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Abstract
Support vector machines (SVMs) construct decision functions that are linear combinations of kernel
evaluations on the training set. The samples with non-vanishing coefficients are called support
vectors. In this work we establish lower (asymptotical) bounds on the number of support vectors.
On our way we prove several results which are of great importance for the understanding of SVMs.
In particular, we describe to which “limit” SVM decision functions tend, discuss the corresponding
notion of convergence and provide some results on the stability of SVMs using subdifferential
calculus in the associated reproducing kernel Hilbert space.
Keywords: Computational learning theory, Pattern recognition, PAC model, Support vector ma-
chines, Sparseness

1. Introduction

Consider the binary classification problem where X is a set, Y := {−1,1} and P is an unknown dis-
tribution on X ×Y . Let T = ((x1,y1), . . . ,(xn,yn)) ∈ (X ×Y )n be a sequence of i.i.d. pairs generated
by P. The goal is to use the information of the training set T to predict the label y for any new ob-
servation x. To accomplish this goal a classifier is used to construct a decision function fT : X → R.
The prediction of fT (x) is sign fT (x).

The type of classifiers that we treat is based on one of the following optimization problems

argmin
f∈H

λ‖ f‖2
H +

1
n

n

∑
i=1

L
(

yi, f (xi)
)

(1)

or

argmin
f∈H
b∈R

λ‖ f‖2
H +

1
n

n

∑
i=1

L
(

yi, f (xi)+b
)

. (2)

Here, T =
(

(x1,y1), . . . ,(xn,yn)
)

∈ (X ×Y )n is a training set, λ > 0 is a regularization parameter, H
is a reproducing kernel Hilbert space (RKHS) of a kernel k and L is a suitable convex loss function
(cf. the following section for precise definitions). The additional term b in (2) is called the offset.
The corresponding decision functions of these classifiers are fT,λ or f̃T,λ + b̃T,λ, respectively, where
fT,λ ∈ H and ( f̃T,λ, b̃T,λ) ∈ H ×R are arbitrary solutions of (1) and (2).

Common choices for L are the hinge loss function L(y, t) := max{0,1− yt}, the squared hinge
loss function L(y, t) := (max{0,1 − yt})2 and the least square loss function L(y, t) := (1 − yt)2.
Figure 1 shows the shape of these loss functions. The corresponding classifiers are called L1-SVM,
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L2-SVM, and LS-SVM, respectively. Note, that the former two are also called 1-norm and 2-norm
soft margin classifiers while the latter is also known as regularization network if no offset is used.
A thorough treatment of these classifiers can be found in the books of Cristianini and Shawe-Taylor
(2000), Schölkopf and Smola (2002), and Suykens et al. (2002).

In practice the solutions to (1) and (2) are usually obtained indirectly by solving the duals.
Recall that in these dual formulations the RKHS H only occurs implicitly via its kernel. The most
popular kernels are the Gaussian RBF k(x,x′) = exp(−σ2‖x− x′‖2

2) for x,x′ ∈ R
d and fixed σ > 0

and polynomial kernels k(x,x′) = (〈x,x′〉+c)m for x,x′ ∈ R
d and fixed c ≥ 0, m ∈ N. The latter will

not be considered in this work as we shall justify below.
By the well-known representer theorem (see Kimeldorf and Wahba, 1971, Cox and O’Sullivan,

1990, Schölkopf et al., 2001) the solutions fT,λ and f̃T,λ of (1) and (2) are of the form

n

∑
i=1

αik(xi, .) , (3)

where α1, . . . ,αn ∈ R are suitable coefficients. Obviously, only samples xi with αi 6= 0 have an
influence on fT,λ or f̃T,λ, respectively. Such samples are called support vectors. The major aim of
this work is to establish lower bounds on the fraction of support vectors. Note, that in general the
above representation is not unique but depends on the used optimization algorithm. In this paper we
are interested in lower bounds which are independent of the specific representation. In particular,
we bound the number of support vectors for optimization algorithms which produce the sparsest
possible representations. Some standard algorithms such as all solvers for dual problems of the
L1-SVM and the L2-SVM produce less sparse representations in general.

If k is a polynomial kernel it is easy to see that the representation (3) is not unique whenever
the sample size n is too large. Namely, we can always find a representation such that the number of
its support vectors does not exceed the (finite!) dimension of the RKHS of the polynomial kernel.
Hence, depending on the algorithm used to find fT,λ or f̃T,λ it can happen that the fraction of support
vectors tends to 0. For establishing nontrivial results we therefore restrict the class of considered
kernels. It shall turn out that universal kernels (Steinwart, 2001), i.e. kernels whose RKHS is dense
in the space of continuous functions over X , are an appropriate choice. Recall that among several
others the Gaussian RBF kernel is universal (Steinwart, 2001). Besides the fact that universal kernels
are often used in practice they also enjoy the property that classifiers based on (1) or (2) can “learn”
under specific conditions on L and the behaviour of λ = λn as shown by Steinwart (2002, 2003a),
and Zhang (2004). Here “learning” is in the sense of universal consistency which guarantees that
the probability for misclassifying a new sample (x,y) generated by P tends to the smallest possible
value. To make this precise the misclassification risk of a measurable function f : X → R is defined
by

R P( f ) := P
(

{(x,y) ∈ X ×Y : sign f (x) 6= y}
)

.

The smallest achievable misclassification risk R P := inf
{

R P( f ) | f :X → R measurable
}

is called
the Bayes risk of P. A classifier is called universally consistent if the risks of its decision functions
converge to the Bayes risk in probability for all P.

Now let us assume that the kernel used in (1) or (2) is universal. We shall see in Lemma 1 that
in this case the representation (3) is almost surely unique under some mild conditions on the data
generating distribution P. Furthermore, if the representation is unique it is obvious that the number
of its support vectors is independent of the specific optimization algorithm used to solve (1) or (2).
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Hence let us assume for a moment that the representation is almost surely unique. Under some
conditions on L and λn our first main result (Theorem 9) then informally states

With probability tending to 1 when n → ∞ the fraction of support vectors is essentially greater than
the Bayes risk R P.

Note that the above mentioned assumptions on L and λn will almost coincide with the conditions
ensuring universal consistency. Therefore, when a noisy classification problem is learned we should
expect that the number of support vectors increases linearly in the sample size. Our second main
result (Theorem 10) improves the lower bound if the loss function is differentiable. Informally, it
states:

Let L be differentiable. With probability tending to 1 when n → ∞ the fraction of support vectors
can be essentially bounded from below by the probability of the set on which the labels are not noise
free.

Note, that the probability of the set on which the labels are not noise free is always greater than
or equal to 2R P. In the extreme case where the noise does not vanish on the entire set (e.g. when
the conditional class densities are Gaussian) the above probability even equals one, while the Bayes
risk can be arbitrarily close to 0. In particular, the above statement shows that L2-SVMs—although
using a margin—can produce decision functions that are far from being sparse.

In proving the above statements we shall establish several other important properties of SVMs
and related algorithms. Namely, we shall show a general form of the representer theorem which
in particular gives lower and upper bounds on the coefficients α1, . . . ,αn in (3). Furthermore, we
treat convergence issues for fT,λ and f̃T,λ interpreted both as an element of the RKHS and as a
function. These results provide a better understanding of the asymptotic behaviour of support vector
machines.

This work is organized as follows: In Section 2 we introduce all basic and advanced notions
and discuss the latter. We then explain the main ideas of this work and informally present some
auxiliary results such as the above mentioned quantified representer theorem and the convergence
results. Finally, we state our main results and apply them to many common classifiers. The main
work of this article is done in Section 3 which contains the proofs. For clarity’s sake we have divided
this section into several subsections most of them containing auxiliary results: Subsection 3.1 gives
a brief overview on the subdifferential calculus of convex functions defined on Hilbert spaces. In
Subsection 3.2 we show some basic properties of convex loss functions. A first convergence result
which is independent of the considered algorithms is proved in Subsection 3.3. The following two
subsections are devoted to a refinement of this convergence result: In Subsection 3.4 we prove
a stability result for the classifiers based on (1) or (2). The main tool is the application of the
subdifferential calculus to infinite-sample versions of (1) and (2). As a by-product, the quantified
representer theorem is proved. In Subsection 3.5 we establish refined versions of the convergence
result of Subsection 3.3. Finally, in Subsection 3.6 we prove our main results.

2. Bounding the Number of Support Vectors from Below

The aim of this section is to give an informal idea of the techniques of this work and to present
the main results including several examples. We begin with a subsection which introduces some
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basic concepts such as RKHS’s, support vectors, and loss functions. For the latter we also discuss
the behaviour of functions approximately minimizing the corresponding risk. In Subsection 2.2 we
explain the main ideas of our work and informally state some auxiliary results which are of their
own interest. In the last subsection we present our main results and apply them to many well-known
classifiers including SVMs.

2.1 Kernels, Support Vectors, and Loss Functions

We will assume throughout this work that X is a compact metric space and P is a Borel probability
measure on X ×Y , where Y is equipped with the discrete topology. We write R := [−∞,∞], R

+ :=
[0,∞) and R

+
:= [0,∞]. Given two functions g,h : (0,∞)→ (0,∞) let g � h if there exists a constant

c > 0 with g(ε) ≤ ch(ε) for all sufficiently small ε > 0. We write g ∼ h if both g � h and h � g.
For a positive definite kernel k : X ×X → R we denote the corresponding RKHS (see Aron-

szajn, 1950, Berg et al., 1984) by Hk or simply H. For its closed unit ball we write BH . Recall
that the feature map Φ : X → H, x 7→ k(x, .) satisfies k(x,x′) = 〈Φ(x),Φ(x′)〉H for all x,x′ ∈ X by
the reproducing property. Moreover, k is continuous if and only if Φ is. In this case, H can be
continuously embedded into the space of all continuous functions C(X) via I : H → C(X) defined
by Iw := 〈w,Φ(.)〉H , w ∈ H. Since we always assume that k is continuous, we sometimes identify
elements of H as continuous functions on X . If the embedding I : H →C(X) has a dense image we
call k a universal kernel (see Steinwart, 2001, Sect. 3). Recall that this is equivalent to the condition
that for all g ∈C(X) and all ε > 0 there exists an element f ∈ H with

‖ f −g‖∞ ≤ ε ,

where ‖.‖∞ denotes the supremum norm. For some kernels the RKHS is explicitely known and
hence the universality for these kernels is easily checked (see Saitoh, 1997, Ritter, 2000). An el-
ementary proof of the universality of the Gaussian RBF kernel was provided by Steinwart (2001,
Sect. 3).

Let H be a RKHS with kernel k. For a function f ∈ H the minimal number of support vectors is
defined by

#SV ( f ) := min
{

n ∈ N∪{∞} : ∃α1, . . . ,αn 6= 0 and x1, . . . ,xn ∈ X with f =
n

∑
i=1

αik(xi, .)
}

.

Note that we have #SV ( fT,λ) < ∞ and #SV ( f̃T,λ) < ∞ by the representer theorem. A representation of
f is called minimal if it has #SV ( f ) support vectors. The next lemma which is proved in Subsection
3.6 characterizes minimal representations:

Lemma 1 Let k be a universal kernel and f = ∑n
i=1 αik(xi, .) be a representation of f . Then

#SV ( f ) = n if and only if x1, . . . ,xn are mutually different and αi 6= 0 for all i = 1, . . . ,n. Fur-
thermore, minimal representations are unique up to permutations of indexes.

