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Abstract

Using a novel reformulation, we develop a framework to compute approximate resampling data
averages analytically. The method avoids multiple retraining of statistical models on the samples.
Our approach uses a combination of the replica “trick” of statistical physics and the TAP approach
for approximate Bayesian inference. We demonstrate our approach on regression with Gaussian
processes. A comparison with averages obtained by Monte-Carlo sampling shows that our method
achieves good accuracy.
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1. Introduction

Resampling is a widely applicable technique in statistical modeling and machine learning. By
resampling data points from a single given set of data one can create many new data sets which
allows to simulate the effects of statistical fluctuations of parameter estimates, predictions or any
other interesting function of the data. Resampling is the basis of Efron’s bootstrap method which
is a general approach for assessing the quality of statistical estimators (Efron, 1979, Efron and
Tibshirani, 1993). It is also an essential part of the bagging and boosting approaches in machine
learning where the method is used to obtain a better model by averaging different models which
were trained on the resampled data sets.

In this paper, we will not provide theoretical foundations of resampling methods, nor do we
intend to give a critical discussion of their applicability. Interested readers are referred to standard
literature (such as Efron, 1982, Efron and Tibshirani, 1993, Shao and Tu, 1995). The main goal of
the paper is to present a novel method for dealing with the large computational complexity that can
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present a significant technical problem when resampling methods are applied to complex statistical
machine-learning models on large data sets.

To explain the resampling method in a fairly general setting, we assume a given sample D0 =
(z1,z2, . . . ,zN) of data points. For example, zi might denote a pair (xi,yi) of inputs and output
labels used to train a classifier. New artificial data samples D of arbitrary size S can be created by
resampling points from D0. Writing D = (z′1,z

′
2, . . . ,z

′
S) one chooses each z′i to be an arbitrary point

of D0. Hence, some zi in D0 will appear multiple times in D and others not at all. A typical task
in the resampling approach is the computation of certain resampling averages. Let θ(D) denote a
quantity of interest which depends on the data sets D. We define its resampling average by

ED∼D0 [θ(D)] = ∑
D∼D0

W (D) θ(D) (1)

where ∑D∼D0
denotes a sum over all sets D generated from D0 using a specific sampling method

and W (D) denotes a normalized weight assigned to each sample D. If the model is sufficiently
complex (for example a support-vector machine, see e.g., Schölkopf et al., 1999), the retraining on
each sample D to evaluate Θ(D) and averaging can be rather time consuming even when the total
sum in Equation (1) is approximated by a random subsample using a Monte-Carlo approach. Hence,
it is useful to develop analytical approximation techniques which avoid the repeated retraining of
the model. Existing analytical approximations (based on asymptotic techniques) found, e.g., in the
bootstrap literature such as the delta method and the saddle-point method usually require explicit
analytical formulas for the quantities θ(D) that we wish to average (see e.g., Shao and Tu, 1995).
These will usually not be available for more complex models in machine learning.

In this paper, we introduce a novel approach for the approximate calculation of resampling aver-
ages. It is based on a combination of three ideas. We first utilize the fact that often many interesting
functions θ(D) can be expressed in terms of basic statistical estimators for parameters of certain
statistical models. These can be implicitly defined as pseudo Bayesian expectations with suitably
defined posterior Gibbs distributions over model parameters. Hence, the method does not require
an explicit analytical expression for these statistics. Within our formulation, it becomes possible
to exchange posterior expectations and data averages and perform the latter ones analytically using
the so-called “replica trick” of statistical physics (Mézard et al., 1987). After the data average, we
are left with a typically intractable inference problem for an effective Bayesian probabilistic model.
As a final step, we use techniques for approximate inference to treat the probabilistic model. This
combination of techniques allows us to obtain approximate resampling averages by solving a set
of nonlinear equations rather than by explicit sampling. We demonstrate the method on bootstrap
estimators for regression with Gaussian processes (GP) (which is a kernel method that has gained
high popularity in the machine-learning community in recent years, see Neal, 1996) and compare
our analytical results with results obtained by Monte-Carlo sampling.

The paper is organized as follows: Section 2 presents the key ideas of our theory in a general
setting. Section 3 discusses bootstrap in the context of our theory, that is we specialize to the
case that the data sets D are obtained from D0 by independent sampling with replacement. In
Section 4, we derive general formulas for interesting resampling averages of GP models such as the
generalization error and the mean and variance of the prediction. In Section 5, we apply the results
of Section 3 and 4 to the bootstrap of a GP regression model. Section 6 concludes the paper with a
summary and a discussion of the results.
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2. Outline of the Basic Ideas

This section presents the three key ideas of our approach for the approximate analytical calculation
of resampling averages.

2.1 Step I: Deriving Estimators from Gibbs Distributions

Our formalism assumes that the functions θ(D) which we wish to average over data sets can be
expressed in terms of a set of basic statistics f̂(D) = ( f̂1(D), . . . , f̂M(D)) of the data. f̂(D) can be
understood as an estimator for a parameter vector f which is used in a statistical model describing
the data. To be specific, we assume that θ(D) can be expanded in a formal multivariate power series
expansion which we write symbolically as

θ(D) = ∑
r

cr f̂(D)r , (2)

where f̂(D)r stands for a collection of terms of the form ∏r
k=1 f̂ik and the ik’s are indices from the

set {1, . . . ,M}. cr denotes a collection of corresponding expansion coefficients.
Our crucial assumption is that the basic estimators f̂(D) can be written as posterior expectations

f̂(D) = 〈f〉 =
∫

df f P(f|D) (3)

with a posterior density

P(f|D) =
1

Z(D)
µ(f) P(D|f) (4)

that is constructed from a suitable prior distribution µ(f) and a likelihood term P(D|f).

Z(D) =
∫

df µ(f) P(D|f) (5)

denotes a normalizing partition function. We will denote expectations with respect to Equation (4)
by angular brackets 〈· · ·〉. This representation avoids the problem of writing down explicit, com-
plicated formulas for f̂. Our choice of Equation (3) obviously includes Bayesian (point) estimators
of model parameters, but with specific choices of likelihoods and priors maximum-likelihood and
maximum-a-posteriori estimators can also be covered by the formalism.

