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Abstract

Most machine learning researchers perform quantitatigemments to estimate generalization
error and compare the performance of different algoritimpdrticular, their proposed algorithm).
In order to be able to draw statistically convincing conmus, it is important to estimate the
uncertainty of such estimates. This paper studies the \@nnonly used K-fold cross-validation
estimator of generalization performance. The main thewkaws that there exists no universal
(valid under all distributions) unbiased estimator of tlegiance of K-fold cross-validation. The
analysis that accompanies this result is based on the eigemmposition of the covariance matrix
of errors, which has only three different eigenvalues @poading to three degrees of freedom of
the matrix and three components of the total variance. Trimadyais helps to better understand the
nature of the problem and how it can make naive estimatoas ¢itn’t take into account the error
correlations due to the overlap between training and tés} geossly underestimate variance. This
is confirmed by numerical experiments in which the three comepts of the variance are compared
when the difficulty of the learning problem and the numberabdi$ are varied.

Keywords: cross-validation, variance estimators, k-fold crosseedion, statistical comparisons
of algorithms

1. Introduction

In machine learning, the standard measure of accuracy for trained nmedkés prediction error

(PE), i.e. the expected loss on future examples. Learning algorithms themsety often com-

pared according to their average performance, which is formally definglde expected value of
prediction error (EPE) over training sets.

When the data distribution is unknown, PE and EPE cannot be computede dintbunt of
data is large enough, PE can be estimated by the mean error over a hoddtoset. The usual
variance estimates for means of independent samples can then be compudeedecaerror bars
on the estimated prediction error, and to assess the statistical significadifii@nces between
models.

The hold-out technique does not account for the variance with regpdue training set, and
may thus be considered inappropriate for the purpose of algorithm cmopdbDietterich, 1999).
Moreover, it makes an inefficient use of data which forbids its applicatiemiall sample sizes. In
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this situation, one rather uses computer intensive resampling methods scrdss&salidation or
bootstrap to estimate PE or EPE.

We focus here on K-fold cross-validation. While it is known that crosiédation provides an
unbiased estimate of EPE, itis also known that its variance may be very Brgjman, 1996). This
variance should be estimated to provide faithful confidence intervals @mr EPE, and to test the
significance of observed differences between algorithms. This papddps theoretical arguments
showing the difficulty of this estimation.

The difficulties of the variance estimation have already been addressstte(ah, 1999; Ko-
havi, 1995; Nadeau and Bengio, 2003). Some distribution-free boamdise deviations of cross-
validation are available, but they are specific to some locally defined decigdas) such as nearest
neighbors (Devroye et al., 1996). This paper builds upon the workaglieldu and Bengio (2003),
which investigated in detail the theoretical and practical merits of sevenalagers of the variance
of cross-validation. Our analysis departs from this work in the samplingegiure defining the
cross-validation estimate. While Nadeau and Bengio (2003) consider lgendent training and
test splits, we focus on the standard K-fold cross-validation proceddrere there is no overlap
between test sets: each example of the original data set is used ongdyaodae as a test example.

This paper is organized as follows. Section 2 defines the measuresfafnmence for algo-
rithms, their estimation by K-fold cross-validation and similar procedures asateleten jack-
knife. Our theoretical findings are summarized in Sections 3—-6. TheyHkoeéd in Section 7 by
experiments illustrating the effect of experimental conditions on the totaln@iand its decom-
position in three components, and confirming the underestimation of variateieed by the naive
estimator commonly used by researchers.

2. General Framework

In machine learning, the performance measure differs according topeeigenter’s viewpoint. In
applications, we are interested in finding the best algorithm for solving thieyar task at hand,
specified by one particular training set and some information about the ela¢aaging process. In
algorithm evaluation, we want to compare several learning algorithms feretit learning tasks,
and we care about the sensitivity of the learning algorithm to the choiceiniieexamples.

