary 4.

(a) Since the correlations are all zero so the condition of Corollary 2 holds for ∀q. Therefore
Strong Irrepresentable Condition holds.

(b) Since q = 1, so 1
2q−1 = 1 therefore the condition of Corollary 2 holds. Therefore Strong

Irrepresentable Condition holds.

(c) Since p = 2, therefore for q = 0 or 2, proof is trivial. When q = 1, result is implied by (b).
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Proof of Corollary 5.
Let M be the set of indices of nonzero entries of βn and B j, j = 1, ..,k be the set of indices of

each block. Then the following holds

Cn
21(C

n
11)

−1sign(βn
(1))

=







Cn
M c∩B1,M ∩B1

· · · 0

· · · . . . · · ·
0 · · · Cn

M c∩Bk,M ∩Bk







×







Cn
M ∩B1,M ∩B1

· · · 0

· · · . . . · · ·
0 · · · Cn

M ∩Bk,M ∩Bk







−1

sign(







βn
M ∩B1

...
βn

M ∩Bk






)

=







Cn
M c∩B1,M ∩B1

(Cn
M ∩B1,M ∩B1

)−1sign(βn
M ∩B1

)
...

Cn
M c∩Bk,M ∩Bk

(Cn
M ∩Bk,M ∩Bk

)−1sign(βn
M ∩Bk

)






.

Corollary 5 is implied immediately from the shown equalities.
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