From the expansion Equation (2) and the linearity of the data averages, it seems reasonable to
reduce the computation of the average ED∼D0 [θ(D)] to that of averaging the simple monomials f̂(D)r

and try a resummation of the averaged series at the end. Using Equation (3) we can write

E(r) .
= ED∼D0 [f̂

r] = ED∼D0 [〈f〉r] = ED∼D0

[

1
Z(D)r

∫ r

∏
a=1

{dfa fa µ(fa) P(D|fa)}
]

. (6)

which involves r copies, i.e., replicas fa for a = 1, . . . ,r of the parameter vector f. The superscripts
should NOT be confused with powers of the variables.
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2.2 Step II: Analytical Resampling Average Using the Replica Trick

To understand the simplifications which can be gained by our representation Equation (3), one
should note that in a variety of interesting and practically relevant cases it is possible to compute
resampling averages of the type ED∼D0 [∏r

a=1 P(D|fa)] analytically in a reasonably simple form.
Hence, if the partition functions Z(D) in the denominator of Equation (6) were absent, or would
not depend on D, one could easily exchange the Bayes average with the data average and would be
able to get rid of resampling averages in an analytical way. One would then be left with a single
Bayesian type of average which could be computed by other tools known in the field of probabilistic
inference.

To deal with the unpleasant partition functions Z(D) to enable an analytical average over data
sets (which is the “quenched disorder” in the language of statistical physics) one introduces the
following “trick” extensively used in statistical physics of amorphous systems (Mézard et al., 1987).
We introduce the auxiliary quantity

E(r)
n

.
= ED∼D0

[

Z(D)n−r
∫ r

∏
a=1

{dfa µ(fa) P(D|fa)fa}
]

for arbitrary real n, which allows to write

E(r) = lim
n→0

E(r)
n .

The advantage of this definition is that for integers n ≥ r, the partition functions Z(D) in E (r)
n can

be eliminated by using a total number of n replicas f1, f2, . . . , fn of the original variable f. Using the
explicit form of the partition function Z(D), Equation (5), we get

E(r)
n = ED∼D0

[

∫ n

∏
a=1

{dfa µ(fa) P(D|fa)}
r

∏
a=1

fa

]

Now, we can exchange the expectation over data sets with the expectation over f’s and obtain

E(r)
n = Ξn

〈〈

r

∏
a=1

fa

〉〉

(7)

where 〈〈· · ·〉〉 denotes an average with respect to a new Gibbs measure P(f1, . . . , fn|D0) for replicated
variables which results from the data average. It is defined by

P(f1, . . . , fn|D0) =
1

Ξn

(

n

∏
a=1

µ[fa]

)

P(D0|f1, . . . , fn) (8)

with likelihood

P(D0|f1, . . . , fn) = ED∼D0

[

n

∏
a=1

P(D|fa)

]

(9)

and normalizing partition function Ξn. Since by construction limn→0 Ξn = 1, we will omit factors
Ξn in the following.
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2.3 Step III: Approximate Inference for the Replica Model

We have mapped the original problem of computing a resampling average to an inference problem
with a Bayesian model, where the hidden variables have the dimensionality M×n and n must be set
to zero at the end. Of course, we should not expect to be able to compute averages over the measure
Equation (8) analytically, otherwise we would have found an exact solution to the resampling prob-
lem. Our final idea is to resort to techniques for approximate inference (see e.g., Opper and Saad,
2001) which have recently become popular in machine learning. Powerful methods are the varia-
tional Gaussian approximation, the mean field method, the Bethe approximation and the adaptive
TAP approach. They have in common that they approximate intractable averages by integrations
over tractable distributions which contain specific optimized parameters. We found that for these
methods, the “replica limit” n → 0 can be performed analytically before the final numerical param-
eter optimization. Note that the measure Equation (8) (which we will approximate) characterizes
the average properties of the learning algorithm with respect to the ensemble of training data sets
D ∼ D0. We do NOT approximate the individual predictors f̂ (D).

3. Independent Sampling with Replacement

Often, statistical models of interest assume likelihoods which are factorizing in the individual data
points, that is

P(D0|f) =
N

∏
j=1

exp(−h(f,z j))

where h is a type of “training error”. Each new sample D ∼ D0 can be represented by a vector of
“occupation” numbers s = (s1, . . . ,sN) where si is the number of times example zi appears in the set
D and we require ∑N

i=1 si = S, where S is the fixed size of the data sets. In this case we can write

P(D|f) =
N

∏
j=1

exp(−s jh(f,z j)) (10)

and the resampling average ED∼D0 becomes simply an average over the distribution of occupation
numbers.

In the remainder of this paper, we specialize to the important case of an independent resampling
of each data point with replacement used in the bootstrap (Efron, 1979) and bagging (Breiman,
1996) approaches. Each data point z j in D0 is chosen with equal probability 1/N to become an
element of D. The statistical weight W (D) → W (s) for a sample D represented by the vector s in
the resampling averages Equation (1) can be obtained from the fact that the distribution of si’s is
multinomial. However, it is simpler (and does not make a big difference when the sample size S is
sufficiently large) when we also randomize the sample sizes by using a Poisson distribution for S.
In the following, the variable S will denote the mean number of data points in the samples. In this
case we get the simpler, factorizing weight for the samples given by

W (s) =
N

∏
j=1

( S
N )s j e−S/N

s j!
(11)
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Using the explicit form of the distribution Equation (11) and of the likelihood Equation (10), the
new likelihoods Equation (9)

P(D0|f1, . . . , fn) = ED∼D0

[

n

∏
a=1

P(D|fa)

]

= ∑
s

W (s)

[

N

∏
j=1

e
−s j

n
∑

a=1
h(fa,z j)

]

will again factorize in the data points and we get

P(D0|f1, . . . , fn) =
N

∏
j=1

L j(f1, . . . , fn) (12)

with the local likelihood

L j(f1, . . . , fn) = exp

(

− S
N

(

1−
n

∏
a=1

e−h(fa,z j)

))

. (13)

We will continue the discussion for the example of the bootstrap. Note however, that the following
results can be applied to other sampling schemes as well by using a suitable factorizing distribution
W (s) = ∏N

j=1 p(s j) and replacing Equation (13) by the respective expression for the likelihood.

4. Resampling Averages for Gaussian Process Models

We will apply our approach to the computation of bootstrap estimates for a variety of quantities
related to Gaussian process predictions.

