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Abstract

Many works related learning from examples to regularization techniques for inverse problems, em-

phasizing the strong algorithmic and conceptual analogy ofcertain learning algorithms with regu-

larization algorithms. In particular it is well known that regularization schemes such as Tikhonov

regularization can be effectively used in the context of learning and are closely related to algo-

rithms such as support vector machines. Nevertheless the connection with inverse problem was

considered only for the discrete (finite sample) problem andthe probabilistic aspects of learning

from examples were not taken into account. In this paper we provide a natural extension of such

analysis to the continuous (population) case and study the interplay between the discrete and con-

tinuous problems. From a theoretical point of view, this allows to draw a clear connection between

the consistency approach in learning theory and the stability convergence property in ill-posed in-

verse problems. The main mathematical result of the paper isa new probabilistic bound for the

regularized least-squares algorithm. By means of standardresults on the approximation term, the

consistency of the algorithm easily follows.
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1. Introduction

The main goal of learning from examples is to infer an estimator from a finite setof examples. The

crucial aspect in the problem is that the examples are drawn according to afixed but unknown prob-

abilistic input-output relation and the desired property of the selected function is to be descriptive

also of new data, i.e. it shouldgeneralize. The fundamental work of Vapnik and further develop-

ments (see Vapnik (1998); Alon et al. (1997) and Bartlett and Mendelson(2002) for recent results)

show that the key to obtain a meaningful solution is to control the complexity of thehypothesis

space. Interestingly, as pointed out in a number of papers (see Poggio and Girosi (1992); Evgeniou

et al. (2000) and references therein), this is in essence the idea underlying regularization techniques

for ill-posed problems (Tikhonov and Arsenin, 1977; Engl et al., 1996). Not surprisingly the form of

the algorithms proposed in both theories is strikingly similar (Mukherjee et al., 2002) and the point

of view of regularization is indeed not new to learning (Poggio and Girosi, 1992; Evgeniou et al.,

2000; Vapnik, 1998; Arbib, 1995; Fine, 1999; Kecman, 2001; Schölkopf and Smola, 2002). In par-

ticular it allowed to cast a large class of algorithms in a common framework, namelyregularization

networks or regularized kernel methods (Evgeniou et al., 2000; Schölkopf and Smola, 2002).

Anyway a careful analysis shows that a rigorous mathematical connectionbetween learning the-

ory and the theory of ill-posed inverse problems is not straightforward since the settings underlying

the two theories are different. In fact learning theory is intrinsically probabilistic whereas the theory

of inverse problem is mostly deterministic. Statistical methods were recently applied in the context

of inverse problems (Kaipio and Somersalo, 2005). Anyway a Bayesian point of view is considered

which differs from the usual learning theory approach. Recently the connection between learning

and inverse problems was considered in the restricted setting in which the elements of the input

space are fixed and not probabilistically drawn (Mukherjee et al., 2004;Kurkova, 2004). This cor-

responds to what is usually called nonparametric regression with fixed design (Györfi et al., 1996)

and when the noise level is fixed and known, the problem is well studied in thecontext of inverse

problems (Bertero et al., 1988). In the case of fixed design on a finite gridthe problem is mostly that

we are dealing with an ill-conditioned problem, that isunstablew.r.t. the data. Though such setting

is indeed close to the algorithmic setting from a theoretical perspective it is notgeneral enough to

allow a consistency analysis of a given algorithm since it does not take care of the random sampling

providing the data. In this paper we extend the analysis to the setting of nonparametric regression

with random design (Gÿorfi et al., 1996).

Our analysis and contribution develop in two steps. First, we study the mathematical con-

nections between learning theory and inverse problems theory. We consider the specific case of

quadratic loss and analyse the population case (i.e. when the probability distribution is known) to

show that the discrete inverse problem which is solved in practice can be seen as the stochastic

discretization of an infinite dimensional inverse problem. This ideal problem is, in general,ill-posed

(Tikhonov and Arsenin, 1977) and its solution corresponds to the targetfunction which is the fi-
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nal goal in learning theory. This clarifies in particular the following importantfact. Regularized

solutions in learning problems should not only provide stable approximate solutions to the discrete

problem but especially give continuous estimates of the solution to the ill-posedinfinite dimensional

problem. Second, we exploit the established connection to study the regularized least-squares al-

gorithm. This passes through the definition of a natural notion of discretization noise providing a

straightforward relation between the number of available data and the noise affecting the problem.

Classical regularization theory results can be easily adapted to the needs of learning. In partic-

ular our definition of noise together with well-known results concerning Tikhonov regularization

for inverse problems with modelling error can be applied to derive a new probabilistic bound for

the estimation error of regularized least squares improving recently proposed results (Cucker and

Smale, 2002a; De Vito et al., 2004). The approximation term can be studied through classical spec-

tral theory arguments. The consistency of the algorithm easily follows. As the major aim of the

paper was to investigate the relation between learning from examples and inverse problem we just

prove convergence without dealing with rates. Anyway the approach proposed in Cucker and Smale

(2002a); De Vito et al. (2004) to study the approximation term can be straightforwardly applied to

derive explicit rates under suitable a priori conditions.

