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Abstract
In regression, the desired estimate ofy|x is not always given by a conditional mean, although
this is most common. Sometimes one wants to obtain a good estimate that satisfies the property
that a proportion,τ, of y|x, will be below the estimate. Forτ = 0.5 this is an estimate of the
median. What might be called median regression, is subsumed under the termquantile regression.
We present a nonparametric version of a quantile estimator,which can be obtained by solving a
simple quadratic programming problem and provide uniform convergence statements and bounds
on the quantile property of our estimator. Experimental results show the feasibility of the approach
and competitiveness of our method with existing ones. We discuss several types of extensions
including an approach to solve thequantile crossingproblems, as well as a method to incorporate
prior qualitative knowledge such as monotonicity constraints.

Keywords: support vector machines, kernel methods, quantile estimation, nonparametric tech-
niques, estimation with constraints

1. Introduction

Regression estimation is typically concerned with finding a real-valued function f such that its
values f (x) correspond to the conditional mean ofy, or closely related quantities. Many methods
have been developed for this purpose, e.g. least mean square (LMS) regression, robust regression
(Huber, 1981), orε-insensitive regression (Vapnik, 1995; Vapnik et al., 1997). Regularized variants
include Wahba (1990), penalized by a Reproducing Kernel Hilbert Space (RKHS) norm, and Hoerl
and Kennard (1970), regularized via ridge regression.

1.1 Motivation

While these estimates of the mean serve their purpose, there exists a large area of problems where
we are more interested in estimating a quantile. That is, we might wish to know otherfeatures of
the the distribution of the random variabley|x:
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• A device manufacturer may wish to know what are the 10% and 90% quantiles for some
feature of the production process, so as to tailor the process to cover 80% of the devices
produced.

• For risk management and regulatory reporting purposes, a bank may need to estimate a lower
bound on the changes in the value of its portfolio which will hold with high probability.

• A pediatrician requires a growth chart for children given their age and perhaps even med-
ical background, to help determine whether medical interventions are required, e.g. while
monitoring the progress of a premature infant.

These problems are addressed by a technique called Quantile Regression(QR) or Quantile Estima-
tion championed by Koenker (see Koenker, 2005, for a description, practical guide, and extensive
list of references). These methods have been deployed in econometrics, social sciences, ecology,
etc. The purpose of our paper is:

• To bring the technique of quantile regression to the attention of the machine learning commu-
nity and show its relation toν-Support Vector Regression (Schölkopf et al., 2000).

• To demonstrate a nonparametric version of QR which outperforms the currently available
nonlinear QR regression formations (Koenker, 2005). See Section 5 for details.

• To derive small sample size results for the algorithms. Most statements in the statistical
literature for QR methods are of asymptotic nature (Koenker, 2005). Empirical process results
permit us to define two quality criteria and show tail bounds for both of them in the finite-
sample-size case.

• To extend the technique to permit commonly desired constraints to be incorporated. As exam-
ples we show how to enforce non-crossing constraints and a monotonicity constraint. These
constraints allow us to incorporate prior knowlege on the data.

1.2 Notation and Basic Definitions

In the following we denote byX ,Y the domains ofxandy respectively.X = {x1, . . . ,xm} denotes the
training set with corresponding targetsY = {y1, . . . ,ym}, both drawn independently and identically
distributed (iid) from some distributionp(x,y). With some abuse of notationy also denotes the
vector of allyi in matrix and vector expressions, whenever the distinction is obvious.

Unless specified otherwiseH denotes a Reproducing Kernel Hilbert Space (RKHS) onX , k is
the corresponding kernel function, andK ∈R

m×m is the kernel matrix obtained viaKi j = k(xi ,x j). θ
denotes a vector infeature spaceandφ(x) is the corresponding feature map ofx. That is,k(x,x′) =
〈φ(x),φ(x′)〉. Finally, α ∈ R

m is the vector of Lagrange multipliers.

Definition 1 (Quantile) Denote by y∈ R a random variable and letτ ∈ (0,1). Then theτ-quantile
of y, denoted by µτ is given by the infimum over µ for whichPr{y≤ µ}= τ. Likewise, the conditional
quantile µτ(x) for a pair of random variables(x,y) ∈ X ×R is defined as the function µτ : X → R

for which pointwise µτ is the infimum over µ for whichPr{y≤ µ|x} = τ.
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1.3 Examples

To illustrate regression analyses with conditional quantile functions, we provide two simple exam-
ples here.

1.3.1 ARTIFICIAL DATA

The above definition of conditional quantiles may be best illustrated by a simple example. Consider
a situation where the relationship betweenx andy is represented as

y(x) = f (x)+ξ, whereξ ∼ N
(

0,σ(x)2) . (1)

Here, note that, the amount of noiseξ is a function ofx. Sinceξ is symmetric with mean and median
0 we haveµ0.5(x) = f (x). Moreover, we can compute theτ-th quantiles by solving Pr{y≤ µ|x} =
τ explicitly. Sinceξ is normally distributed, we know that theτ-th quantile ofξ is given by
σ(x)Φ−1(τ), whereΦ is the cumulative distribution function of the normal distribution with unit
variance. This means that

µτ(x) = f (x)+σ(x)Φ−1(τ).

Figure 1 shows the case wherex is uniformly drawn from[−1,1] andy is obtained based on
(1) with f (x) = sinc(x) andσ(x) = 0.1exp(1−x). The black circles are 500 data examples and the
five curves areτ = 0.10,0.25,0.50,0.75 and 0.90 conditional quantile functions. The probability
densitiesp(y|x=−0.5) andp(y|x= +0.5) are superimposed. Theτ-th conditional quantile function
is obtained by connecting theτ-th quantile of the conditional distributionp(y|x) for all x∈ X . We
see thatτ = 0.5 case provides the central tendency of the data distribution andτ = 0.1 and 0.9
cases track the lower and upper envelope of the data points, respectively. The error bars of many
regression estimates can be viewed as crude quantile regressions. Quantile regression on the other
hand tries to estimate such quantities directly.

1.3.2 REAL DATA

The next example is based on actual measurements of bone density (BMD) inadolescents. The
data was originally reported in Bachrach et al. (1999) and is also analyzed in Hastie et al. (2001).1

Figure 2 (a) shows a regression analysis with conditional mean and figure 2(b) shows that with
a set of conditional quantiles for the variable BMD. The response in the vertical axis is relative
change in spinal BMD and the covariate in the horizontal axis is the age of theadolescents. The
conditional mean analysis (a) provides only the central tendency of the conditional distribution,
while apparently the entire distribution of BMD changes according to age. The conditional quantile
analysis (b) gives us more detailed description of these changes. For example, we can see that the
variance of the BMD changes with the age (heteroscedastic) and that the conditional distribution is
slightly positively skewed.

2. Quantile Estimation

Given the definition ofµτ(x) and knowledge of support vector machines we might be tempted to
use version of theε-insensitive tube regression to estimateµτ(x). More specifically one might try to

1. The data is also available from the website http://www-stat.stanford.edu/ElemStatlearn.
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Figure 1: Illustration of conditional quantile functions of a simple artificial system in (1) with
f (x) = sinc(x) andσ(x) = 0.1exp(1− x). The black circles are 500 data examples and
the five curves areτ = 0.10,0.25,0.50,0.75 and 0.90 conditional quantile functions. The
probability densitiesp(y|x = −0.5) andp(y|x = +0.5) are superimposed. In this paper,
we are concerned with the problem of estimating these conditional quantile functions
from training data.

estimate quantiles nonparametrically using an extension of theν-trick, as outlined in Scḧolkopf et al.
(2000). However this approach carries the disadvantage of requiringus to estimate both an upper
and lower quantilesimultaneously.2 While this can be achieved by quadratic programming, in doing
so we estimate “too many” parameters simultaneously. More to the point, if we are interested in
finding an upper bound ony which holds with 0.95 probability we may not want to use information
about the 0.05 probability bound in the estimation. Following Vapnik’s paradigm of estimating only
the relevant parameters directly (Vapnik, 1982) we attack the problem by estimating each quantile
separately. For completeness and comparison, we provide a detailed description of a symmetric
quantile regression in Appendix A.

2.1 Loss Function

The basic strategy behind quantile estimation arises from the observation thatminimizing theℓ1-loss
function for a location estimator yields the median. Observe that to minimize∑m

i=1 |yi −µ| by choice
of µ, an equal number of termsyi −µ have to lie on either side of zero in order for the derivative wrt.
µ to vanish. Koenker and Bassett (1978) generalizes this idea to obtain a regression estimate for any
quantile by tilting the loss function in a suitable fashion. More specifically one mayshow that the
following “pinball” loss leads to estimates of theτ-quantile:

Lemma 2 (Quantile Estimator) Let Y= {y1, . . . ,ym} ⊂ R and letτ ∈ (0,1) then the minimizer µτ
of ∑m

i=1 lτ(yi −µ) with respect to µ satisfies:

2. Scḧolkopf et al. (2000) does, in fact, suggests that a choice of differentupper bounds on the dual problem would lead
to estimators which weigh errors for positive and negative excess differently, that is, which would lead to quantile
regression estimators.
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(a) Conditional mean analysis (b) Conditional quantile analysis

Figure 2: An illustration of (a) conditional mean analysis and (b) conditionalquantile analysis for a
data set on bone mineral density (BMD) in adolescents. In (a) the conditional mean curve
is estimated by regression spline with least square criterion. In (b) the nine curves are the
estimated conditional quantile curves at orders 0.1,0.2, . . . ,0.9. The set of conditional
quantile curves provides more informative description of the relationship among variables
such as non-constant variance or non-normality of the noise (error) distribution. In this
paper, we are concerned with the problem of estimating these conditional quantiles.

lτ(ξ) =

{

τξ if ξ ≥ 0

(τ−1)ξ if ξ < 0
(2)

 0
 0

ξ

lτ(ξ)

τ

τ − 1

Figure 3: Pinball loss function for quantile estimation.

1. The number of terms, m−, with yi < µτ is bounded from above byτm.

2. The number of terms, m+, with yi > µτ is bounded from above by(1− τ)m.

3. For m→ ∞, the fractionm−
m , converges toτ if Pr(y) does not contain discrete components.

Proof Assume that we are at an optimal solution. Then, increasing the minimizerµ by δµ changes
the objective by[(1−m+)(1− τ)−m+τ]δµ. Likewise, decreasing the minimizerµ by δµ changes
the objective by[−m−(1− τ)+(1−m−)τ]δµ. Requiring that both terms are nonnegative at opti-
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mality in conjunction with the fact thatm− + m+ ≤ m proves the first two claims. To see the last
claim, simply note that the eventyi = y j for i 6= j has probability measure zero for distributions not
containing discrete components. Taking the limitm→ ∞ shows the claim.