4.1 Definition of Gaussian Process Models

For Gaussian process (GP) models, the Bayesian framework of Section 2.1 is the natural choice
where the vector f represents the values of an unknown function f at the input points of the data
D0, that is f = ( f1, f2, . . . , fN) with fi

.
= f (xi). The prior measure µ(f) is an N dimensional joint

Gaussian distribution of the form

µ(f) =
1

√

(2π)N |K|
exp

[

−1
2

fT K−1f
]

, (14)

where the kernel matrix K has matrix elements K(xi,x j), which are defined through the covariance
kernel K(x,x′) of the process. For supervised learning problems, each data point z j = (x j,y j) con-
sists of the input x j (usually a finite dimensional vector) and a real label y j. We will assume that
the training error function h(f,z j) is local, i.e., it depends on the vector f only through the function
value f j. Hence, we will write

h(f,z j) → h( f j,z j) (15)

in the following. The vector f̂(D) represents the posterior mean prediction of the unknown function
at the inputs xi for i = 1, . . . ,N. For any choice D ∼ D0, some of these inputs will also appear in the
training set D while others can be used as test inputs.
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4.2 Resampling Averages of Local Quantities

Let us begin with simple resampling averages of the form ED∼D0

[

f̂i(D)
]

and ED∼D0

[

( f̂i(D))2
]

,
from which one can estimate the bias and variance of the i-th component of the GP prediction.
These averages can be directly translated into the replica formalism presented by Equation (6) and
Section 2.2. We get

ED∼D0

[

f̂i(D)
]

= lim
n→0

〈〈 f 1
i 〉〉 (16)

ED∼D0

[

( f̂i(D))2] = lim
n→0

〈〈 f 1
i f 2

i 〉〉

where the superscripts on the right hand side are replica indices and 〈〈· · ·〉〉 denotes an average with
respect to the Gibbs measure Equation (8) for replicated variables.

A somewhat more complicated example is Efron’s estimator for the bootstrap generalization
error of the predictor f̂(D), Equation (3), where we specialize to the square error for testing

ε(S)
.
=

1
N

N

∑
i=1

ED∼D0

[

δsi,0
(

f̂i(D)− yi
)2
]

ED∼D0 [δsi,0]
. (17)

Equation (17) computes the average bootstrap test error at each data point i from D0. The Kronecker
symbol, defined by δsi,0 = 1 for si = 0 and 0 else, guarantees that only realizations of training sets
D contribute which do not contain the test point. Its occurrence requires a small change in our basic
formalism. A simple calculation shows that the effect of the term δsi,0 in the resampling average is
the replacement of the i-th local likelihood Li, Equation (13), in the product Equation (12) by one.
Hence, with a slight generalization of Equation (7) we have

ED∼D0

[

δsi,0 ( f̂i(D)− yi)
2
]

ED∼D0 [δsi,0]
= lim

n→0

〈〈

( f 1
i − yi)( f 2

i − yi)

Li( f 1
i , . . . , f n

i )

〉〉

(18)

Note that with Equation (15) the local likelihoods of Equation (13) can be simplified, replacing
Li(f1, . . . , fn) with Li( f 1

i , . . . , f n
i ).

4.3 Approximate Inference for the Replica Model Using the ADATAP Approach

To deal with the intractable Bayesian averages in Equations (16) and (18) we have used the vari-
ational Gaussian approximation (VG), the mean field approximation (MF) and the adaptive TAP
approach (ADATAP). Since the graph of the probabilistic model corresponding to GP’s is fully
connected we did refrain from using the Bethe approximation. We found that the ADATAP ap-
proach of Opper and Winther (2000, 2001a,b) was the most suitable technique which gave superior
performance compared to the VG and MF approximations. Hence, we will give the explicit ana-
lytical derivations only for the ADATAP method, but will present some numerical results for the
performance of the other techniques.

An important simplification in the computation of Equations (16) and (18) comes from the fact
that these are local averages which depend only on the replicated variables f a

i for a single data point
i and can be computed from the knowledge of the marginal distribution Pi(~fi) alone, where we have
introduced the n-dimensional vectors

~fi = ( f 1
i , . . . , f n

i )
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for i = 1, . . . ,N. The ADATAP approximation presents a selfconsistent approximation1 of marginal
distributions Pi(~fi) for i = 1, . . . ,N. It is based on factorizing

Pi(~f ) =
Li(~f ) P\i(~f )

∫

d~f Li(~f ) P\i(~f )
(19)

where the cavity distribution is defined as

P\i(~fi) ∝
∫ N

∏
j=1, j 6=i

d~f j

n

∏
a=1

µ(fa)
N

∏
j=1, j 6=i

L j(~f j) . (20)

It represents the influence of all variables ~f j = ( f 1
j , . . . , f n

j ) with j 6= i on the variable ~fi. Following
Opper and Winther (2000) (slightly generalizing the original idea to vectors of n variables), the
cavity distribution Equation (20) is approximated by a Gaussian distribution, i.e., a density of the
form

P\i(~f ) =
1

Zn(i)
e−

1
2
~f T Λc(i)~f+~γc(i)T ~f . (21)

To compute the parameters Λc(i) and~γc(i) in the N approximated cavity distributions Equation (21)
self-consistently, one assumes that these are, independently of the local likelihood functions, entirely
determined by the values of the first two marginal moments

〈〈~fi〉〉 =

∫

d~f ~f Li(~f ) P\i(~f )
∫

d~f Li(~f ) P\i(~f )
(22)

〈〈~fi ~f T
i 〉〉 =

∫

d~f ~f ~f T Li(~f ) P\i(~f )
∫

d~f Li(~f ) P\i(~f )

for i = 1, . . . ,N where we used Equation (19). The set of parameters Λc(i),~γc(i) which correspond
to the actual likelihood can then be computed using an alternative set of tractable likelihoods L̂ j.
For GP models, we choose L̂ j to be Gaussian

L̂ j(~f ) = e−
1
2
~f T Λ( j)~f+~γ( j)T ~f . (23)

The set of parameters Λ( j) and~γ( j) in Equation (23) is chosen in such a way that the corresponding
joint Gaussian distribution (with GP prior Equation (14))

PG(f̃) ∝
n

∏
a=1

µ(fa)
N

∏
j=1

L̂ j(~f j) (24)

has first two marginal moments

〈〈~fi〉〉 =
∫

d f̃ ~fi PG(f̃) (25)

〈〈~fi ~f T
i 〉〉 =

∫

d f̃ ~fi ~f T
i PG(f̃)

1. For motivations and alternative derivations of the approximation, see Opper and Winther (2000, 2001a,b) and Csató
et al. (2002).
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that coincide with those computed in Equation (22) for the intractable distribution P(f̃|D0), Equa-
tion (8), for i = 1, . . .N. Here we have defined f̃ .

= (f1, . . . , fn). Hence, using Equation (19) and the
assumed independence of P\i(~f ) on the likelihood, we get

〈〈~fi〉〉 =

∫

d~f ~f L̂i(~f ) P\i(~f )
∫

d~f L̂i(~f ) P\i(~f )
(26)

〈〈~fi ~f T
i 〉〉 =

∫

d~f ~fi ~f T
i L̂i(~f ) P\i(~f )

∫

d~f L̂i(~f ) P\i(~f )
.

The three sets of Equations (22), (25) and (26) determine the sets of parameters Λ(i), ~γ(i), Λc(i)
~γc(i) together with the sets of moments for i = 1, . . . ,N within the ADATAP approach. Note that the
integrals of Equations (25) and (26) are Gaussian and can be performed trivially.