Several theoretical results are available on regularized kernel methodsfor large class of loss

functions. The stability approach proposed in Bousquet and Elisseeff (2002) allows to find data-

dependent generalization bounds. In Steinwart (2004) it is proved that such results as well as other

probabilistic bounds can be used to derive consistency results without convergence rates. For the

specific case of regularized least-squares algorithm a functional analytical approach to derive consis-

tency results for regularized least squares was proposed in Cucker and Smale (2002a) and eventually

refined in De Vito et al. (2004) and Smale and Zhou (2004b). In the latter theconnection between

learning and sampling theory is investigated. Some weaker results in the same spirit of those pre-

sented in this paper can be found in Rudin (2004). Anyway none of the mentioned papers exploit the

connection with inverse problems. The arguments used to derive our results are close to those used

in the study of stochastic inverse problems discussed in Vapnik (1998). From the algorithmic point

of view Ong and Canu (2004) apply other techniques than Tikhonov regularization in the context of

learning. In particular several iterative algorithms are considered and convergence with respect to

the regularization parameter (semiconvergence) is proved.

The paper is organized as follows. After recalling the main concepts and notation of statistical

learning (Section 2) and of inverse problems (Section 3), in Section 4 we develop a formal connec-

tion between the two theories. In Section 5 the main results are stated, discussed and proved. In the

Appendix we collect some technical results we need in our proofs. Finally inSection 6 we conclude

with some remarks and open problems.
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2. Learning from Examples

We briefly recall some basic concepts of statistical learning theory (for details see Vapnik (1998);

Evgeniou et al. (2000); Schölkopf and Smola (2002); Cucker and Smale (2002b) and references

therein).

In the framework of learning from examples, there are two sets of variables: the input space

X, which we assume to be a compact subset ofR
n, and the output spaceY, which is a subset ofR

contained in[−M,M] for someM ≥ 0. The relation between the inputx∈ X and the outputy∈Y is

described by a probability distributionρ(x,y) = ν(x)ρ(y|x) on X×Y. The distributionρ is known

only through a samplez = (x,y) = ((x1,y1), . . . ,(x`,y`)), calledtraining set, drawn independently

and identically distributed (i.i.d.) according toρ. Given the samplez, the aim of learning theory is

to find a functionfz : X → R such thatfz(x) is a good estimate of the outputy when a new inputx is

given. The functionfz is calledestimatorand the map providingfz, for any training setz, is called

learning algorithm.

Given a measurable functionf : X →R, the ability of f to describe the distributionρ is measured

by its expected riskdefined as

I [ f ] =
Z

X×Y
V( f (x),y)dρ(x,y),

whereV( f (x),y) is theloss function, which measures the cost paid by replacing the true labely with

the estimatef (x). In this paper we consider the square loss

V( f (x),y) = ( f (x)−y)2.

With this choice, it is well known that the regression function

g(x) =
Z

Y
ydρ(y|x)

is well defined (sinceY is bounded) and is the minimizer of the expected risk over the space of

all the measurable real functions onX. In this senseg can be seen as the ideal estimator of the

distribution probabilityρ. However, the regression function cannot be reconstructed exactly since

only a finite, possibly small, set of examplesz is given.

To overcome this problem, in the framework of the regularized least squares algorithm (Wahba,

1990; Poggio and Girosi, 1992; Cucker and Smale, 2002b; Zhang, 2003), an hypothesis spaceH

of functions is fixed and the estimatorfz
λ is defined as the solution of the regularized least squares

problem,

min
f∈H

{1
`

`

∑
i=1

( f (xi)−yi)
2 +λΩ( f )}, (1)

whereΩ is a penalty term andλ is a positive parameter to be chosen in order to ensure that the

discrepancy.

I [ fz
λ]− inf

f∈H
I [ f ]
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is small with high probability. Sinceρ is unknown, the above difference is studied by means of a

probabilistic boundB(λ, `,η), which is a function depending on the regularization parameterλ, the

number̀ of examples and the confidence level 1−η, such that

P
[

I [ fz
λ]− inf

f∈H
I [ f ] ≤ B(λ, `,η)

]

≥ 1−η.

We notice that, in general, inff∈H I [ f ] is larger thanI [g] and represents a sort of irreducible error

(Hastie et al., 2001) associated with the choice of the spaceH . We do not require the infimum

inf f∈H I [ f ] to be achieved. If the minimum onH exists, we denote the minimizer byfH .

In particular, the learning algorithm isconsistentif it is possible to choose the regularization

parameter, as a function of the available dataλ = λ(`,z), in such a way that

lim
`→+∞

P
[

I [ fz
λ(`,z)]− inf

f∈H
I [ f ] ≥ ε

]

= 0, (2)

for everyε > 0. The above convergence in probability is usually called(weak) consistencyof the

algorithm (see Devroye et al. (1996) for a discussion on the differentkind of consistencies).

In this paper we assume that the hypothesis spaceH is a reproducing kernel Hilbert space

(RKHS) onX with a continuous kernelK. We recall the following facts (Aronszajn, 1950; Schwartz,

1964). The kernelK : X ×X → R is a continuous symmetric positive definite function, where

positive definitemeans that

∑
i, j

aia jK(xi ,x j) ≥ 0.

for anyx1, . . .xn ∈ X anda1, . . .an ∈ R.