2.1 Measuresof Performance

Formally, we have a training s& = {zi,...,z,}, with z € Z, independently sampled from an
unknown distributiorP. We also have a learning algorithfg which maps a data set of (almost)
arbitrary size to a functioA : Z* — F. Throughout this paper, we consider symmetric algorithms,
i.e. Ais insensitive to the ordering of examples in the training®eThe discrepancy between the
prediction and the observatianis measured by a loss functioral F x Z — R. Typically, L is
the quadratic loss in regressidn( €, (x,y)) = (f(x) —y)?) and the misclassificatiof0, 1}-loss in
classification (L(f,(X,y)) = 1f(2y)-

Let f = A(D) be the function returned by algorithfnon the training se. In application based
evaluation, the goal of learning is usually stated as the minimization of the predéctior, i.e. the
expected loss on future test examples

PE(D) = E[L(f,Z)], (1)
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where the expectation is taken with respect sampled fronP.!

In algorithm based evaluation, we are not really interested in perforraamca specific training
set; we would like comparisons on a more general basis. In this contextwestltevel of gen-
erality can be stated as “training sets of sizeampled fronP”, and the performance of learning
algorithmA can be measured by the expected performance of the functions reitthedsituation

EPEN) = E[L(A(D),2)], (2)

where the expectation is taken with respecDt@ampled fromP" and z independently sampled
from P.

Note that other types of performances measure can be proposed ftiasgample on parame-
ters, or defined by the predictability in other frameworks, such as theipngial analysis (Dawid,
1997).

When the data distribution is unknown, PE and EPE cannot be computed. h@ékie to be
estimated, and it is often crucial to assess the uncertainty attached to this estimatio

e in application-oriented experiments, to give a confidence interval on PE;

¢ in algorithm-oriented experiments, to take into account the stability of a giveoridim.
For comparisons between algorithms, it is essential to assess the statistifetesige of
observed differences in the estim&eE.

Although this point is often overlooked, estimating the variance of the estirP&iemndEPE re-
quires caution.

2.2 Hold-Out Estimates of Perfor mance

If the amount of data is large enough, PE can be estimated by the meanvemrarwld-out test set,
and the usual variance estimate for means of independent variablegndretbomputed. However,
even in the ideal situation where several independent training and test@@d be available, this
estimate should not be applied to compute the variancERE: even though training and test
examples are independent, the test errors are correlated, since ntagrydesare computed for
each training set, now considered as a random variable.

Figure 1 illustrates how crucial it is to take these correlations into accourd.méan of two
variance estimators is reportgd. the empirical variance of the hold-out estimate, in an ideal situ-
ation where 10 independent training and test sets are available. TheceadﬁE/P\E(n) (estimated
on 100,000 independent experiments) is displayed for reference lopttesl line. The average of
0., the variance estimator ignoring correlations, shows that this estimate is highdb even for
large sample sizes, whereas the variance estirateaking into account correlations, is unbiased.
The details of this experiment are given below.

Experiment 1 Ideal hold-out estimate &PE
We have K= 10 independent training setsiD...,Dk of n independent examples= (xi, Vi),
wherex; = (X1,...,Xq)’ is a d-dimensional centered, unit covariance Gaussian variable 8f),

1. Note that we are using the same notation for random variables andahknation. The intended meaning will be
specified when not clear from the context.

1091



BENGIO AND GRANDVALET

20 30 40 50 60

Figure 1: Estimates of the variance 65E(n) vs. empirical variance oE/P\E(n) (shown by bold
curve) on 100,000 experiments. The average of the variance estinBat¢ignoring
correlations, dashed curve) afgl (taking into account correlations, dotted curve) are
displayed for different training sample sine

yi = \/?a/—dzﬂzlxik +&; with & being independent, centered, unit variance Gaussian varigbigs.
also have K independent test sets.T., Tx of size n sampled from the same distribution.

The learning algorithm consists in fitting a line by ordinary least squared,the estimate of
EPEis the average quadratic loss on test exam&®E = L = 25K 15, ¢ Ly, where L =
L(A(Dk),Zi). - N _

The first estimate of variance d&PE is 6; = miﬁzlii(l—ki —L)2, which is un-

biased provided there is no correlation between test errors. The deestimate isGAz =

m Sk, ¥ij(Lki—L)(Lkj — L), which takes into account correlations between test errors.