4.4 The Replica Limit n → 0

The most crucial obstacle in computing the parameters of the cavity distribution Equation (21), that
is the n× n matrix Λc(i) and the n dimensional vector~γc(i), is the limit n → 0. To deal with it,
one imposes symmetry constraints on Λc(i) and~γc(i) which make the number of distinct parame-
ters independent of n. This will imply a similar symmetry for the marginal moments and for the
parameters Λ(i) and~γ(i). To be specific, by the symmetry (exchangeability) of all n components
f 1
i , . . . , f n

i for each vector ~fi in the distribution, we will assume the simplest choice known as replica
symmetry, that is

Λab
c (i) = λc(i) for a 6= b, Λaa

c (i) = λ0
c(i) for all a (27)

Λab(i) = λ(i) for a 6= b, Λaa(i) = λ0(i) for all a

and also γa(i) = γ(i) and γa
c(i) = γc(i) for all a = 1, . . . ,n. More complicated parameterizations

are possible and even necessary in complex situations when multivariate distributions have a large
number of modes with almost equal statistical weight (see Mézard et al., 1987).

Using the symmetry properties Equation (27), we can decouple the replica variables in Equa-
tions (25) and (26) by the following transformation

e−
1
2
~f T Λc(i)~f+~γc(i)T ~f =

∫

dG(u)
n

∏
a=1

{

e−
∆λc(i)

2 ( f a)2+ f a(γc(i)+u
√

−λc(i))
}

. (28)

We have defined ∆λc(i) = λ0
c(i)−λc(i) and dG(u) = 1√

2π e−
1
2 u2

du as the standard normal Gaussian
distribution.

4.5 Results for the ADATAP Parameters

The TAP approach computes simultaneously approximate values for the first two sets of marginal
moments of the posterior Equation (8) of the replica model. With Equation (27) they obey the
following symmetry constraints

〈〈 f a
i 〉〉 = mi and 〈〈( f a

i )2〉〉 = Mi for a = 1, . . . ,n (29)

〈〈 f a
i f b

i 〉〉 = Qii for a 6= b and a,b = 1, . . . ,n.
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We can interpret their values in the limit n = 0 (within the TAP approximation) in terms of averages
over the bootstrap ensemble. With Equation(16) and Section 2.2

mi = ED∼D0

[

f̂i(D)
]

Mi = ED∼D0

[

〈( fi(D))2〉
]

Qii = ED∼D0

[

( f̂i(D))2]

To compute the values of mi, Mi and Qii, we use the symmetry properties Equation (27) and decouple
the replica variables in Equations (25) and (26) by a transformation of the type Equation (28). We
perform the limit n → 0 and solve the remaining Gaussian integrals. The set of equations (26) yields

Mi −Qii =
1

∆λ(i)+∆λc(i)
(30)

mi =
γ(i)+ γc(i)

∆λ(i)+∆λc(i)
(31)

Qii −m2
i = − λ(i)+λc(i)

(∆λ(i)+∆λc(i))2 (32)

where ∆λ(i) = λ0(i)−λ(i) and ∆λc(i) = λ0
c(i)−λc(i). The equations (25) yield for GP models

Mi −Qii = (G)ii (33)

mi = (G γ)i (34)

Qii −m2
i = −(G diag(λ)G)ii (35)

with the N ×N matrix
G = (K−1 +diag(∆λ))−1 . (36)

To perform the integral in Equation (22) it is useful to expand the likelihood first into a power series2

introducing the abbreviation ν = S/N

Li(~fi) = exp

(

−ν

(

1−
n

∏
a=1

e−h( f a
i ,zi)

))

=
∞

∑
k=0

νke−ν

k!

n

∏
a=1

e−kh( f a
i ,zi) .

After decoupling the variables by Equation (28) we can take the replica limit n = 0. By introducing
the measure

Pi( f |u,k) =
e−kh( f ,zi)− ∆λc(i)

2 f 2+ f (γc(i)+u
√

−λc(i))

∫

d f e−kh( f ,zi)− ∆λc(i)
2 f 2+ f (γc(i)+u

√
−λc(i))

(37)

we arrive at the following compact results

mi =
∞

∑
k=0

νke−ν

k!

∫

dG(u)
∫

d f f Pi( f |u,k) (38)

Mi =
∞

∑
k=0

νke−ν

k!

∫

dG(u)
∫

d f f 2 Pi( f |u,k) (39)

Qii =
∞

∑
k=0

νke−ν

k!

∫

dG(u)

(

∫

d f f Pi( f |u,k)

)2

(40)

2. Note that this series represents just the average over all possible values of the occupation number k
.
= si (see Equa-

tion (11)). We may easily use a different series corresponding to some other resampling scheme.
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For a variety of “training energy” functions h( fi,zi), the integrals can be performed analytically.
While the parameters mi, Mi, Qii give local bootstrap averages at specific data points i, it is

possible to extend the approximation to correlations between different data points. One simply uses
the full covariance matrix of the auxiliary distribution PG(f̃), Equation (24), in order to approximate
the covariance matrix of the true replica posterior P(f̃). We get similarly to Equation (35)

Qi j
.
= ED∼D0

[

f̂i(D) f̂ j(D)
]

= −(G diag(λ)G)i j +mim j . (41)

With Equation (33), we can interpret the matrix G, Equation (36) as a theoretical estimate of the
average bootstrapped posterior covariance where

Gi j = ED∼D0 [〈 fi(D) f j(D)〉]−Qi j .

4.6 Results for the Resampling Estimate of the Generalization Error

Specializing to Efron’s estimator of the generalization error Equation (17) and its replica expression
Equation (18), we see that the latter is immediately expressed by an average 〈〈· · · 〉〉\i with respect to
the cavity distribution Equation (20)

ED∼D0

[

δsi,0 ( f̂i(D)− yi)
2
]

ED∼D0 [δsi,0]
= lim

n→0

〈〈

( f a
i − yi)( f b

i − yi)
〉〉

\i
(42)

with replica indices a, b where a 6= b. Note the similarity to the computation of a leave-one-out
estimate. Here however, the leave-one-out estimate has to be computed for the replicated and
averaged system. Inserting Equation (21) with Equation (28) into Equation (42) yields

〈〈

( f a
i − yi))( f b

i − yi)
〉〉

\i

=

∫

dG(u)
(

∫

d f ( f − yi) e−
∆λc(i)

2 f 2+ f (γc(i)+u
√

−λc(i))
)2

(Zi(u))n−2

∫

dG(u)(Zi(u))n (43)

where we have defined

Zi(u) =
∫

d f e−
∆λc(i)

2 f 2+ f (γc(i)+u
√

−λc(i)) .