The idea is to use the same loss function for functions,f (x), rather than just constants in order
to obtain quantile estimates conditional onx. Koenker (2005) uses this approach to obtain linear
estimates and certain nonlinear spline models. In the following we will use kernels for the same
purpose.

2.2 Optimization Problem

Based onlτ(ξ) we define the expected quantile risk as

R[ f ] := Ep(x,y) [lτ(y− f (x))] . (3)

By the same reasoning as in Lemma 2 it follows that forf : X → R the minimizer ofR[ f ] is
the quantileµτ(x). Sincep(x,y) is unknown and we only haveX,Y at our disposal we resort to
minimizing the empirical risk plus a regularizer:

Rreg[ f ] :=
1
m

m

∑
i=1

lτ (yi − f (xi))+
λ
2
‖g‖2
H where f = g+b andb∈ R. (4)

Here‖·‖H is RKHS norm and we requireg ∈ H . Notice that we do not regularize the constant
offset,b, in the optimization problem. This ensures that the minimizer of (4) will satisfy the quantile
property:

Lemma 3 (Empirical Conditional Quantile Estimator) Assuming that f contains a scalar un-
regularized term, the minimizer of (4) satisfies:

1. The number of terms m− with yi < f (xi) is bounded from above byτm.

2. The number of terms m+ with yi > f (xi) is bounded from above by(1− τ)m.

3. If (x,y) is drawn iid from a distributionPr(x,y), with Pr(y|x) continuous and the expecta-
tion of the modulus of absolute continuity of its density satisfyinglimδ→0E [ε(δ)] = 0. With
probability1, asymptotically,m−

m equalsτ.

Proof For the two claims, denote byf ∗ the minimum ofRreg[ f ] with f ∗ = g∗+b∗. ThenRreg[g∗+b]
has to be minimal forb = b∗. With respect tob, however, minimizingRreg amounts to finding theτ
quantile in terms ofyi −g(xi). Application of Lemma 2 proves the first two parts of the claim.

For the second part, an analogous reasoning to Schölkopf et al. (2000, Proposition 1) applies.
In a nutshell, one uses the fact that the measure of theδ-neighborhood off (x) converges to 0 for
δ → 0. Moreover, for kernel functions the entropy numbers are well behaved (Williamson et al.,
2001). The application of the union bound over a cover of such functionclasses completes the
proof. Details are omitted, as the proof is identical to that of Schölkopf et al. (2000).

Later, in Section 4 we discuss finite sample size results regarding the convergence ofm−
m → τ and

related quantities. These statements will make use of scale sensitive loss functions. Before we do
that, let us consider the practical problem of minimizing the regularized risk functional.
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2.3 Dual Optimization Problem

Here we compute the dual optimization problem to (4) for efficient numerical implementation. Us-
ing the connection between RKHS and feature spaces we writef (x) = 〈φ(x),w〉+b and we obtain
the following equivalent to minimizingRreg[ f ].

minimize
w,b,ξ(∗)

i

C
m

∑
i=1

τξi +(1− τ)ξ∗i +
1
2
‖w‖2 (5a)

subject to yi −〈φ(xi),w〉−b≤ ξi and 〈φ(xi),w〉+b−yi ≤ ξ∗i whereξi ,ξ∗i ≥ 0 (5b)

Here we usedC := 1/(λm). The dual of this problem can be computed straightforwardly using
Lagrange multipliers. The dual constraints forξ andξ∗ can be combined into one variable. This
yields the following dual optimization problem

minimize
α

1
2

α⊤Kα−α⊤~y subject toC(τ−1) ≤ αi ≤Cτ for all 1≤ i ≤ mand~1⊤α = 0. (6)

We recoverf via the familiar kernel expansion

w = ∑
i

αiφ(xi) or equivalentlyf (x) = ∑
i

αik(xi ,x)+b. (7)

Note that the constantb is the dual variable to the constraint1⊤α = 0. Alternatively, b can be
obtained by using the fact thatf (xi) = yi for αi 6∈ {C(τ−1),Cτ}. The latter holds as a consequence
of the KKT-conditions on the primal optimization problem of minimizingRreg[ f ].

Note that the optimization problem is very similar to that of anε-SV regression estimator (Vap-
nik et al., 1997). The key difference between the two estimation problems is that in ε-SVR we have
an additionalε‖α‖1 penalty in the objective function. This ensures that observations with deviations
from the estimate, i.e. with|yi − f (xi)|< ε do not appear in the support vector expansion. Moreover
the upper and lower constraints on the Lagrange multipliersαi are matched. This means that we
balance excess in both directions. The latter is useful for a regression estimator. In our case, how-
ever, we obtain an estimate which penalizes loss unevenly, depending on whether f (x) exceedsy or
vice versa. This is exactly what we want from a quantile estimator: by this procedure errors in one
direction have a larger influence than those in the converse direction, which leads to the shifted esti-
mate we expect from QR. A practical advantage of (6) is that it can be solved directly with standard
quadratic programming code rather than using pivoting, as is needed in SVMregression (Vapnik
et al., 1997).

A practical estimate does require a procedure for setting the regularizationparameter. Figure 4
shows how QR responds to changing the regularization parameter. All three estimates in Figure 4
attempt to compute the median, subject to different smoothness constraints. While they all satisfy
the quantile property having half the points on either side of the regression,some estimates appear
track the observations better. This issue is addressed in Section 5 where we compute quantile
regression estimates on a range of data sets.

3. Extensions and Modifications

Our optimization framework lends itself naturally to a series of extensions and modifications of the
regularized risk minimization framework for quantile regression. In the following we discuss some
extensions and modifications.
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Figure 4: The data set measures acceleration in the head of a crash test dummy v. time in tests of
motorcycle crashes. Three regularized versions of the median regression estimate (τ =
0.5). While all three variants satisfy the quantile property, the degree of smoothness is
controlled by the regularization constantλ. All three estimates compare favorably to a
similar graph of nonlinear QR estimates reported by Koenker (2005).
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3.1 Non-Crossing Constraints

When we want to estimate several conditional quantiles (e.g.τ = 0.1,0.2, . . . ,0.9), two or more
estimated conditional quantile functions can cross or overlap. This embarrassing phenomenon
called quantile crossingsoccurs because each conditional quantile function is independently es-
timated (Koenker, 2005; He, 1997). Figure 5(a) shows BMD data presented in 1.3.2 andτ =
0.1,0,2, . . . ,0.9 conditional quantile functions estimated by the kernel-based estimator described
in the previous section. Both of the input and the output variables are standardized in[0,1]. We
note quantile crossings at several places, especially at the outside of thetraining data range (x < 0
and 1< x). In this subsection, we address this problem by introducingnon-crossing constraints.3

Figure 5(b) shows a family of conditional quantile functions estimated with the non-crossing con-
straints.

Suppose that we want to estimaten conditional quantiles at 0< τ1 < τ2 < .. . < τn < 1. We
enforcenon-crossingconstraints atl points{x j}l

j=1 in the input domainX . Let us write the model
for the τh-th conditional quantile function asfh(x) = 〈φ(x),wh〉+ bh for h = 1,2, . . . ,n. In H the
non-crossing constraints are represented as linear constraints

〈

φ(x j),ωh
〉

+bh ≤
〈

φ(x j),ωh+1
〉

+bh+1, for all 1≤ h≤ n−1, 1≤ j ≤ l . (8)

Solving (5) or (6) for 1≤ h≤ n with non-crossing constraints (8) allows us to estimaten conditional
quantile functions not crossing atl pointsx1, . . . ,xl ∈ X . The primal optimization problem is given
by

minimize
wh,bh,ξ

(∗)
hi

n

∑
h=1

[

C
m

∑
i=1

τhξhi +(1− τh)ξ∗hi +
1
2
‖wh‖2

]

(9a)

subject toyi −〈φ(xi),wh〉−bh = ξhi −ξ∗hi whereξhi,ξ∗hi ≥ 0,

for all 1≤ h≤ n, 1≤ i ≤ m. (9b)

{
〈

φ(x j),ωh+1
〉

+bh+1}−{
〈

φ(x j),ωh
〉

+bh} ≥ 0,

for all 1≤ h≤ n−1, 1≤ j ≤ l . (9c)

Using Lagrange multipliers, we can obtain the dual optimization problem:

minimize
αh,θh

n

∑
h=1

[1
2

α⊤
h Kαh +α⊤

h K̃(θh−1−θh)+
1
2
(θh−1−θh)

TK̄(θh−1−θh)−α⊤
h~y

]

(10a)

subject to C(τh−1) ≤ αhi ≤Cτh, for all 1≤ h≤ n,1≤ i ≤ m, (10b)

θh j ≥ 0, for all 1≤ h≤ n,1≤ j ≤ l , ~1⊤αh = 0, for all 1≤ h≤ n, (10c)

whereθh j is the Lagrange multiplier of (9c) for all 1≤ h≤ n, 1≤ j ≤ l , K̃ is m× l matrix with its
(i, j)-th entryk(xi ,x j), K̄ is l × l matrix with its( j1, j2)-th entryk(x j1,x j2) andθh is l -vector with its
j-th entryθh j for all 1≤ h≤ n. For notational convenience we defineθ0 j = θn j = 0 for all 1≤ j ≤ l .
The model for conditional quantileτh-th quantile function is now represented as

fh(x) =
m

∑
i=1

αhik(x,xi)+
l

∑
j=1

(θh−1i −θhi)k(x,x j)+bh. (11)

3. A part of the contents in this subsection was presented by one of the authors (Takeuchi and Furuhashi, 2004).
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In section 5.2.1 we empirically investigate the effect of non-crossing constraints on the generaliza-
tion performances.

It is worth noting that, after enforcing the non-crossing constraints, the quantile property as in
Lemma 3 may not be guaranteed. This is because the method both tries to optimize for the quantile
property and the non-crossing property (in relation to other quantiles). Hence, the final outcome
may not empirically satisfy the quantile property. Yet, the non-crossing constraints are very nice
because they ensure the semantics of the quantile definition: lower quantile level should not cross
the higher quantile level.
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Figure 5: An example ofquantile crossingproblem in BMD data set presented in Section 1. Both
of the input and the output variable are standardized in[0,1]. In (a) the set of conditional
quantiles at 0.1,0.2, . . . ,0.9 are estimated by the kernel-based estimator presented in the
previous section. Quantile crossings are found at several points, especially at the outside
of the training data range (x < 0 and 1< x). The plotted curves in (b) are the conditional
quantile functions obtained withnon-crossingconstraints explained in Section 3.1. There
are noquantile crossingeven at the outside of the training data range.