In particular, if k is a universal kernel, T = ((x1,y1), . . . ,(xn,yn)) is a training set with mutually
different x1, . . . ,xn and ∑n

i=1 αik(xi, .) is a representation of fT,λ or f̃T,λ with m support vectors then
#SV ( fT,λ) = m or #SV ( f̃T,λ) = m, respectively. If T contains repeated sample values, i.e. xi = x j for
some i 6= j, it can happen that the representation of the solution found by a specific algorithm is not
minimal. Indeed, the dual optimization problems for the hinge loss or the squared hinge loss lead
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Figure 1: Some admissible loss functions for y = 1. Left: the hinge loss L(y, t) := max{0,1− yt}.
Middle: the squared hinge loss L(y, t) := (max{0,1− yt})2. Right: the least square loss
L(y, t) := (1− yt)2.

to algorithms which do not construct minimal representations in the presence of repeated sample
values. However, the above lemma gives a simple way for minimizing a given representation: for
all sample values x of T add all coefficients αi with xi = x and call the sum α′

l . Then choose one
sample x j with x j = x as a representative, use α′

l as coefficient for x′l := x j, and remove all other
samples xi with xi = x from T . After this loop has been completed eliminate all samples x′l with zero
coefficient.

Downs et al. (2001) proposed a technique which finds samples that are linearly dependent in the
RKHS in order to construct representations that are more sparse than the ones found by optimizing
the dual of the L1-SVM optimization problem. For some data sets significant reductions were
reported using a Gaussian RBF kernel. The above discussion shows that these reductions could
only be achieved by either the existence of repeated sample values or numerical errors!

Let us now consider loss functions and their associated risks. We begin with a basic definition:

Definition 2 A continuous function L : Y ×R → R
+

with L(Y,R) ⊂ R
+ is called a loss function.

Given a measurable function f : X → R and a Borel probability measure P on X ×Y the L-risk of f
is defined by

R L,P( f ) := E(x,y)∼PL(y, f (x)) .

If P is the empirical measure corresponding to T ∈ (X ×Y )n we write R L,T (.). Furthermore, we
denote the smallest possible L-risk by

R L,P := inf{R L,P( f ) | f : X → R measurable} .

It is straightforward to see that not every loss function interacts well with the misclassification
risk in the sense that an L-risk R L,P( f ) close to R L,P guarantees that the misclassification risk
R P( f ) is close to the Bayes risk. In the following we describe the class of loss functions which
ensure that R P( fn) → R P whenever R L,P( fn) → R L,P. To this end write

C(α, t) := αL(1, t)+(1−α)L(−1, t)
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Figure 2: The minimizer F∗
L for some different loss functions. Left: for the hinge loss. Middle:

for the squared hinge loss. Right: for the least square loss. Note that for the hinge loss
function F∗

L (α) is not a singleton for α ∈ {0,1/2,1}. For the squared hinge loss function
this holds for α ∈ {0,1}.

for α ∈ [0,1] and t ∈ R. This function can be used to compute the L-risk of a measurable function
f : X → R by

R L,P( f ) = E(x,y)∼PL(y, f (x))

=
∫

X

P(1|x)L(1, f (x))+P(−1|x)L(−1, f (x))PX(dx)

=
∫

X

C
(

P(1|x), f (x)
)

PX(dx) . (4)

Here, PX is the marginal distribution of P on X and P(y|x) denotes a regular conditional probability
(see Dudley, 2002). Equation (4) shows that we have to minimize the function C(α, .) for every
α ∈ [0,1] in order to minimize the L-risk. This leads to the set-valued function F ∗

L defined by

F∗
L (α) :=

{

t ∈ R : C(α, t) = min
s∈R

C(α,s)
}

for all α ∈ [0,1]. For some standard loss functions F∗
L is illustrated in Figure 2. Obviously, given a

measurable selection f ∗ of F∗
L the function f ∗(P(1|.)) actually minimizes the L-risk, i.e.

R L,P

(

f ∗(P(1|.))
)

= R L,P .

Recall that such a measurable selection f ∗ always exists (see Steinwart, 2003a). Furthermore, it
was shown by Steinwart (2003a) that a loss function L interacts well with the misclassification loss
in the above sense if F∗

L (α) only contains elements with a “correct” sign. The latter is formalized in
the following definition:

Definition 3 A loss function L is called admissible if for every α ∈ [0,1] we have

F∗
L (α) ⊂ [−∞,0) if α < 1/2 ,

F∗
L (α) ⊂ (0,∞, ] if α > 1/2 .
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Furthermore we say that L is strongly admissible if it is admissible and card F ∗
L (α) = 1 for all

α ∈ (0,1) with α 6= 1/2.

It was proved by Steinwart (2003a) that L is admissible if and only if there are universally
consistent classifiers based on (1). For classifiers based on (2) the admissibility is also necessary and
sufficient apart from some technical conditions. A major step in establishing this characterization
was to show that the admissibility of L is a sufficient (and necessary) condition for R L,P( fn)→R L,P

implying R P( fn) → R P for all P. In a recent paper of Bartlett et al. (2003) this implication is
quantified in terms of an inequality between R P( fn)−R P and R L,P( fn)−R L,P. For our aims
we need a different kind of improvement. To this end let us assume for a moment that F ∗

L (α) is
a singleton for all but countably many α ∈ [0,1]. Furthermore, let us suppose that F ∗

L (α) is a—
possibly degenerate—interval in R for all α ∈ [0,1]. Then we shall prove the following result:

For all ε > 0 and all sequences ( fn) of R-valued measurable functions with R L,P( fn) → R L,P we
have

PX

({

x ∈ X : ρ
(

fn(x),F
∗
L (P(1|x))

)

≥ ε
})

→ 0 ,

where ρ
(

fn(x),F∗
L (P(1|x)) denotes the distance of fn(x) to the set F∗

L (P(1|x)).

The exact formulation which also gets rid of the assumption F ∗
L (α)⊂R is presented in Theorem

22. If F∗
L (α) is a singleton for all α ∈ [0,1] then the above statement shows that R L,P( fn) → R L,P

implies fn → F∗
L (P(1|.)) in probability. In the general case, it states that with probability converging

to 1 the functions fn map into an ε-tube around the minimizer F∗
L (P(1|.)). In particular, since

R L,P( fT,λn
)→ R L,P and R L,P( f̃T,λn

+ b̃T,λn
)→ R L,P (see Steinwart, 2003a) whenever k is universal

and (λn) converges “slowly enough” to 0, this holds for the solutions of (1) and (2). The latter was
already claimed by Lin (2002) and Zhang (2004) in order to explain the learning ability of SVMs.

We need some further definitions for loss functions: A loss function L is called convex if L(y, .)
is convex for y = ±1. A loss function is said to be Lipschitz-continuous if

|L|1 := sup

{ |L(y, t)−L(y, t ′)|
|t − t ′| : y ∈ Y, t, t ′ ∈ R, t 6= t ′

}

< ∞ .

Analogously, L is locally Lipschitz-continuous if L|Y×[−a,a] is Lipschitz-continuous for all a > 0.
Recall that convex loss functions are always locally Lipschitz-continuous (cf. Lemma 29). In order
to treat classifiers that are based on (2) we need the following definition of Steinwart (2003a):

Definition 4 An admissible loss function L is called regular if L is locally Lipschitz-continuous,
L(1, .)|(−∞,0] is monotone decreasing and unbounded, L(−1, .)|[0,∞) is monotone increasing and un-
bounded and for all γ > 0 there exists a constant cγ > 0 such that for all a > 0 we have

∣

∣L|Y×[−γa,γa]

∣

∣

1
≤ cγ

∣

∣L|Y×[−a,a]

∣

∣

1
(5)

∥

∥L|Y×[−γa,γa]

∥

∥

∞ ≤ cγ
∥

∥L|Y×[−a,a]

∥

∥

∞ . (6)

Note that convex admissible loss function are regular if (5) and (6) hold (cf. Subsection 3.2). Fur-
thermore, it is easily checked that most of the loss functions considered in practice are regular (see
the examples at the end of this section).
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Finally, let H be a RKHS and L be a loss function. We define the regularized L-risks by

R reg
L,P,λ( f ) := λ‖ f‖2

H +R L,P( f )

R reg
L,P,λ( f ,b) := λ‖ f‖2

H +R L,P( f +b)

for all f ∈ H, b ∈ R and all λ > 0. If P is the empirical measure corresponding to T ∈ (X ×Y )n we
write R reg

L,T,λ(.) and R reg
L,T,λ(., .), respectively. Note that R reg

L,T,λ(.) is the objective function of (1) and

R reg
L,T,λ(., .) coincides with the objective function of (2).

It was shown by Steinwart (2003a) that the regularized risks can always be minimized and that
the minimizers are actually in a ball of a certain radius. In order to recall the exact formulation we
define

δλ :=

√

L(1,0)+L(−1,0)

λ
Lλ := L|Y×[−δλK,δλK] ,

where k is a kernel, K := sup{
√

k(x,x) : x ∈ X}, and L is a loss function. These quantities will be
used throughout the text. Now, the results of Steinwart (2003a) are:

Lemma 5 Let L be an admissible loss function and H be a RKHS of continuous functions. Then for
all Borel probability measures P on X ×Y and all λ > 0 there exists an element fP,λ ∈ H with

R reg
L,P,λ( fP,λ) = inf

f∈H
R reg

L,P,λ( f ) .

Moreover, for all such minimizing elements fP,λ ∈ H we have
∥

∥ fP,λ
∥

∥≤ δλ.

For classifiers based on (2) we have to exclude degenerate Borel probability measures, i.e. measures
with

PX
(

x ∈ X : P(y|x) = 1
)

= 1

for y = 1 or y = −1 in order to ensure that the offset is finite:

Lemma 6 Let L be a regular loss function and H be a RKHS of continuous functions. Then for all
non-degenerate Borel probability measures P on X ×Y and all λ > 0 there exists a pair ( f̃P,λ, b̃P,λ)∈
H ×R with

R reg
L,P,λ( f̃P,λ, b̃P,λ) = inf

f∈H
b∈R

R reg
L,P,λ( f ,b) .

Moreover, for all such minimizing pairs ( f̃P,λ, b̃P,λ) ∈ H ×R we have ‖ f̃P,λ‖ ≤ δλ.

2.2 Towards a Proof of the Bounds: Subdifferentials, Stability and a Quantified Representer
Theorem

In this subsection we recall the definition of subdifferentials. We then outline the roadmap of our
proofs stating the main steps informally and discussing their relation.

As already mentioned we are mainly interested in convex loss functions. Unfortunately, not all
of the convex loss functions used in practice are differentiable. In particular, the hinge loss function
which is used in the L1-SVM is not. In order to treat non-differentiable convex loss functions we
need the notion of subdifferentials:
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1
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2

-1

F(w)

wo w

L(1,t)

t

Figure 3: Left: The subdifferential of F at the point w0 describes the affine hyperplanes that are
dominated by F and are equal to it at w0. In particular the left (long-dashed/blue) and right
(short-dashed/red) derivates are included. At a minimum, the 0-hyperplane (dotted/green)
is also included. Right: The subdifferential of the hinge loss function at y = t = 1 de-
scribes all hyperplanes with linear coefficient between -1 (dashed/blue) and 0 (solid/red)

Definition 7 Let H be a Hilbert space, F : H → R∪{∞} be a convex function and w ∈ H with
F(w) 6= ∞. Then the subdifferential of F at w is defined by

∂F(w) := {w∗ ∈ H : 〈w∗,v−w〉 ≤ F(v)−F(w) for all v ∈ H}

If F is (Gâteaux) differentiable at w then ∂F(w) contains only the derivate of F at w (see Phelps,
1986, Prop. 1.8.). For a geometric interpretation of subdifferentials we refer to Figure 3. Further-
more, the subdifferential enjoys all properties from basic calculus such as linearity and (certain)
chain rules. These properties are listed in Subsection 3.1. Given a subset A of H we often use the
notation

∂F(A) :=
⋃

w∈A

∂F(w) .