In Equation (43), the number n of replicas appears in a form which allows continuation to values
n < 2 and to perform the limit n → 0

lim
n→0

〈〈

( f a
i − yi))( f b

i − yi)
〉〉

\i

=
∫

dG(u)

(

1
Zi(u)

∫

d f ( f − yi) e−
∆λc(i)

2 f 2+ f (γc(i)+u
√

−λc(i))
)2

(44)

Solving the remaining Gaussian integrals, our approximation for the bootstrapped mean square
generalization error becomes

ε(S) =
1
N

N

∑
i=1

(γc(i)− yi∆λc(i))2 −λc(i)
∆λc(i)2 . (45)
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As discussed in Section 2.1, we can extend the whole argument to yield results for bootstrapping
alternative generalization errors measured by other loss functions g( f̂x(D);x,y). Expanding the loss
function in a Taylor series in the variable ( f̂x(D)−y), we can apply the replica method to individual
terms like eS/NED∼D0 [δsi,0( f̂i(D)− yi)

r]. This simply replaces the power 2 in Equation (44) by the
power r. We can thus resum the Taylor expansion and obtain

εg(S) =
1
N

N

∑
i=1

ED∼D0

[

δsi,0 g
(

f̂i(D);xi,yi
)]

ED∼D0 [δsi,0]

=
1
N

N

∑
i=1

∫

dG(u)g

(

γc(i)+u
√

−λc(i)

∆λc(i)
;xi,yi

)

(46)

4.7 Further Bootstrap Averages

In the following, we derive results for the resampling statistics of the posterior mean predictor f̂x of
the unknown function f at arbitrary inputs x.

4.7.1 MEAN AND VARIANCE OF THE PREDICTOR

As is well known (see e.g., Csató and Opper, 2002), posterior mean predictors for GP models at
arbitrary inputs x can be expressed in the form

f̂x
.
= 〈 fx〉 =

N

∑
i=1

αiK(x,xi)

where the set of αi’s is independent of x and can be computed from the distribution of the finite
dimensional vector f = ( f1, . . . , fN) alone. Hence, the bootstrap mean and the second moments can
be expressed as

ED∼D0

[

f̂x(D)
]

=
N

∑
i=1

ED∼D0 [αi]K(x,xi) (47)

ED∼D0

[

f̂x(D) f̂x′(D)
]

=
N

∑
i, j=1

K(x,xi)ED∼D0 [αiα j]K(x j,x
′)

Setting ml = ED∼D0

[

f̂l(D)
]

and Qlk = ED∼D0

[

f̂l(D) f̂k(D)
]

for arbitrary training inputs xl and xk,
with l,k = 1, . . . ,N, we get from Equation (47)

ED∼D0 [α] = K−1m

ED∼D0 [ααT ]−ED∼D0 [α]ED∼D0 [α]T = K−1(Q−mmT )K−1

As shown in Section 4.5, the TAP approach computes approximate values for the vector m and the
matrix Q. With Equations (34), (41), our final results for bootstrap mean and variance are given by

ED∼D0

[

f̂x(D)
]

= k(x)T Tγ (48)

ED∼D0

[

( f̂x(D))2]−
(

ED∼D0

[

f̂x(D)
])2

= −k(x)T Tdiag(λ)TT k(x)

with k(x) = (K(x,x1), . . . ,K(x,xN))T and T = (I+diag(∆λ)K)−1. The parameters γ(i), ∆λ(i), and
λ(i) are determined together with the parameters γc(i), ∆λc(i), and λc(i) of the N approximate cavity
distributions Equation (21). Note that Equations (48) are valid for arbitrary inputs x.
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4.7.2 BOOTSTRAPPING THE FULL DISTRIBUTION OF THE PREDICTOR

The marginal distribution Pi, Equation (19), is non-Gaussian due to the inclusion of the local like-
lihood Li(~f ). However, it is analytically tractable for a variety of interesting ”training energy”
functions h( fi,zi). Following the discussion in Section 4.6, we can compute data averages of higher
moments of the predictor f̂i(D) = 〈 fi(D)〉 and generalize from this to averages of other functions g.
We obtain the general result

ED∼D0 [g( f̂i(D))] =
∞

∑
k=0

νke−ν

k!

∫

dG(u)g

(

∫

d f f Pi( f |u,k)

)

(49)

where ν = S/N and g is an arbitrary function. The measure Pi( f |u,k) is defined in Equation (37)
and depends explicitly on the training energy h( fi,zi). Equation (49) can be used to get a nontrivial
approximation for the entire probability distribution of the estimator which is defined as ρi(h) =
ED∼D0 [δ( f̂i(D)− h)] where δ(x) denotes the Dirac δ-distribution. For finite N and S, the exact
density of the estimator at a data point i is a sum of Dirac δ-peaks. Our approximation instead
yields a smoothed version of it.

5. Application to Gaussian Process Regression

The main results of the previous section are Equations (45), (46), (48) and (49). They are valid
for all GP models and compute various interesting properties of the bootstrap ensemble analytically
from a set of parameters provided by the TAP theory. The latter are determined by Equation (30)-
(36) (which apply to all GP models) and Equation (38)-(40) which depend on the choice of the
likelihood model Equation (10) and on the resampling scheme. In general, the set of equations can
be solved iteratively. For some likelihood models, one can restrict the iteration to a specific subset
of theoretical parameters.

In the following, we will consider GP regression (Neal, 1996, Williams, 1997, Williams and
Rasmussen, 1996) with training energy

h( f j,z j) =
1

2σ2 ( fi − y j)
2 . (50)

This model is optimally suited for a first, nontrivial test of our approximation. The estimator f̂ of the
GP regression model is obtained fairly easily and exactly without iterative methods. Note however,
that we have not used the analytical formula for the estimator f̂ in our theory. Its explicit form is
only used for the Monte-Carlo simulation (which serves as a comparison to the theory) and is given
by f̂x(D) = ∑S

i=1 α′
iK(x,x′i) with α′ = (K′ + σ2I)−1y′ where y′ contains all targets of the bootstrap

training set D and the S×S kernel matrix K′ is computed on the training inputs.
To complete the set of equations which determine the parameters of our theory for bootstrap

averages of GP regression, we insert Equation (50) into Equations (38)-(40). This yields

Mi −Qii =
∞

∑
k=0

νke−ν

k!
1

∆λc(i)+ k/σ2 (51)

mi = (γc(i)− yi∆λc(i))(Mi −Qii)+ yi (52)

and

Qii −m2
i =

(

(

mi − yi

Mi −Qii

)2

−λc(i)

)

∞

∑
k=0

νke−ν

k!
1

(∆λc(i)+ k/σ2)2 − (mi − yi)
2 (53)