Looking at Figure 1 suggests that asymptotically the naive estimator of ear@omverges to
the true variance. This can be shown formally by taking advantage of sudtgen this paper,
as long as the learning algorithm converges as the amount of training degtagmfinity (i.e. as
n— oo the functionA(D) obtained does not depend on the particular trainin@geln that limit, the
correlations between test errors converge to 0. The rate of comaergéll depend on the stability
of the learning algorithm as well as on the nature of the data distribution (eegorélsence of thick
tails and outliers will slow down convergence).

The hold-out technique makes an inefficient use of data which forbidpjiscation in most
real-life applications with small samples. Then, K-fold cross-validation cavighe estimates of PE
or EPE.

2.3 K-Fold Cross-Validation Estimates of Perfor mance

Cross-validation is a computer intensive technique, using all available ¢éasamptraining and test
examples. It mimics the use of training and test sets by repeatedly training trghaigK times
with a fraction YK of training examples left out for testing purposes. This kind of hold-stitreate
of performance lacks computational efficiency due to the repeated traminhthe latter are meant
to lower the variance of the estimate (Stone, 1974).

2. The,/3/d factor provides aR? of approximately 34.
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In practice, the data sé& is first chunked intd disjoint subsets (oblockg of the same size

m2 n/K. Let us writeTy for thek-th such block, an®y the training set obtained by removing the
elements inl from D. The cross-validation estimator is defined as the average of the errtston
block Tk obtained when the training set is deprived frégn

K
2

Does CV estimate PE or EPE? Such a question may seem pointless consideripg ) is
an estimate of EP@), but it becomes relevant when considering the variance of CV: dodseiitrin
us of the uncertainty about PE or EPE?

On the one hand, only one training sBt, enters the definition of CV, which can be, up to an
approximation, an unbiased estimate of BEE(Hastie and Tibshirani, 1996) Some distribution-
free bounds on the expected deviation$@V (D) — PE(D)| are available for leave-one-out cross-
validation applied to specific algorithn#s such as nearest neighbors (Devroye et al., 1996). In
a more general context, it has also been proved that, under suitable staslitsnptions on the
algorithmA, CV(D) estimates PED) at least as accurately as the training error (Kearns and Ron,
1996; Anthony and Holden, 1998). A more appealing result states thas @vmore accurate
estimate of PE than hold-out testing (Blum et al., 1999). However, this statetoes not apply
to PED), but to the prediction error of a randomized algorithm picking solutions tmifowithin
{A(Dk)}E:l'

On the other hand, CV is explicitly defined from the learning algorithnand not from the
function f = A(D). The inner average in the definition of CV (3) is an average test losi(foy)
which thus estimates unbiasedly (k). The training set®;, ..., Dk are clearly not independent,
but they are sampled froR"™. Hence, the outer average of (3) estimates unbiasedlyEP).°
Here, following Dietterich (1999) and Nadeau and Bengio (2003), weadibpt this latter point of
view.

The variance estimate &PE provided by the hold-out estimate has to account for test error
dependencies due to the choice of training set, which cannot be estimitgd gsgle training/test
experiment. Here, the situation is more complex, since there are additiomaddigries due to the
overlapping training setB1,...,Dk. Before describing this situation in detail and summarizing
the results of our theoretical analysis in Sections 3—6, we detail somedpiresesimilar to K-fold
cross-validation, for which the forthcoming analysis will also hold.

CV(D) =

X~
Sk

Zr L(A(Dx),z). ®3)

2.4 Other Estimates of the K-Fold Cross-Validation Type

One of the main use of variance estimate€BE is to compare learning algorithms. The analysis
presented in this paper also applies to the version of cross-validatioratidito this purpose: if
we want to compare the performances of algoritdmandA,, cross-validation with matched pairs

3. To simplify the analysis below we assume thé a multiple ofK.

4. More precisely, following Hastie and Tibshirani (1990), wheis the quadratic loss, and writing= A(D), fk=
A(Dx), assuming that fofxi,yi) = z € Tk, & SK_; f7%(xi) ~ f(xi) (which is weaker thari ¥ ~ f) yieldsE[CV] ~
E[% S (f(xi) — vi)?], where the expectation is taken with respegito.. ., yn.