The following definition plays an important role in the investigation of subdifferentials:

Definition 8 A set-valued function F : H → 2H on a Hilbert space H is said to be a monotone
operator if for all v,w ∈ H and all v∗ ∈ F(v), w∗ ∈ F(w) we have

〈v∗−w∗,v−w〉 ≥ 0 .

It is an easy exercise to show that the subdifferential map w 7→ ∂F(w) of a continuous convex
function F : H → R on a Hilbert space H is a monotone operator. Slightly more difficult is the
following result that we shall establish in Lemma 20:

If L is a convex admissible loss function then α 7→ F∗
L (α) is a monotone operator, i.e. α ≤ α′ implies

t ≤ t ′ for all t ∈ F∗
L (α), t ′ ∈ F∗

L (α′). In particular, F∗
L (α) is a singleton for all but at most countably

many α.
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The main reason for considering subdifferentials is to “differentiate” the objective functions
R reg

L,T,λ(.) and R reg
L,T,λ(., .) of (1) and (2) and their infinite sample versions R reg

L,P,λ(.) and R reg
L,P,λ(., .).

In the empirical case this immediately leads to the announced quantified representer theorem (cf. Re-
mark 32):

There exists a representation fT,λ = ∑n
i=1 αik(xi, .) of the solution of (1) with

αi ∈ − 1
2nλ

∂2L(yi, fT,λ(xi)) (7)

for all i = 1, . . . ,n. Here, ∂2L denotes the subdifferential operator of L with respect to the second
variable. The same holds for the solution f̃T,λ of (2).

Note that for differentiable loss functions this result is trivial. The fundamental observation from
the quantified representer theorem is that xi must be a support vector of the described representa-
tion whenever 0 6∈ ∂2L(yi, fT,λ(xi)). Now recall from the previous subsection that fT,λ converges to
F∗

L (P(1|.)). Hence a natural idea suggests that xi must be a support vector of the above representa-
tion whenever 0 6∈ ∂2L

(

yi,∂2L(yi,F∗
L (P(1|xi))∩R)

)

. Of course this is only a vague reasoning and
several issues have to be resolved when making a rigorous proof from this line. In particular we
mention the following questions:

• Does 0 6∈ ∂2L(yi, t) imply 0 6∈ ∂2L(yi,s) for all s suitable close to t?

• Recall that fT,λ only converges to F∗
L (P(1|.)) in “probability”. Hence there can always be a

small “bad” set BT on which fT,λ is not close to F∗
L (P(1|.)). Even if the first question can be

positively answered we cannot apply it for samples contained in BT . Furthermore, the bad set
BT depends on T and hence there is no straightforward method to show that the fraction of
samples of T in BT is small (cf. Figure 4). Therefore we have to answer: How likely is it that
many samples of T are contained in the bad set BT ?

Besides these issues there occur others due to the set valued nature of F ∗
L . Although all of these

can be resolved their solutions sometimes require some technical analysis as we will see in the last
section. In order to get a smooth description of the main ansatz of this work we do not go into the
details here.

As we shall see in Lemma 21 there exists a positive answer to the first question raised above
which meets our requirements. Furthermore note that the first question can immediately be posi-
tively answered whenever L is differentiable since convex differentiable functions are always con-
tinuously differentiable. In the general case we shall use the fact that the subdifferential mapping of
a convex function is semi-continuous (cf. Proposition 15).

The solution of the second problem gives a deeper insight of the asymptotic behaviour of SVMs
and hence we briefly describe the major idea: If the bad sets B = BT were independent of T it
would be rather easy to see that the T ’s that have a large fraction of samples in B are unlikely for
large sample sizes n. In order to find such an data-independent bad set we first show the following
stability result (cf. Theorem 28):

For all λ > 0 and all probability measures P and Q their exists a bounded function h : X ×Y → R

independent of Q which satisfies

‖ fP,λ − fQ,λ‖ ≤
‖EPhΦ−EQhΦ‖

λ
,
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Figure 4: Asymptotic behaviour of the L1-SVM for a simple noisy problem with minimizer
F∗

L (P(1|x)) = signx. Left: although the decision function fT,λ essentially maps into an
ε-tube around the minimizer, most samples are in BT , i.e. they are mapped outside the
ε-tube. We will see that this situation is not typically. Right: the “good case” which
we (have to) ensure with high probability. The decision function fT,λ maps most of the
samples into an ε-tube around F∗

L (P(1|x)).

where Φ is the feature map of the used kernel. A similar but weaker result holds for the solutions of
the optimization problems with offset.

This stability result is proved using the subdifferential of R reg
L,P,λ. Letting Q be empirical mea-

sures the right side can be bounded by a concentration inequality for Hilbert space valued random
variables (cf. Proposition 33 and Lemma 34). Informally speaking, this yields:

The empirically found solutions fT,λ converge to the infinite sample solution fP,λ in the RKHS in
probability. Under some additional assumptions on P and L (cf. Proposition 37) the same holds for
the solutions of (2).

Now, let us assume that our kernel is universal. Then it was shown by Steinwart (2003a) that
R L,P( fP,λn

) → R L,P whenever λn → 0. Hence fP,λn
converges to F∗

L (P(1|.)) “in probability”. Fur-
thermore, if λn → 0 “slowly” then ‖ fT,λn

− fP,λn
‖∞ → 0 in probability by our first step. Therefore

we find (cf. Proposition 35 and Proposition 38):

Let us assume that (λn) tends “slowly” to 0. Then the bad sets BT of fT,λn
are contained in the bad

sets Bn of fP,λn
with high probability. The probability of the latter tends to 0.

As a consequence the probability of training sets T which have more than ε|T | samples in BT

tends to 0 for all ε > 0. Figure 4 illustrates this fact. Figure 5 shows the situation in the feature
space.

Let Xcont := {x∈X : PX({x}) = 0}. Continuing our motivation the previous considerations show
that we should expect that most of the samples in

S :=
{

(x,y) ∈ Xcont ×Y : 0 6∈ ∂2L
(

y,F∗
L (P(1|x))∩R

)

}

(8)
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ε

γ

{ z : <w,z> + b = 0 }

Figure 5: Asymptotic behaviour of the L1-SVM in the feature space of a universal kernel for a noisy
problem: the samples are concentrated around the functional margin γ = 1. Note that the
graphic is only a low-dimensional projection of the situation in the RKHS since actually
the samples are linearly independent in the RKHS. If the distribution P is not everywhere
noisy it may happen that a larger fraction of samples are far beyond the margin. This case
corresponds to the illustrations usually presented in text books on SVMs.

are support vectors. Recall that in view of Lemma 1 we have to exclude the set X \Xcont in which
repeated sample values can occur. Furthermore, for typical training sets the fraction of samples in S
is close to the probability of S. Hence, for a convex loss function L and a Borel probability measure
P on X ×Y we define

S L,P :=

{

P(S) if 0 6∈ ∂2L(1,F∗
L (1/2))∩∂2L(−1,F∗

L (1/2))

P(S)+ 1
2 PX(X0 ∩Xcont) otherwise.

(9)

Here, we write X0 := {x ∈ X : P(1|x) = 1/2}. Note that for convex admissible loss functions we
have 0 6∈ ∂2L(1,F∗

L (α))∩∂2L(−1,F∗
L (α)) for all α 6= 1/2 (cf. Lemma 20). However, for the hinge

loss function 0 ∈ ∂2L(1,F∗
L (1/2))∩ ∂2L(−1,F∗

L (1/2)) holds and this is the major source of many
technical problems handled in Section 3, which hide the outlined main idea of the proofs.

2.3 Results and Examples

In this subsection we state our main results, which asymptotically bound the number of support
vectors from below by the quantity S L,P introduced in the previous subsection. Then we give lower
bounds for S L,P both in the general case and for differentiable loss functions. Finally we apply our
results to several well known examples.

The first theorem treats classifiers based on (1). Its proof as well as the proofs of the following
results can be found in Subsection 3.6.
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Theorem 9 Let L be an admissible and convex loss function, k be a universal kernel and λn > 0 be
a regularization sequence with λn → 0 and nλ2

n/|Lλn
|21 →∞. Then for all Borel probability measures

P on X ×Y and all ε > 0 the classifier based on (1) with respect to k, L and (λn) satisfies

Pr∗
(

T ∈ (X ×Y )n : #SV ( fT,λn
) ≥ (S L,P − ε)n

)

→ 1 .

Here, Pr∗ denotes the outer probability measure of Pn in order to avoid measurability considera-
tions.

The next theorem establishes an analogous result for classifiers based on (2). Because of the offset
we have to exclude degenerate probability measures P which have been introduced in Subsection
2.1. It is obvious that for such probability measures f̃T,λ = 0 holds for almost all T . In particular,
we have #SV ( f̃T,λn

) = 0 in this case.

Theorem 10 Let L be a strongly admissible, regular and convex loss function, k be a uni-
versal kernel and λn > 0 be a regularization sequence with λn → 0, nλ3

n/|Lλn
|21 → ∞ and

nλn/
(

‖Lλn
‖2

∞|Lλn
|21 logn

)

→ ∞. Then for all non-degenerate Borel probability measures P on X ×Y
and all ε > 0 the classifier based on (2) with respect to k, L and (λn) satisfies

Pr∗
(

T ∈ (X ×Y )n : #SV ( f̃T,λn
) ≥ (S L,P − ε)n

)

→ 1 .

We like to remark that in the previous theorem it is not necessary to require strongly admissible loss
functions. Indeed, the result holds for regular convex loss functions, too. However, the proof for the
latter is even more technical than the proof of Theorem 10. This, together with the fact that every
loss function of practical interest (cf. the examples below) is strongly admissible motivated us to
state the above theorem in its less general form.

The following propositions provide lower bounds on S L,P for important types of loss functions.
We begin with:

Proposition 11 Let L be a convex admissible loss function and P be a Borel probability measure
on X ×Y . Then we have

S L,P ≥ inf
{

P
(

(x,y) ∈ Xcont ×Y : f (x) 6= y
)

| f : X → Y measurable
}

.

In particular, S L,P ≥ R P holds whenever Xcont = X.

Roughly speaking, the above result together with Theorem 9 and Theorem 10 gives lower bounds
for the number of support vectors for uniformly consistent classifiers based on (1) or (2), respec-
tively. Namely, the proposition shows that we cannot expect less than nR P support vectors for such
classifiers if Xcont = X . Recall that it is also well-known from experiments that the sparseness of
SVMs heavily depends on the noise of the underlying distribution. The next proposition improves
the lower bound on S L,P for differentiable loss functions:

Proposition 12 Let L be a convex admissible and differentiable loss function and P be a Borel
probability measure on X ×Y . Then we have

S L,P ≥ PX
(

x ∈ Xcont : 0 < P(1|x) < 1
)

.

1083



STEINWART

Roughly speaking, this proposition shows that for differentiable loss functions the fraction of sup-
port vectors is essentially lower bounded by the probability of the set of points in which noise
occurs. In particular, even if we have a small Bayes risk we cannot expect sparse representations in
general.

Together with our main theorems Proposition 12 also throws new light on the role of the margin
in SVMs: namely, it is not only the margin that gives sparse decision functions but the whole shape
of the loss function. Indeed, comparing the squared hinge loss function (cf. the examples below) and
the least square loss function we obtain the same bad lower bounds on the number of support vectors.
Only in noiseless regions sparse representations seem to be more likely using the squared hinge loss
function since unlike the squared loss function this loss function does not penalize samples with
margin > 1.