1163



MALZAHN AND OPPER

0 200 400 600 800 1000
Size S of bootstrap sample

0

10

20

30

40

B
oo

ts
tr

ap
pe

d 
sq

ua
re

 lo
ss

Simulation
Theory (ADATAP)
Appr. theory (ADATAP)
Theory (Var. Gaussian)
Theory (Mean field)

341 230 155 104 70
Average number of test points

Boston, N=506

0 200 400 600 800 1000
Size S of bootstrap sample

0

1

2

3

4

5

6

7

B
oo

ts
tr

ap
pe

d 
ε-

in
se

ns
iti

ve
 lo

ss

Simulation: Efron’s Estimator
Theory (ADATAP)

Boston, N=506

8nm Robot, N=500

Figure 1: Bootstrapped learning curves for GP regression. Left: Bootstrapped square loss on Boston
housing data. Comparison between simulation (circles) and 4 different approximations to
the replica posterior Equation (8): ADATAP (solid line), approximate ADATAP (dot-
dashed), variational Gaussian (dashed), mean field (dotted). Right: Bootstrapped ε-
insensitive loss on Boston housing data (N = 506) and 8nm Robot-arm data (N = 500).

Close inspection of Equations (30)-(36) and Equations (51)-(53) reveals that we can solve first for
∆λc(i) and ∆λ(i) by iterating

∆λc(i) = (Gii)
−1 −∆λ(i) (54)

∆λ(i) =

(

∞

∑
k=0

νke−ν

k!
1

∆λc(i)+ k/σ2

)−1

−∆λc(i) (55)

using the definition G = (K−1 + diag(∆λ))−1, Equation (36), where K denotes the N ×N kernel
matrix which is computed on the inputs of data set D0. The appendix describes a method for getting
typically good initial values for the iteration Equations (54) and (55) and explains how to accelerate
the iteration. With ∆λc(i), ∆λ(i) and G known, all remaining parameters can be computed directly
by simple matrix operations without further iterations. We obtain

γ(i) = yi∆λ(i) (56)

λ(i) =
N

∑
j=1

(g−diag(d))−1
i j (m j − y j)

2 (57)

where yi denotes the target values of data set D0, mi = ∑N
j=1 Gi jγ( j), gi j = (Gi j)

2 and the vector d

has the entries d(i) = H(i)gii
H(i)−gii

with H(i) = ∑∞
k=0

νke−ν

k! (∆λc(i)+ k
σ2 )

−2. Further

γc(i) = −γ(i)+mi(∆λ(i)+∆λc(i)) (58)

λc(i) =
λ(i)gii

H(i)−gii
+

(mi − yi)
2

gii
. (59)
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Figure 2: Bootstrapped mean (left) and variance (right) of the prediction at test inputs for GP re-
gression on Boston housing data. The first 50 points of the Boston data set provide the
test inputs, the remainder D0 of the data (N = 456 points) was used for the bootstrap
where S = N.

We solve Equations (54)-(59) for a given data set D0 and covariance kernel K(x,x′) and plug the
resulting parameters ∆λc(i), λc(i) and γc(i) into Equation (46). It computes the bootstrapped gen-
eralization error εg(S) measured by an arbitrary loss function g. Figure 1 compares our theoretical
predictions for the bootstrapped generalization error (solid lines) with simulation results (circles)
on two benchmark data sets (boston and pumadyn-8nm, DELVE, 1996). As test measure, we have
chosen square loss g( f̂ ;x,y) = ( f̂x − y)2 (Equation (45), Figure 1, left panel) and ε-insensitive loss
(Equation (46), Figure 1, right panel)

g(δ) =











0 if |δ| ∈ [0,(1−β)ε]
(|δ|−(1−β)ε)2

4βε if |δ| ∈ [(1−β)ε,(1+β)ε]
|δ|− ε if |δ| ∈ [(1+β)ε,∞]

with δ = f̂x − y, β = 0.1 and ε = 0.1. The GP model was trained with square loss Equation (50)
where σ2 = 0.01 and we used the RBF kernel K(x,x′) = exp(−∑d

j=1(x j − x′j)
2/(v jl2)) with l2 = 3

for 8nm Robot-arm data (RA) and l2 = 73.54 for Boston housing data (BH). v j was set to the
component-wise variance of the inputs (RA) or the square root thereof (BH). Figure 1 shows a
larger part of a learning curve where the average number of distinct examples in the bootstrap data
sets D is S∗ = N(1− e−S/N). When the bootstrap sample size S increases, one starts to exhaust
the data set D0 which leads eventually to the observed saturation of the bootstrap learning curve.
Simultaneously, one is left with a rapidly diminishing number of test points (e−S/NN, see top axis bar
of Figure 1, left panel). We observe a good agreement between theory (solid line) and simulations
(circles) for the whole learning curve. For comparison, we show the learning curve (dot-dashed
line) which results from a faster but approximate solution to the TAP theory. It avoids the iteration
Equation (54), (55). Instead we use the start value for ∆λ given in Appendix A.2, compute G =
(K−1 +diag(∆λ))−1, set ∆λc(i) = (Gii)

−1−∆λ(i) and solve Equations (56)-(59). The quality of this
approximate solution improves with increasing sample size S. We also compare the TAP approach
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Figure 3: Bootstrapped distribution of the GP prediction f̂i(D) at a given input xi for Boston hous-
ing data, S = N = 506. Most distributions are unimodal with various degrees of skewness
or a flank in the shoulder (left panel). The distribution may be unimodal but non-Gaussian
(inset left panel) or bimodal (not shown) with a broad and a sharply concentrated com-
ponent. The theory (line) describes the true distribution (histogram) in 80% of all cases
very accurately and can model a high degree of structure (right panel).

with two less sophisticated approximations to the replica posterior Equation (8), the variational
Gaussian approximation (Figure 1, left panel, dashed line) and the mean field method (Figure 1, left
panel, dotted line). Both methods compute for integer n optimal approximations (in the Kullback-
Leibler sense) to Equation (8) within a tractable family of distributions. One chooses Gaussians for
the former (Malzahn and Opper, 2003) and factorizing distributions (in the example index i) for the
latter approximation (see e.g., Opper and Saad, 2001). Both methods allow for a similar analytical
continuation to arbitrary n as the TAP approach. We see however, that both approximations give by
far less accurate results. Hence, we are not presenting the analytical formulas here.

Using Equation (56), (57) and Equation (48), we obtain analytical results for the bootstrapped
mean and variance of the prediction f̂x for GP regression at arbitrary inputs x. In the following, we
consider the Boston housing data set which we split into a hold out set of 50 data points and a set
D0 with N = 456 data. Figure 2 shows results for the bootstrapped mean (left) and variance (right)
of the GP prediction on the 50 test inputs where the bootstrap is based on resampling data set D0

with S = N. We find a good agreement between our theory (crosses) and simulation results (circles).
The simulation repeated the bootstrap average 5 times over sets of 5000 samples. Circles and error
bars display the mean and standard deviation (square root of variance) of these 5 average values.
Reliable numerical estimates of the bootstrapped model variance are computationally costly which
emphasizes the importance of the theoretical estimate.