5. Note that leave-one-out cross-validation is known to fail to estimatef&REismooth statistics (e.g. Breiman, 1996;
Efron and Tibshirani, 1993). This failure is due to the similarity of the trairsatsD1, ..., Dk which are far from
being representative samples drawn frefn™.
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should be the method of choice

ACV(D

7<||—\
BIH

3

Compared to the difference of two independent cross-validation estindgasavoids the addi-
tional variability due to train/test splits.

In application oriented experiments, we would like to estimatdPEthe expected error when
training with the giverD. We have seen in Section 2.3 that under stability assumptions, CV can be
used to estimate PE. Alternatively, we may resort to the jackknife or the dulgtekknife (see e.g.
Efron and Tibshirani (1993)) to estimate the optimism (i.e. the bias of the meamnoer training
examples, when the latter is used to estimatéIPE Ideally, the estimate of optimism should be
an average over all subsets of size m, but a less computationally intensive alternative is

K n
(K-1) (ﬁgﬂie LAD.2) - %;L(A@)@) . (5)

The link with cross-validation is exhibited more clearly by the following expogssf the (de-
biased) jackknife estimate of PE

Z Al Dk) Z,) L(Az(Dk),Zi). (4)

K= CV+%k§li§<L<A<D>,zi> — L(ADK),2)). (6)

For additional information about jackknife estimates and clues on the derivaf (5) and (6), the
reader is referred to Efron and Tibshirani (1993).

2.5 Generic Notations

This paper studies the variance of statistics such asXCWV, or JK. In what follows, these statistics
will be denoted by, a generic notation for means of observatignsplit in K groups.

2"
2,

X|H 3|I—\

1
m, <
where, slightly abusing notationg Ty means; € Ty and

L(A(Dx),z) forp=CV,
Vi e Tk, & = L(Al(Dk),Zi) — L(Az(Dk), Zi) for flz ACV,
KL(A(D),z) — ¥ 12k L(A(Dy),zi) for i=JK

Note thatlis the average of identically distributed (dependent) variables. Thusyrifsti-
cally converges to a normally distributed variable, which is completely chaizexdeby its expec-
tation E[f] and its variance Vi = E[{’] — E[f]°.
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3. Structure of the Covariance Matrix

The variance ofiis defined as follows

3 Covte.e).

I;]

where Cove, €)) = E[eej] — E[a]E[g] is the covariance between variab&sinde;.

By using symmetry arguments over permutations of the exampl&s ime show that many
distributions org and pairwise joint distributions o, e;) are identical. As a result, the covariance
matrix > has a very particular block structure, with only three possible valuesjfer Cov(e, €;),
and the expression &fis thus a linear combination of these three values.

Lemma 1l Using the notation introduced in section 2.5,

1. all g are identically distributed:
there exists f such thatj, P(e = u) = f(u).

2. all pairs (g, €j) belonging to the same test block are jointly identically distributed:
there exists g such that{i, j) € T2: j #i, P(e = u,ej = V) = g(u,v).

3. all pairs (&, €;j) belonging to different test blocks are jointly identically distributed:
there exists h such thatj € Ty, Vj € T, : £ #k, P(& =u,e; =Vv) =h(u,v).
Proof

These results are derived immediately from the permutation-invariancéDyf &d the symmetry
of A.

e invariance with respect to permutations within test blocks:

1. Y(i,i") € T2, P(g = u) = P(&y = u) = fi(u);
v(i,i") € T2, Vj € Ty
P(e =u,ej=Vv)=P(er =u,ej =V)
hence:
2.Y(i,j) €T2:j#i, Ple =u,e; = V) = gk(u,V).
3. VieT, VjeT:£#Kk, P(e =u,e =V) =hg(u,v).

e invariance with respect to permutations between test blocks.

