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Abstract
We consider the problem of learning with instances defined over a space of sets of vectors. We
derive a new positive definite kernel f (A,B) defined over pairs of matrices A,B based on the con-
cept of principal angles between two linear subspaces. We show that the principal angles can be
recovered using only inner-products between pairs of column vectors of the input matrices thereby
allowing the original column vectors of A,B to be mapped onto arbitrarily high-dimensional feature
spaces.

We demonstrate the usage of the matrix-based kernel function f (A,B) with experiments on two
visual tasks. The first task is the discrimination of “irregular” motion trajectory of an individual or
a group of individuals in a video sequence. We use the SVM approach using f (A,B) where an input
matrix represents the motion trajectory of a group of individuals over a certain (fixed) time frame.
We show that the classification (irregular versus regular) greatly outperforms the conventional rep-
resentation where all the trajectories form a single vector. The second application is the visual
recognition of faces from input video sequences representing head motion and facial expressions
where f (A,B) is used to compare two image sequences.

Keywords: Kernel Machines, Large margin classifiers, Canonical Correlation Analysis.

1. Introduction

We consider the task of obtaining a similarity function which operates on pairs of sets of vectors
— where a vector can represent an image and a set of vectors could represent a video sequence for
example — in such a way that the function can be plugged into a variety of existing classification
engines. The crucial ingredients for such a function are (i) the function can be evaluated in high
dimensional spaces using simple functions (kernel functions) evaluated on pairs of vectors in the
original (relatively low-dimensional) space, and (ii) the function describes an inner-product space,
i.e., is a positive definite kernel.

It would be natural to ask why would one need such a function to begin with? The conventional
approach to representing a signal for classification tasks — be it a 2D image, a string of characters
or any 1D signal — is to form a one-dimensional attribute vector xi in some space Rn defined as
the instance space. Whether the instance space is a vector space or not is not really crucial for this
discussion, but the point being is that instances are essentially 1-dimensional objects.

However, there are situations which call for representing an instance as a set of vectors. For
example, in a visual interpretation task the models themselves may be obtained from sets of images
(such as a video sequence), and in machine learning when a training set is pre-expanded to contain

c©2003 Lior Wolf and Amnon Shashua.



WOLF AND SHASHUA

virtual examples in order to incorporate prior knowledge about invariances of the input data. To be
concrete, we will describe three such situations below.

The first situation is a classical face detection problem. Face recognition has been traditionally
posed as the problem of identifying a face from a single image. On the other hand, contemporary
face tracking systems can provide long sequences of images of a person, thus for better recognition
performance it has been argued (e.g., Shakhnarovich et al., 2002, Yamaguchi et al., 1998) that the
information from all images should be used in the classification process. One is therefore faced with
the problem of matching between two sets of images (where each image is represented by a vector
of pixel values).

The second situation is also related to visual interpretation but in a different setting. Consider for
example a visual surveillance task of deciding whether a video sequence of people in motion con-
tains an “abnormal” trajectory. The application can vary from detection of shop-lifting, breaking-
and-entry or the detection of “irregular” movements of an individual in a crowd. Given that the
motion trajectory of an individual can be modeled as a vector of positions over time, then the most
natural representation of the entire video clip is a set of vectors. We would be looking, therefore,
for an appropriate set-matching measure which could be plugged-in into conventional classification
engines. More details are provided in Section 5.

The third situation occurs when conventional classification engines are incorporated with prior
knowledge about invariances of the input vectors. By invariances we mean certain transformations
which leave class membership invariant. In digit recognition, for example, typical invariances in-
clude line thickness and image plane translation and rotation. It has been observed that an effective
way to make a classifier invariant is to generate synthetic training examples by transforming them
according to the desired invariances (see Baird, 1990, DeCoste and Schölkopf, 2002, Poggio and
Vetter, 1992, Simard et al., 1992). For instance the “kernel jittering” of DeCoste and Schölkopf
(2002) performs the synthetic transformations within the matching process between pairs of train-
ing examples, thereby effectively matching between two sets of vectors (or between a vector and a
set).

For convenience we shall represent the collection of vectors in Rn as columns of a matrix; thus
our instance space is the space over matrices. In all three examples above, the order of the columns
of a training matrix is unimportant, thus the similarity metric over a pair of matrices we wish to
derive should ideally match between the two respective column spaces, rather than between the
individual columns. Another useful property we desire is to incorporate the similarity metric with a
non-linear “feature map” φ : Rn → F with a corresponding kernel satisfying k(x,x′) = φ(x)>φ(x′).
Typical examples include the polynomial kernels of the form k(x,x′) = (x>x′ +θ)d associated with
an

(n+d
d

)

dimensional feature map representing the d’th order monomial expansion of the input

vector and the Gaussian radial basis function (RBF) kernels k(x,x′) = e−
1

2σ2 ‖x−x′‖2

.
Working with feature maps allows one to represent non-linearities as, for example, the linear

subspace defined by the column space of the matrix A = [φ(a1), ...,φ(ak)] is a surface in the original
input space Rn. Therefore, the measure of similarity between two matrices undergoing a feature
map translates to a measure between the two underlying surfaces in Rn. Because of the prohibitly
high dimension of the feature space, we would not like to ever evaluate the function φ() thereby
the “kernel trick” is possible only if the similarity metric f (A,B) can be implemented using inner
products only between the columns of A = [φ(a1), ...,φ(ak)] and B = [φ(b1), ...,φ(bk)]. Finally, to
make general use of the similarity function, we also desire that f (A,B) forms a positive definite
kernel on its own accord (for reasons described later).
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In this paper we propose a measure over the principal angles between the two column spaces
of the input matrices A,B. The principal angles are invariant to the column ordering of the two
matrices thereby representing a measure over two unordered sets of vectors. The challenge in this
work is two fold: the first challenge is to compute the principal angles in feature space using only
inner-products between the columns of the input matrices, i.e., using only computations of the form
k(ai,b j),k(ai,a j) and k(bi,b j) for i, j = 1, ...,k. The second challenge is to introduce an appropriate
function over the principal angles such that f (A,B) forms a positive definite kernel.