We conclude this section by some important examples of classifiers based on (1) and (2):

Example 1 L1-SVMs without offset are based on the minimization problem (1) with the hinge
loss function L(y, t) := max{0,1− yt}. The conditions on (λn) formulated in Theorem 9 reduce to
λn → 0 and nλ2

n → ∞. Then, applying Proposition 12 yields lower bounds on the number of support
vectors. In particular, the number of support vectors is asymptotically greater than nR P in the case
of Xcont = X. We conjecture that this lower bound can be replaced by 2nR P. In order to explain
this conjecture recall that L1-SVMs produce the same set of decision functions as the so-called ν-
SVMs (see Schölkopf et al., 2000)). Furthermore, as shown by Steinwart (2003b) an asymptotically
optimal value for the regularization parameter ν is 2R P. Recalling that ν is also a lower bound on
the fraction of support vectors (see Schölkopf et al., 2000) leads to our conjecture.

Example 2 L1-SVMs with offset are based on (2) and the hinge loss function. The corresponding
conditions on (λn) of Theorem 10 can be unified to λn → 0 and nλ3

n → ∞. Of course, applying
Proposition 12 yields the same lower bound as for the L1-SVM without offset. However, if the
distribution is in a certain sense unbalanced this bound can be improved: for simplicity we suppose
Xcont = X and X0 = /0. We define X1 := {x ∈ X : P(1|x) > 1/2} and X−1 := {x ∈ X : P(1|x) < 1/2}.
Recall that these sets are the classes which have to be approximated by the classifier. Furthermore,
we define X j

i := Xi ×{ j} for i, j ∈ {−1,1}. Under the assumptions of Theorem 10 we then obtain
(cf. the end of Section 3.6 for a sketch of the proof)

Pr∗
(

T ∈ (X ×Y )n : #SV ( f̃T,λn
) ≥

(

R L,P + |P(X1
−1)−P(X−1

1 )|− ε
)

n
)

→ 1 (10)

for L1-SVMs with offset. In particular, if −1-noise and 1-noise do not have the same probability,
i.e. |P(X1

−1)−P(X−1
1 )| > 0 then (10) improves the result of Theorem 10. If either P(X 1

−1) = 0 or
P(X−1

1 ) = 0 the lower bound in (10) becomes 2nR P which also corroborates our belief described
in the previous example.

Example 3 L2-SVMs without offset are based on the minimization problem (1) with the squared
hinge loss function, i.e. L(y, t) :=

(

max{0,1−yt}
)2

. The conditions on (λn) formulated in Theorem
9 are λn → 0 and nλ3

n → ∞. The value of S L,P can be estimated by Proposition 12.

Example 4 L2-SVMs with offset are based on the minimization problem (2) with the squared hinge
loss function. The conditions on (λn) of Theorem 10 can be unified to λn → 0 and nλ4

n/ logn → ∞. If
k is a C∞-kernel the latter can be replaced by the slightly weaker condition nλ4

n → ∞ (see Steinwart,
2003a, for details). Again, the value of S L,P can be estimated by Proposition 12.
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Example 5 Least square support vector machines are based on (2) with the squared loss function,
i.e. L(y, t) := (1− yt)2. The conditions on (λn) are the same as for L2-SVMs with offset. As above,
the value of S L,P can be estimated by Proposition 12.

Example 6 Regularization networks or kernel ridge regression classifiers are based on the mini-
mization problem (1) with the squared loss function. The conditions on the regularization sequence
coincide with the conditions for the L2-SVMs without offset. Again, the value of S L,P can be esti-
mated by Proposition 12.

Example 7 R1-SVMs for classification are based on either (2) or (1) using the ε-insensitive loss
function Lε(y, t) := max{0, |y− t|− ε} for some 0 ≤ ε < 1. Our results coincide with the results for
the L1-SVM with or without offset, respectively.

Example 8 R2-SVMs for classification are based on either (2) or (1) using the squared ε-
insensitive loss function Lε(y, t) :=

(

max{0, |y− t|− ε}
)2

for some 0 ≤ ε < 1. Our results coincide
with the results for the L2-SVM with or without offset, respectively.

Example 9 One can also consider classifiers based on (1) or (2) using the logistic loss function
L(y, t) := log(1 + exp(−yt)). With the help of Remark 32 we easily see that the lower bounds of
Theorem 9 and Theorem 10 hold with S L,P = PX(Xcont) for all regularization sequences (λn). In
particular, if Xcont = X we have #SV ( fT,λ) = #SV ( f̃T,λ) = n for almost all training sets T of length
n and all λ > 0.

Remark 13 In a recent paper of Steinwart (2004, to appear) some of the above results were sig-
nificantly improved. In particular, the conjecture for the L1-SVM was proved. Furthermore, it was
shown that this bound is in some sense optimal in many situations while the bound for the LS-SVM
is, in general, too loose.

3. Proofs

In this part of our article the main work is done. In particular we give exact formulations of the
informally stated results and rigorously prove all results. The proofs are self contained, however,
the some basic knowledge in functional analysis and probability theory is required.

3.1 Subdifferentials

In this subsection we collect some important properties of subdifferentials. Throughout this subsec-
tion H denotes a Hilbert space. We begin with a proposition that provides some elementary facts of
the subdifferential (see Phelps, 1986, Prop. 1.11.):

Proposition 14 The subdifferential ∂F(w) of a convex function F : H → R∪{∞} is a non-empty,
convex and weak*-compact subset of H for all w ∈ H where F is continuous and finite. If F is
Lipschitz-continuous we also have ‖w∗‖ ≤ |F|1 for all w∗ ∈ ∂F(w) and all w ∈ H.

The next proposition shows that the subdifferential is in some sense semi-continuous (see Phelps,
1986, Prop. 2.5, for a proof):
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Proposition 15 If F : H → R is continuous and convex then the subdifferential map w 7→ ∂F(w) is
norm-to-weak* upper semi-continuous. In particular, if dimH < ∞ then for all w ∈ H and all ε > 0
there exists a δ > 0 with

∂F(w+δBH) ⊂ ∂F(w)+ εBH .

The following result characterizes minima of convex functions (see Phelps, 1986, Prop. 1.26, for a
proof):

Proposition 16 The function F has a global minimum at w ∈ H if and only if 0 ∈ ∂F(w).

We are mainly interested in the calculus of subdifferentials. We begin with the linearity of sub-
differentials (see, for example, Phelps, 1986, Thm. 3.16):

Proposition 17 Let λ ≥ 0 and F,G : H → R be convex lower-semicontinuous functions such that G
is continuous in at least one point. Then for all w ∈ H we have:

i) ∂(λF)(w) = λ∂F(w)

ii) ∂(F +G)(w) = ∂F(w)+∂G(w).

The following proposition provides a chain rule for subdifferentials (see Romano, 1995, for a dis-
cussion):

Proposition 18 Let H1,H2 be Hilbert spaces, A : H1 → H2 be a bounded and linear operator and
F : H2 → R∪{∞} be a convex function that is finite and continuous in 0. Then for all w ∈ H1 we
have

∂(F ◦A)(w) = A∗∂F(Aw),

where A∗ denotes the adjoint operator of A.

3.2 Some Technical Lemmas

The following lemma collects some simple but nevertheless useful facts about convex admissible
loss functions:

Lemma 19 Let L be a convex admissible loss function. Then L is locally Lipschitz-continuous and

i) ∂2L(1,0) ⊂ (−∞,0) and ∂2L(−1,0) ⊂ (0,∞).

ii) for all t ∈ R we have
0 6∈ ∂2L(1, t)∩∂2L(−1, t) . (11)

iii) for all bounded subsets A ⊂ R there exists an ε > 0 such that for all t ∈ A we have

0 6∈ ∂2L(1, t + εBR)∩∂2L(−1, t + εBR) . (12)

Proof i): Let us suppose that there exist an s ∈ ∂2L(1,0) with s ≥ 0. If s = 0 then 0 ∈ ∂2C(1,0) and
hence 0 ∈ F∗

L (1) which contradicts the admissibility. If s > 0 then s′ > 0 for all s′ ∈ ∂2L(1, t), t > 0,
by the monotony of the subdifferential. Therefore L(1, .) is monotonously increasing on (0,∞). This
yields F∗

L (1)∩ (0,∞] = /0 which also contradicts the admissibility. The second assertion is proved
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analogously.
ii): Let us suppose that there exist a t ∈ R with 0 ∈ ∂2L(1, t)∩∂2L(−1, t). Then we find

0 ∈ ∂2
(

αL(1, t)+(1−α)L(−1, t)
)

= ∂2C(α, t)

for all α ∈ [0,1]. This leads to t ∈ F∗
L (α) for all α ∈ [0,1] which contradicts the admissibility of L.

iii): Let us assume that (12) is false. Then for all n ≥ 1 there exists tn ∈ A and δn,δ′n ∈ [−1/n,1/n]
with

0 ∈ ∂2L(1, tn +δn)∩∂2L(−1, tn +δ′n) .

Since A is bounded we may assume without loss of generality that (tn) converges to an element
t ∈ R (otherwise we have to consider a convergent subsequence in the following). Then, given an
arbitrary ε > 0 we find by Proposition 15

0 ∈ ∂2L(1, tn +δn)∩∂2L(−1, tn +δ′n) ⊂
(

∂2L(1, t)+ εBR

)

∩
(

∂2L(−1, t)+ εBR

)

for all sufficiently large n. This leads to

0 ∈
⋂

ε>0

(

∂2L(1, t)+ εBR

)

∩
⋂

ε>0

(

∂2L(−1, t)+ εBR

)

.

Since the subdifferentials ∂2L are compact the latter implies 0 ∈ ∂2L(1, t) ∩ L(−1, t) which
contradicts (11).

Note that i) of the above Lemma was also observed by Bartlett et al. (2003). The next lemma
collects some important facts about the solution operator F ∗

L for convex admissible loss functions L:

Lemma 20 For a convex admissible loss function L the following properties hold

i) F∗
L (α) is a bounded, closed interval in R for all α ∈ (0,1).

ii) for all α ∈ [0,1] and all t ∈ F∗
L (α)∩R there exist s1 ∈ ∂2L(1, t) and s−1 ∈ ∂2L(−1, t) with

s1 ≤ 0 ≤ s−1.

iii) for all α ∈ [0,1], all t ∈ F∗
L (α)∩R and all α′ ∈ [0,1] with α′ > α there exists an s ∈ ∂2C(α′, t)

with s < 0.

iv) α 7→ F∗
L (α) is a monotone operator

v) card F∗
L (α) > 1 for at most countably many α ∈ [0,1].

vi) for all t ∈ F∗
L (1/2) we have

0 ∈ ∂2L(1, t) ⇒ t = maxF∗
L (1/2)

0 ∈ ∂2L(−1, t) ⇒ t = minF∗
L (1/2)

vii) let α ∈ [0,1] with 0 ∈ ∂2L
(

1,F∗
L (α)

)

∩ ∂2L
(

−1,F∗
L (α)

)

. Then we have α = 1/2 and
card F∗

L (1/2) > 1.
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Proof i): By Lemma 19 we know s < 0 for all s ∈ ∂2L(1,0) and thus the definition of the subdiffer-
ential leads to L(1,−∞) = ∞. Therefore, we find −∞ 6∈ F ∗

L (α) for all 0 < α < 1. Analogously we
can show ∞ 6∈ F∗

L (α) for all 0 < α < 1. Moreover, F∗
L (α) is a compact subset of R and therefore the

previous considerations show that F∗
L (α) is closed and bounded for all 0 < α < 1. Since C(α, .) is

convex it is also clear that F∗
L (α) is an interval.

ii): For given t ∈ F∗
L (α) ∩ R there exists an s1 ∈ ∂2L(1, t) and an s−1 ∈ ∂2L(−1, t) with 0 =

αs1 + (1−α)s−1. If α = 1 we find s1 = 0 and t > 0 by the admissibility of L. The latter yields
s−1 > 0 by the monotony of the subdifferential and Lemma 19. The case α = 0 can be treated
analogously. Hence, it suffices to consider the case 0 < α < 1. Then we have s−1 = − α

1−α s1 which
leads to either s−1 ≤ 0 ≤ s1 or s1 ≤ 0 ≤ s−1. Since the monotony of the subdifferential and Lemma
19 yield that s1 ≥ 0 implies t > 0 and that s−1 ≤ 0 implies t < 0 we finally find the assertion.
iii): Let α ∈ [0,1] and t ∈ F∗

L (α)∩R. Without loss of generality we may assume α < 1. Let us fix
s1 ∈ ∂2L(1, t) and s−1 ∈ ∂2L(−1, t) according to ii). Then we find s1 − s−1 < 0 by Lemma 19 and
hence

s := α′s1 +(1−α′)s−1 < αs1 +(1−α)s−1 = 0 .