The spaceH is a real separable Hilbert space whose elements are real continuous functions

defined onX. In particular, the functionsKx = K(·,x) belong toH for all x∈ X, and

H = span{Kx |x∈ X}
〈Kx,Kt〉H = K(x, t) ∀x, t ∈ X,

where〈·, ·〉H is the scalar product inH . Moreover, since the kernel is continuous andX is compact

κ = sup
x∈X

√

K(x,x) = sup
x∈X

‖Kx‖H < +∞, (3)

where‖·‖H is the norm inH . Finally, givenx∈ X, the followingreproducingproperty holds

f (x) = 〈 f ,Kx〉H ∀ f ∈ H . (4)

In particular, in the learning algorithm (1) we choose the penalty term

Ω( f ) = ‖ f‖H
2,

so that, by a standard convex analysis argument, the minimizerfz
λ exists, is unique and can be

computed by solving a linear finite dimensional problem, (Wahba, 1990).

With the above choices, we will show that the consistency of the regularizedleast squares algo-

rithm can be deduced using the theory of linear inverse problems we reviewin the next section.
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3. Ill-Posed Inverse Problems and Regularization

In this section we give a very brief account of the main concepts of linear inverse problems and

regularization theory (see Tikhonov and Arsenin (1977); Groetsch (1984); Bertero et al. (1985,

1988); Engl et al. (1996); Tikhonov et al. (1995) and referencestherein).

Let H andK be two Hilbert spaces andA : H → K a linear bounded operator. Consider the

equation

A f = g (5)

whereg∈ K is theexactdatum. Finding the functionf satisfying the above equation, givenA and

g, is the linear inverse problem associated to (5). In general the above problem is ill-posed, that

is, the solution either not exists, is not unique or does not depend continuously on the datumg.

Existence and uniqueness can be restored introducing the Moore-Penrose generalized solutionf †

defined as the minimal norm solution of the least squares problem

min
f∈H

‖A f −g‖2
K . (6)

It can be shown (Tikhonov et al., 1995) that the generalized solutionf † exists if and only ifPg∈
Range(A), whereP is the projection on the closure of the range ofA. However, the generalized

solution f † does not depend continuously on the datumg, so that findingf † is again an ill-posed

problem. This is a problem since the exact datumg is not known, but only anoisydatumgδ ∈ K is

given, where‖g−gδ‖K ≤ δ. According to Tikhonov regularization (Tikhonov and Arsenin, 1977)

a possible way to find a solution depending continuously on the data is to replace Problem (6) with

the following convex problem

min
f∈H

{‖A f −gδ‖2
K +λ‖ f‖2

H }, (7)

and, forλ > 0, the unique minimizer is given by

f λ
δ = (A∗A+λI)−1A∗gδ, (8)

whereA∗ the adjoint operator ofA. A crucial issue is the choice of the regularization parameterλ
as a function of the noise. A basic requirement is that thereconstruction error

∥

∥

∥
f λ
δ − f †

∥

∥

∥

H

is small. In particular,λ must be selected, as a function of the noise levelδ and the datagδ, in such

a way that the regularized solutionf λ(δ,gδ)
δ converges to the generalized solution, that is,

lim
δ→0

∥

∥

∥
f λ(δ,gδ)
δ − f †

∥

∥

∥

H
= 0, (9)

for anyg such thatf † exists.
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Remark 1 We briefly comment on the well known difference between ill-posed and ill-conditioned

problems (Bertero et al., 1988). Finite dimensional problems are often well-posed. In particular it

can be shown that if a solution exists unique then continuity of A−1 is always ensured. Nonethe-

less regularization is needed since the problems are usually ill conditioned and lead to unstable

solutions.

Sometimes, another measure of the error, namely theresidual, is considered according to the fol-

lowing definition
∥

∥

∥
A fλ

δ −Pg
∥

∥

∥

K
=
∥

∥

∥
A fλ

δ −A f†
∥

∥

∥

K
, (10)

which will be important in our analysis of learning. Comparing (9) and (10),it is clear that while

studying the convergence of the residual we do not have to assume that the generalized solution

exists.

We conclude this section noting that the above formalism can be easily extended to the case of

a noisy operatorAδ : H → K where

‖A−Aδ‖ ≤ δ,

and‖·‖ is the operator norm (Tikhonov et al., 1995).

4. Learning as an Inverse Problem

The similarity between regularized least squares and Tikhonov regularization is apparent comparing

Problems (1) and (7). However while trying to formalize this analogy several difficulties emerge.

• To treat the problem of learning in the setting of ill-posed inverse problems wehave to define

a direct problem by means of a suitable operatorA between two Hilbert spacesH andK .

• The nature of the noiseδ in the context of statistical learning is not clear .

• We have to clarify the relation between consistency, expressed by (2), and the convergence

considered in (9).

In the following we present a possible way to tackle these problems and showthe problem of learn-

ing can be indeed rephrased in a framework close to the one presented in the previous section.

We let L2(X,ν) be the Hilbert space of square integrable functions onX with respect to the

marginal measureν and we define the operatorA : H → L2(X,ν) as

(A f)(x) = 〈 f ,Kx〉H ,

whereK is the reproducing kernel ofH . The fact thatK is bounded, see (3), ensures thatA is a

bounded linear operator. Two comments are in order. First, from (4) we see that the action ofA on
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an elementf is simply

(A f)(x) = f (x) ∀x∈ x, f ∈ H ,

that is, A is the canonical inclusion ofH into L2(X,ν). However it is important to note thatA

changes the norm since‖ f‖H is different to‖ f‖L2(X,ν). Second, to avoid pathologies connected

with subsets of zero measure, we assume thatν is not degenerate.1 This condition and the fact that

K is continuous ensure thatA is injective (see the Appendix for the proof).