1.1 Related Work

The idea of using principal angles as a measure for matching two image sequences was proposed
by Yamaguchi et al. (1998) with dissimilarity between the two subspaces measured by the smallest
principal angle — thereby effectively measuring whether the subspaces intersect which is somewhat
similar to a “nearest neighbor” approach. However, the assumption that a linear subspace is a good
representation of the input set of vectors is somewhat restrictive with decreasing effectiveness for
low dimension n and large input set size k. In our approach, the dimension of the feature space is
very high and due to the use of the kernel trick one effectively matches two non-linear surfaces in
Rn instead of linear subspaces.

Another recent approach proposed by Shakhnarovich et al. (2002) to match two image se-
quences is to compute the covariance matrices of the two input sets and use the Kullback-Leibler
divergence metric (algebraically speaking, a function of AA>,BB> assuming zero mean column
spaces) assuming the input set of vectors form a Gaussian distribution. The fact that only input
space dimension Rn is used constrains the applicability of the technique to relatively small input
sets, and the assumption of a Gaussian distribution limits the kind of variability along the input
sequence which can be effectively tolerated.

Other ideas published in the context of matching image sequences are farther away from the
concepts we propose in this paper. The common idea in most of the published literature is that
recognition performance can be improved by modeling the variability over the input sequence. Most
of those ideas are related to capturing “dynamics” and “temporal signatures” (Edwards et al., 1999,
Gong et al., 1994, Biuk and Loncaric, 2001).

Finally, in the “kernel jittering” approach (DeCoste and Schölkopf, 2002) for obtaining invari-
ances over a class of transformations, two instance vectors xi and x j are matched by creating ad-
ditional synthetic examples xip and x jq centered around the original input instances and selecting
k(x′,x′′) as the output measure of the two sets based on a nearest neighbor concept. The problem
with this approach is that the measure does not necessarily form a positive definite kernel and the
nearest neighbor approach is somewhat ad-hoc. In our approach, the two subspaces spanned by
φ(xip) and φ(x jq), respectively, would be matched using a positive definite kernel. In Section 5.3
we will demonstrate the superiority of our similarity measure over sets against a nearest neighbor
approach in the context of a jittering experiment.

2. Kernel Principal Angles

Let the columns of A = [φ(a1), ...,φ(ak)] and B = [φ(b1), ...,φ(bk)] represent two linear subspaces
UA,UB in the feature space where φ() is some mapping from input space Rn onto a feature space
F with a kernel function k(x,x′) = φ(x)>φ(x′). The principal angles 0 ≤ θ1 ≤ ... ≤ θk ≤ (π/2)
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between the two subspaces are uniquely defined as:

cos(θk) = max
u∈UA

max
v∈UB

u>v (1)

subject to:

u>u = v>v = 1, u>ui = 0,v>vi = 0, i = 1, ...,k−1

The concept of principal angles is due to Jordan in 1875, where Hotelling (1936) is the first to intro-
duce the recursive definition above. The quantities cos(θi) are sometimes referred to as canonical
correlations of the matrix pair (A,B). In the statistical literature the vectors ui,vi are called variates
and the corresponding vectors xi,yi such that ui = Axi and vi = Byi are called the canonical vectors.

The standard convention of Canonical Correlation Analysis (CCA) is to treat the row vectors
of the matrices A,B as feature vectors — for example, a row vector of A would represent the mea-
surements of an object, and the corresponding row vector of B would represent the class affiliation
of the object. With this convention, the kernel versions of CCA (Kuss and Graepel, 2003, Melzer
et al., 2001, Gestel et al., 2001, Bach and Jordan, 2002) therefore map the rows of A and B using
φ(·) whereas in our work we map the columns. There is a crucial difference in the choice of whether
to map the rows or the columns because when the rows are mapped onto some high dimensional
space one must ensure that the effective dimension would be smaller than the column space di-
mension (which is fixed) — a requirement that considerably limits the choice of kernel functions
(for example, a Radial Basis Kernel cannot be used). When the columns are mapped to some high
dimensional space there are no restrictions on the choice of kernel functions.

There are various ways of formulating this problem, which are all equivalent, but some are more
suitable for numerical stability than others. The standard approach, known as the Lagrange formula-
tion, has the advantage that it can be easily “kernalized” but at the expense of having poor numerical
stability. For the sake of completeness, the Lagrange formulation is reviewed in Section 3.1. A nu-
merically stable algorithm was proposed by Bjork and Golub (1973) based on the QR factorization
and SVD, as follows.

Consider the “QR” factorization of the matrices A,B. Let A = QARA and B = QBRB where Q
is an orthonormal basis of the respective subspace and R is a upper-diagonal k× k matrix with the
Gram-Schmidt coefficients representing the columns of the original matrix in the new orthonormal
basis. The singular values σ1, ...,σk of the matrix Q>

A QB are the principal angles cos(θi) = σi. Note
that this definition includes the case where A,B are not of full rank. For example, if rank(A) =
r,rank(B) = s then QA will consist only of r columns and RA will be the corresponding r× r invert-
ible matrix such that QARA produce the first r independent columns of A. Likewise for B. The r× s
matrix Q>

A QB will have min(r,s) singular values representing the cosine principal angles.
The challenge of computing the principal angles is that the matrices QA,QB should never be

explicitly evaluated because the columns of the Q matrices are in the high dimensional feature
space. Our task therefore is to compute Q>

A QB without computing the individual matrices QA,QB.