3.2 Monotonicity and Growth Curves

Consider the situation of a health statistics office which wants to produce growth curves. That is, it
wants to generate estimates ofy being the height of a child given parametersx such as age, ethnic
background, gender, parent’s height, etc. Such curves can be used to assess whether a child’s growth
is abnormal.

A naive approach is to apply QR directly to the problem of estimatingy|x. Note, however, that
we have additional information about the biological process at hand: the height of every individual
child is amonotonically increasingfunction of age. Without observing large amounts of data, there
is no guarantee that the estimatesf (x), will also be monotonic functions of age. Figure 6 is an
example of quantile regression with monotonicity constraints. The data set is taken from Mammen
et al. (2001). Fuel efficiency (in miles per gallon) is studied as a function of engine output.
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Figure 6: Example plots from quantile regression with and without monotonicity constraints. The
thin line represents the nonparametric quantile regression without monotonicitycon-
straints whereas the thick line represents the nonparamtric quantile regression with mono-
tonicity constraints.

To address this problem we adopt an approach similar to (Vapnik et al., 1997; Smola and
Scḧolkopf, 1998) and impose constraints on the derivatives off directly. While this only ensures
that f is monotonic on the observed dataX, we could always add more locationsx′i for the express
purpose of enforcing monotonicity.

Formally, we require that for a differential operatorD, such asD = ∂xage the estimateD f (x) ≥ 0
for all x∈ X. Using the linearity of inner products we have

D f (x) = D(〈φ(x),w〉+b) = 〈Dφ(x),w〉 = 〈ψ(x),w〉 whereψ(x) := Dφ(x). (12)

Note that accordingly inner products betweenψ andφ can be obtained via〈ψ(x),φ(x′)〉= D1k(x,x′)
and〈ψ(x),ψ(x′)〉 = D1D2k(x,x′), whereD1 andD2 denote the action ofD on the first and second
argument ofk respectively. Consequently the optimization problem (5) acquires an additional set of
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constraints and we need to solve

minimize
w,b,ξi

C
m

∑
i=1

τξi +(1− τ)ξ∗i +
1
2
‖w‖2

subject toyi −〈φ(xi),w〉−b≤ ξi , 〈φ(xi),w〉+b−yi ≤ ξ∗i ,
〈ψ(xi),w〉 ≥ 0, ξi ,ξ∗i ≥ 0.

Since the additional constraint does not depend onb it is easy to see that the quantile property still
holds. The dual optimization problem yields

minimize
α,β

1
2

[

α
β

]⊤[

K D1K
D2K D1D2K

][

α
β

]

−α⊤~y (13a)

subject toC(τ−1) ≤ αi ≤Cτ and 0≤ βi for all 1≤ i ≤ mand~1⊤α = 0. (13b)

HereD1K is a shorthand for the matrix of entriesD1k(xi ,x j) andD2K,D1D2K are defined analo-
gously. Herew = ∑i αiφ(xi)+βiψ(xi) or equivalentlyf (x) = ∑i αik(xi ,x)+βiD1k(xi ,x)+b.

Example Assume thatx ∈ R
n and thatx1 is the coordinate with respect to which we wish to

enforce monotonicity. Moreover, assume that we use a Gaussian RBF kernel, that is

k(x,x′) = exp

(

− 1
2σ2

∥

∥x−x′
∥

∥

2
)

. (14)

In this caseD1 = ∂1 with respect tox andD2 = ∂1 with respect tox′. Consequently we have

D1k(x,x′) =
x′1−x1

σ2 k(x,x′);D2k(x,x′) =
x1−x′1

σ2 k(x,x′) (15a)

D1D2k(x,x′) =

[

σ−2− (x1−x′1)
2

σ4

]

k(x,x′). (15b)

Plugging the values of (15) into (13) yields the quadratic program. Note alsothat bothk(x,x′) and
D1k(x,x′) in (15a), are used in the function expansion.

If x1 were drawn from a discrete (yet ordered) domain we could replaceD1,D2 with a finite
difference operator. This is still a linear operation onk and consequently the optimization problem
remains unchanged besides a different functional form forD1k.

An alternative to the above approach is not to modify the optimization problem but to ensure the
constraints by modifying the function in the hypothesis space which is much simpler to implement
as in Le et al. (2006).

3.3 Other Function Classes

Semiparametric Estimates RKHS expansions may not be the only function classes desired for
quantile regression. For instance, in the social sciences a semiparametric model may be more de-
sirable, as it allows for interpretation of the linear coefficients (Gu and Wahba, 1993; Smola et al.,
1999; Bickel et al., 1994). In this case we add a set of parametric functions fi and solve

minimize
1
m

m

∑
i=1

lτ(yi − f (xi))+
λ
2
‖g‖2
H where f (x) = g(x)+

n

∑
i=1

βi fi(x)+b. (16)
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For instance, the function classfi could be linear coordinate functions, that is,fi(x) = xi . The
main difference to (6) is that the resulting optimization problem exhibits a larger number of equality
constraint. We obtain (6) with the additional constraints

m

∑
j=1

α j fi(x j) = 0 for all i. (17)

Linear Programming Regularization Convex function classes withℓ1 penalties can be obtained
by imposing an‖α‖1 penalty instead of the‖g‖2

H penalty in the optimization problem. The advan-
tage of this setting is that minimizing

minimize
1
m

m

∑
i=1

lτ(yi − f (xi))+λ
n

∑
j=1

|αi | where f (x) =
n

∑
i=1

αi fi(x)+b. (18)

is alinear programwhich can be solved efficiently by existing codes for large scale problems.In the
context of (18) the functionsfi constitute the generators of the convex function class. This approach
is similar to Koenker et al. (1994) and Bosch et al. (1995). The former discussℓ1 regularization of
expansion coefficients whereas the latter discuss an explicit second order smoothing spline method
for the purpose of quantile regression. Most of the discussion in the present paper can be adapted to
this case without much modification. For details on how to achieve this see Schölkopf and Smola
(2002). Note that smoothing splines are a special instance of kernel expansions where one assumes
explicit knowledge of the basis functions.

Relevance Vector Regularization and Sparse Coding Finally, for sparse expansions one can
use more aggressive penalties on linear function expansions than those given in (18). For instance,
we could use a staged regularization as in the RVM (Tipping, 2001), wherea quadratic penalty on
each coefficient is exerted with a secondary regularization on the penaltyitself. This corresponds to
a Student-t penalty onα.

Likewise we could use a mix between anℓ1 andℓ0 regularizer as used in Fung et al. (2002)
and apply successive linear approximation. In short, there exists a largenumber of regularizers, and
(non)parametric families which can be used. In this sense the RKHS parameterization is but one
possible choice. Even so, we show in Section 5 that QR using the RKHS penalty yields excellent
performance in experiments.

Neural Networks, Generalized Models Our method does not depend on the how the function
class is represented (not only the Kernelized version), in fact, one canuse Neural Networks or
Generalized Models for estimation as long as the loss function is kept the same.This is the main
reason why this paper is calledNon-parametric quantile estimation.

4. Theoretical Analysis

In this section we state some performance bounds for our estimator.

4.1 Performance Indicators

We first need to discuss how to evaluate the performance of the estimatef versus the true conditional
quantileµτ(x). Two criteria are important for a good quantile estimatorfτ:
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• fτ needs to satisfy the quantile property as well as possible. That is, we wantthat

Pr
X,Y

{|Pr{y < fτ(x)}− τ| ≥ ε} ≤ δ. (19)

In other words, we want that the probability thaty < fτ(x) does not deviate fromτ by more
thanε with high probability, when viewed over all draws(X,Y) of training data. Note how-
ever, that (19) does not imply having a conditional quantile estimator at all. For instance, the
constant function based on the unconditional quantile estimator with respectto Y performs
extremely well under this criterion. Hence we need a second quantity to assess how closely
fτ(x) tracksµτ(x).

• Sinceµτ itself is not available, we take recourse to (3) and the fact thatµτ is the minimizer
of the expected riskR[ f ]. While this will not allow us to compareµτ and fτ directly, we can
at least compare it by assessing how close to the minimumR[ f ∗τ ] the estimateR[ fτ] is. Here
f ∗τ is the minimizer ofR[ f ] with respect to the chosen function class. Hence we will strive to
bound

Pr
X,Y

{R[ fτ]−R[ f ∗τ ] > ε} ≤ δ. (20)

These statements will be given in terms of the Rademacher complexity of the function class of
the estimator as well as some properties of the loss function used in select it. The technique itself
is standard and we believe that the bounds can be tightened considerably by the use oflocalized
Rademacher averages (Mendelson, 2003), or similar tools for empirical processes. However, for
the sake of simplicity, we use the tools from Bartlett and Mendelson (2002), as the key point of the
derivation is to describe a new setting rather than a new technique.

4.2 BoundingR[ f ∗τ ]

Definition 4 (Rademacher Complexity) Let X := {x1, . . . ,xm} be drawn iid from p(x) and letF
be a class of functions mapping from(X) to R. Letσi be independent uniform{±1}-valued random
variables. Then the Rademacher complexityRm and its empirical variantR̂m are defined as follows:

R̂m(F ) := Eσ

[

sup
f∈F

∣

∣

∣

2
m

n

∑
1

σi f (xi)
∣

∣

∣

∣

∣

∣
X

]

andRm(F ) := EX

[

R̂m(F )
]

. (21)

Conveniently, ifΦ is a Lipschitz continuous function with Lipschitz constantL, one can show
(Bartlett and Mendelson, 2002) that

Rm(Φ◦F ) ≤ 2LRm(F ) whereΦ◦F := {g|g = φ◦ f and f ∈ F } . (22)

An analogous result exists for empirical quantities boundingR̂m(Φ◦F ) ≤ 2LR̂m(F ). The combi-
nation of (22) with Bartlett and Mendelson (2002, Theorem 8) yields:

Theorem 5 (Concentration for Lipschitz Continuous Functions) For any Lipschitz continuous
function Φ with Lipschitz constant L and a function classF of real-valued functions onX and
probability measure onX the following bound holds with probability1−δ for all draws of X from
X :

sup
f∈F

∣

∣

∣

∣

∣

Ex [Φ( f (x))]− 1
m

m

∑
i=1

Φ( f (xi))

∣

∣

∣

∣

∣

≤ 2LRm(F )+

√

8log2/δ
m

. (23)
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We can immediately specialize the theorem to the following statement about the loss for QR:

Theorem 6 Denote by f∗τ the minimizer of the R[ f ] with respect to f∈ F . Moreover assume that
all f ∈ F are uniformly bounded by some constant B. With the conditions listed above for any
sample size m and0< δ < 1, every quantile regression estimate fτ satisfies with probability at least
(1−δ)

R[ fτ]−R[ f ∗τ ] ≤ 2maxLRm(F )+(4+LB)

√

log2/δ
2m

where L= {τ,1− τ} . (24)

Proof We use the standard bounding trick that

R[ fτ]−R[ f ∗τ ] ≤
∣

∣R[ fτ]−Remp[ fτ]
∣

∣+Remp[ f
∗
τ ]−R[ f ∗τ ] (25)

≤ sup
f∈F

∣

∣R[ f ]−Remp[ f ]
∣

∣+Remp[ f
∗
τ ]−R[ f ∗τ ] (26)

where (25) follows fromRemp[ fτ] ≤ Remp[ f ∗τ ]. The first term can be bounded directly by The-
orem 5. For the second part we use Hoeffding’s bound (Hoeffding,1963) which states that the

deviation between a bounded random variable and its expectation is bounded by B
√

log1/δ
2m with

probabilityδ. Applying a union bound argument for the two terms with probabilities 2δ/3 andδ/3
yields the confidence-dependent term. Finally, using the fact thatlτ is Lipschitz continuous with
L = max(τ,1− τ) completes the proof.