1. V(k,K), fi(u) = fie(u) = f(u);
2. Y(k,K), g(u Ok (U, V) = g(u,v);

V) =
3. V(K K), Y, 0): b £kt #K AL £KLE #K, hg(uv) = he(u,v) = hep(u,v) =
hiee(u,v) = h(u,v).

Q.E.D.
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Corollary 2 The covariance matrix of cross-validation errore = (ey,...,€,)" has the simple
block structure depicted in Figure 2:

1. all diagonal elements are identical
Vi, Cov(e, &) = Varle] = 0

2. all the off-diagonal entries of the K sim diagonal blocks are identical
V(i,j) € T2 j#i, Cov(e,g) = w,

3. all the remaining entries are identical
VieT, Vje T, L #k, Cov(e,g)) =Y.

1
=

[

-

Figure 2: Structure of the covariance matrix.

Corollary 3 The variance of the cross-validation estimator is a linear combination oethme-
ments:

1
6 = FECov(a,ej)

1, m-1 n—m
e (7)

Hence, the problem of estimatiftgdoes not involve estimating(n+ 1) /2 covariances, but it
cannot be reduced to that of estimating a single variance parameter. ctmgenents intervene,
which may be interpreted as follows whgisthe K-fold cross-validation estimate of EPE:

1. The variancev? is the average (taken over training sets) variance of errors for “tiest”
examples when algorithi is fed with training sets of size(K — 1).

2. The within-block covariances would also apply to “true” test examples; it arises from the
dependence of test errors stemming from the common training set.

3. The between-blocks covariangis due to the dependence of training sets (which shidfe-
2)/K examples) and the fact that test blolkappears in all the training sels for ¢ # k.

The forthcoming section makes use of this structure to show that there isiveraat unbiased
estimator 0.
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4. No Unbiased Estimator of Var[fl] Exists

Consider a generic estimatér that depends on the sequence of cross-validation egors
(e1,€2,...,en) . Let us assume thd is an analytic function of the errors, so that we can write
its Taylor expansion

~

O=ao+ ) m(i)e+ ) axi,j)aej+ ) as(i,j,kjeejec+.... 8
I I.’J i7J7

We first show that for unbiased variance estimates EJ8] = Var]fi), all thea; coefficients must
vanish except for the second order coefficianis;.

Lemma4 There is no universal unbiased estimatoMaf[f)] that involves thején a non-quadratic
way.

Proof

Take the expected value®expressed as in (8), and equate it wWittr[[] (7):

E[6] =ao+ Y ai()E[e] + Y ax(i, ) E[aej] + Ekag(i, ji.KEeejed+...
[ ] i,
6=30%+Mtw+ Doy,
For having E] = 6 for all possible values of the momentspbne must have = 0 becausé®
has no such constant term, not depending on any of the momemntSiafilarly,a;(-) must be zero

because has no term in Eg] = p. Finally, the third and higher order coefficients(...), ¢ > 2
must also be zero becauBdas only quantities depending on the second order monents and

Y.
Q.E.D.

Since estimators that include moments other than the second moments in theirtexpacéa
biased, we now focus on the class of estimators which are quadratic fotheserrors, i.e.

6=eWe=3 Wjee;. (9)
N

Lemma5 The expectation of quadratic estimat@slefined as in (9) is a linear combination of
only three terms

E[6] = a(0” + 1) + b(w+ 1) + c(y+ 1), (10)

where(a,b,c) are defined as follows:

A
a = Xin:l\/vli?

A
b j S hoa SieT 3 jeticj Wi
c = zlf:lZZ#kZieTkaen\Nlj-

A “trivial” representer of estimators with this expected value is

0 =as +bs +css, (12)
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where(s1,s,s3) are the only quadratic statistics @fthat are invariants to the within blocks and
between blocks permutations described in Lemma 1:

A 12
S = = q2>
ni;
A 1 g
S = — g€j, 12
nUn“l)égugijé%;¢i J (12
3 A __;E___fi &€
\ ”(n—m>k:11§kiezkjez :

Proof
This result is obtained exploiting Corollary 2 and grouping the term@ iof Equation (9) that have
the same expected values.