The key to our approach is to compute the matrices R−1
A ,R−1

B directly without computing QA,QB

since Q>
A QB = R−>

A A>BR−1
B whereas the (i, j) entries of A>B are represented by the kernel function

k(ai,b j). Therefore, in the following section we address the problem of recovering the Gram-
Schmidt coefficients of the QR factorization of a general matrix A using only inner-products between
the columns of A.
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2.1 Kernel Gram-Schmidt

Let A be a matrix with columns φ(a1), ...,φ(ak) where φ() is a high-dimensional mapping Rn → F
endowed with a kernel k(ai,a j) = φ(ai)

>φ(a j). We wish to compute the k×k upper diagonal matrix
R and its inverse R−1 resulting from the “QR” factorization A = QR where the columns of Q form
an orthonormal basis of the column space of A. The challenge is to compute R and R−1 without
computing Q and using only innerproducts of the columns of A, i.e., using only operations of the
form k(ai,a j), .

Consider the result of the Gram-Schmidt orthogonalization process of the matrix A: Let v j ∈ F
be defined as:

v j = φ(a j)−
j−1

∑
i=1

v>i φ(a j)

v>i vi
vi (2)

Let V = [v1, ...,vk] and

s j = (
v>1 φ(a j)

v>1 v1
, ...,

v>j−1φ(a j)

v>j−1v j−1
,1,0,0, ...,0)> (3)

Then,
A = V S, (4)

where S = [s1, ...,sk] an upper diagonal k× k matrix. The QR factorization is therefore:

A = (V D−1)(DS), (5)

where D is a diagonal matrix Dii = ‖vi‖2. Assuming the columns of A are linearly independent (this
assumption will be removed later) then S−1 is well defined, and

A = AS−1D−1DS, (6)

from which we obtain: Q = AR−1 and R = DS. What remains to show is that D,S−1 can be computed
with only inner-products of the columns of A. We will describe now an interleaving algorithm for
computing the columns si of the matrix S and the columns ti of S−1 one at a time. From (4) we have
V = AS−1, thus v j = At j and due to the nature of the Gram-Schmidt process (S is upper diagonal)
we have:

v j =
j

∑
q=1

tq jφ(a j),

where tq j is the q’th element of the vector t j. The inner products v>j φ(ai) and v>j v j can be computed
via a kernel:

v>j φ(ai) =
j

∑
q=1

tq jk(ai,aq)

v>j v j =
j

∑
p=1

j

∑
q=1

tp jtq jk(ap,aq) (7)

The inner-products above are the building blocks of D — whose diagonal consists of the norm of
v j which is computed via (7). From (3), the columns s j of S are defined as:

s j = (
t11k(a1,a j)

t2
11k(a1,a1)

, ...
∑ j−1

q=1 tq jk(a j,aq)

∑ j−1
p,q=1 tp jtq jk(ap,aq)

,1,0, ...,0). (8)
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We see that the columns s j depends on tl from l = 2, ..., j, and conversely t j depends on s j as well.
However, the way to break the cycle of dependency is by noticing that t j can be represented as a
function of t1, ..., t j−1 and of s j as follows. From (2) we have:

v j = [−v1, ...,−v j−1,φ(a j),0, ...,0]s j, (9)

and since v j = At j we have by substitution in (9):

v j = A[−t1, ...,−t j−1,e j,0, ...,0]s j,

where e j is defined such that I = [e1, ...,ek] is the k× k identity matrix. As a result,

t j = [−t1, ...,−t j−1,e j,0, ...,0]s j. (10)

We summarize below the algorithm:

Definition 1 (Kernel Gram-Schmidt Algorithm) Given a matrix A with k linearly independent
columns, the algorithm below computes the matrix R and R−1 of the “QR” factorization A = QR
using only inner-products between the columns of A.

• Let s1 = t1 = e1

• Repeat for j = 2, ...,k:

– Compute s j using Equation (8).

– Compute t j using Equation (10).

• Compute the diagonal matrix D using Equation (7).

• R = D[s1, ...,sk].

• R−1 = [t1, ..., tk]D−1.

In case the column space of A is not of full rank, say rank(A) = r < k then k − r diagonal
elements of D would vanish. One should therefore simply omit those t j for which D j j = 0 and
obtain R−1 whose number of columns are equal to the rank of A.

2.2 Computing the Kernel Principal Angles

Having defined the Kernel Gram-Schmidt algorithm above, the process of recovering the principal
angles of the pair of matrices A,B becomes immediate. Let rank(A) = r ≤ k and rank(B) = s≤ k and
let R−1

A be the r× r matrix computed from A using the Kernel Gram-Schmidt algorithm above and
let R−1

B be the s×s matrix corresponding to B. Let Ā consist of the r columns of A which participated
in the Gram-Schmidt process (the corresponding D j j > 0), i.e., Ā = [φ(ai1), ...,φ(air)] where i j = j
if D j j > 0. Likewise B̄ consists of the s columns of B which participated in the Gram-Schmidt
process. Let M = Ā>B̄ be the r× s matrix of inner-products Mi j = k(ai,b j) and let q = min(r,s).
Then the cosine principal angles cos(θ1) ≥ ... ≥ cos(θq) are the q leading singular values of the
matrix R−>

A MR−1
B .
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3. Alternative (less efficient) Formulations

The algorithm above for computing the principal angles is based on “kernalizing” the “QR-SVD”
formulation which on one hand is known to be the most numerically stable and on the other hand
is computationally efficient where the most intensive part consisting of a single application of SVD
on a k× k matrix.