Since the subdifferential is linear we also have s ∈ ∂2C(α′, t) which shows the assertion.
iv): Let 0 ≤ α < α′ ≤ 1 as well as t ∈ F∗

L (α) and t ′ ∈ F∗
L (α′). Since for t ′ = ∞ or t = −∞ the

assertion is trivial by i) we also assume t, t ′ ∈ R. By iii) we find an s ∈ ∂2C(α′, t) with s < 0. Then
we obtain t ′ ≥ t since otherwise we observe s′ ≤ s < 0 for all s′ ∈ ∂2C(α′, t ′) which contradicts
t ′ ∈ F∗

L (α′).
v): This is a direct consequence of iv).
vi): Let us suppose that there exists a t ∈ F∗

L (1/2) with 0 ∈ ∂2L(1, t) and t < maxF∗
L (1/2). We

fix a t ′ ∈ F∗
L (3/4). Since F∗

L is monotone we have t ′ ≥ maxF∗
L (1/2) > t and hence the monotony

of ∂2L(1, .) yields ∂2L(1, t ′) ⊂ [0,∞). Since 0 ∈ ∂2C(3/4, t ′) the latter implies that there exists an
s ∈ ∂2L(−1, t ′) with s ≤ 0. Therefore, by Lemma 19 i) and the monotony of ∂2L(−1, .) we find
t ′ < 0 which contradicts the admissibility of L. The second assertion can be proved analogously.
vii): By the assumption there exist t, t ′ ∈ F∗

L (α) with 0 ∈ ∂2L(1, t) and 0 ∈ ∂2L(−1, t ′). The
monotony of ∂2L(1, .) implies t > 0 and hence α ≥ 1/2 by the admissibility of L. Analogously,
0 ∈ ∂2L(−1, t ′) yields α ≤ 1/2. The last assertion is a direct consequence of Lemma 19 ii).

The next Lemma shows how we can approximate the set

S :=
{

(x,y) ∈ Xcont ×Y : 0 6∈ ∂2L
(

y,F∗
L (P(1|x))∩R

)

}

which was defined in (8):

Lemma 21 Let L be an admissible and convex loss function. Then for

Sε :=
{

(x,y) ∈ Xcont ×Y : 0 6∈ ∂2L
(

y,F∗
L (P(1|x))∩R+ εBR

)

}

we have Sε ⊂ S and Sε ⊂ Sε′ for all ε > ε′ > 0. Moreover, we have

⋃

ε>0

Sε = S .
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Proof Since the first two assertions are obvious it suffices to prove S ⊂ ⋃

ε>0 Sε. Obviously, this
follows once we have established

⋂

ε>0

⋃

δ∈[−ε,ε]

⋃

t∈F∗
L (α)∩R

∂2L(y, t + ε) ⊂
⋃

t∈F∗
L (α)∩R

∂2L(y, t) (13)

for all α ∈ [0,1], y = ±1. If F∗
L (α)∩R = /0 inclusion (13) is trivial. Therefore, we assume F∗

L (α)∩
R 6= /0. Let us fix an element h of the left set in (13). Then for all n ∈ N there exist δn ∈ [−1/n,1/n]
and tn ∈F∗

L (α)∩R with h∈ ∂2L(y, tn +δn). If (tn) is unbounded we observe α∈{0,1}. Furthermore,
we find tn +δn ∈ F∗

L (α)∩R for a sufficiently large n since F∗
L (α) is an interval by the convexity of

L. Hence we have shown (13) in this case.
If (tn) is bounded there exists a subsequence (tnk) of (tn) converging to an element t0 ∈ F∗

L (α)∩R

by the compactness of F∗
L (α) in R. Now let us fix an ε > 0. Since ∂2L(y, .) : R → 2R is upper

semi-continuous by Proposition 15 we find

h ∈ ∂2L(y, tnk +δnk) ⊂ ∂2L(y, t0)+ εBR

for a sufficiently large k. This yields

h ∈
⋂

ε>0

(

∂2L(y, t0)+ εBR

)

and thus we finally find h ∈ ∂2L(y, t0) by the compactness of ∂2L(y, t0).

3.3 Asymptotic Behaviour of the Solutions I

In order to describe the asymptotic behaviour of fT,λ and f̃T,λ + b̃T,λ we have to introduce a “distance
function” for t ∈ R and B ⊂ R:

ρ(t,B) :=























infs∈B |t − s| if B∩R 6= /0
min{1, 1

t+
} if B = {∞}

min{1, 1
(−t)+

} if B = {−∞}
1
|t| otherwise,

where s+ := max{0,s} for all s ∈ R and 1/0 := ∞. Note that ρ reduces to the usual definition of the
distance between a point t and a set B if the latter contains a real number. For brevity’s sake we also
write

E( f ,ε) :=
{

x ∈ X : ρ
(

f (x),F∗
L (P(1|x))

)

≥ ε
}

for ε > 0 and measurable functions f : X → R. Note that if F ∗
L (α)∩R 6= /0 holds for all α ∈ [0,1]

then E( f ,ε) is the set of points where f differs more than ε from all functions minimizing R L,P.
Now, we can state the following key result:

Theorem 22 Let P be a Borel probability measure on X × Y and L be a loss function with
card F∗

L (α) > 1 for at most countably many α ∈ [0,1]. Furthermore, assume that for such α the
set F∗

L (α) is an interval in R. Then for all ε > 0 there exists a δ > 0 such that for all measurable
functions f : X → R with R L,P( f ) ≤ R L,P +δ we have PX(E( f ,ε)) ≤ ε.
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Proof Let f : X → R be a measurable function and fL,P := f ∗(P(1|.)), where f ∗ is a measurable
selection from F∗

L . Then for E := E( f ,ε) we find

R L,P( f ) ≥
∫

X\E

∫

Y

L
(

y, fL,P(x)
)

P(dy|x)PX(dx)+
∫

E

∫

Y

L
(

y, f (x)
)

P(dy|x)PX(dx)

= R L,P +
∫

E

∫

Y

(

L
(

(y, f (x)
)

−L
(

y, fL,P(x)
)

)

P(dy|x)PX(dx) .

Let Gε(α) := {s∈R : ρ(s,F∗
L (α))≥ ε} if there exists an s∈R with ρ(s,F∗

L (α))≥ ε, and Gε(α) := R

otherwise. Denoting the closure of Gε(α) in R by Gε(α)
R

there exists f∗(α) ∈ Gε(α)
R

with

C(α, f∗(α)) = inf
t∈Gε(α)

C(α, t)

for all α ∈ [0,1]. Moreover, by the assumptions on L we can assume that the function f∗ : [0,1]→ R

is measurable. Our next step is to show

f∗(α) 6∈ F∗
L (α) (14)

for all α ∈ [0,1] for which there exists an s ∈ R with ρ(s,F∗
L (α)) ≥ ε. Let us assume the converse,

i.e. there is an α ∈ [0,1] with f∗(α) ∈ F∗
L (α) and ρ(s,F∗

L (α)) ≥ ε for a suitable s ∈ R. If f∗(α) ∈ R

we have f∗(α) ∈ Gε(α) and F∗
L (α)∩R 6= /0. Hence we find

inf
s∈F∗

L (α)
| f∗(α)− s| = ρ( f∗(α),F∗

L (α)) ≥ ε

which contradicts our assumption f∗(α) ∈ F∗
L (α). Hence we have f∗(α) ∈ {−∞,∞}. Without loss

of generality we assume f∗(α) = ∞. Since f∗(α) ∈ Gε(α)
R

there is a sequence (tn) ⊂ Gε(α) with
tn → ∞. If F∗

L (α)∩R = /0 this shows ρ(tn,F∗
L (α)) = 1/tn → 0 for n → ∞ which contradicts (tn) ⊂

Gε(α) = {s ∈ R : ρ(s,F∗
L (α)) ≥ ε}. Hence we have F∗

L (α)∩R 6= /0. Since F∗
L (α) is an interval we

find F∗
L (α) = [a,∞] for some a ∈ [−∞,∞]. For large n this implies tn ∈ F∗

L (α), i.e. ρ(tn,F∗
L (α)) = 0,

which also contradicts (tn) ⊂ Gε(α). Therefore we have established (14).
Now, the definition of f∗ and our first estimate yields

R L,P( f ) ≥ R L,P +
∫

E
∆dPX ,

where
∆(x) :=

∫

Y
L
(

y, f∗(P(1|x))
)

−L(y, fL,P(x))P(dy|x) .

Furthermore, since (14) guarantees ∆(x) > 0 for all

x ∈ X̃ε :=
{

x ∈ X : ∃s ∈ R with ρ
(

s,F∗
L (P(1|x))

)

≥ ε
}

the restrictions of the measures PX and ∆dPX onto X̃ε are absolutely continuous to each other. Now,
the assertion easily follows from E ⊂ X̃ε.

1090



SPARSENESS OF SUPPORT VECTOR MACHINES

Remark 23 The assumption card F∗
L (α) > 1 for at most countably many α ∈ [0,1] in the above

theorem was only used to ensure the measurability of f∗. We suppose that this assumption is su-
perfluous. As we have seen in Lemma 20 it is always satisfied for admissible convex loss functions.
Using a slightly different definition of ρ the assumption “F ∗

L (α) is an interval” can also be omitted.
Since for convex loss functions F∗

L (α) is always an interval in R we do not go into details.

Remark 24 As already pointed out in Section 2 it was shown by Steinwart (2003a) that there exist
kernels and sequences of regularization parameters such that for the corresponding classifiers based
on (1) and (2) we have R L,P( fT,λn

) → R L,P and R L,P( f̃T,λn
+ b̃T,λn

) → R L,P, respectively. In this
case, Theorem 22 e.g. yields

PX
(

E( fT,λn
,ε)
)

→ 0

for all ε > 0. In particular, if F∗
L (α) ⊂ R and card F∗

L (α) = 1 hold for all α ∈ [0,1] then

‖ fT,λn
− fL,P‖0 → 0 (15)

holds in probability for |T | = n → ∞. Here

‖ f‖0 :=
∫

X
min{1, | f |}dPX

is a translation invariant metric which describes the convergence in probability with respect to
PX in the space of all measurable functions L0(PX). The aim of the following sections is to show
that for convex and (strongly) admissible loss functions Theorem 22 and in particular (15) can be
improved. Namely, we show that the set E( fT,λ,ε) describing the ε-discrepancy of fT,λn

from fL,P is
“essentially” independent of T . This will allow us to control the behaviour of fT,λn

on the samples
of T .