It is known that, considering the quadratic loss function, the expected riskcan be written as

I [ f ] =
Z

X
( f (x)−g(x))2dν(x)+

Z

X×Y
(y−g(x))2dρ(x,y)

= ‖ f −g‖2
L2(X,ν) + I [g],

whereg is the regression function (Cucker and Smale, 2002b) andf is any function inL2(X,ν). If

f belongs to the hypothesis spaceH , the definition of the operatorA allows to write

I [ f ] = ‖A f −g‖2
L2(X,ν) + I [g]. (11)

Moreover, ifP is the projection on the closure of the range ofA, that is, the closure ofH into

L2(X,ν), then the definition of projection gives

inf
f∈H

‖A f −g‖2
L2(X,ν) = ‖g−Pg‖2

L2(X,ν) . (12)

Given f ∈ H , clearlyPA f = A f , so that

I [ f ]− inf
f∈H

I [ f ] = ‖A f −g‖2
L2(X,ν)−‖g−Pg‖2

L2(X,ν) = ‖A f −Pg‖2
L2(X,ν) , (13)

which is the square of the residual off .

Now, comparing (11) and (6), it is clear that the expected risk admits a minimizerfH on the

hypothesis spaceH if and only if fH is precisely the generalized solutionf † of the linear inverse

problem

A f = g. (14)

The fact thatfH is the minimal norm solution of the least squares problem is ensured by the fact

thatA is injective.

Let now z = (x,y) = ((x1,y1), . . . ,(x`,y`)) be the training set. The above arguments can be

repeated replacing the setX with the finite set{x1, . . . ,x`}. We now get a discretized version ofA

by defining thesampling operator(Smale and Zhou, 2004a)

Ax : H → E` (Ax f )i = 〈 f ,Kxi 〉H = f (xi),

1. This means that all the open non-void subsets ofX have strictly positive measure.
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whereE` = R
` is the finite dimensional euclidean space endowed with the scalar product

〈

w,w′〉
E` =

1
`

`

∑
i=1

wiw
′
i .

It is straightforward to check that

1
`

`

∑
i=1

( f (xi)−yi)
2 = ‖Ax f −y‖2

E` ,

so that the estimatorfz
λ given by the regularized least squares algorithm, see Problem (1), is the

Tikhonov regularized solution of the discrete problem

Ax f = y. (15)

At this point it is useful to remark the following three facts. First, in learning from examples rather

than finding a stable approximation to the solution of the noisy (discrete) Problem (15), we want to

find a meaningful approximation to the solution of the exact (continuous) Problem (14) (compare

with Kurkova (2004)). Second, in statistical learning theory, the key quantity is the residual of the

solution, which is a weaker measure than the reconstruction error, usuallystudied in the inverse

problem setting. In particular, consistency requires a weaker kind of convergence than the one

usually studied in the context of inverse problems . Third, we observe thatin the context of learning

the existence of the minimizerfH , that is, of the generalized solution, is no longer needed to define

good asymptotic behavior. In fact when the projection of the regression function is not in the range

of A the ideal solutionfH does not exist but this is not a problem since Eq. (12) still holds.

After this preliminary considerations in the next section we further develop our analysis stating

the main mathematical results of this paper.

5. Regularization, Stochastic Noise and Consistency

Table 1 compares the classical framework of inverse problems (see Section3) with the formulation

of learning proposed above. We note some differences. First, the noisydata spaceE` is different

from the exact data spaceL2(X,ν) so thatA andAx belong to different spaces, as well asg and

y. A measure of the difference betweenAx andA, and betweeng andy is then required. Second,

bothAx andy are random variables and we need to relate the noiseδ to the number̀ of examples

in the training setz. Given the above premise our derivation of consistency results is developed

in two steps: we first study the residual of the solution by means of a measureof the noise due to

discretization, then we show a possible way to give a probabilistic evaluation of the noise previously

introduced.
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Inverse problem Learning theory

input spaceH hypothesis space RKHSH

data spaceK target spaceL2(X,ν)

norm inK ‖ f‖K norm inL2(X,ν) ‖ f‖L2(X,ν)

exact operatorA inclusion ofH into L2(X,ν)

exact datumg regression functiong(x) =
R

Y ydρ(y|x)
generalized solutionf † ideal solutionfH

reconstruction error
∥

∥ f − f †
∥

∥

H
residual‖A f −A fH ‖2

L2(X,ν) = I [ f ]− I [ fH ]

noisy data spaceK E`

noisy datagδ ∈ K y ∈ E`

noisy operatorAδ : H → K sampling operatorAx : H → E`

Tikhonov regularization Regularized least squares algorithm

Table 1: The above table summarizes the relation between the theory of inverse problem and the

theory of learning from examples. When the projection of the regression function is not in

the range of the operatorA the ideal solutionfH does not exist. Nonetheless, in learning

theory, if the ideal solution does not exist the asymptotic behavior can still bestudied since

we are looking for the residual.