K

E[6] = WiE W;E[eeg W Elge
0 - Sy (w3 wesere g g wers)
K

n
= (0®+1P) Zan + (0 + ) W +
i=

K
AP PIPAL

= a(0%+ ) + b(w+ 1) + cy+ 1)
= aE[s] +bE[sy] + cE[sg],

which is recognized as the expectation of the estimator defined in Equatipn (1

k:lieZk JeTK i

Q.E.D.

We now use Lemma 5 to prove that there isurdversallyunbiased estimator of Vi, i.e.
there is no estimatd such that[6] = Var[[j] for all possible distributions aé.

Theorem 6 There exists no universally unbiased estimatovaf{y.
Proof
Because of Lemma 4 and 5, it is enough to prove the result for estimaatraréhquadratic forms
expressed as in Equation (11). To obtain unbiasedness, the expeltedfthat estimator must be
equated withvar[] (7):

m—1 n—m

1
a(0? 4 12) + b(w+ p2) + c(y+ 1) = ﬁcf2+ — Wt . (13)

For this equality to be satisfied for all distributions of cross-validation eryarsnust be satisfied
for all admissible values of |2, w, andy. This imposes the following unsatisfiable constraints on
(a,b,c):

. -
. ~ (14)
at+b+c = 0.

Q.E.D.
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5. Eigenanalysis of the Covariance Matrix

One way to gain insight on the origin of the negative statement of Theoremidtlse eigenanalysis
of Z, the covariance oé. This decomposition can be performed analytically thanks to the very
particular block structure displayed in Figure 2.

Lemma7 Letvg be the binary vector indicating the membership of each example to testklock
The eigensystem &fis as follows:

e A1 = 02 — w with multiplicity n— K and eigenspace defined by the orthogonal of basis
(Vi

e A\ = 0%+ (m— 1)w— my with multiplicity K— 1 and eigenspace defined in the orthogonal of
1 by the basi{vi}{_;;

e A\3=0%+ (m—1)w+ (n—m)ywith eigenvectod.

Proof
From Corollary 2, the covariance matrix = E[e€/] — E[e]E[€]’ can be decomposed as

5 = (0% — w)Zy + mM(w—Y)Z2 + nyXs,

whereX; =1, 55 = 2 (v1...vk) (v1...vk) andZz = 111",
21, 22 and 23 share the same eigenvectors, with eigenvalues being equal either tor zare:o

e the eigenvectot has eigenvalué for 21, 2, and Z3;

¢ the eigenspace defined in the orthogonal bly the basis{vk}E:1 defines K- 1 eigenvectors
with eigenvalued for Z; and X, andO for Z3;

¢ all remaining eigenvectors have eigenvalldder 21 andO0 for 2, and Zs.
Q.E.D.

Lemma 7 states that the vecttan be decomposed into three uncorrelated parK projec-
tions to the subspace orthogonafig}K_;, K — 1 projections to the subspace spanneg\g}f_; in
the orthogonal o, and one projection oh. A single vector example with independent elements
can be seen asindependent examples. Similarly, these projectionsan be equivalently repre-
sented by respectively— K, K —1 and one uncorrelated one-dimensional examples, corresponding
to the coordinates @& in these subspaces.

In particular, for the projection od, with only a single one-dimensional point, the sample
variance is null, resulting in the absence of an unbiased variance estimhat@r ©he projection
of eon the eigenvecto%l is preciselyu” Hence there is no unbiased estimate of{ya= A—n?’ when
we have only one realization of the vectr For the same reason, even with simple parametric
assumptions or (such ag Gaussian), the maximum likelihood estimatefag not defined. Only
A1 andA; can be estimated unbiasedly. Note that this problem cannot be addrggseddsming
multiple K-fold splits of the data set. Such a procedure would not providepamtdent realizations
of e
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6. Possible Valuesfor wand y

Theorem 6 states that no estimator is unbiased, and in its demonstration, s thlad the bias of
any quadratic estimator is a linear combinationu&fo?, w andy. Regarding estimation, it is thus
interesting to see what constraints restrict the possible range of thesitigaa

Lemma8 For i=CV andfi= ACV, the following inequalities hold:

{ 0 < w < o
1
—L(0®+(M-w) < y < (0®+(M-1)w)
N { 0 < w < o?
g0 <y < 0%

The shape of the admissible,y) region corresponding to the first set of (tighter) inequalities is
displayed in Figure 3.