Remark 25 Theorem 22 does not only apply to classifiers of SVM type. Indeed, it describes the lim-
iting decision function and the corresponding convergence for every classifier minimizing a (modi-
fied) L-risk provided that the L-risks R L,P( fT ) of its decision functions fT converge to R L,P. Recall
that the latter condition also ensures universal consistency for admissible loss functions.

3.4 Stability

In this section we show that the decision functions of the classifiers based on (1) or (2) are concen-
trated around the minimizer of R reg

L,P,λ if the loss function is convex. In order to unify the following
considerations we define

R reg
L,P,λ,A( f ) := λ‖A f‖2

H +R L,P( f )

for a RKHS H, a projection A : H → H, a loss function L, f ∈ H and λ > 0. Our first aim is to derive
a formula for the subdifferential of R reg

L,P,λ,A(.). Besides the calculus presented in the preliminaries
we also need an integration rule in order to treat the integral R L,P(.). Due to technical reasons it is
convenient to split the latter: for a Borel probability measure P on X ×Y and a measurable B ⊂ X
we define

P+
X (B) :=

∫

X
1B(x)P(1|x)PX(dx)

P−
X (B) :=

∫

X
1B(x)P(−1|x)PX(dx) ,
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where 1B denotes the indicator function of B. With the help of these measures we set

R +
L,P( f ) :=

∫

X
L(1, f (x))P+

X (dx)

R −
L,P( f ) :=

∫

X
L(−1, f (x))P−

X (dx)

for admissible loss functions L and measurable functions f : X → R. Obviously, we always have
R L,P( f ) = R +

L,P( f )+ R −
L,P( f ). In the following proposition we collect some useful properties of

R ±
L,P(.):

Proposition 26 Let L be a convex and Lipschitz continuous loss function and P a Borel proba-
bility measure on X ×Y . Then the functionals R ±

L,P : L2(P
±
X ) → [0,∞] are convex, finite at 0 and

continuous at 0. Furthermore, for all h ∈ L2(P) we have

∂R ±
L,P(h) =

{

h∗ ∈ L2(P
±
X ) : h∗(x) ∈ ∂L(±1,h(x)) P±

X -a.s
}

. (16)

Proof We only have to consider R +
L,P. Using the notions of Rockafellar (1976) we first observe

that L(1, .) is a normal and convex integrand (see Rockafellar, 1976, p. 173). In particular, R +
L,P is

convex. Since R +
L,P(0) = L(1,0)P+

X (X) ∈ R the equation (16) then follows (see Rockafellar, 1976,
Cor. 3E.).

In order to prove the continuity at 0 let ( fn) ⊂ L2(P
+
X ) be a sequence with fn → 0. Then for

ε > 0 and Aε
n := {x ∈ X : | fn(x)| > ε} one easily checks that there exists an integer n0 such that for

all n ≥ n0 we have both P+
X (Aε

n) ≤ ε and
∫

Aε
n

| fn|dP+
X ≤ ε .

Moreover, the Lipschitz-continuity of L yields L(1, t) ≤ |L|1|t|+L(1,0) for all t ∈ R. Therefore we
obtain

R +
L,P( fn) =

∫

Aε
n

L(1, fn)dP+
X +

∫

X\Aε
n

L(1, fn)dP+
X

≤
∫

Aε
n

|L|1| fn|+L(1,0)dP+
X +

∫

X\Aε
n

|L|1|ε|+L(1,0)dP+
X

≤ 2ε|L|1 +R +
L,P(0)

and hence we find limsupn→∞ R +
L,P( fn)≤R +

L,P(0). In order to show R +
L,P(0)≤ liminfn→∞ R +

L,P( fn)

we observe that for h = 0 and ε = 1 we have L(1,h(.)+ a) ∈ L2(P
+
X ) for all |a| ≤ ε. Hence, R +

L,P
is lower semi-continuous at 0 with respect to the weak topology of L2(P

+
X ) (see Rockafellar, 1976,

Cor. 3D. and Prop. 3G.). In particular, R +
L,P is lower semi-continuous at 0 with respect to the norm,

i.e. R +
L,P(0) ≤ liminfn→∞ R +

L,P( fn).

Proposition 27 Let k be a continuous kernel with RKHS H and feature map Φ : X → H. Moreover,
let A : H → H be a projection, L be a convex and Lipschitz-continuous loss function and P be a
Borel probability measure on X ×Y . Then for all f ∈ H we have

∂R reg
L,P,λ,A( f ) = 2λA f +

{

EPhΦ : h ∈ L0(P), h(x,y) ∈ ∂2L(y, f (x)) P-a.s.
}

.
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Note, that in the above proposition EPhΦ is a Hilbert space valued expectation. Such expecta-
tions are defined by Bochner integrals. For more information on Bochner integrals we refer to the
book of Diestel and Uhl (1977).

Proof Let I± : H → L2(P
±
X ) be the natural inclusions, i.e. I± f := 〈 f ,Φ(.)〉 for all f ∈ H. Then

we observe that R reg
L,P,λ,A( f ) = λ〈A f ,A f 〉+R +

L,P(I+ f )+R −
L,P(I− f ) holds. The continuity of L and

k ensures R ±
L,P(I± f ) ∈ R for all f ∈ H. Furthermore, using Lebesgue’s dominated convergence

theorem we easily see that R ±
L,P ◦ I± : H → R are even continuous. Therefore, the linearity of the

subdifferential and ∂‖.‖2
H( f ) = 2 f imply

∂R reg
L,P,λ,A( f ) = 2λA f +∂(R +

L,P ◦ I+)( f )+∂(R −
L,P ◦ I−)( f ) .

Now, R +
L,P : L2(P

+
X ) → [0,∞] is continuous at 0. Hence, the chain rule of Proposition 18 together

with Proposition 26 yields

∂(R +
L,P ◦ I+)( f ) = (I+)∗ ∂R +

L,P(I+ f )

= (I+)∗
(

{h+ ∈ L2(P
+
X ) : h+(x) ∈ ∂L(1, f (x)) P+

X -a.s}
)

.

Since the adjoint operator of I+ maps every h ∈ L2(P
+
X ) to (I+)∗h = EP+

X
hΦ we obtain

∂(R +
L,P ◦ I+)( f ) =

{

EP+
X

h+Φ : h+ ∈ L2(P
+
X ), h+(x) ∈ ∂L(1, f (x)) P+

X -a.s.
}

.

Analogously, we get

∂(R −
L,P ◦ I−)( f ) =

{

EP−
X

h−Φ : h− ∈ L2(P
−
X ), h−(x) ∈ ∂L(−1, f (x)) P−

X -a.s.
}

.

Using the notation h(x,1) := h+(x) and h(x,−1) := h−(x) we thus find

∂(R +
L,P ◦ I+)( f )+∂(R −

L,P ◦ I−)( f ) =
{

EPhΦ : h ∈ L2(P), h(x,y) ∈ ∂2L(y, f (x)) P-a.s.
}

.

Finally, L2(P) can be replaced by L0(P) since L is Lipschitz continuous.

The result of Proposition 27 has already been presented by Zhang (2001). However, the claim
therein that Proposition 27 can be proved using subdifferential calculus on finite dimensional spaces
is obviously not correct. For differentiable loss functions Proposition 27 is more or less trivial.

Now we are able to prove the main result of this subsection:

Theorem 28 Let L be a convex loss function, H be a RKHS of a continuous kernel with feature map
Φ : X → H, A : H → H be an orthogonal projection and P be a Borel probability measure on X ×Y .
Assume that R reg

L,P,λ,A can be minimized and that there exists a constant c > 0 such that ‖ f̂P,λ‖∞ ≤ c

for all f̂P,λ ∈ H minimizing R reg
L,P,λ,A. Then there exists a measurable function h : X ×Y → R with

‖h‖∞ ≤
∣

∣L|Y×[−c,c]

∣

∣

1 such that for all Borel probability measures Q and every element f̂Q,λ ∈ H
which minimizes R reg

L,Q,λ,A and satisfies ‖ f̂Q,λ‖∞ ≤ c we have

‖A f̂P,λ −A f̂Q,λ‖2 ≤ ‖ f̂P,λ − f̂Q,λ‖ ‖EPhΦ−EQhΦ‖
λ

.
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For the proof of Theorem 28 we need the following simple lemmas which will not be proved:

Lemma 29 Let f : R → R be a convex and continuous function. Then f restricted to [−a,a], a > 0,
is Lipschitz continuous and we have

∣

∣ f|[−a,a]

∣

∣

1 ≤ 2
a

∥

∥ f|[−2a,2a]

∥

∥

∞ .

Lemma 30 Let f : [a,b] → R
+ be a convex and Lipschitz continuous function. Then there exists a

convex extension f̃ : R → R
+ of f that is Lipschitz continuous with | f |1 = | f̃ |1.

Proof of Theorem 28 Let us first assume that L is Lipschitz continuous. Since f̂P,λ minimizes
R reg

L,P,λ,A we observe 0 ∈ ∂R reg
L,P,λ,A( f̂P,λ). Thus, by Proposition 27 there exists a function h ∈ L0(P)

with h(x,y) ∈ ∂2L(y, f̂P,λ(x)) for P-almost all (x,y) ∈ X ×Y and

0 = 2Aλ f̂P,λ +EPhΦ . (17)

By the Lipschitz-continuity and Proposition 14 we actually have ‖h‖∞ ≤ |L|1. Moreover, we can
assume without loss of generality that h(x,y)∈ ∂2L(y, f̂P,λ(x)) for all (x,y)∈ X ×Y . Then we obtain

h(x,y)
(

f̂Q,λ(x)− f̂P,λ(x)
)

≤ L(y, f̂Q,λ(x))−L(y, f̂P,λ(x))

for all (x,y) ∈ X ×Y . Integration with respect to Q then yields

E(x,y)∼QL(y, f̂P,λ(x))+ 〈 f̂Q,λ − f̂P,λ,EQhΦ〉 ≤ E(x,y)∼QL(y, f̂Q,λ(x)).

Since λ‖A f̂P,λ‖2 + 2λ〈A f̂Q,λ − A f̂P,λ, f̂P,λ〉+ λ‖A f̂P,λ − A f̂Q,λ‖2 = λ‖A f̂Q,λ‖2 the latter inequality
implies

R reg
L,Q,λ,A( f̂P,λ)+ 〈 f̂Q,λ − f̂P,λ,EQhΦ+2λA∗ f̂P,λ〉+λ‖A f̂P,λ −A f̂Q,λ‖2 ≤ R reg

L,Q,λ,A( f̂Q,λ) .

Moreover, f̂Q,λ minimizes R reg
L,Q,λ,A and hence we have R reg

L,Q,λ,A( f̂Q,λ) ≤ R reg
L,Q,λ,A( f̂P,λ). This and

A∗ = A yield

λ‖A f̂P,λ −A f̂Q,λ‖2 ≤ 〈 f̂P,λ − f̂Q,λ,EQhΦ+2λA f̂P,λ〉
≤ ‖ f̂P,λ − f̂Q,λ‖‖EQhΦ+2λA f̂P,λ‖ .