For the sake of completeness, in the following two sections we will describe two other ap-
proaches for kernalizing the computation of principal angles. The first approach is based on the
Lagrange formulation (Hotelling, 1936) where the principal angles are the generalized eigenvalues
of an expanded 2k×2k matrix. The second approach is based on an eigen-decomposition formula-
tion for generating QA and QB instead of the QR step. Both approaches are less efficient than the
QR-SVD approach where on top of that the Lagrange formulation suffers from numerical instability
as well.

3.1 The Lagrange Formulation

The original formulation by (Hotelling, 1936) was based on Lagrange multipliers generating the
principal angles as the set of generalized eigenvalues of a block diagonal matrix. The approach
suffers from numerical stability issues, however, the extension to computation in feature space is
immediate as shown next. Problem (1) can be written as

max
x,y

{y>B>Ax} s.t. ‖Ax‖2 = 1, ‖By‖2 = 1.

The Lagrangian of the problem is:

L(x,y,α,β) = y>B>Ax−α(‖Ax‖2 −1)−β(‖By‖2 −1).

The derivatives with respect to x,y provide the expressions:

y = α(A>B)−1A>Ax (11)

x = β(B>A)−1B>By (12)

The criterion function E = y>B>Ax can be expanded using the expressions above with the result
that E = α = β. Denoting λ ≡ α = β and substituting y in Equation (12) for the righthand side of
Equation (11) and likewise for x we obtain the following two eigen-systems:

(B>B)−1(B>A)(A>A)−1(A>B)y = λ2y

(A>A)−1(A>B)(B>B)−1(B>A)x = λ2x

Where the square roots of the eigenvalues of the two systems are the cosine principal angles. Be-
cause the eigenvalues of the two systems are identical one can combine them into a single general-
ized eigen-system (using Equations 11 and 12):

(

0 B>A
A>B 0

)(

y
x

)

= λ
(

B>B 0
0 A>A

)(

y
x

)

,

The generalized eigenvalues λ1, ...,λ2k are related to the principal angles by λ1 = cos(θ1), ...,λk =
cos(θk), and λk+1 = −cos(θk), ...,λ2k = −cos(θ1).
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The advantage of the approach is that the computation in feature space is immediately available
since the matrices A>A,B>B,A>B and B>A involve only inner-products between columns of A and
B, i.e., the evaluation of the expressions k(ai,b j),k(ai,a j) and k(bi,b j) for i, j = 1, ...,k. As a result
this formulation is widely used for obtaining Kernel versions of CCA (see Kuss and Graepel, 2003,
Melzer et al., 2001, Gestel et al., 2001, Bach and Jordan, 2002).

The are several draw-backs to this approach, however. On the computational efficiency front,
one is faced with a generalized eigenvalue problem of a 2k×2k system compared to a k× k eigen-
value system with the QR-SVD approach. This is a significant drawback for large k since the cost
of recovering the eigenvalues is cubic in the size of the system. On the numerical stability front,
this approach requires matrix inversions which is problematic when the column spaces of A and B
are not of full rank. Ways around this numerical instability problem have been suggested such as
performing a Kernel Principal Component analysis (KPCA) on the Gram matrices A>A and B>B
or using a regularization approach by adding small multiples of the identity matrices to the Gram
matrices (Kuss and Graepel, 2003, Gestel et al., 2001). An additional problem, related indirectly to
numerical instability, is that the 2k eigenvalues form two equal groups of k values. This fact forms
a highly non-linear constraint which is not easy to incorporate into the solution of principal angles
and is thus ignored leading to sub-optimal solutions. Numerical studies we have conducted confirm
the numerical instability of this approach (compared to the QR-SVD approach). Experiments using
a regularization approach prove useful for overcoming numerical instabilities however the success
critically depends on the regularization parameters which are chosen by hand.

3.2 The Eigen-decomposition Approach

The QR-SVD formulation was based on generating an orthonormal basis QA,QB for the column
spaces of A,B respectively followed by the SVD of Q>

A QB to obtain the singular values. An or-
thonormal basis for A, for example, can be generated from the eigen-decomposition of AA> instead
of via a QR decomposition. Kernalizing an eigen-decomposition is immediate, but at a price of
efficiency: the overall process for finding the principal angles will consist of 3 applications of SVD
of k× k matrices instead of a single SVD.

Consider the matrix A = [φ(a1), ...,φ(ak)] and let QA be the orthonormal basis of the column
space of A as generated by the SVD process of A: AA> = QADAQ>

A where DA is a diagonal matrix
containing the square eigenvalues of A and the columns of QA are the corresponding eigenvectors.
Since AA> is not-computable (as the columns of A are in the feature space), consider instead the
eigenvectors of the k× k matrix A>A whose entries are k(ai,a j): A>A = UADAU>

A . The connection
between UA and QA is easily established as follows:

A>AUA = UADA,

followed by pre-multiplication by A:

AA>(AUA) = (AUA)DA,

from which we obtain that AUA is an orthogonal set (un-normalized eigenvectors). Therefore:

QA = AUAD
− 1

2
A

is the orthonormal set of eigenvectors of AA> which span the column space of A. The derivation
above is a well known “trick” used to compute the principal components of a matrix whose number
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of columns is much smaller than the number of rows (see for example M.Turk and A.Pentland.,
1991).