Example Assume thatH is an RKHS with radial basis function kernelk for which k(x,x) = 1.
Moreover assume that for allf ∈ F we have‖ f‖H ≤ C. In this case it follows from Mendel-
son (2003) thatRm(F ) ≤ 2C√

m. This means that the bounds of Theorem 6 translate into a rate of
convergence of

R[ fτ]−R[ f ∗τ ] = O(m− 1
2 ). (27)

This is as good as it gets for nonlocalized estimates. Since we do not expectR[ f ] to vanish except for
pathological applications where quantile regression is inappropriate (thatis, cases where we have
a deterministic dependency betweeny andx), the use of localized estimates (Bartlett et al., 2002)
provides only limited returns. We believe, however, that the constants in the bounds could benefit
from considerable improvement.

4.3 Bounds on the Quantile Property

The theorem of the previous section gave us some idea about how far the sample average quantile
loss is from its true value underp. We now proceed to stating bounds to which degreefτ satisfies
the quantile property, i.e. (19).

In this view (19) is concerned with the deviationE
[

χ(−∞,0](y− fτ(x))
]

− τ. Unfortunately
χ(−∞,0] ◦F is not scale dependent. In other words, small changes infτ(x) around the pointy= fτ(x)
can have large impact on (19). One solution for this problem is to use an artificial marginε and
ramp functionsr+

ε , r−ε as defined in (28) and Figure 7. These functions are Lipschitz continuous
with constantL = 1/ε. This leads to:
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r+
ε (ξ) := min{1,max{0,1−ξ/ε}} (28a)

r−ε (ξ) := min{1,max{0,−ξ/ε}} (28b)

 0

 

1

 0

lower

bound

upper

bound

ε−ε
ξ

rε (ξ)
-

rε (ξ)
+

Figure 7: Ramp functions bracketing the characteristic function viar+
ε ≥ χ(−∞,0] ≥ r−ε .

Theorem 7 Under the assumptions of Theorem 6 the expected quantile is bounded with probability
1−δ each from above and below by

1
m

m

∑
i=1

r−ε (yi − f (xi))−∆ ≤ E
[

χ(−∞,0](y− fτ(x))
]

≤ 1
m

m

∑
i=1

r+
ε (yi − f (xi))+∆, (29)

where the statistical confidence term is given by∆ = 2
εRm(F )+

√

−8logδ
m .

Proof The claim follows directly from Theorem 5 and the Lipschitz continuity ofr+
ε and r−ε .

Note thatr+
ε and r−ε minorize and majorizeξ(−∞,0], which bounds the expectations. Next use a

Rademacher bound on the class of loss functions induced byr+
ε ◦ F and r−ε ◦ F and note that

the ramp loss has Lipschitz constantL = 1/ε. Finally apply the union bound on upper and lower
deviations.

Note that Theorem 7 allows for some flexibility: we can decide to use a very conservative bound
in terms ofε, i.e. a large value ofε to reap the benefits of having a ramp function with smallL.
This leads to a lower bound on the Rademacher average of the induced function class. Likewise, a
smallε amounts to a potentially tight approximation of the empirical quantile, while risking loose
statistical confidence terms.

5. Experiments

The present section mirrors the theoretical analysis of the previous section.

5.1 Experiments with Standard Nonparametric Quantile Regression

We check the performance of various quntile estimators with respect to two criteria:

• Expected risk with respect to theℓτ loss function. Since computing the true conditional quan-
tile is impossible and all approximations of the latter rely on intermediate density estimation,
this is the only objective criterion we could find. We denote this loss measure aspinball loss.
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• Simultaneously we need to ensure that the estimate satisfies the quantile property, that is,
we want to ensure that the estimator we obtained does indeed produce numbers fτ(x) which
exceedy with probability close toτ. The quantile property was measured byramp loss.4

5.1.1 MODELS

We compare the following four models:

• An unconditional quantile estimator. Given the simplicity of the function class (constants!)
this model should tend to underperform all other estimates in terms of minimizing the em-
pirical risk. By the same token, it should perform best in terms of preserving the quantile
property. This appears asuncond.

• Linear QR as described in Koenker and Bassett (1978). This uses a linear unregularized
model to minimizelτ. In experiments, we used therq routine available in theR package5

calledquantreg. This appears aslinear.

• Nonparametric QR as described by Koenker et al. (1994). This uses a spline model for each
coordinate individually, with linear effect. The fitting routine used wasrqss, also available
in quantreg.6 The regularization parameter in this model was chosen by 10-fold cross-
validation within the training sample. This appears asrqss.

• Nonparametric quantile regression as described in Section 2. We used Gaussian RBF ker-
nels with automatic kernel width (ω2) and regularization (C) adjustment by 10-fold cross-
validation within training sample.7 This appears asnpqr.

As we increase the complexity of the function class (from constant to linear tononparametric)
we expect that (subject to good capacity control) the expected risk will decrease. Simultaneously we
expect that the quantile property becomes less and less maintained, as the function class grows. This
is exactly what one would expect from Theorems 6 and 7. As the experiments show, performance of
thenpqr method is comparable or significantly better than other models. In particular it preserves
the quantile property well.

Notes on Gaussian RBF kernel parameter selection trick The parameterσ in the Gaussian
kernel could be chosen by the following trick. We fist subsample the trainingdata (if the training
data set is not large, use the whole training data), then compute the distance between the points
and find the distances at 0.9 and 0.1 quantile of all the distances, the average distance of these
two distances is set to be the initialσ0. This is to guarantee that the kernel parameter is neither
too big or too small. Other values ofσ to be selected in the experiments (via cross-validation) are
[10−4σ0, . . . ,σ0, . . . ,103σ0,104σ0]. In general, depending on the problems, one may set the search
space to be finer (the distance between two consecutive items in the list is smaller) or coarser (the
distance between two consecutive items in the list is larger), or even a highervalue for maximum
item in the list, and a smaller value for minimum item in the list, etc.

4. In the experiments we setε = 0 in (28) for simplicity. Thus, it might be appropriate to call it asstep lossrather than
ramp loss. However, we keep to use the term “ramp loss” throughout thispaper.

5. See http://cran.r-project.org/.
6. Additional code containing bugfixes and other operations necessaryto carry out our experiments is available at

http://users.rsise.anu.edu.au/∼timsears.
7. Code will be available as part of the CREST toolbox for research purposes.
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5.1.2 DATA SETS

We chose 20 regression data sets from the following R packages:mlbench, quantreg, alr3 and
MASS. The first library contains data sets from the UCI repository. The last twowere made available
as illustrations for regression textbooks. The data sets are all documentedand available inR. Data
sets were chosen not to have any missing variables, to have suitable datatypes, and to be of a size
where all models would run on them.8 In most cases either there was an obvious variable of interest,
which was selected as they-variable, or else we chose a continuous variable arbitrarily. The sample
sizes vary fromm= 38 (CobarOre) tom= 1375 (heights), and the number of regressors vary from
d = 1 (5 sets) andd = 12 (BostonHousing). Some of the data sets contain categorical variables.
We omitted variables which were effectively record identifiers, or obviously produced very small
groupings of records. Finally, westandardizedall data sets coordinatwise to have zero mean and
unit variance before running the algorithms. This had a side benefit of putting the pinball loss on
similar scale for comparison purposes.

Data Set Sample Size No. Regressors (x) Y Var. Dropped Vars.
caution 100 2 y -
ftcollinssnow 93 1 Late YR1
highway 39 11 Rate -
heights 1375 1 Dheight -
sniffer 125 4 Y -
snowgeese 45 4 photo -
ufc 372 4 Height -
birthwt 189 7 bwt ftv, low
crabs 200 6 CW index
GAGurine 314 1 GAG -
geyser 299 1 waiting -
gilgais 365 8 e80 -
topo 52 2 z -
BostonHousing 506 13 medv -
CobarOre 38 2 z -
engel 235 1 y -
mcycle 133 1 accel -
BigMac2003 69 9 BigMac City
UN3 125 6 Purban Locality
cpus 209 7 estperf name

Table 1: Data Set facts

8. The last requirement, usingrqss proved to be challenging. The underlying spline routines do not allow extrapolation
beyond the previously seen range of a coordinate, only permitting interpolation. This does not prevent fitting, but
does randomly prevent forecasting on unseen examples, which was part of our performance metric.
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5.1.3 RESULTS

We tested the performance of the4 models. For each model we used 10-fold cross-validation to
assess the confidence of our results. As mentioned above, a regularization parameter inrqss and
ω2 andC in npqr were automatically chosen by 10-fold cross-validationwithin the training sample,
i.e. we usednestedcross-validation. To compare across all four models we measured bothpinball
lossandramp loss. The 20 data sets and three different quantile levels (τ ∈ {0.1,0.5,0.9}) yield
60 trials for each model. The full results are shown in Appendix B. In summary, we conclude as
follows:

• In terms ofpinball loss, the performance of ournpqr were comparable or better than other
three models.

npqr performed significantly better than other three models in 14 of the 60 trials, whilerqss
performed significantly better than other three models in only one of the 60 trials. In the
rest of 45 trials, no single model performed significantly better then the others. All these
statements are based on the two-sided paired-samplet-test with significance level 0.05. We
got similar but a bit less conservative results by (nonparametric) Wilcoxonsigned rank test.