With the help of (17) we can replace 2λA f̂P,λ by −EPhΦ and thus the assertion follows.
In the general case we know by Lemma 29 that L restricted to Y × [−c,c] is Lipschitz continuous

and thus there exists a Lipschitz continuous extension L̃ according to Lemma 30. Since R reg
L̃,P,λ,A

and R reg
L̃,Q,λ,A

coincide with R reg
L,P,λ,A and R reg

L,Q,λ,A on cBH , respectively, we then obtain the assertion.

Remark 31 Taking P = Q in the previous theorem we immediately obtain that A f̂P,λ is unique. In
particular, the problem (1) has always a unique solution for convex loss functions. Furthermore,
it is obvious that this also holds for L1- and L2-SVMs with offset since in these cases we have
‖ f̂P,λ‖∞ ≤ 2+2Kδλ.
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Remark 32 Equation (17) is a general form of the well-known representer theorem. Indeed, (17)
reduces to

A f̂T,λ =
n

∑
i=1

αik(xi, .)

for training sets T =
(

(x1,y1), . . . ,(xn,yn)
)

∈ (X ×Y )n and suitable coefficients α1, . . . ,αn ∈ R.
Furthermore, the above proof showed (7), i.e.

αi ∈ − 1
2nλ

∂2L(yi, f̂T,λ(xi))

for all i = 1, . . . ,n. Therefore, a sample xi must be a support vector of the above representation
if 0 6∈ ∂2L(yi, f̂T,λ(xi)). In order to prove lower bounds on the number of support vectors it hence
suffices to know the behaviour of f̂T,λ on T . This will be our key idea in the following considerations.

3.5 Asymptotic Behaviour of the Solutions II

In this part we refine the results of Subsection 3.3 concerning the asymptotic behaviour of the
solutions of (1) and (2). We begin with:

Proposition 33 Let L be a convex loss function, H be a RKHS of a continuous kernel and P be a
Borel probability measure on X ×Y . Then for all ε > 0, λ > 0 and all n ≥ 1 we have

Pn
(

T ∈ (X ×Y )n :
∥

∥ fT,λ − fP,λ
∥

∥≥ ε
)

≤ 2exp
(

− ε2λ2n

8K2|Lλ|21 +2ελK|Lλ|1

)

.

For the proof we will need the following result which is a reformulation of Theorem 3.3.4 of Yurin-
sky (1995):

Lemma 34 Let η1, . . . ,ηn be bounded i.i.d. random variables with values in a Hilbert space H.
Assume ‖ηi‖∞ ≤ M for all i = 1, . . . ,n. Then for all ε > 0 and all n ≥ 1 we have

P

(

∥

∥

∥

1
n

n

∑
i=1

(ηi −Eηi)
∥

∥

∥
≥ ε

)

≤ 2exp
(

− ε2n
8M2 +4εM

)

.

Proof Apply Theorem 3.3.4 of Yurinsky (1995) to ξi := ηi −Eηi, H := 2M, B := 2M
√

n and

x := ε
√

n
2M .

Proof of Proposition 33 By Theorem 28 we know λ‖ fP,λ− fT,λ‖ ≤ ‖EPhΦ−ET hΦ‖ for a suitable
function h : X ×Y →R independent on T . Moreover, our specific situation guarantees ‖h‖∞ ≤ |Lλ|1.
Applying Lemma 34 to ηi := h(xi,yi)Φ(xi), i = 1, . . . ,n, and M = K|Lλ|1 we thus obtain

Pn
(

T ∈ (X ×Y )n :
∥

∥ fT,λ − fP,λ
∥

∥≥ ε
)

≤ Pn
(

T ∈ (X ×Y )n : ‖ET hΦ−EPhΦ‖ ≥ ελ
)

≤ 2exp
(

− ε2λ2n

8K2|Lλ|21 +4ελK|Lλ|1

)

,

which is assertion.
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With the help of Proposition 33 we are now able to show that E( fT,λ,ε) is essentially independent
of T , i.e. it is contained in a small set which only depends on the training set size n and the accuracy
ε. The precise result is stated in the following proposition:

Proposition 35 Let L be an admissible and convex loss function, H be a RKHS of a universal kernel
and P be a Borel probability measure on X ×Y . Let us further assume that (λn) is a sequence of
strictly positive real numbers with λn → 0 and nλ2

n/|Lλn
|21 → ∞. Then for all ε ∈ (0,1) there exists

a sequence of sets En(ε) ⊂ X with PX(En(ε)) → 0 and

Pn
(

T ∈ (X ×Y )n : E( fT,λn
,ε) ⊂ En(ε)

)

→ 1 .

Proof Let T be a training set with ‖ fT,λn
− fP,λn

‖ ≤ ε
2K . Since nλ2

n/|Lλn
|1 → ∞ Proposition 33

ensures that the probability of such training sets tends to 1. We first show

E( fT,λn
,ε) ⊂ E( fP,λn

,ε/2) (18)

Let us assume the converse, i.e. there is an x∈E( fT,λn
,ε) with x 6∈E( fP,λn

,ε/2). If F∗
L (P(1|x))∩R 6=

/0 the latter implies

ε/2 > ρ
(

fP,λn
(x),F∗

L (P(1|x))
)

= inf
s∈F∗

L (P(1|x))
| fP,λn

(x)− s| .

In particular there exists an s∗ ∈ F∗
L (P(1|x)) with | fP,λn

(x)− s∗| < ε/2. Hence we find

ρ
(

fT,λn
(x),F∗

L (P(1|x))
)

≤ | fT,λn
(x)− s∗| ≤ | fT,λn

(x)− fP,λn
(x)|+ | fP,λn

(x)− s∗| < ε .

i.e. x 6∈ E( fT,λn
,ε) which contradicts our assumption. Therefore we have to consider the case

F∗
L (P(1|x)) ∩ R = /0. Without loss of generality we may assume F∗

L (P(1|x)) = {∞}. Then
x 6∈ E( fP,λn

,ε/2) implies

ε
2

> ρ
(

fP,λn
(x),F∗

L (P(1|x))
)

= min
{

1,
1

( fP,λn
(x))+

}

,

i.e. fP,λn
(x) > 2/ε. Hence we find

fT,λn
(x) = fT,λn

(x)− fP,λn
(x)+ fP,λn

(x) > − ε
2

+
2
ε

≥ 1
ε

.

This yields ρ
(

fT,λn
(x),F∗

L (P(1|x))
)

= min
{

1, 1
( fT,λn (x))+

}

< ε which again contradicts our assump-

tion x ∈ E( fT,λn
,ε). Therefore, we have shown (18).

Now, λn → 0 yields R L,P( fP,λn
) → R L,P (see Steinwart, 2003a) and therefore, Theorem 22

shows that E( fP,λn
,ε/2) are the desired sets for large n.

Remark 36 Proposition 35 also holds for convex loss functions that satisfy the assumptions of
Theorem 22.
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In the rest of this section we show that Proposition 35 also holds for classifiers based on (2). Un-
fortunately, it turns out that their treatment is a bit more technical. We begin with a result which is
analogous to Proposition 33:

Proposition 37 Let L be a regular and convex loss function, H be a RKHS of a continuous kernel,
and P be a non-degenerate Borel probability measure on X ×Y . Then for all ε > 0 there exists a
constant c > 0 such that for all λ ∈ (0,1) and all n ≥ 1 we have

Pn
(

T ∈ (X ×Y )n : ‖ f̃T,λ − f̃P,λ‖ ≥ ε
)

≤ 4exp
(

−c
ε4λ3n

|Lλ|21

)

.

Proof It was shown by Steinwart (2003a) that there exists a constant c̃ > 0 with |b̃P,λ| ≤ c̃ + δλK
for all λ > 0 such that

Pr∗
(

T ∈ (X ×Y )n : |b̃T,λ| ≤ c̃+δλK for all λ > 0
)

≥ 1−2e− c̃n (19)

holds for all n ≥ 1. We define L̃λ := L|Y×[−a,a], where a := c̃ + (1 + K)δλ. Then we can apply
Theorem 28 to the training sets considered in (19). This gives us a function h : X ×Y → R with
‖h‖∞ ≤ |L̃λ|1 and

Pr∗
(

T : ‖ f̃P,λ − f̃T,λ‖2
H ≤ ‖( f̃P,λ, b̃P,λ)− ( f̃T,λ, b̃T,λ)‖H⊕2R ‖EPhΦ−ET hΦ‖H

λ

)

≥ 1−2e− c̃n,

where ‖( f ,b)‖H⊕2R :=
√

‖ f‖2
H + |b|2, f ∈ H, b ∈ R, denotes the Hilbert space norm of the direct

sum of H and R. Moreover, for the training sets considered in (19) we always have

‖( f̃P,λ, b̃P,λ)− ( f̃T,λ, b̃T,λ)‖H⊕2R ≤ ‖ f̃P,λ − f̃T,λ‖H + |b̃P,λ − b̃T,λ| ≤ 2c̃+2(1+K)δλ .

With ε̃ := ε2λ
2 c̃+2(1+K)δλ

we thus find

Pn
(

T ∈ (X ×Y )n : ‖ f̃T,λ − f̃P,λ‖ ≥ ε
)

≤ Pn
(

T ∈ (X ×Y )n : ‖ET hΦ−EPhΦ‖ ≥ ε̃
)

+2e− c̃n

≤ 2exp
(

− ε̃2n

8K2|Lλ|21 +4ε̃K|Lλ|1

)

+2e− c̃n.

Using ε̃ ∼ ε2λ3/2 and 8K2|Lλ|21 + 4ε̃K|Lλ|1 � |Lλ|21 for fixed ε and λ → 0 we then obtain the
assertion.

The following proposition essentially states the result of Proposition 35 for classifiers based on (2).
Due to technical reasons we must restrict the class of probability measures for which the result
holds. This lack will cause further technical difficulties in the proof of Theorem 10.
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Proposition 38 Let L be a strongly admissible, regular and convex loss function, H be a RKHS of
a universal kernel and P be a non-degenerate Borel probability measure on X ×Y with

PX

(

x ∈ X : P(1|x) 6∈ {0,1/2,1}
)

> 0 .

Let us further assume that (λn) is a sequence of strictly positive real numbers with λn → 0,
nλ3

n/|Lλn
|21 → ∞ and nλn/

(

‖Lλn
‖2

∞|Lλn
|21 logn

)

→ ∞. Then for all sufficiently small ε > 0 we have

Pr∗
(

T ∈ (X ×Y )n : ‖ f̃T,λn
+ b̃T,λn

− f̃P,λn
− b̃P,λn

‖∞ ≤ ε
)

→ 1 . (20)

Moreover, for all sufficiently small ε > 0 there exists a sequence of sets En(ε) ⊂ X, n ≥ 1, with
PX(En(ε)) → 0 and

Pn
(

T ∈ (X ×Y )n : E( fT,λn
,ε) ⊂ En(ε)

)

→ 1 . (21)

Proof We define X̃ :=
{

x ∈ X : P(1|x) 6∈ {0,1/2,1}
}

and fix an ε with 0 < ε < PX(X̃). Furthermore,
for ε/4 we chose a δ > 0 according to Theorem 22. Let us suppose that we have a training set T
with R L,P( f̃T,λn

+ b̃T,λn
) ≤ R L,P +δ and ‖ f̃T,λn

− f̃P,λn
‖∞ ≤ ε/4. Recall that the probability of such

training set converges to 1 (see Proposition 37 and Steinwart, 2003a). Now, the assumptions on T
yield

PX
(

x ∈ X̃ : | f̃T,λn
(x)+ b̃T,λn

− fL,P(x)| < ε/4
)

≥ 2
3

PX(X̃) .