The matrix QA is not-computable, but the product:

Q>
A QB = D

− 1
2

A U>
A (A>B)UBD

− 1
2

B

is computable. To conclude, the kernel principal angles based on eigen-decompositions is summa-
rized below:

• Given two sets of vectors ai,bi, i = 1, ...,k in Rn, we would like to find the principal angles
between the two matrices A = [φ(a1), ...,φ(ak)] and B = [φ(b1), ...,φ(bk)] where φ() is some
high-dimensional mapping with a kernel function k(x,x′) = φ(x)>φ(x′).

• Let UA,DA be the eigen-decomposition using the SVD formulation A>AUA = UADA and like-
wise let UB,DB be the eigen-decomposition of B>BUB = UBDB. Note that the entries of A>A
and B>B involve the evaluations of k(ai,a j) and k(bi,b j) only.

• Let Mi j = k(ai,b j) be the entries of the k× k matrix M = A>B.

• The cosine of the principal angles are the singular values of the matrix D
− 1

2
A U>

A MUBD
− 1

2
B .

This algorithm requires between twice to three times the computational resources of the QR based
algorithm since it consists of three applications of SVD. Empirical studies we conducted show that
the two algorithms have similar numerical stability properties with slight benefit to the QR approach.

4. Making a Positive Definite Kernel

We have shown so far that given two sets of vectors ai,bi, i = 1, ...,k in Rn one can compute
cos(θi), the cosine of the principal angles, between the two subspaces span{φ(a1), ...,φ(ak)} and
span{φ(b1), ...,φ(bk)} where φ() is a high dimensional mapping with kernel k(x,x′) = φ(x)>φ(x′)
using only computations of the form k(ai,b j),k(ai,a j) and k(bi,b j) for i, j = 1, ...,k. In fact, the
two sets of vectors may be of different sizes, but for the material discussed in this section we must
assume that the column spaces of A,B are of equal dimension.

In this section we address the issue of constructing a positive definite kernel f (A,B) and consider
a number of candidate functions. Specifically, we propose and prove that

Πk
i=1cos(θi)

2

is a positive definite kernel. The reason we would like a similarity measure that can be described by
an inner-product space is for making it generally applicable to a wide family of classification and
clustering tools. Existing kernel algorithms like the Support Vector Machine (SVM) and “kernel-
PCA” (to mention a few) rely on the use of a positive definite kernel to replace the inner-products
between the input vectors. Our measure f (A,B) can be “plugged-in” as a kernel function provided
that for any set of matrices Ai, i = 1, ...,m and for any (positive) integer m, the m×m matrix K:

Ki j = f (Ai,A j)
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is (semi) positive definite, i.e., x>Kx ≥ 0 for all vectors x ∈ Rm. This property enhances the useful-
ness of f (A,B) for a wider variety of applications, and in some applications (like optimal margin
algorithms) it is a necessary condition.

To avoid confusion, the computation of cos(θi) involves the use of some kernel function as was
described in the previous section — but this does not necessarily imply that any function d(θi) of
cos(φi) is a positive definite kernel, i.e., that there exist some canonical mapping ψ(A) from the
space of matrices to a vector space such that d(θ1, ..,θk) = ψ(A)>ψ(B). The result we will need
for the remainder of this section is the Binet-Cauchy theorem on the product of compound matrices
(Aitken, 1946, pp.93) attributed by Binet and Cauchy in 1812 — described next.

Definition 2 (Compound Matrices) Let A be an n× k matrix. The matrix whose elements are the
minors of A of order q constructed in a lexicographic order is called the “q’th compound of A” and
is denoted by Cq(A).

In other words, the q’th order minors are the determinants of the sub-matrices constructed by
choosing q rows and q columns from A, thus Cq(A) has

(n
q

)

rows and
(k

q

)

columns. The priority of
choosing the rows and columns for the minors is based on a lexicographic order: minors from rows
1,2,4 for example will appear an in an earlier row in Cq(A) than those from 1,2,5 or 1,3,4 or 2,3,4;
and likewise for columns. Of particular interest for us is the Grassman vector defined below:

Definition 3 (Grassman Vector) Let A be an n×k matrix where n ≥ k. The k’th compound matrix
Ck(A) is a vector of dimension

(n
k

)

called the Grassman vector of A denoted by ψ(A).

For example, for n = 4,k = 2 the two columns of A may represent two points in the 3D projective
space and ψ(A) represents the 6 Grassman (Plucker) coordinates of the line spanned by the two
points. The Grassman coordinates are invariant (up to scale) to the choice of the two points on the
line. In general, the Grassman coordinates represent the subspace spanned by the columns of A
invariantly to the choice of points (basis) of the space. The Binet-Cauchy theorem is described next:

Definition 4 (Binet-Cauchy Theorem) Let A,B be rectangular matrices of size n× k and n× p,
respectively. Then,

Cq(A
>B) = Cq(A)>Cq(B).

In other words, the
(k

q

)

×
(p

q

)

matrices Cq(A>B) and Cq(A)>Cq(B) are element for element identical.

Of particular interest to us is the case where p = k = q, thus Ck(A>B) is a scalar equal to det(A>B)
(because A>B is a k× k matrix and

(k
k

)

= 1) from which we obtain the following corollary:

Corollary 5 Let A,B be matrices of size n× k. Then,

det(A>B) = ψ(A)>ψ(B).