5.1 Bounding the Residual of Tikhonov Solution

In this section we study the dependence of the minimizer of Tikhonov functional on the operatorA

and the datag. We indicate withL(H ) andL(H ,K ) the Banach space of bounded linear operators

from H into H and fromH into K respectively. We denote with‖·‖L(H ) the uniform norm in

L(H ) and, if A ∈ L(H ,K ), we recall thatA∗ is the adjoint operator. The Tikhonov solutions of

Problems (14) and (15) can be written as

f λ = (A∗A+λI)−1A∗g,

f λ
z = (A∗

xAx +λI)−1A∗
xy

(see for example Engl et al., 1996, Chapter 5, page 117). The above equations show thatf λ
z and

f λ depend only onA∗
xAx and A∗A, which are operators fromH into H , and onA∗

xy and A∗g,

which are elements ofH . This observation suggests that noise levels could be evaluated controlling

‖A∗
xAx −A∗A‖L(H ) and‖A∗

xy−A∗g‖H .

For this purpose, for everyδ = (δ1,δ2) ∈ R
2
+, we define the collection of training sets

Uδ := {z ∈ (X×Y)`| ‖A∗
xy−A∗g‖H ≤ δ1, ‖A∗

xAx −A∗A‖L(H ) ≤ δ2}.
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Recalling thatP is the projection on the closure of the range ofA andY ⊂ [−M,M], we are ready to

state the following theorem.

Theorem 2 Givenλ > 0, the following inequality holds
∣

∣

∣

∣

∥

∥

∥
A fλ

z −Pg
∥

∥

∥

L2(X,ν)
−
∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)

∣

∣

∣

∣

≤ δ1

2
√

λ
+

Mδ2

4λ

for any training setz ∈ Uδ.

We postpone the proof to Section 5.4 and briefly comment on the above result.The first term in the

l.h.s. of the inequality is exactly the residual of the regularized solution whereas the second term

represents the approximation error, which does not depend on the sample. Our bound quantifies the

difference between the residual of the regularized solutions of the exact and noisy problems in terms

of the noise levelδ = (δ1,δ2). As mentioned before this is exactly the kind of result needed to derive

consistency. Our result bounds the residual both from above and below and is obtained introducing

the collectionUδ of training sets compatible with a certain noise levelδ. It is left to quantify the

noise level corresponding to a training set of cardinality`. This will be achieved in a probabilistic

setting in the next section, where we also discuss a standard result on the approximation error.

5.2 Stochastic Evaluation of the Noise and Approximation Term

In this section we give a probabilistic evaluation of the noise levelsδ1 andδ2 and we analyze the

behavior of the term
∥

∥A fλ −Pg
∥

∥

L2(X,ν)
. In the context of inverse problems a noise estimate is a part

of the available data whereas in learning problems we need a probabilistic analysis.

Theorem 3 Let0 < η < 1. Then

P
[

‖A∗g−Ax
∗y‖H ≤ δ1(`,η), ‖A∗A−Ax

∗Ax‖L(H ) ≤ δ2(`,η)
]

≥ 1−η

whereκ = supx∈X

√

K(x,x),

δ1(`,η) =
Mκ
2

ψ
(

8
`

log
4
η

)

δ2(`,η) =
κ2

2
ψ
(

8
`

log
4
η

)

with ψ(t) = 1
2(t +

√
t2 +4t) =

√
t +o(

√
t).

We refer again to Section 5.4 for the complete proof and add a few comments. The one proposed

is just one of the possible probabilistic tools that can be used to study the above random variables.

For example union bounds and Hoeffding’s inequality can be used introducing a suitable notion of

covering numbers onX×Y.

An interesting aspect in our approach is that the collection of training sets compatible with a

certain noise levelδ does not depend on the regularization parameterλ. This last fact allows us
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to consider indifferently data independent parameter choicesλ = λ(`) as well as data dependent

choicesλ = λ(`,z). Since through data dependent parameter choices the regularization parameter

becomes a function of the given sampleλ(`,z), in general some further analysis is needed to ensure

that the bounds hold uniformly w.r.t.λ.

We now consider the term
∥

∥A fλ −Pg
∥

∥

L2(X,ν)
which does not depend on the training setz and

plays the role of an approximation error (Smale and Zhou, 2003; Niyogi andGirosi, 1999). The

following is a trivial modification of a classical result in the context of inverse problems (see for

example Engl et al. (1996) Chapter 4, Theorem 4.1, p. 72).

Proposition 4 Let fλ the Tikhonov regularized solution of the problem A f= g, then the following

convergence holds

lim
λ→0+

∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)
= 0.

We report the proof in the Appendix for completeness. The above proposition ensures that, indepen-

dently of the probability measureρ, the approximation term goes to zero asλ → 0. Unfortunately

it is well known, both in learning theory (see for example Devroye et al. (1996); Vapnik (1998);

Smale and Zhou (2003); Steinwart (2004)) and inverse problems theory(Groetsch, 1984), that such

a convergence can be arbitrarily slow and convergence rates can be obtained only under some as-

sumptions either on the regression functiong or on the probability measureρ (Smale and Zhou,

2003). In the context of RKHS the issue was considered in Cucker and Smale (2002a); De Vito

et al. (2004) and we can strightforwardly apply those results to obtain explicit convergence rates.

We are now in the position to derive the consistency result that we presentin the following

section.

5.3 Consistency and Regularization Parameter Choice

Combining Theorems 2 and 3 with Proposition 4, we easily derive the following result (see Section

5.4 for the proof).