Figure 8 depicts the comparison ofnpqr performance with each ofuncond, linear andrqss
models. Each of three plots contain 60 points corresponding to 60 trials (3 differentτs times
20 data sets).9 The vertical axis indicates the log pinball losses ofnpqr and the horizontal
axis indicates those of the alternative. The points under (over) the 45 degree line means that
the npqr was better (worse) than the alternative. Circles (squares) indicate thatnpqr was
significantly better (worse) than the alternative at 0.05 significance level inpaired-sample
t-test, while triangles indicate no significant difference.

• In terms oframp loss(quantile property), the performance of ournpqr were comparable to
other three models for intermediate quantile (τ = 0.5). All four models produced ramp losses
close to the desired quantile, although flexible nonparametric modelsrqss andnpqr were
noisier in this regard. Whenτ = 0.5, the number offτ(x) which exceedy did NOT deviate
significantly from the binomial distributionB( sample size,τ) in all 20 data sets.

On the other hand, for extreme quantiles (τ = 0.1 and 0.9), rqss andnpqr showed a small
but significant bias towards the median in a few trials. We conjecture that this bias is related
to the problem ofdata piling(Hall et al., 2005). See section 6 for the discussion.

Note that the quantile property, as such, is not informative measure forconditionalquantile
estimation. It merely measuresunconditionalquantile estimation performances. For example,
uncond, the constant function based on the unconditional quantile estimator with respect to
Y (straightforwardly obtained by sorting{yi}m

i=1 without using{xi}m
i=1 at all), performed best

under this criterion. It is clear that the less flexible model would have the better quantile
property, but it does not necessarily mean that those less flexible ones are better for conditional
quantile functions.

9. In the comparison betweennpqr andrqss, 48 trials were examined since in the other 12 trialsrqss was unable to
produce estimates, due to its construction of the function system.
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Figure 8: Log-log plots of out-of-sample performances. The plots shownpqr versus (a)uncond,
(b) linear and (c)rqss; combining the average pinball losses of all 60 trials (3 quantiles
times 20 data sets). The points under (over) the 45 degree line means that thenpqr was
better (worse) than the alternative. Circle (squares) indicate thatnpqr was significantly
better (worse) than the alternative at 0.05 significance level in paired-samplet-test, while
triangles indicate no significant difference.

1250



NONPARAMTERIC QUANTILE ESTIMATION

5.2 Experiments on Nonparametric Quantile Regression with AdditionalConstraints

We empirically investigate the performances of nonparametric quantile regression estimator with
the additional constraints described in section 3. Imposing constraints is oneway to introduce the
prior knowledge on the data set being analyzed. Although additional constraints always increase
training errors, we will see that these constraints can sometimes reduce testerrors. The full results
are shown in Appendix B.

5.2.1 NON-CROSSINGCONSTRAINTS

First we look at the effect of non-crossing constraints on the generalization performances. We used
the same 20 data sets mentioned in the previous subsection. We denote thenpqrs trained with
non-crossing constraints asnoncross andnpqr indicates standard one here. We made comparisons
betweennpqr andnoncross with τ ∈ {0.1,0.5,0.9}. The results fornoncross with τ = 0.1 were
obtained by training a pair of non-crossing models withτ = 0.1 and 0.2. The results withτ = 0.5
were obtained by training three non-crossing models withτ = 0.4, 0.5 and 0.6. The results with
τ = 0.9 were obtained by training a pair of non-crossing models withτ = 0.8 and 0.9. In this
experiment, we simply impose non-crossing constraints only at a single test point to be evaluated.
The kernel width and smoothing parameter were always set to be the selected ones in the above
standardnpqr experiments. The confidences were assessed by 10-fold cross-validation in the same
way as the previous section. The complete results are found in the tables in Appendix B. The
performances ofnpqr andnoncross are quite similar sincenpqr itself could producealmostnon-
crossing estimates and the constraints only make asmalladjustments only when there happen to be
the violations.

5.2.2 MONOTONICITY CONSTRAINTS

We compare two models:

• Nonparametric QR as described in Section 2 (npqr).

• Nonparametric QR with monotonicity constraints as described in Section 3.2 (npqrm).

We use two data sets:

• Thecarsdata set as described in Mammen et al. (2001). Fuel efficiency (in miles pergallon)
is studied as a function of engine output.

• The onionsdata set as described in Ruppert and Carroll (2003). log(Yield) is studied as a
function of density, we use only the measurements taken at Purnong Landing.

We tested the performance of the two methods on 3 different quantiles (τ ∈ {0.1,0.5,0.9}). In the
experiments withcars, we noticed that the data is not truly monotonic. This is because, smaller en-
gines may correspond to cheap cars and thus may not be very efficient. Monotonic models (npqrm)
tend to do worse than standard models (npqr) for lower quantiles. With higher quantiles,npqrm
tends to do better than the standardnpqr. For theonions data set, as the data is truly monotonic,
thenpqrm does better than the standardnpqr in terms of the pinball loss.
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6. Discussion and Extensions

Frequently in the literature of regression, including quantile regression, we encounter the term “ex-
ploratory data analysis”. This is meant to describe a phase before the user has settled on a “model”,
after which some statistical tests are performed, justifying the choice of the model. Quantile re-
gression, which allows the user to highlight many aspects of the distribution, isindeed a useful tool
for this type of analysis. We also note that no attempts at statistical modeling beyond automatic
parameter choice via cross-validation, were made to tune the results. So the effort here stays true to
that spirit, yet may provide useful estimates immediately.

In the Machine Learning literature the emphasis is more on short circuiting the modeling pro-
cess. Here the two approaches are complementary. While not completely model-free, the experience
of building the models in this paper shows how easy it is to estimate the quantities of interest in QR,
with little of the angst of model selection, thanks to regularization. It is interesting to consider
whether kernel methods, with regularization, can blur the distinction betweenmodel building and
data exploration in statistics.

In summary, we have presented a Quadratic Programming method for estimating quantiles
which bests the state of the art in statistics. It is easy to implement, comes with uniform con-
vergence results and experimental evidence for its soundness. We alsointroduce non-crossing and
monotonicity constraints as extensions to avoid some undesirable behaviors insome circumstances.

Overly Optimistic Estimates for Ramp Loss The experiments show us that the there is a bias
towards the median in terms of the ramp loss. For example, if we run a quantile estimator with
τ = 0.05, then we will not necessarily get the empirical quantile is also at 0.05 but more likely to be
at 0.08 or higher. Likewise, the empirical quantile will be 0.93 or lower if the estimator is run at 0.9.
This affects all estimators, using the pinball loss as the loss function, not just the kernel version.

This is because the algorithm tends to aggressively push a number of pointsto the kink in the
training set, these points may then be miscounted (see Lemma 3). The main reasonbehind it is
that the extreme quantiles tend to be less smooth, the regularizer will thereforemakes sure we get
a simpler model by biasing towards the median (which is usually simpler). However, in the test set
it is very unlikely to get the points lying exactly at the kink. Figure 9 shows us there is a linear
relationship between the fraction of points at and below the kink (for low quantiles) and below the
kink (for higher quantiles) with the empirical ramp loss.

Accordingly, in order to get a better performance in terms of the ramp loss, we just estimate the
quantiles, and if they turn out to be too optimistic on the training set, we use a slightlylower (for
τ < 0.5) or higher (forτ > 0.5) value ofτ until we have exactly the right quantity.

The fact that there is a number of points sitting exactly on the kink (quantile regression - this
paper), the edge of the tube (ν-SVR - see Scḧolkopf et al., 2000), or the supporting hyperplane
(single-class problems and novelty detection - see Schölkopf et al., 1999) might affect the overall
accuracy control in the test set. This issue deserves further scrutiny.

Estimation with constraints We introduce non-crossing and monotonicity constraints in the con-
text of nonparametric quantile regression. However, as discussed in Mammen et al. (2001), other
constraints can also be applied very similiarly to the constraints described in thispaper but might be
in different estimation contexts. Here are some variations (we just give directions for the first two,
the rest can be applied in the same manner)
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Figure 9: Illustration of the relationship between quantile in training and ramp loss.

• Bivariate extreme-value distributions. Hall and Tajvidi (2000) propose methods to estimate
the dependence function of a bivariate extreme-value distribution. They require to estimate a
convexfunction f such thatf (0) = f (1) = 1 and f (x) ≥ max(x,1−x) for x∈ [0,1]. We can
also apply this approach to our method as to the monotonicity constraint, all we have to do is
to ensure〈φ(0),w〉+b = 〈φ(1),w〉+b = 1, 〈φ′′(x),w〉 ≥ 0 and〈φ(x),w〉+b≥ max(x,1−x)
for x∈ [0,1].

• Positivity constraints. The regression function is positive. In this case, we must ensure
〈φ(x),w〉+b > 0, ∀x.

• Boundary conditions. The regression function is defined in[a,b] and assumed to bev at the
boundary pointa or b.

• Additive models with monotone components. The regression functionf : R
n→R is of additive

form f (x1, ...,xn) = f1(x1)+ ...+ fn(xn) where each additive componentfi is monotonic.

• Observed deriatives. Assume thatm samples are observed corresponding withm regression
functions. Now, the constraint is thatf j coincides with the derivative off j−1 (same notation
with last point) (Cox, 1988).

Future Work Quantile regression has been mainly used as a data analysis tool to assess the influ-
ence of individual variables. This is an area where we expect that nonparametric estimates will lead
to better performance.

Being able to estimate an upper bound on a random variabley|x which hold with probabilityτ
is useful when it comes to determining the so-called Value at Risk of a portfolio. Note, however,
that in this situation we want to be able to estimate the regression quantile for a large set of different
portfolios. For example, an investor may try to optimize their portfolio allocation to maximize return
while keeping risk within a constant bound. Such uniform statements will needfurther analysis if
we are to perform nonparametric estimates. We need more efficient optimizationalgorithm for non-
crossing constraints since we have to work withO (nm) dual variables. Simple SVM (Vishwanathan
et al., 2003) would be a promising candidate for this purpose.
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Appendix A. Nonparametric ν-Support Vector Regression

In this section we explore an alternative to the quantile regression framework proposed in Section 2.
It derives from Scḧolkopf et al. (2000). There the authors suggest a method for adapting SVregres-
sion and classification estimates such that automatically only a quantileν lies beyond the desired
confidence region. In particular, ifp(y|x) can be modeled by additive noise of equal degree (i.e.
y = f (x)+ ξ whereξ is a random variable independent ofx) Scḧolkopf et al. (2000) show that the
ν-SV regression estimate does converge to a quantile estimate.