As a result, the measure det(A>B) is positive definite. Since the entries of A>B are the inner-
products of the columns of A,B thus the computation can be done in the so called feature space with
kernel k(ai,b j) = φ(ai)

>φ(b j) where φ() is the mapping from the original Rn to some high dimen-
sional feature space. However, det(A>B) depends on the choice of the columns of A,B rather than
on the respective column spaces (as principal angles do), thus is not likely to be a good candidate
for a positive definite kernel f (A,B) over pairs of matrices.
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The next immediate choice for f (A,B), is det(Q>
A QB) since from Corollary 1 we have det(Q>

A QB) =
ψ(QA)>ψ(QB). The choice f (A,B) = det(Q>

A QB) is better than det(A>B) because it is invariant to
the choice of basis for the respective column spaces of A,B. Since QA,QB are orthonormal matrices,
a change of basis would result in a product with a rotation matrix: Q̃A = QAR1 and Q̃B = QBR2

where R1,R2 are some rotation matrices. Then

det(Q̃>
A Q̃B) = det(R>

1 )det(R2)det(Q>
A QB) = det(Q>

A QB).

The problem, however, is that det(Q>
A QB) can receive both positive and negative values making

it a non-ideal candidate for a measure of similarity. For example, by changing the sign of one
of the columns of A, results in det(Q>

A QB) changing sign, yet the respective column spaces have
not changed. On the other hand, the absolute value |det(Q>

A QB)| may not be positive definite (in
fact it isn’t as one can easily show by creating a counter example). Nevertheless, the product of
two positive definite kernels is also a positive definite kernel (see Scḧolkopf and Smola (2002), for
example), then

f (A,B) = det(Q>
A QB)2 = Πk

i=1cos(θi)
2

is our chosen positive definite kernel function.
Finally, for purposes of clarity only it may be worthwhile to show the connection between the

inner product ψ(QA)>ψ(QB) and the inner product ψ(A)>ψ(B):

Theorem 6 Let A,B be matrices of size n× k where n ≥ k. Then,

cos(ψ(A),ψ(B)) = ψ(QA)>ψ(QB).

Proof: This is a result related to a theorem by (Brualdi et al., 1995) and (MacInnes, 1999) which fol-
lows directly from the Binet-Cauchy theorem, as follows: Let A = QARA and B = QBRB represent the
QR factorization of both matrices. Note that det(RA) and det(RB) are positive (using the algorithm
in the previous section). From the Binet-Cauchy theorem we have: ‖ψ(QA)‖ = ‖ψ(QB)‖ = 1 (be-
cause det(I) = ψ(Q>

A QA) = ψ(QA)>ψ(QA)). Likewise, ψ(A)>ψ(A) = det(R>
A RA), thus ‖ψ(A)‖ =

det(RA). Also note that ψ(QARA) = det(RA)ψ(QA). Then,

cos(ψ(A),ψ(B)) =
ψ(A)>ψ(B)

‖ψ(A)‖ · ‖ψ(B)‖

=
det(RA)det(Rb)ψ(QA)>ψ(QB)

det(RA)det(RB)

= ψ(QA)>ψ(QB)

Note that that if the QR factorization does not produce positive determinants for the R com-
ponents, the theorem above is defined up to absolute value only. To conclude, among the possible
positive definite kernels we have proposed (which can be computed in feature space) the one which
makes the most sense is:

f (A,B) = det(Q>
A QB)2 = Πk

i=1cos(θi)
2 (13)

where cos(θi) are computed in feature space according to the algorithm described in the previous
section.
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5. Experimental Results

The experiments presented in this section cover three domains. The first is the detection of an
abnormal activity based on monitoring motion trajectories of people accross time. In this domain
the classification is based on a Support vector Machine using the positive definite set-similarity
function (13) defined above. The second application domain is face recognition using a nearest
neighbor approach where the similarity function is based on the extraction of the kernel principal
angles between pairs of sets of face sequences. In this case the positive definite property is not a
necessity and a variety of functions of the principal angles are available. The third example is on the
kernel jittering domain where we show the advantages of our set-similarity function over existing
approaches.

5.1 Detecting Abnormal Motion Trajectories

Our first experimental example simulates the detection of an abnormal motion trajectory. We note
that a motion trajectory is not abnormal by itself, but is considered so with respect to some more
common “normal” motions. Each example in the training and test sets is given as a set of trajecto-
ries. Each trajectory is represented by a vector which simulates the location of a person over time.
Our goal is to learn to distinguish between homogeneous sets (negative examples) and inhomoge-
neous sets (positive examples). An inhomogeneous set would contain a trajectory that is different in
a sense from the other trajectories in the set. However, the trajectories themselves are not labeled.

Building a real system that would track people over time, and creating a real world test and
training sets are outside the scope of our current work. Instead we have simulated the situation using
the rules stated below. We define six behavior models. Each behavior model has some freedom with
respect to certain parameters. The first model, shown in Figure 1(a) is of straight trajectories. This
model, as well as the other more complex ones, has the freedom to choose starting and ending
points. The next two models, shown in Figures 1(b), 1(c), change their direction once or twice
respectively. The exact location of the change can vary slightly as does the orientation of the new
direction. The fourth model, shown in Figure 1(d), has a small arc. The starting point of the arc and
its length can vary to some extent. The fifth model, shown in Figure 1(e), has a much wider arc,
while the last model, shown in Figure 1(f), completes almost a full circle before continuing to its
original direction. The exact parameters of the circular motion and its starting point can vary.