Theorem 5 Given 0 < η < 1, λ > 0 and ` ∈ N, the following inequality holds with probability

greater that1−η

I [ fz
λ]− inf

f∈H
I [ f ] ≤

[(

Mκ
2
√

λ
+

Mκ2

4λ

)

ψ
(

8
`

log
4
η

)

+
∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)

]2

(16)

=



Mκ2

√

log 4
η

2λ2`
+
∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)
+o

(
√

1
λ2`

log
4
η

)





2

whereψ(·) is defined as in Theorem 3. Moreover, ifλ = O(l−b) with 0 < b < 1
2, then

lim
`→+∞

P
[

I [ fz
λ(`,z)]− inf

f∈H
I [ f ] ≥ ε

]

= 0.
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for everyε > 0.

As mentioned before, the second term in the right hand side of the above inequality is an approxi-

mation error and vanishes asλ goes to zero. The first term in the right hand side of Inequality (16)

plays the role of sample error. It is interesting to note that sinceδ = δ(`) we have an equivalence

between the limit̀ → ∞, usually studied in learning theory, and the limitδ → 0, usually considered

for inverse problems. Our result presents the formal connection between the consistency approach

considered in learning theory, and the regularization-stability convergence property used in ill-posed

inverse problems. Although it is known that connections already exist, as far as we know, this is the

first full connection between the two areas, for the specific case of square loss.

We now briefly compare our result with previous work on the consistency of the regularized

least squares algorithm. Recently, several works studied the consistency property and the related

convergence rate of learning algorithms inspired by Tikhonov regularization. For the classification

setting, a general discussion considering a large class of loss functionscan be found in Steinwart

(2004), whereas some refined results for specific loss functions can be found in Chen et al. (2004)

and Scovel and Steinwart (2003). For regression problems in Bousquet and Elisseeff (2002) a large

class of loss functions is considered and a bound of the form

I [ fz
λ]− Iz[ fz

λ] ≤ O

(

1√
`λ

)

is proved, whereIz[ fz
λ] is the empirical error.2 Such a bound allows to prove consistency using the

error decomposition in Steinwart (2004). The square loss was considered in Zhang (2003) where,

using leave-one out techniques, the following bound in expectation was proved

Ez(I [ fz
λ]) ≤ O

(

1
`λ

)

.

Techniques similar to those used in this paper are used in De Vito et al. (2004)to derive a bound of

the form

I [ fz
λ]− inf

f∈H
I [ f ] ≤

(

S(λ, `)+
∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)

)2

whereS(λ, `) is a data-independent bound on
∥

∥

∥
fz

λ − f λ
∥

∥

∥

L2(X,ν)
. In that caseS(λ, `) ≤ O

(

1√
`λ

3
2

)

and we see that Theorem 4 givesS(λ, `) ≤ O
(

1√
`λ

)

. Moreover in Cucker and Smale (2002a),

Theorem 2 givesO
(

log`√
`λ2

)

as it can be seen from Equation (3) at p. 12. Finally our results were

recently improved in Smale and Zhou (2004b), where, using again techniques similar to those pre-

sented here, a bound of the formS(λ, `) ≤ O
(

1√
`λ

)

+O
(

1

`λ
3
2

)

is obtained. It is worth noting that

in general working on the square root of the error leads to better overall results.

2. We recall that the empirical error is defined asIz[ f ] = 1
` ∑`

i=1V( f (xi),yi).
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5.4 Proofs

In this section we collect the proofs of the theorems that we stated in the previous sections. e first

now prove the bound on the residual for the Tikhonov regularization.

Proof [of Theorem 2] The idea of the proof is to note that, by triangular inequality,we can write
∣

∣

∣

∣

∥

∥

∥
A fλ

z −Pg
∥

∥

∥

L2(X,ν)
−
∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)

∣

∣

∣

∣

≤
∥

∥

∥
A fλ

z −A fλ
∥

∥

∥

L2(X,ν)
(17)

so that we can focus on the difference between the discrete and continuous solutions. By a simple

algebraic computation we have that

f λ
z − f λ = (A∗

xAx +λI)−1A∗
xy− (A∗A+λI)−1A∗g

= [(A∗
xAx +λI)−1− (A∗A+λI)−1]A∗

xy+(A∗A+λI)−1(A∗
xy−A∗g) (18)

= (A∗A+λI)−1(A∗A−A∗
xAx)(A

∗
xAx +λI)−1A∗

xy+(A∗A+λI)−1(A∗
xy−A∗g).

and we see that the relevant quantities for the definition of the noise appear.

We claim that
∥

∥A(A∗A+λI)−1
∥

∥

L(H )
=

1

2
√

λ
(19)

∥

∥(A∗
xAx +λI)−1A∗

x

∥

∥

L(H )
=

1

2
√

λ
. (20)

Indeed, letA = U |A| be the polar decomposition ofA. The spectral theorem implies that

‖A(A∗A+λI)−1‖L(H ) = ‖U |A|(|A|2 +λI)−1‖L(H ) = ‖|A|(|A|2 +λI)−1‖L(H )

= sup
t∈[0,‖|A|‖

t
t2 +λ

.

A direct computation of the derivative shows that the maximum oft
t2+λ is 1

2
√

λ
and (19) is proved.

Formula (20) follows replacingA with Ax.