Finally, we can use the results on ∆λc(i), λc(i) and γc(i), Equations (54)-(59), to approximate
the entire distribution of the GP prediction under the bootstrap average. The general expression
Equation (49) with g( f̂i(D)) = δ( f̂i(D)−h) yields for the GP regression problem Equation (50) an
infinite mixture of Gaussians

ρi(h) =
∞

∑
k=0

( S
N )ke−

S
N

k!

(∆λc(i)+ k
σ2 )

√

−2πλc(i)
exp

(

−
(

h
(

∆λc(i)+ k
σ2

)

− γc(i)− yi
k

σ2

)2

2(−λc(i))

)

. (60)
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Figure 4: The left panel shows two typical examples where the theory for the bootstrap distribution
(line) underestimates the amount of structure in the true distribution (histogram). The
weights or the number of mixture components may be wrongly predicted (20% of all
cases). The example in the right panel is very atypical (only 2% of all cases).

Figures 3 and 4 show results for the Boston housing data set where the bootstrap is based on resam-
pling all available data (N = 506) with S = N. We computed the distributions of the GP predictions
on each of the 506 inputs. Since the ADATAP approximation is based on a selfconsistent computa-
tion of first and second moments only, we should not expect that the results on the full distribution
will be as accurate as the mean and variance. However, for 80% of all cases, we found that the
theory (line) models the true distribution (histogram) as accurately as the examples shown in Fig-
ure 3. Most distributions are unimodal with various degrees of skewness or a shoulder in one flank
(Figure 3, left). We find bimodal distributions with one broad and one sharply concentrated com-
ponent (not shown). The example in the right panel of Figure 3 was selected to demonstrate that
the theory can model structured densities very accurately. For 20% of all points of the data set,
we found that the theory underestimates the true amount of structure in the distribution. Figure 4,
left panel, shows typical examples of this effect. We found a small number of atypical cases (2%)
where the theory predicts a broad unstructured distribution (Figure 4, right panel) whereas the true
distribution is highly structured. The percentages above are based on optical judgment but are also
well supported by similarity measures for densities. To illustrate this, we compute the bounded L1
distance, L1(ρ0,ρ) = 1

2

∫

dh|ρ0(h)−ρ(h)| ≤ 1, between the true density ρ0 and our approximation
ρ. Figure 5 shows the abundance of L1 values which were obtained for all 506 input points. We
find L1 ≤ 0.1 for 86.2% of all inputs and L1 ≥ 0.2 for 2% of all inputs. The maximal value is
L1 = 0.3109.

In contrast to other sophisticated models in machine learning, the GP regression model can be
trained fairly easily by solving a set of linear equations y′ = (K′ + σ2I)α′ for the weights α′

i to the
kernel functions K(x,x′i) (see e.g., Williams, 1997). In comparison we note that the computationally
most expensive step of the ADATAP theory is the computation of the N ×N matrix G = (K−1 +
diag(∆λ))−1 for the iteration of Equations (54) and (55). The appendix discusses simple methods
which save computation time. In both cases it suffices to compute the N ×N kernel matrix K only
once, i.e., we use cached kernel values for model training and model evaluation in the Monte-Carlo
simulation. Composing data sets D0 of various sizes N from various benchmark data, we find that
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Figure 5: Histogram of L1-distances between the true and theoretically predicted distribution of the
bootstrapped estimator on all N = 506 inputs of the Boston housing data set. We used
histograms ρ0(h), ρ(h) with bin-size ∆h = 0.2 to compute L1(ρ0,ρ) ≈ ∆h

2 ∑h |ρ0(h)−
ρ(h)| ≤ 1. The inset enlarges a part of the figure.

the MATLAB program solves our theory for S = N with high accuracy in the time equivalent of a
Monte-Carlo average over maximal 25 samples for N ≤ 2500 (maximal 15 samples for N ≤ 500).
Our theory is more accurate than Monte-Carlo averages with such a small amount of sampling. In
the example of Figure 2 where N = 456, Monte-Carlo averages over 20 samples fluctuate by up to
±0.6 (up to ±3%) for the mean prediction and by up to ±2.2 (up to ±49%) for the bootstrapped
variance of the GP regression model at the test points.

6. Summary and Outlook

In this paper we have presented an analytical approach to the computation of resampling averages
which is based on a reformulation of the problem and a combination of the replica trick of statistical
physics with an advanced approximate inference method for Bayesian models. Our method saves
computational time by avoiding the multiple retraining of predictors which are usually necessary
for direct sampling. It also does not require explicit analytical formulas for predictors.

So far, we have formulated our approach for GP models with general local likelihoods. Appli-
cations to a GP regression model showed promising results, where the method gives fairly accurate
predictions for bootstrap test errors and for the mean and variance of GP predictions. Surprisingly,
even the full bootstrap distribution is recovered well in a clear majority of cases. These results
also suggest that the approximation technique used in our framework, the ADATAP method, works
rather accurately compared to less sophisticated methods, like variational approximations. The non-
trivial shapes of the bootstrap distributions clearly demonstrates that the ADATAP approach is not
simply an approximation by a “Gaussian” but rather incorporates strongly non-Gaussian effects.

In the near future, we will give results for GP models with non-Gaussian likelihood models, like
classifiers, including support-vector machines (using the well established mathematical relations
between GP’s and SVM’s, see e.g., Opper and Winther, 2000). For these non-Gaussian models,
training on each data sample will require to run an iterative algorithm. Hence, we expect that
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the computation of our approximate bootstrap (which is also based on solving a system of nonlinear
equations by iteration) will have roughly the same order of computational complexity as the training
on the original data set. This could give our approach a good advantage over sample based bootstrap
methods, where the computational cost will scale with the number of bootstrap samples used in
order to calculate averages. For a further speedup, when the number of data points is large, one
may probably apply sparse approximations to kernel matrix operations, similar to those used for
the training of kernel machines (see e.g., Csató and Opper, 2002, Williams and Seeger, 2001).
The bootstrap estimates for classification test errors may be useful for model selection, because
the expressions are not simply discrete error counts, but smooth functions of the model parameters
which may be minimized more easily.3

While GP models seem natural candidates for an application of our new analytical approach,
we view our theory as a more general framework. Hence, we will investigate if it can be applied to
statistical models where model parameters are objects with a more complicated structure like trees
or Markov chains. Also more sophisticated sampling schemes which could involve correlations
between data points or which generate the new datasets by the trained models themselves could be
of interest.