We used the Support Vector Machine (SVM) (Boser et al., 1992, Vapnik, 1998) algorithm for
our classification engine. The SVM was given a training set of input matrices A1, ...,Al with la-
bels y1, ...,yl where yi = ±1, where the columns of a matrix Ai represent the trajectories of the i’th
“instance” example. The input to the SVM algorithm is a “measurement” matrix M whose entries
Mi j = yiy j f (Ai,A j) and the output is a set of “support vectors” which consist of the subset of in-
stances which lie on the margin of the positive and negative examples. In our case, the support
vectors are matrices. The classification of a new test example A is based on the evaluation of the
function:

h(A) = sgn(∑µiyi f (A,Ai)−b)

where the sum is over the support matrices and µi are the corresponding Lagrange multipliers pro-
vided by the algorithm. Note that it is crucial that our measure f () is a positive definite kernel
because otherwise we could not have plugged it in the SVM.

In the first set of experiments we used a different model for each experiment. In each experi-
ment, all trajectories belong to the same single model but are oriented in one of the following four
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(a) (b) (c)

(d) (e) (f)

Figure 1: Six models of trajectories. Each figure illustrates some of the variability within one spe-
cific model. (a) straight line trajectories, (b) direction changes once along the trajectory,
(c) direction changes twice, (d) trajectories with an arc, (e) trajectories with a wide arc,
(f) trajectories which complete up to a full circle.

directions: left to right, right to left, top to bottom and bottom up. Each example contains seven
trajectories. A homogeneous set is considered to be a set where all trajectories lie in one direction.
An inhomogeneous set is considered to be a set where six trajectories lie in one direction and one
trajectory lies in some other direction. We used 400 training examples and 100 test examples for
each experiment. The results are shown in Table 1.

Model det(Q>
A QB)2 det(Q>

A QB)2 det(Q>
A QB)2 Vector Vector Vector

linear Deg 6 RBF linear Deg 6 RBF
(a) F 1% 4% F F F
(c) 39% 6% 4% 55% F F
(d) 17% 7% 4% 52% F F
(f) 8% 3% 0% 57% F F

Table 1: Results of the first synthetic experiment. Table entries show the error rates for different
experiments. The results are given for our proposed kernel for sets over a linear kernel, a
polynomial kernel of degree 6, and for an RBF kernel and for the vector representation of
the sets using the same kernels. Each row represents an experiment made using adifferent
model of trajectories. “F” means that the SVM classifier failed to converge.

The values in the table entries are of error rates for the test set. The experiment was done
using our proposed kernel for sets (“det(Q>

A QB)2”) over a linear kernel, a sixth degree polynomial
kernel, and the RBF kernel (first three columns of the table). The SVM was re-run over the three
kernel functions (linear, polynomial, RBF) where instead of using our proposed kernel function
over sets we represented the set of vectors as a single concatenated vector. The SVM results on the
vector representation are displayed in the last three columns of the table. Each row represents an
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experiment made using a different model of trajectories. “F” means that the SVM classifier failed to
converge. One can notice a striking difference between the set of vectors representation of the data
compared to the 1-dimensional representation. With the set representation one can see a significant
improvement when non-linear kernels are used (polynomial and RBF).

The second experiment was similar to the first one, but here we used the first three models
together. In this experiment, a homogeneous set includes seven trajectories of the same randomly
picked model of the three. All trajectories in a homogeneous set were oriented along the same
direction. In an inhomogeneous set, on the other hand, there exists a single trajectory of a different
model whose motion was oriented at a random direction which might or might not coincide with
the direction of the other six trajectories (see Table 2, first row). We tried a “tougher” variation
along the same experimental theme where all the trajectories (regular and irregular) extent from left
to right (a single direction). As a result, the irregular trajectory is expressed only by the trajectory
model and not by direction (see Table 2, second row).

Directions det(Q>
A QB)2 det(Q>

A QB)2 det(Q>
A QB)2 Vector Vector Vector

linear Deg 6 RBF linear Deg 6 RBF
4 26% 19% 7% 60% F F
1 F 40% 44% F F F

Table 2: Results for the second experiment, organized in a similar manner as in Table 1. In the first
row the trajectories moved in one of four directions. The last row of results is for the case
all trajectories were left to right.

The third experiment was similar to the second one, only this time we used all six models as
possible types of trajectories. Error rates are given in Table 3.

Directions det(Q>
A QB)2 det(Q>

A QB)2 det(Q>
A QB)2 Vector Vector Vector

linear Deg 6 RBF linear Deg 6 RBF
4 27% 15% 13% 47% F F
1 F 35% 29% F F F

Table 3: Results for the third experiment, organized in a similar manner as in Table 2.

5.2 Face Recognition

In our second experimental example the goal was to recognize a face by matching video sequences.
We ran a face tracker on 9 persons who were making head and facial movements in front of a
camera. The result of the face tracker is an area of interest bounding the face which was scaled (up
or down) to a fixed size of 35×47 per frame per person. The number of images per set varied from
30 to 200 frames per set. Since the tracker is not perfect (none of them are) especially against strong
pose changes of the head, some of the elements of the set were not positioned properly on the face
(Figure 2 second row).

The training set consisted of 9 sets (one per person), while the testing set consisted of 7 new
sets (of the same people). We performed a matching over sets in order to select the closest two
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Figure 2: Each pair of rows contains some of the extracted face images of the same person on
different shots taken under different illumination. The sequences on the top two rows is a
hard example that was not recognized by any method.

sets between the test set and the 9 training sets. The kernel principal angles was applied once on
the original image space and once using a feature space representing the sixth order monomial
expansion of the original input vectors. Since we are not constrained in this experiment to use a
positive definite measure, we used the mean of the smallest 20 principal angles as the similarity
measure between two video sequences (labeled as “mean θ” belowq). Note also that in this kind of
experiment, the length of the video sequences can vary.