A.1 Heteroscedastic Regression

Whenever the above assumption onp(y|x) is violatedν-SVR will not perform as desired. This
problem can be amended as follows: one needs to turn the marginε(x) into a nonparametric estimate
itself. This means that we solve the following optimization problem.

minimize
θ1,θ2,b,ε

λ1

2
‖θ1‖2 +

λ2

2
‖θ2‖2 +

m

∑
i=1

(ξi +ξ∗i )−νmε (30a)

subject to 〈φ1(xi),θ1〉+b−yi ≤ ε+ 〈φ2(xi),θ2〉+ξi (30b)

yi −〈φ1(xi),θ1〉−b≤ ε+ 〈φ2(xi),θ2〉+ξ∗i (30c)

ξi ,ξ∗i ≥ 0 (30d)

Hereφ1,φ2 are feature maps,θ1,θ2 are corresponding parameters,ξi ,ξ∗i are slack variables andb,ε
are scalars. The key difference to the heteroscedastic estimation problemdescribed in Scḧolkopf
et al. (2000) is that in the latter the authors assume that the specific form of the noise isknown. In
(30) instead, we make no such assumption and instead we estimateε(x) as〈φ2(x),θ2〉+ ε.

One may check that the dual of (30) is obtained by

minimize
α,α∗

1
2λ1

(α−α∗)⊤K1(α−α∗)+
1

2λ2
(α+α∗)⊤K1(α+α∗)+(α−α∗)⊤y (31a)

subject to~1⊤(α−α∗) = 0 (31b)

~1⊤(α+α∗) = Cmν (31c)

0≤ αi ,α∗
i ≤ 1 for all 1≤ i ≤ m (31d)

HereK1,K2 are kernel matrices where[Ki ] jl = ki(x j ,xl ) and~1 denotes the vector of ones. Moreover,
we have the usual kernel expansion, this time for the regressionf (x) and the marginε(x) via

f (x) =
m

∑
i=1

(αi −α∗
i )k1(xi ,x)+b andε(x) =

m

∑
i=1

(αi +α∗
i )k2(xi ,x)+ ε. (32)
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The scalarsbandε can be computed conveniently as dual variables of (31) when solving the problem
with an interior point code (see Schölkopf and Smola, 2002, for more details).

A.2 The ν-Property

As in the parametric case also (30) has theν-property. However, it is worth noting that the solution
ε(x) need not be positive throughout unless we change the optimization problemslightly by impos-
ing a nonnegativity constraint onε. The following theorem makes this reasoning more precise:

Theorem 8 The minimizer of (30) satisfies

1. The fraction of points for which|yi − f (xi)| < ε(xi) is bounded by1−ν.

2. The fraction of constraints (30b) and (30c) withξi > 0 or ξ∗i > 0 is bounded from above byν.

3. If (x,y) is drawn iid from a distributionPr(x,y), with Pr(y|x) continuous and the expecta-
tion of the modulus of absolute continuity of its density satisfyinglimδ→0E [ε(δ)] = 0. With
probability1, asymptotically, the fraction of points satisfying|yi − f (xi)|= ε(xi) converges to
0.

Moreover, imposingε ≥ 0 is equivalent to relaxing (31c) to~1⊤(α−α∗) ≤ Cmν. If in addition K2

has only nonnegative entries then alsoε(x) ≥ 0 for all xi .

Proof The proof is essentially similar to that of Lemma 3 and Schölkopf et al. (2000). However
note that the flexibility inε and potentialε(x) < 0 lead to additional complications. However, if
both f andε(x) have well behaved entropy numbers, then alsof ± ε are well behaved.

To see the last set of claims note that the constraint~1⊤(α−α∗)≤Cmν is obtained again directly
from dualization via the conditionε ≥ 0. Sinceαi ,α∗

i ≥ 0 for all i it follows thatε(x) contains only
nonnegative coefficients, which proves the last part of the claim.

Note that in principle we could enforceε(xi) ≥ 0 for all xi . This way, however, we would lose the
ν-property and add even more complication to the optimization problem. A third set of Lagrange
multipliers would have to be added to the optimization problem.

A.3 An Example

The above derivation begs the question why one should not use (31) instead of (6) for the purpose
of quantile regression. After all, both estimators yield an estimate for the upperand lower quantiles.

Firstly, the combined approach is numerically more costly as it requires optimization over twice
the number of parameters, albeit at the distinct advantage of a sparse solution, whereas (6) always
leads to a dense solution.

The key difference, however, is that (31) is prone to producing estimates where the margin
ε(x) < 0. While such a solution is clearly unreasonable, it occurs whenever the margin is rather
small and the overall tradeoff of simplef vs. simpleε yields an advantage by keepingf simple.
With enough data this effect vanishes, however, it occurs quite frequently, even with supposedly
distant quantiles, as can be seen in Figure 10.

In addition, the latter suffers from the assumption that the error be symmetrically distributed. In
other words, if we are just interested in obtaining the 0.95 quantile estimate we end up estimating
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Figure 10: Illustration of the heteroscedastic SVM regression on artificialdata set generated from
(1) with f (x) = sinπx andσ(x) = exp(sin2πx). On the left,λ1 = 1, λ2 = 10 andν = 0.2,
the algorithm successfully regresses the data. On the right,λ1 = 1, λ2 = 0.1 andν = 0.2,
the algorithm fails to regress the data asε becomes negative.

the 0.05 quantile on the way. In addition to that, we make the assumption that the additivenoise is
symmetric.

We produced this derivation and experiments mainly to make the point that the adaptive margin
approach of Scḧolkopf et al. (2000) is insufficient to address the problems posed by quantile regres-
sion. We found empirically that it is much easier to adjust QR instead of the symmetric variant.

In summary, the symmetric approach is probably useful only for parametric estimates where the
number of parameters is small and where the expansion coefficients ensure thatε(x) ≥ 0 for all x.

Appendix B. Experimental Results

In this appendix, we show the detail results on the experiments.

B.1 Standard Nonparametric Quantile Regression

Here we assemble six tables to display the comparisons among four models,uncond, linear, rqss
andnpqr. Each table representspinball lossor ramp lossfor each ofτ = 0.1, 0.5 and 0.9 cases.

τ = 0.1 τ = 0.5 τ = 0.9
Pinball Loss Table 2 Table 4 Table 6
Ramp Loss Table 3 Table 5 Table 7

Tables 2, 4, and 6 show the average pinball loss for each data set. A lower figure is preferred in
each case. The bold figures indicate the best (smallest) performances. The circles ’◦’ indicate that
the difference from the second best model were statistically significant at0.05 level with two-sided
paired-samplet-test. NA denotes cases where rqss (Koenker et al., 1994) was unableto produce
estimates, due to its construction of the function system.

Tables 3, 5 and 7, show the ramp loss, a measure for quantile property. Ineach table a figure
close to the intended quantile (10, 50 or 90) is preferred. The figures in round brackets denote the
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p-values under the null-hypothesis that the ramp loss, i.e. the number of test points(x,y) such that
y < fτ(x), is a sample from binomial distributionB( sample size,τ). The bold figures indicate the
best (closest to the intended quantileτ) performances. The bullets ’•’ indicate that the ramp loss
deviate significantly from binomial distributionB( sample size,τ).

B.2 Nonparametric Quantile Regression with Constraints

Next, we show the results on constrained nonparameteric quantile regression.

B.2.1 NON-CROSSINGCONSTRAINTS

Table 8 shows the average pinball loss comparison between the nonparametric quantile regression
without (npqr) and with (noncross) non-crossing constraints. The bold figures indicate the better
(smaller) performances The circles ’◦’ indicate that the difference were statistically significant at
0.05 level with two-sided paired-samplet-test.

Table 9 shows the ramp loss, a measure for quantile property, ofnpqr andnoncross. The fig-
ures in round brackets denote thep-values under the null-hypothesis that the ramp loss, i.e. the num-
ber of test points(x,y) such thaty< fτ(x), is a sample from binomial distributionB( sample size,τ).
The bold figures indicate the better (closeer to the intended quantileτ) performances. The bullets
’•’ indicate that the ramp loss deviated significantly from binomial distributionB( sample size,τ).

B.2.2 MONOTONICITY CONSTRAINTS

We tested on the cars and the onions data set for monotonicity with respect to engine size and
diameter respectively. Note that on the engines data set the monotonicity constraint is not perfectly
satisfied. Table 10 shows the average pinball loss comparison between thenonparametric quantile
regression without (npqr) and with (npqrm) monotonicity constraints. See above for the notation of
the table. Table 11 shows the ramp loss, a measure for quantile property, ofnpqr andnpqrm. See
above for the notation of the table.
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data set uncond linear rqss npqr
caution 11.09 ± 0.95 11.18 ± 1.04 9.18 ± 0.93 9.56 ± 0.92
ftcollinssnow 16.28 ± 1.18 16.48 ± 1.19 15.68 ± 1.33 16.24 ± 1.17
highway 11.27 ± 1.48 19.32 ± 5.11 19.51 ± 4.44 ◦ 8.34 ± 1.18
heights 17.20 ± 0.44 15.28 ± 0.39 15.27 ± 0.40 15.26 ± 0.39
sniffer 13.92 ± 0.99 6.78 ± 0.68 5.44 ± 0.58 5.48 ± 0.64
snowgeese 8.74 ± 1.44 4.79 ± 0.89 4.85 ± 0.90 5.03 ± 0.87
ufc 17.06 ± 0.72 10.02 ± 0.42 10.11 ± 0.44 9.70 ± 0.42
birthwt 18.29 ± 1.39 18.44 ± 1.24 18.85 ± 1.28 17.68 ± 1.16
crabs 18.27 ± 0.97 1.03 ± 0.08 NA 0.91 ± 0.07
GAGurine 10.53 ± 0.55 8.39 ± 0.41 5.79 ± 0.43 6.00 ± 0.63
geyser 17.15 ± 0.52 11.50 ± 0.49 11.10 ± 0.49 10.91 ± 0.49
gilgais 12.84 ± 0.49 5.93 ± 0.40 5.75 ± 0.44 5.46 ± 0.35
topo 20.41 ± 2.45 9.12 ± 1.32 8.15 ± 1.30 6.03 ± 0.91
BostonHousing 14.05 ± 0.56 6.60 ± 0.34 NA ◦ 5.10 ± 0.42
CobarOre 17.88 ± 2.28 17.36 ± 1.97 14.71 ± 2.20 13.80 ± 2.70
engel 11.92 ± 0.65 6.49 ± 0.79 5.68 ± 0.45 5.55 ± 0.37
mcycle 19.99 ± 0.86 17.87 ± 0.98 10.98 ± 0.66 ◦ 7.39 ± 0.90
BigMac2003 8.37 ± 1.17 6.31 ± 0.95 NA 6.13 ± 0.96
UN3 18.02 ± 1.06 11.47 ± 0.97 NA 11.47 ± 1.02
cpus 5.25 ± 0.69 1.74 ± 0.34 0.77 ± 0.18 0.67 ± 0.23