Last step is to plug Equation (18) into (17) and use Cauchy-Schwartz inequality. Since‖y‖E` ≤
M, (19) and (20) give

∣

∣

∣
‖A fλ

z −Pg‖L2 − ‖A fλ −Pg‖L2

∣

∣

∣
≤ M

4λ
‖A∗A−A∗

xAx‖L(H ) +
1

2
√

λ
‖A∗

xy−A∗g‖H

so that the theorem is proved.

The proof of Theorem 2 is a straightforward application of Lemma (8) (seeAppendix) .

Proof [Theorem 2] The proof is a simple consequence of estimate (26) applied to therandom vari-

ables

ξ1(x,y) = yKx

ξ2(x,y) = 〈·,Kx〉H Kx = Kx⊗Kx
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where

1. ξ1 takes value inH , L1 = κM andv∗1 = A∗g, see (21), (23);

2. ξ2 takes vales in the Hilbert space of Hilbert-Schmidt operators, which can beidentified with

H ⊗H , L2 = κ2 andv∗2 = T, see (22), (24).

Replacingη with η/2, (26) gives

‖A∗g−Ax
∗y‖H ≤ δ1(`,η) =

Mκ
2

ψ
(

8
`

log
4
η

)

‖A∗A−Ax
∗Ax‖L(H ) ≤ δ2(`,η) =

κ2

2
ψ
(

8
`

log
4
η

)

,

respectively, so that the thesis follows.

Finally we combine the above results to prove the consistency of the regularized least squares

algorithm.

Proof [Theorem 4] Theorem 1 gives

‖A fλ
z −Pg‖L2(X,ν) ≤

(

1

2
√

λ
δ1 +

M
4λ

δ2

)

+‖A fλ −Pg‖L2(X,ν).

Equation (13) and the estimates for the noise levelsδ1 andδ2 given by Theorem 2 ensure that

√

I [ fz
λ]− inf

f∈H
I [ f ] ≤

(

Mκ
2
√

λ
+

Mκ2

4λ

)

ψ
(

8
`

log
4
η

)

+
∥

∥

∥
A fλ −Pg

∥

∥

∥

L2(X,ν)

and (16) simply follows taking the square of the above inequality. Let nowλ = 0(`−b) with

0 < b < 1
2, the consistency of the regularised least squares algorithm is proved byinverting the

relation betweenε andη and using the result of Proposition (4) (see Appendix).

6. Conclusions

In this paper we analyse the connection between the theory of statistical learning and the theory of

ill-posed problems. More precisely we show that, considering the quadraticloss function, the prob-

lem of finding the best solutionfH for a given hypothesis spaceH is a linear inverse problem and

that the regularized least squares algorithm is the Tikhonov regularizationof the discretized version

of the above inverse problem. As a consequence, the consistency of thealgorithm is traced back to

the well known convergence property of the Tikhonov regularization. Aprobabilistic estimate of

the noise is given based on a elegant concentration inequality in Hilbert spaces.
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An open problem is extending the above results to arbitrary loss functions.For other choices of

loss functions the problem of finding the best solution gives rise to a non linear ill-posed problem and

the theory for this kind of problems is much less developed than the corresponding theory for linear

problems. Moreover, since, in general, the expected riskI [ f ] for arbitrary loss function does not

define a metric, the relation between the expected risk and the residual is notclear. Further problems

are the choice of the regularization parameter, for example by means of the generalized Morozov

principle (Engl et al., 1996) and the extension of our analysis to a wider class of regularization

algorithms.
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Appendix A. Technical Results

First, we collect some useful properties of the operatorsA andAx.

Proposition 6 The operator A is a Hilbert-Schmidt operator fromH into L2(X,ν) and

A∗φ =
Z

X
φ(x)Kxdν(x), (21)

A∗A =
Z

X
〈·,Kx〉H Kxdν(x), (22)

whereφ ∈ L2(X,ν), the first integral converges in norm and the second one in trace norm.

Proof The proof is standard and we report it for completeness.

Since the elementsf ∈ H are continuous functions defined on a compact set andν is a probability

measure, thenf ∈ L2(X,ν), so thatA is a linear operator fromH to L2(X,ν). Moreover the Cauchy-

Schwartz inequality gives

|(A f)(x)| = |〈 f ,Kx〉H | ≤ κ ‖ f‖H ,

so that‖A f‖L2(X,ν) ≤ κ‖ f‖H andA is bounded.

We now show thatA is injective. Let f ∈ H andW = {x∈ X | f (x) 6= 0}. AssumeA f = 0,

thenW is a open set, sincef is continuous, andW has null measure, since(A f)(x) = f (x) = 0 for

ν-almost allx∈ X. The assumption thatν is not degenerate ensuresW be the empty set and, hence,

f (x) = 0 for all x∈ X, that is, f = 0.

We now prove (21). We first recall the map

X 3 x 7→ Kx ∈ H
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is continuous since‖Kt −Kx‖H
2 = K(t, t)+K(x,x)−2K(x, t) for all x, t ∈ X, andK is a continuous

function. Hence, givenφ ∈ L2(X,ν), the mapx 7→ φKx is measurable fromX to H . Moreover, for

all x∈ X,

‖φ(x)Kx‖H = |φ(x)|
√

K(x,x) ≤ |φ(x)|κ.