We compared our results to four other approaches for obtaining a similarity measure over sets.
In the second approach (labeled “alt”), instead of computing the principal angles, we chose the angle
between the closest vectors in the two sets. At first the two vectors (one from each set) which had
the largest inner-product were picked. They were removed and we then picked the next pair and so
on. This method is used as a “low cost substitute” for principal angles. The third method (labeled
“NN”) measured the distance between every two sets as the distance in feature space between their
closest elements. Recall that the distance in feature space between two vectors is:

d(φ(x),φ(x′))2 = k(x,x)+ k(x′,x′)−2k(x,x′).

The fourth method (labeled “20NN”) examined the 20 vectors in the union of the training sets which
were closest to the vectors of the test set. The recognition process was based on a vote - the training
set which contributed the most of these vectors was chosen. The last method we compared to was
the method based on Kullback-Leibler divergence presented in Shakhnarovich et al. (2002).

One can see from Table 4 that our approach based on computing the principal angles in a feature
space of sixth order monomials made only a single error out of 7 tests (the first two rows of Figure 2,
where as all four other approaches performed poorly.

5.3 Kernel Jittering

In the context of “kernel jittering”, where synthetic copies of the input vectors are created in order
to simulate invariances of interest, the matching measurement over sets (or over a vector against a
set of vectors) is based on the nearest neighbor principle (DeCoste and Schölkopf, 2002). In this
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Linear Deg 6
mean θ 2 1
Alt 4 4
NN 5 5
20NN 3 3
(Shakhnarovich
et al., 2002)

4 NA

Table 4: Number of matching errors on face image sequences tested against various methods. The
model dataset consisted of 9 image sequences representing 9 different people. The test set
consisted of 7 new sequences (of the same people) and a match was conducted to find the
closest training sequence. The first row shows the number of matching errors using Q−α
with a scoring function equal to the mean of the principal angles. When a sixth-degree
polynomial kernel was used there was only one matching mistake (depicted in the first
two rows of Figure 2). All other methods (see text) had a significantly higher number of
matching errors.

section we compare the performance, on a toy problem, of such an approach to our positive definite
kernel based on principal angles.

Consider the case of generating virtual examples in order to train the classifier to become invari-
ant to line width (in the context of digit recognition). As an example, we are given three example
vectors, each representing an image, and we generate two additional vectors per example by artifi-
cially thinning and thickening the lines using morphological operators (see Figure 3). As a result
we obtain three sets of vectors with three vectors each. A good matching-over-sets is one which will
be invariant to line width. Note that unlike the case of invariance to translation, since these mor-
phological operators are not symmetrical (information is lost) the matching has to be done between
two sets rather than between a vector and a set. Finally note that the nearest neighbor approach is
not positive definite (due to the asymmetry of the invariance relation).

We have computed a distance based on our positive definite kernel between every two sets based
on underlying kernels of linear and polynomial types. We also computed the nearest neighbor dis-
tance between the sets as the minimal distance between points in the sets using the same underlying
kernels. The nearest-neighbor approach picked the pair “short comb” and “lines” as the most similar
— regardless of the kernel being used (rows (a) and (c) in Figure 3). The kernel principal angles
approach made the same judgment when using the original image space (consistent with the notion
that the strength of the approach is based on the ability to work in feature space) but made the cor-
rect judgment with the sixth degree monomial expansion kernel, i.e., determined that rows (a),(b)
are the closest pair.

6. Summary

In this paper we have made three contributions:

• A case in favor of using instance space over matrices (sets of vectors) for classification. We
have shown that the need arises especially in the context of computer vision applications, but
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(a)

(b)

(c)

Figure 3: Each row contains an image, the image after a morphological thick operator, and the image after
a morphological thin operator. Nearest neighbor approach on this set yields that the set in the first
row is closer to the set in the third row then to the set in the second row. Our positive definite
kernel, which takes into account all the image space identified that the sets in the first and second
row are more similar.

not exclusively so as we noted that “kernel jittering” is another case for similarity over sets of
vectors.

• A kernel approach for the computation of principal angles in feature space. We noted that
principal angles in the original input space is a fairly limited tool for comparing subspaces be-
cause of the linearity assumption. However, the linearity assumption in the high-dimensional
feature space allows for non-linearities in the input space thereby making the principal angles
approach for matrix similarity a powerful tool for matching over sets.

• Introducing the function f (A,B) which forms a positive definite kernel. This result is impor-
tant for making use of the similarity measure over matrices as a metric for optimal margin
classifiers.

Applications of principal angles are found in numerous branches of science including data anal-
ysis (Gittins, 1985), random processes (Kailath, 1974, Gelfand and Yaglom, 1959) and stochastic
processes (c.f. Caines, 1988). The power to map the observation onto a high dimensional feature
space while working through the process of finding principal angles via simple kernel functions in
the original input space would no doubtly become useful beyond the scope of this paper. As for
visual understanding applications, the range of examples is not limited to the scope presented here
— in fact any visual classification or clustering task applied to non-rigid shapes may benefit from
the approach of matching over sets. Finally it is worth noting that the algorithm presented in this
paper is general in the sense it holds for any type of sets, i.e., not only sets made out of vectors. Any
set for which one can present a kernel function operating on the elements of the set could serve as
an input to the algorithm — for some types of sets it is possible to obtain interesting interpretations
as to what the algorithm actually does, but that is out of the scope of this paper.
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