K=2 K=5
o o
> 0 > 0
—0? —0?
52 0 o2 52 0 o2
W w
K =10 K =100
o o
> 0 > 0
—0? —0?
—o? 8) 02 —o? 8) 0?2

Figure 3: Possible values 6, y) according tas? for n = 200 andK = {2,5,10,100}.

Pr oof
The constraints omw result from the Cauchy-Schwartz inequality which provifs/(u,v)? <
Var(u]Var]v], hence

—0?<w< o

Moreover, the following reasoning shows that, foe= CV and il = ACV, w is hon-negativew is
the covariance of (differences in) test errors for training sets of sizerand test sets of siZe=m.
The variance of the average test error is given by the mean of covmsi;%rﬁcz +({—1)w). The
varianceo? and covariancew of test errors are not affected lfy and the variance of the average
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test error should be non-negative for any test set gizélencew is bound to be non-negative.
When this type of reasoning cannot be used, agiferJK, w can only be proved to be greater than
—02/(m—-1).

The constraints oy simply rephrase that the eigenvaluesandAs of the covariance matriX
should be non-negative. The simpler (and looser) form is obtained by wsihc?.

Q.E.D.

The admissibléw,y) region obtained in Lemma 8 is very large. Furthermore, there is no con-
straint linkingp ando?, the mean and variance @f Hence we cannot propose a variance estimate
with universally small bias.

7. Experiments

We already mentioned that the bias of any quadratic estimator is a linear combioffié, 62,

w andy. The admissible values provided in the preceding section suggesb trady cannot be
proved to be negligible compareddd. This section illustrates that in practice, the contribution to
the variance ofidue tow andy (see Equation (7)) can be of same order than the ones@uét
therefore suggests that the estimator8 should indeed take into account the correlationg of

Experiment 2 True variance of K-fold cross-validation.

We repeat the experimental setup of Experiment 1, except that moavevin the more realistic
situation where only one sample of size n is available. Since cross-valida#oown to be sensitive
to the instability of algorithms, in addition to this standard setup, we also conaitgther one with
outliers:

The inputx; = (X1,...,%q)" is still 30-dimensional, but it is now a mixture of two centered
Gaussian variables: lef be a binary variable, with R; = 1) = p=0.95; whent =1, x ~ A_(0,1);
when t =0, x ~ A(0,100); yi = +/3/(d(p+100(1— p))) T, Xk + & with & ~ A(0,1/(p+
100(1—-p))) whent=1andg ~ A (0,100/(p+100(1— p))) whent=0.

We now look at the variance of K-fold cross-validatid¢ € 10), and decompose in the three
orthogonal components?, w andy. The results are shown in Figure 4.

When there are no outliers, the contributionya$ very important for small sample sizes. For
large sample sizes, the overall variance is considerably reduced anihig caaised by?. In these
situations, the learning algorithm returns very similar answers for all trairgtsy $Vhen there are
outliers,w has little effect, but the contribution gfis of same order as the one of, even when
the ratio of examples to free parameters is large (here up to 20). Thudfidaldgituations, where
A(D) varies according to the realization Df neglecting the effect ab andy can be expected to
introduce a bias of the order of the true variance.