Table 2: Method Comparison: Pinball Loss (×100,τ = 0.1)

data set uncond linear rqss npqr
caution 11.00 (0.59) 12.00 (0.40) • 16.00 (0.04) 12.00 (0.40)
ftcollinssnow 10.00 (0.91) 11.10 (0.65) 12.20 (0.44) 12.20 (0.44)
highway 10.80 (0.70) • 20.00 (0.03) • 26.70 (0.00) • 20.00 (0.03)
heights 9.60 (0.66) 10.00 (0.92) 10.00 (0.92) 10.00 (0.92)
sniffer 7.80 (0.57) 13.70 (0.15) 12.00 (0.37) • 15.90 (0.02)
snowgeese 12.50 (0.32) 9.70 (0.95) 9.70 (0.95) 13.60 (0.32)
ufc 9.70 (0.92) 9.90 (0.94) 11.80 (0.21) 10.50 (0.68)
birthwt 10.00 (0.86) 12.00 (0.27) 12.60 (0.18) 11.60 (0.38)
crabs 10.00 (0.88) 12.00 (0.29) NA 13.30 (0.09)
GAGurine 10.40 (0.68) 9.90 (0.96) 10.70 (0.55) 12.10 (0.19)
geyser 9.70 (0.96) 11.20 (0.48) 10.70 (0.60) 12.20 (0.21)
gilgais 9.50 (0.88) 10.40 (0.71) • 13.50 (0.03) 12.40 (0.12)
topo 8.90 (0.84) 13.40 (0.29) 16.00 (0.14) • 19.40 (0.03)
BostonHousing 9.70 (0.89) 11.50 (0.24) NA • 15.00 (0.00)
CobarOre 8.50 (0.93) 12.70 (0.35) 16.10 (0.16) 16.10 (0.16)
engel 10.20 (0.81) 9.40 (0.85) 10.20 (0.81) 12.20 (0.20)
mcycle 10.00 (0.92) 11.50 (0.51) 11.40 (0.51) 12.00 (0.35)
BigMac2003 9.00 (0.92) • 18.00 (0.04) NA 14.30 (0.16)
UN3 9.50 (0.97) 12.00 (0.37) NA 10.30 (0.74)
cpus 9.40 (0.95) 12.20 (0.29) • 15.30 (0.01) • 19.10 (0.00)

Table 3: Method Comparison: Ramp Loss (×100,τ = 0.1)
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data set uncond linear rqss npqr
caution 38.13 ± 3.44 32.40 ± 2.91 23.76 ± 2.74 22.56 ± 2.68
ftcollinssnow 42.10 ± 2.95 40.82 ± 2.95 44.07 ± 3.24 39.08 ± 3.09
highway 38.35 ± 6.34 45.39 ± 7.04 27.17 ± 3.26 25.33 ± 3.62
heights 40.08 ± 0.81 34.50 ± 0.72 34.66 ± 0.72 34.53 ± 0.72
sniffer 35.74 ± 3.13 12.78 ± 1.11 10.50 ± 0.98 ◦ 9.92 ± 0.94
snowgeese 32.08 ± 6.33 13.85 ± 3.46 10.49 ± 2.53 18.50 ± 4.96
ufc 40.21 ± 1.55 23.20 ± 0.95 21.23 ± 0.90 21.22 ± 0.90
birthwt 41.05 ± 2.14 38.15 ± 1.96 37.55 ± 2.08 37.19 ± 1.96
crabs 41.52 ± 1.99 2.24 ± 0.13 NA 2.14 ± 0.12
GAGurine 40.75 ± 1.81 27.87 ± 1.46 16.02 ± 1.20 14.57 ± 1.11
geyser 41.57 ± 1.84 32.50 ± 1.23 31.03 ± 1.36 30.75 ± 1.40
gilgais 42.10 ± 1.51 16.12 ± 1.01 11.72 ± 0.69 12.40 ± 0.66
topo 42.17 ± 3.86 26.51 ± 2.71 18.58 ± 2.65 14.39 ± 1.65
BostonHousing 35.57 ± 1.60 17.50 ± 0.95 NA ◦ 10.76 ± 0.61
CobarOre 41.37 ± 4.97 41.93 ± 5.20 43.61 ± 4.59 39.29 ± 6.69
engel 35.75 ± 2.33 13.72 ± 1.14 13.25 ± 0.92 13.01 ± 0.85
mcycle 38.38 ± 3.04 37.88 ± 2.76 20.87 ± 1.52 ◦ 17.06 ± 1.42
BigMac2003 33.24 ± 5.12 21.75 ± 2.85 NA ◦ 17.89 ± 3.05
UN3 40.79 ± 2.61 26.32 ± 1.70 NA 23.96 ± 1.84
cpus 23.00 ± 3.30 5.73 ± 1.04 2.45 ± 0.61 ◦ 1.06 ± 0.17

Table 4: Method Comparison: Pinball Loss (×100,τ = 0.5)

data set uncond linear rqss npqr
caution 52.00 (0.62) 49.00 (0.92) 51.00 (0.76) 49.00 (0.92)
ftcollinssnow 50.60 (0.84) 49.70 (1.00) 48.60 (0.84) 51.40 (0.68)
highway 48.30 (1.00) 44.20 (0.52) 45.00 (0.75) 41.70 (0.34)
heights 49.30 (0.63) 50.10 (0.91) 49.80 (0.91) 50.30 (0.79)
sniffer 47.80 (0.72) 51.00 (0.72) 51.00 (0.72) 51.30 (0.72)
snowgeese 48.10 (1.00) 49.20 (1.00) 51.70 (0.77) 50.60 (0.77)
ufc 49.20 (0.80) 50.00 (0.96) 51.60 (0.50) 50.60 (0.80)
birthwt 48.90 (0.77) 50.00 (0.88) 47.80 (0.56) 50.30 (0.88)
crabs 49.50 (0.94) 50.50 (0.83) NA 50.00 (0.94)
GAGurine 49.20 (0.78) 50.90 (0.69) 51.40 (0.61) 49.80 (0.96)
geyser 48.60 (0.64) 49.80 (1.00) 49.50 (0.91) 49.20 (0.82)
gilgais 48.70 (0.68) 50.00 (0.92) 49.70 (0.92) 50.70 (0.75)
topo 47.70 (0.89) 47.70 (0.89) 47.70 (0.89) 54.80 (0.49)
BostonHousing 49.70 (0.89) 49.60 (0.89) NA 51.70 (0.40)
CobarOre 46.40 (0.87) 44.50 (0.63) 47.90 (0.87) 59.40 (0.14)
engel 50.90 (0.70) 49.70 (1.00) 49.60 (1.00) 50.00 (0.90)
mcycle 49.10 (0.86) 51.30 (0.73) 51.40 (0.73) 48.80 (0.86)
BigMac2003 49.30 (1.00) 50.00 (0.81) NA 44.20 (0.34)
UN3 49.40 (1.00) 50.60 (0.86) NA 48.60 (0.86)
cpus 49.20 (0.89) 51.30 (0.68) 49.70 (1.00) 51.80 (0.58)

Table 5: Method Comparison: Ramp Loss (×100,τ = 0.5)
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data set uncond linear rqss npqr
caution 23.35 ± 3.19 15.04 ± 1.54 ◦ 13.19 ± 1.57 15.16 ± 1.76
ftcollinssnow 18.71 ± 1.21 19.77 ± 1.76 19.35 ± 1.90 18.67 ± 1.74
highway 25.67 ± 3.71 28.49 ± 6.75 25.34 ± 6.09 14.48 ± 3.53
heights 17.63 ± 0.47 15.47 ± 0.39 15.50 ± 0.39 15.47 ± 0.39
sniffer 23.01 ± 3.62 5.87 ± 0.43 5.88 ± 0.44 ◦ 5.25 ± 0.40
snowgeese 26.94 ± 6.93 7.97 ± 2.67 8.09 ± 3.52 7.94 ± 2.61
ufc 18.05 ± 0.96 10.94 ± 0.45 10.84 ± 0.56 10.15 ± 0.53
birthwt 16.21 ± 1.03 16.17 ± 1.03 16.53 ± 1.19 ◦ 15.20 ± 0.91
crabs 17.09 ± 0.90 0.99 ± 0.07 NA 1.02 ± 0.08
GAGurine 20.86 ± 0.67 15.22 ± 0.83 10.51 ± 1.17 10.13 ± 1.05
geyser 14.21 ± 0.72 12.92 ± 0.67 12.48 ± 0.63 12.10 ± 0.61
gilgais 18.83 ± 0.72 6.74 ± 0.49 5.06 ± 0.37 5.51 ± 0.37
topo 16.50 ± 2.40 13.67 ± 2.80 13.84 ± 3.04 10.30 ± 2.17
BostonHousing 22.68 ± 1.28 11.67 ± 0.95 NA ◦ 6.96 ± 0.63
CobarOre 17.63 ± 2.06 22.28 ± 3.43 20.16 ± 2.92 15.01 ± 2.12
engel 22.44 ± 2.57 5.44 ± 0.43 5.64 ± 0.65 5.70 ± 0.57
mcycle 15.97 ± 1.21 14.06 ± 1.00 10.58 ± 0.89 ◦ 7.02 ± 0.56
BigMac2003 23.29 ± 4.97 13.06 ± 2.20 NA ◦ 9.45 ± 2.85
UN3 16.36 ± 1.00 10.37 ± 0.73 NA ◦ 8.81 ± 0.61
cpus 24.01 ± 4.26 2.67 ± 0.26 1.78 ± 0.72 0.71 ± 0.17