Sinceν is finite, φ is in L1(X,ν) and, hence,φKx is integrable, as a vector valued map. Finally, for

all f ∈ H ,
Z

X
φ(x)〈Kx, f 〉H dν(x) = 〈φ,A f〉L2(X,ν) = 〈A∗φ, f 〉H ,

so, by uniqueness of the integral, Equation (21) holds.

Equations (22) is a consequence of Equation (21) and the fact that the integral commutes with

the scalar product.

We now prove thatA is a Hilbert-Schmidt operator. Let(en)n∈N be a Hilbert basis ofH . Since

A∗A is a positive operator and|〈Kx,en〉H |2 is a positive function, by monotone convergence theorem,

we have that

Tr(A∗A) = ∑
n

Z

X
|〈en,Kx〉H |2dν(x)

=
Z

X
∑
n
|〈en,Kx〉H |2dν(x)

=
Z

X
〈Kx,Kx〉H dν(x)

=
Z

X
K(x,x)dν(x) < κ2

and the thesis follows.

Corollary 7 The sampling operator Ax : H → E` is a Hilbert-Schmidt operator and

Ax
∗y =

1
`

`

∑
i=1

yiKxi (23)

Ax
∗Ax =

1
`

`

∑
i=1

〈·,Kxi 〉H Kxi . (24)

Proof The content of the proposition is a restatement of Proposition 6 and the factthat the integrals

reduce to sums.

For sake of completeness we report a standard proof on the convergence of the approximation

error.

Proof [of Proposition 4] Consider the polar decompositionA = U |A| of A (see, for example, Lang

(1993)), where|A|2 = A∗A is a positive operator onH andU is a partial isometry such that the

899



DE V ITO, ROSASCO, CAPONNETTO, DE GIOVANNINI AND ODONE

projectorP on the range ofA is P = UU∗. Let dE(t) be the spectral measure of|A|. Recalling that

f λ = (A∗A+λ)−1A∗g = (|A|2 +λ)−1|A|U∗g

the spectral theorem gives

∥

∥

∥
A fλ −Pg

∥

∥

∥

2

K
=

∥

∥U |A|(|A|2 +λ)−1|A|U∗g−UU∗g
∥

∥

2
K

=

=
∥

∥

∥

(

|A|2
(

|A|2 +λ
)−1−1

)

U∗g
∥

∥

∥

2

H
=

=
Z ‖|A|‖

0

(

t2

t2 +λ
−1

)2

d〈E(t)U∗g,U∗g〉H .

Let rλ(t) = t2

t2+λ −1 = − λ
t2+λ , then

|rλ(t)| ≤ 1 and lim
λ→0+

rλ(t) = 0 ∀t > 0,

so that the dominated convergence theorem gives that

lim
λ→0+

∥

∥

∥
A fλ −Pg

∥

∥

∥

2

K
= 0.

Finally, to prove our estimate of the noise we need the following probabilistic inequality due to

Pinelis and Sakhanenko (1985). (See Yurinsky, 1995, for the version presented int he following.)

Lemma 8 Let Z be a probability space andξ be a random variable on X taking value in a real

separable Hilbert spaceH . Assume that the expectation value v∗ = E[ξ] exists and there are two

positive constants H andσ such that

‖ξ(z)−v∗‖H ≤ H a.s

E[‖ξ−v∗‖2
H ] ≤ σ2.

If zi are drawn i.i.d. from Z, then, with probability greater than1−η,
∥

∥

∥

∥

∥

1
`

`

∑
i=1

ξ(zi)−v∗
∥

∥

∥

∥

∥

≤ σ2

H
g

(

2H2

`σ2 log
2
η

)

= δ(`,η) (25)

where g(t) = 1
2(t +

√
t2 +4t). In particular

δ(`,η) = σ

√

2
`

log
2
η

+o

(
√

1
`

log
2
η

)
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Proof It is just a testament to Th. 3.3.4 of Yurinsky (1995), see also Steinwart (2003). Consider the

set of independent random variables with zero meanξi = ξ(zi)−v∗ defined on the probability space

Z`. Since,ξi are identically distributed, for allm≥ 2 it holds

`

∑
i=1

E[‖ξi‖m
H ] ≤ 1

2
m!B2Hm−2,

with the choiceB2 = `σ2. So Th. 3.3.4 of Yurinsky (1995) can be applied and it ensures

P

[

1
`

∥

∥

∥

∥

∥

`

∑
i=1

(ξ(zi)−v∗)

∥

∥

∥

∥

∥

≥ xB
`

]

≤ 2exp

(

− x2

2(1+xHB−1)

)

for all x≥ 0. Lettingδ = xB
` , we get the equation

1
2
(
`δ
B

)2 1
1+ `δHB−2 =

`δ2σ−2

2(1+δHσ−2)
= log

2
η

,

sinceB2 = `σ2. Definingt = δHσ−2

`σ2

2H2

t2

1+ t
= log

2
η

.

The thesis follows, observing thatg is the inverse of t2

1+t and thatg(t) =
√

t +o(
√

t).

We notice that, ifξ is bounded byL almost surely, thenv∗ exists and we can chooseH = 2L and

σ = L so that

δ(`,η) =
L
2

g

(

8
`

log
2
η

)

. (26)

In Smale and Y. (2004) a better estimate is given, replacing the functiont2

1+t with t log(1+t), anyway

the asymptotic rate is the same.
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