It is also interesting to see how these quantities are affected by the numfdoK. The
decomposition 0B in 62, w andy (7) does not imply thak should be set either tn or to 2
(according to the sign ab—y) in order to minimize the variance of Modifying K affectso?, w
andy through the size and overlaps of the training $&is...,Dk, as illustrated in Figure 5. For
a fixed sample size, the varianceofiiid the contribution 062, w andy effects varies smoothly
with K.® The experiments with and without outliers illustrate that there is no general éiter in

6. Of course, the mean @fi$ also affected in the process.
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Figure 4: Bar plots of the contributions to total variance[@f| due too?, w andy vs.the number
of training examples — mfor Experiment 2.

variance or decomposition of the variance inafs w andy components. The minimum variance
can be reached fd¢ = n or for an intermediate value &f.
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Figure 5: Bar plots of contributions @, wandyto 8 vs. Kfor n = 120 for Experiment 2.

We also report an experiment illustrating that the previous observationsapfdy to classi-
fication on real data. The variance of K-fold cross-validatign= 10), decomposed in the three
orthogonal components?, w andy is displayed in Figure 6.

Experiment 3 Classification with trees on the Letter data set.

The Letter data set comprises 20,000 examples described by 16 ndeatuies. The original
setup considers 26 categories reprensenting the letters of the romaab&phHere, we used a
simplified setup with 2 classes (A to M§. (N to Z) in order to obtain sensible results for small
sample sizes.

Accurate estimates af?, w and y require many independent training samples. This was
achieved by considering the set of 20,000 examples to be the populationwfiich independent
training samples were drawn by uniform sampling with replacement.

Here again, the variance of CV is mainly dueatbandy. According to the number of training
examplesg? is only responsible for 50 to 70 % of the total variance, so that a varisstoaate
based solely ow? has a negative bias of the order of magnitude of the variance itself.
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Figure 6: Bar plots of the contributions to total variance[@f| due too?, w andy vs.the number
of training examples for Experiment 3.

8. Special Cases

This section addresses how our main result can be transposed to lhektimates of generalization
error. We also detail how it applies to two specific instances of the gelkidtl cross-validation
scheme: two-fold and leave-one-out cross validation.

8.1 Hold-Out Estimate of EPE

When havinK independent training and test setise structure of hold-out errors resemble the one
of cross-validation errors, except that we know (from the indepecwlef training and test sets) that
y = 0. This knowledge allows to build the unbiased variance estiBatiescribed in 2.2. This can
be seen directly in the proof of Theorem 6: knowing that O removes the third equation in the
linear system (14). In practice, one is often restricteld te 1 (ordinary hold-out test), which allows
to estimate the variance due to the finite test set but not due to the particulee ohtraining set.

8.2 Two-Fold Cross-Validation

Two-fold cross-validation has been advocated to perform hypothesisgeDietterich, 1999; Al-
paydin, 1999). It is a special case of K-fold cross-validation sincérttieing blocks are mutually
independent since they do not overlap. However, this independeesadt modify the structure of
ein the sense thatis not null. The between-block correlation stems from the fact that the tgainin
block D; is the test block, and vice-versa.

8.3 Leave-One-Out Cross-Validation

Leave-one-out cross-validation is a particular case of K-fold cvatidation, whereK = n. The
structure of the covariance matrix is simplified, without diagonal bloEks:(02 —y)Z; +ny>3. The
estimation difficulties however remain: even in this particular case, there islsiased estimate of
variance. From the definition &f(Lemma 5), we have = 0, and withm = 1 the linear system (14)
reads
a =
c
a+c

|3:HH
[uy

I
o
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which still admits no solution.

9. Conclusions

It is known that K-fold cross-validation may suffer from high variabilitypieh can be responsible
for bad choices in model selection and erratic behavior in the estimatedtedpgeediction error.
mating a variance can be done from independent realizations or froemdept realizations whose
correlation is known. K-fold cross-validation produces dependehetesrs. Our analysis shows
that although the correlations are structured in a very simple manner, thesweannot be esti-
mated unbiasedly. Consequently, there is no unbiased estimator of theceania-fold cross-
validation.

Our experimental section shows that in very simple cases, the bias indyrrigghoring the
dependencies between test errors will be of the order of the variamike ithese experiments
illustrate thus that the assessment of the significance of observed wmit#srén cross-validation
scores should be treated with much caution. The problem being unveilathxhstep of this study
consists in building and comparing variance estimators dedicated to the \emifisptructure of
the test error dependencies.
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