So far, an open problem remains to establish a solid rigorous foundation to the statistical physics
methods used in our theory. One may hope that a further reformulation of the problem, replacing the
“replica trick” by the so-called cavity approach (Mézard et al., 1987) can give more intuitive insights
into the theory. It may also allow for the applications of recent rigorous probabilistic methods (see
e.g., Talagrand) which allowed to justify previous statistical physics results obtained by the replica
trick.
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Appendix A. Analytical Bootstrap Averages for Gaussian Process Regression

This appendix explains how to solve the set of Equations (54)-(59) efficiently. They determine
the values of the parameters ∆λc, λc, γc and ∆λ, λ, γ of our theory for the approximate analytical
calculation of bootstrap averages for the example of Gaussian process regression.

3. The bootstrap generalization error ε(N), Equation(17), estimates the bias between training error εt(D0) and gen-
eralization error εg(D0) of a learning algorithm trained on data set D0. Take, for example, Efron’s .632 estimate:
εg(D0) ≈ 0.368 εt(D0)+0.632 ε(N) (see also Efron and Tibshirani, 1997).
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A.1 The Algorithm

Require: Data set D0 = {(xi,yi); i = 1 . . .N}
Compute kernel matrix K on inputs of D0.
Compute eigenvalues ω of K.

For bootstrap sample size S:
Initialize: Find root ∆λ of Equation (62) with Equation (61). (Single one-dimensional root search.)
Iterate:

Update ∆λc from ∆λ according to Equation (54).
Update ∆λ from ∆λc according to Equation (55).

Until converged
Obtain γ, λ according to Equation (56), (57).
Obtain γc, λc according to Equation (58), (59).
Bootstrapped test error by Equation (46); bootstrapped distribution of estimator by Equation (60)
Bootstrapped mean prediction and variance by Equations (48)

End for

A.2 Algorithm Initialization

The algorithm solves Equation (54), (55) iteratively which requires a good initialization for the
∆λ(i)’s. A reasonable initialization can be obtained in the following way: We neglect the depen-
dence of Gii ≈ G and of ∆λ(i) ≈ ∆λ on the index i and write

G ≈ 1
N

N

∑
i=1

Gii =
1
N

Tr(K−1 +diag(∆λ))−1 ≈ 1
N

N

∑
k=1

ωk

1+ωk∆λ
(61)

where ωk for k = 1, . . . ,N are the eigenvalues of the kernel matrix K. Using the same approximation
within Equation (54), (55) yields

G =
∞

∑
k=0

νke−ν

k!
G

1−G(∆λ(i)− k/σ2)
. (62)

Solving Equations (61) and (62) with respect to ∆λ by a one dimensional root finding routine gives
the initialization for the iteration of Equations (54) and (55). The iteration is found to be stable and
shows fast convergence whereby the number of required iterations decreases with increasing sample
size S.

For large N, one can save time by computing Equation (61) with the eigenvalues ω of a smaller
kernel matrix based on a random subset of N

P of the data (replace 1
N by P

N in Equation (61)). The
choice P = 4 yields start values for ∆λ which are slightly degraded but equally efficient for the
iteration.

A.3 Standard Iteration Step

The t-th iteration uses ∆λt to compute the matrix Gt = (K−1 +diag(∆λt))−1. This is the most time
consuming step of the TAP theory. We remark that we can easily rewrite Gt to avoid computation
of K−1 (which may be close to singular). Under MATLAB it pays off to use the division operator on
symmetric matrices

Gt = diag(∆λt)−1 (diag(∆λt)−1 +K
)−1

K (63)
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From Gt
ii and Equation (54), (55) we obtain the updates ∆λc

t+1, ∆λt+1. The solution has usually the
property that ∆λc(i) >> ∆λ(i) where ∆λc(i) increases significantly with S. We determine ∆λc(i),
∆λ(i) with at least ±10−3 accuracy relative to their absolute values. We define the absolute error at
iteration step t by

δ = ∆λt+1 −∆λt . (64)

The number A of sites with changes |δ j| > 10−4 drops to values A << N after typically 2 − 3
iterations. We store the corresponding site indices in an A dimensional vector J (A). For A << N,
we can compute the matrix update Equation (63) more efficiently using the Woodbury formula

Gt+1 = Gt −U(I+W)−1 UT . (65)

U is N×A dimensional with entries Gt
ik

√
δk where i = 1, . . . ,N and k ∈ J (A), i.e., the columns of U

are proportional to the A columns of Gt which correspond to active sites J (A). The identity matrix
I and matrix W are both A×A dimensional. W has the entries Gt

k1,k2

√

δk1δk2 with k1,k2 ∈ J (A).

A.4 Approximate Iteration Step

The iteration requires only updates of the diagonal elements Gt+1
ii (see Equation (54)). This subsec-

tion discusses an approximate update for Gt+1
ii which saves time and aids convergence to small active

sets A. We will place such approximate updates between exact updates of Gt+1 by Equation (63) or
(65). The latter ensures that we do not accumulate errors.

We regard Gt as an approximation to the unknown matrix Gt+1, define the approximation error
by R .

= I−Gt(Gt+1)−1 = −Gtdiag(δ) and get (Press et al., 1992)

Gt+1 = (I−R)−1Gt =

(

I+
∞

∑
l=1

Rl

)

Gt (66)

which is determined by the changes δ, Equation (64), and by Gt . Gt has typically small entries
Gt

i j << 1 (for Ki j ≤ 1).4 Equation (66) enables us to obtain approximate updates for Gt+1
ii which

require only O(N2) operations. With gi j = (Gt
i j)

2 we approximate

Gt+1
ii ≈ Gt

ii −
N

∑
j=1

gi j
(

δ j −δ2
jG

t
j j +δ3

jg j j
)

(67)

Equation (67) is non-local with respect to δ. The quadratic and cubic terms in δ j approximate the
second and third order contributions (R2 + R3)Gt under the assumption that off-diagonal entries
in Gt are small in comparison to diagonal entries. Note that Equation (67) uses the values Gt

ll =
Gt

ll(∆λt) from our last exact computation with ∆λt . We define Ḡt = 1
N ∑N

l=1 Gt
ll and find that if

|δ j|Ḡt < 0.1 for all sites j = 1, . . . ,N, we can do repeated iterations using Equation (67) where we
update ∆λt+1 (and ∆λc

t+1) but keep Gt
ll , ∆λt unchanged. δ is updated according to Equation (64).

It is beneficial to do up to 3 iterations before recomputing Gt+1 from the final ∆λt+1 by an exact
method.

4. The values Gi j decrease with increasing sample size S.
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