Table 6: Method Comparison: Pinball Loss (×100,τ = 0.9)

data set uncond linear rqss npqr
caution 90.00 (0.90) 90.00 (0.90) 89.00 (0.83) 89.00 (0.83)
ftcollinssnow 90.30 (0.82) 89.20 (0.91) 88.30 (0.65) 89.20 (0.91)
highway 89.20 (0.89) • 64.20 (0.00) • 61.70 (0.00) • 70.00 (0.00)
heights 89.50 (0.58) 90.00 (0.94) 89.80 (0.85) 90.10 (0.87)
sniffer 89.40 (0.97) 87.60 (0.53) 86.80 (0.37) 84.60 (0.09)
snowgeese 88.90 (0.95) 85.00 (0.32) 85.00 (0.32) 83.90 (0.32)
ufc 89.80 (0.94) 90.30 (0.79) 88.50 (0.36) 88.30 (0.28)
birthwt 88.70 (0.68) 87.60 (0.38) 88.00 (0.38) 88.90 (0.68)
crabs 89.00 (0.70) 87.00 (0.20) NA 87.10 (0.20)
GAGurine 89.50 (0.82) 89.80 (0.96) 89.40 (0.82) 87.80 (0.25)
geyser 88.50 (0.48) 89.40 (0.74) 90.40 (0.81) 89.10 (0.60)
gilgais 89.10 (0.59) 88.30 (0.30) 87.10 (0.09) • 83.90 (0.00)
topo 89.10 (0.84) 87.10 (0.52) 85.70 (0.52) • 77.70 (0.01)
BostonHousing 90.10 (0.89) 88.80 (0.38) NA • 80.30 (0.00)
CobarOre 89.10 (0.93) 85.80 (0.66) 79.10 (0.06) 85.80 (0.66)
engel 88.90 (0.65) 90.00 (0.85) 89.10 (0.65) 89.40 (0.81)
mcycle 88.60 (0.70) 88.80 (0.70) 87.70 (0.51) 86.20 (0.23)
BigMac2003 89.30 (0.92) 84.30 (0.16) NA • 77.70 (0.01)
UN3 88.00 (0.53) 86.70 (0.24) NA 85.80 (0.15)
cpus 89.30 (0.87) 87.80 (0.40) • 82.60 (0.00) • 82.10 (0.00)

Table 7: Method Comparison: Ramp Loss (×100,τ = 0.9)
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τ = 0.1 τ = 0.5 τ = 0.9
data set npqr noncross npqr noncross npqr noncross
caution 9.56 ± 0.92 9.55 ± 0.92 22.56 ± 2.68 22.51 ± 2.68 15.16 ± 1.76 15.15 ± 1.76
ftcollinssnow 16.24 ± 1.17 16.24 ± 1.17 39.08 ± 3.09 38.81 ± 3.09 18.67 ± 1.74 18.67 ± 1.74
highway 8.34 ± 1.18 8.20 ± 1.20 25.33 ± 3.62 25.30 ± 3.57 14.48 ± 3.53 14.41 ± 3.53
heights 15.26 ± 0.39 15.27 ± 0.39 34.53 ± 0.72 34.54 ± 0.72 15.47 ± 0.39 15.48 ± 0.39
sniffer 5.48 ± 0.64 5.43 ± 0.64 9.92 ± 0.94 9.91 ± 0.94 5.25 ± 0.40 5.19 ± 0.40
snowgeese 5.03 ± 0.87 5.03 ± 0.87 18.50 ± 4.96 18.59 ± 4.98 7.94 ± 2.61 7.88 ± 2.62
ufc 9.70 ± 0.42 9.70 ± 0.39 21.22 ± 0.90 21.23 ± 0.90 10.15 ± 0.53 9.92 ± 0.49
birthwt 17.68 ± 1.16 17.69 ± 1.16 37.19 ± 1.96 37.21 ± 1.96 15.20 ± 0.91 15.20 ± 0.91
crabs 0.91 ± 0.07 0.91 ± 0.07 2.14 ± 0.12 2.14 ± 0.12 1.02 ± 0.08 1.01 ± 0.08
GAGurine 6.00 ± 0.63 5.99 ± 0.63 14.57 ± 1.11 14.57 ± 1.11 10.13 ± 1.05 10.13 ± 1.05
geyser 10.91 ± 0.49 10.91 ± 0.49 30.75 ± 1.40 30.71 ± 1.40 12.10 ± 0.61 12.11 ± 0.61
gilgais 5.46 ± 0.35 5.46 ± 0.35 12.40 ± 0.66 12.37 ± 0.66 5.51 ± 0.37 5.51 ± 0.37
topo 6.03 ± 0.91 6.04 ± 0.91 ◦ 14.39 ± 1.65 15.54 ± 1.62 10.30 ± 2.17 10.21 ± 2.16
BostonHousing 5.10 ± 0.42 5.04 ± 0.42 10.76 ± 0.61 10.73 ± 0.61 6.96 ± 0.63 ◦ 6.85 ± 0.62
CobarOre 13.80 ± 2.70 13.66 ± 2.63 39.29 ± 6.69 40.00 ± 6.61 ◦ 15.01 ± 2.12 15.13 ± 2.12
engel 5.55 ± 0.37 5.55 ± 0.37 13.01 ± 0.85 12.96 ± 0.85 5.70 ± 0.57 5.70 ± 0.57
mcycle 7.39 ± 0.90 7.39 ± 0.90 17.06 ± 1.42 17.03 ± 1.42 7.02 ± 0.56 7.00 ± 0.55
BigMac2003 6.13 ± 0.96 6.36 ± 1.02 17.89 ± 3.05 ◦ 17.72 ± 3.05 9.45 ± 2.85 9.48 ± 2.84
UN3 11.47 ± 1.02 11.52 ± 1.04 23.96 ± 1.84 23.81 ± 1.81 8.81 ± 0.61 8.82 ± 0.61
cpus ◦ 0.67 ± 0.23 1.30 ± 0.18 ◦ 1.06 ± 0.17 1.35 ± 0.17 ◦ 0.71 ± 0.17 0.87 ± 0.18

Table 8: Pinball loss comparison between the nonparametric quantile regression without (npqr) and
with (noncross) non-crossing constraints.

τ = 0.1 τ = 0.5 τ = 0.9
data set npqr noncross npqr noncross npqr noncross
caution 12.00 (0.40) 12.00 (0.40) 49.00 (0.92) 49.00 (0.92) 89.00 (0.83) 89.00 (0.83)
ftcollinssnow 12.20 (0.44) 12.20 (0.44) 51.40 (0.68) 51.40 (0.68) 89.20 (0.91) 89.20 (0.91)
highway • 20.00 (0.03) • 13.30 (0.03) 41.70 (0.34) 45.00 (0.34) • 70.00 (0.00) • 56.70 (0.00)
heights 10.00 (0.92) 9.90 (0.92) 50.30 (0.79) 50.30 (0.79) 90.10 (0.87) 90.10 (0.87)
sniffer • 15.90 (0.02) • 15.90 (0.02) 51.30 (0.72) 51.30 (0.72) 84.60 (0.09) 85.40 (0.09)
snowgeese 13.60 (0.32) 13.60 (0.32) 50.60 (0.77) 50.60 (0.77) 83.90 (0.32) 83.90 (0.32)
ufc 10.50 (0.68) 10.70 (0.68) 50.60 (0.80) 50.60 (0.80) 88.30 (0.28) 88.20 (0.28)
birthwt 11.60 (0.38) 10.00 (0.38) 50.30 (0.88) 50.20 (0.88) 88.90 (0.68) 88.90 (0.68)
crabs 13.30 (0.09) 13.00 (0.09) 50.00 (0.94) 49.50 (0.94) 87.10 (0.20) 87.00 (0.20)
GAGurine 12.10 (0.19) 11.60 (0.19) 49.80 (0.96) 49.90 (0.96) 87.80 (0.25) 88.10 (0.25)
geyser 12.20 (0.21) 12.10 (0.21) 49.20 (0.82) 49.60 (0.82) 89.10 (0.60) 89.00 (0.60)
gilgais 12.40 (0.12) 12.40 (0.12) 50.70 (0.75) 50.80 (0.75) • 83.90 (0.00) • 84.20 (0.00)
topo • 19.40 (0.03) • 19.40 (0.03) 54.80 (0.49) 56.30 (0.49) • 77.70 (0.01) • 77.70 (0.01)
BostonHousing • 15.00 (0.00) • 15.10 (0.00) 51.70 (0.40) 51.50 (0.40) • 80.30 (0.00) • 80.80 (0.00)
CobarOre 16.10 (0.16) 16.10 (0.16) 59.40 (0.14) 59.40 (0.14) 85.80 (0.66) 85.80 (0.66)
engel 12.20 (0.20) 12.20 (0.20) 50.00 (0.90) 50.10 (0.90) 89.40 (0.81) 89.40 (0.81)
mcycle 12.00 (0.35) 12.00 (0.35) 48.80 (0.86) 48.10 (0.86) 86.20 (0.23) 87.40 (0.23)
BigMac2003 14.30 (0.16) 16.00 (0.16) 44.20 (0.34) 43.70 (0.34) • 77.70 (0.01) • 79.30 (0.01)
UN3 10.30 (0.74) 10.30 (0.74) 48.60 (0.86) 47.80 (0.86) 85.80 (0.15) 86.70 (0.15)
cpus • 19.10 (0.00) • 20.60 (0.00) 51.80 (0.58) 46.90 (0.58) • 82.10 (0.00) • 82.50 (0.00)

Table 9: Ramp loss (quantile property) comparison between the nonparametric quantile regression
without (npqr) and with (noncross) non-crossing constraints.

1261



TAKEUCHI , LE, SEARS AND SMOLA

τ = 0.1 τ = 0.5 τ = 0.9
data set npqr npqrm npqr npqrm npqr npqrm
cars 0.65 ± 0.15 0.66 ± 0.16 1.59 ± 0.32 1.61 ± 0.23 0.79 ± 0.16 0.77 ± 0.16
onions 2.68 ± 1.21 2.27 ± 0.71 4.93 ± 1.58 4.89 ± 1.47 1.86 ± 0.73 1.84 ± 0.37

Table 10: Pinball loss comparison between the nonparametric quantile regression without (npqr)
and with (npqrm) monotonicity constraints.

τ = 0.1 τ = 0.5 τ = 0.9
data set npqr monotonic npqr monotonic npqr monotonic
cars 12.00 (0.24) 11.00 (0.24) 51.00 (0.88) 51.00 (0.88) 89.00 (0.82) 89.00 (0.82)
onions • 18.00 (0.00) • 17.00 (0.00) 48.00 (0.44) 48.00 (0.44) • 86.00 (0.01) • 80.00 (0.00)

Table 11: Ramp loss (quantile property) comparison between the nonparametric quantile regression
without (npqr) and with (npqrm) monotonicity constraints.
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