Note that unlike b̃T,λn
the value fL,P(x) ∈ F∗

L (P(1|x)) is uniquely determined for all x ∈ X̃ by the
assumptions on L. Moreover, for sufficiently small λn we also have

PX
(

x ∈ X̃ : | f̃P,λn
(x)+ b̃P,λn

− fL,P(x)| < ε/4
)

≥ 2
3

PX(X̃) .

Hence there exists an element x0 ∈X with | f̃T,λn
(x0)+ b̃T,λn

− fL,P(x0)|< ε/4 and | f̃P,λn
(x0)+ b̃P,λn

−
fL,P(x0)| < ε/4. Since this yields

|b̃T,λn
− b̃P,λn

| ≤ | f̃T,λn
(x0)+ b̃T,λn

− f̃P,λn
(x0)− b̃P,λn

|+‖ f̃T,λn
− f̃P,λn

‖∞

≤ | f̃T,λn
(x0)+ b̃T,λn

− fL,P(x0)|+ | f̃P,λn
(x0)+ b̃P,λn

− fL,P(x0)|+ ε/4

≤ 3
4

ε

we find (20). The second assertion can be shown as in the proof of Proposition 35.

3.6 Proofs of the Main Theorems

In this final subsection we prove our main results including the lower bounds on S L,P. We begin
with:

Proof of Lemma 1 Let H be the RKHS of k and Φ : X → H be the associated feature map,
i.e. Φ(x) = k(x, .), x ∈ X . Obviously, we only have to show that Φ(x1), . . . ,Φ(xn) are linearly
independent in H if and only if x1, . . . ,xn are mutually different. Let us suppose that x1, . . . ,xn are
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mutually different but Φ(x1), . . . ,Φ(xn) are linearly dependent. Then we may assume without loss
of generality that there exists coefficients λ1, . . . ,λn−1 ∈ R with

Φ(xn) =
n−1

∑
i=1

λiΦ(xi) .

Since k is universal there exists an element w ∈ H with 〈w,Φ(xn)〉 < 0 and λi〈w,Φ(xi)〉 ≥ 0 for all
i = 1, . . . ,n− 1 (see Steinwart, 2001, Cor. 6). From this we easily get a contradiction. The other
implication is trivial.

Proof of Theorem 9 For brevity’s sake we only prove the assertion in the case of 0 ∈
∂2L(1,F∗

L (1/2))∩ ∂2L(−1,F∗
L (1/2)). The proof of the other case follows the same line but is

slightly less technical. Obviously, it suffices to show the assertion for small ε > 0. By Lemma
19 we find an ε ∈ (0,1) with

0 6∈ ∂2L(1, t + εBR)∩∂2L(−1, t + εBR) (22)

for all t ∈ F∗
L (1/2)+εBR. Moreover, we fix a δ ∈ (0,ε) with PX(Sδ) ≥ PX(S)−ε/2, where Sδ is the

approximation of S defined in Lemma 21. Let us define

X+
n,δ :=

{

x ∈ X0 ∩Xcont : 0 6∈ ∂2L
(

1, fP,λn
(x)+δBR

)

}

X−
n,δ :=

{

x ∈ X0 ∩Xcont : 0 6∈ ∂2L
(

−1, fP,λn
(x)+δBR

)

}

for all n ≥ 1. With the help of (22) we immediately obtain (X0 ∩Xcont)\E( fP,λn
,δ) ⊂ X+

n,δ ∪X−
n,δ ⊂

X0 ∩Xcont . Therefore, by Theorem 22 and some results of Steinwart (2003a) we find

PX(X+
n,δ ∪X−

n,δ) ≥ PX(X0 ∩Xcont)− ε/2

for all sufficiently large integers n. Hence, by the definition of δ we have

PX(Sδ)+
1
2

PX(X+
n,δ ∪X−

n,δ) ≥ S L,P −
3
4

ε (23)

for all sufficiently large n. In order to consider “representative” training sets we define

C T,δ := card
{

i : (xi,yi) ∈ Sδ \ (En(δ)×Y ) or (xi,yi) ∈ X+
n,δ ×{1} or (xi,yi) ∈ X−

n,δ ×{−1}
}

for all training sets T = ((x1,y1), . . . ,(xn,yn)), n ≥ 1, where En(δ) are sets according to Proposition
35. Our above considerations together with Proposition 33, (23) and Hoeffding’s inequality yield

Pr∗
(

T ∈ (X ×Y )n : C T,δ ≥ (S L,P − ε)n,E( fT,λn
,δ) ⊂ En(δ) and

∥

∥ fT,λn
− fP,λn

∥

∥

∞ ≤ δ
)

→ 1

for n → ∞. Therefore, let us consider a training set T with E( fT,λn
,δ) ⊂ En(δ) and a sample (xi,yi)

of T with (xi,yi) ∈ Sδ and xi 6∈ En(δ). Then we have xi 6∈ E( fT,λn
,δ) and the definition of Sδ leads to

0 6∈ ∂2L
(

yi,F
∗
L

(

P(1|xi)
)

∩R+δBR

)

.
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Furthermore, the definition of E( fT,λn
,δ) ensures

fT,λn
(xi) ∈ F∗

L (P(1|xi))∩R+δBR

if F∗
L (P(1|xi))∩R 6= /0. Hence we find 0 6∈ ∂2L(yi, fT,λn

(xi)) in this case, i.e. xi is a support vector of
the representation of fT,λn

as discussed in Remark 32. Moreover, since xi ∈ Xcont we also observe
that the sample value of xi occurs Pn-almost surely only once in T . Therefore, xi is even Pn-almost
surely a support vector in all minimal representations of fT,λn

. If F∗
L (P(1|xi))∩R = /0 we have either

P(1|xi) = 0 or P(1|xi) = 1 by Lemma 20 and the admissibility of L. Without loss of generality we
may assume P(1|xi) = 1. Then we have F∗

L (1) = {∞} and hence 0 6∈ ∂2L(1,R). Therefore, the
sample xi is Pn-almost surely a support vector in all minimal representations whenever yi = 1. The
latter is Pn-almost surely fulfilled since P(1|xi) = 1.
Now, let (xi,yi) ∈ X+

n,δ ×{1} be a sample of a training set T with
∥

∥ fT,λn
− fP,λn

∥

∥

∞ ≤ δ. Then we

observe fT,λn
(xi) ∈ fP,λn

(xi)+ δBR and hence 0 6∈ ∂2L(yi, fT,λn
(xi)) by the definition of X+

n,δ. Again
this shows that xi is Pn-almost surely a support vector in all minimal representations of fT,λn

. Since
the same argument can be applied for samples (xi,yi)∈ X−

n,δ×{−1} we have shown the assertion.

Proof of Theorem 10 If P is a probability measure with

PX

(

x ∈ X : P(1|x) 6∈ {0,1/2,1}
)

> 0 (24)

the proof is analogous to the proof of Theorem 9 using Proposition 38 instead of Propositions 33
and 35. Therefore, let us suppose that (24) does not hold. In order to avoid technical notations we
may also assume X = Xcont without loss of generality. Furthermore, if 0 6∈ ∂2L(Y,R) every sample
xi ∈ Xcont of a training set T ∈ (X ×Y )n is Pn-a.s. a support vector in all minimal representations.
Since S L,P = PX(Xcont) = 1 the assertion is then a simple exercise. If 0 ∈ ∂2L(Y,R) we first assume
that 0 ∈ ∂2L(1,R)∩ ∂2L(−1,R). Then we have S ⊂ X0 ×Y P-almost surely and therefore samples
xi 6∈ X0 can be neglected. Hence we may assume without loss of generality that PX(X0) = 1. In
order to motivate the following construction let us first recall that we cannot control the behaviour
of b̃T,λ in our situation. This makes it more difficult to define a subset X̃ε of X0 such that a) X̃ε is
“essentially” independent of T and b) f̃T,λn

+ b̃T,λn
maps into F∗

L (1/2)+ εBR on X̃ε.
Therefore, our first step is to construct such a set X̃ε: for measurable f : X → R and ε,δ > 0 we
define

bε,δ( f ) := sup
{

b ∈ R : PX
(

x ∈ X : f (x)+b > maxF∗
L (1/2)+ ε

)

≤ δ
}

bε,δ( f ) := inf
{

b ∈ R : PX
(

x ∈ X : f (x)+b < minF∗
L (1/2)− ε

)

≤ δ
}

.

It is easily checked that the supremum in the above definition is actually a maximum, i.e.

PX
(

x ∈ X : f (x)+bε,δ( f ) > maxF∗
L (1/2)+ ε

)

≤ δ . (25)

The same holds for the infimum, i.e.

PX
(

x ∈ X : f (x)+bε,δ( f ) < minF∗
L (1/2)− ε

)

≤ δ . (26)

Furthermore, we define

Xε,δ( f ) :=
{

x ∈ X : f (x)+bε,δ( f ) ≤ maxF∗
L (1/2)+ ε and f (x)+bε,δ( f ) ≥ minF∗

L (1/2)− ε
}

.
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Inequalities (25) and (26) yield
PX(Xε,δ( f )) ≥ 1−2δ . (27)

Moreover, if we have two bounded measurable functions f ,g : X → R with ‖ f −g‖∞ ≤ ε we easily
check

bε,δ(g)− ε ≤ bε,δ( f ) ≤ bε,δ(g)+ ε (28)

bε,δ(g)− ε ≤ bε,δ( f ) ≤ bε,δ(g)+ ε . (29)

We find (see Steinwart, 2003a) that R L,P( f̃T,λn
+ b̃T,λn

) → R L,P in probability for n → ∞. Then
Theorem 22 states that for all ε > 0 and all δ > 0 we have

Pn
(

T ∈ (X ×Y )n : PX
(

E( f̃T,λn
+ b̃T,λn

,ε)
)

≤ δ
)

→ 1 (30)

for n → ∞. Now, let us assume that we have a training set T of length n with

PX
(

E( f̃T,λn
+ b̃T,λn

,ε)
)

≤ δ (31)

and
‖ f̃T,λn

− f̃P,λn
‖∞ ≤ ε . (32)

Recall, that the probability of such T also converges to 1 by Proposition 37. Then (31) yields
bε,δ( f̃T,λn

) ≤ b̃T,λn
≤ bε,δ( f̃T,λn

). By (28), (29) and (32) we hence find

f̃T,λn
(x)+ b̃T,λn

∈ F∗
L (1/2)+3εBR (33)

for all x ∈ Xε,δ( f̃P,λn
), i.e. Xε,δ( f̃P,λn

) is our desired set mentioned at the beginning. If 0 6∈
∂2L(1,F∗

L (1/2))∩ ∂2L(−1,F∗
L (1/2)) the rest of the proof is more or less canonical: fix a small

δ > 0 and choose an ε > 0 with P(Sε) ≥ S L,P − δ. Then, consider only training sets T which are
“representative on Xε,δ( f̃P,λn

)∩Sε up to δ” and which fulfill both (31) and (32). For these T we find
Pn-almost surely #SV ( f̃T,λn

) ≥ (S L,P −4δ)n.
As in the proof of Theorem 9 technical problems arise in the case of

0 ∈ ∂2L(1,F∗
L (1/2))∩∂2L(−1,F∗

L (1/2)) . (34)

Even worse, the techniques used there cannot be applied in our situation since we cannot control the
behaviour of b̃T,λn

. The key idea for solving these difficulties is the observation that for t ∈ F ∗
L (1/2)

the subdifferentials ∂2L(y, t) can only contain 0 at the boundary of F∗
L (1/2) (cf. Lemma 20). Since

we only have to prove the assertion for small ε > 0 we fix an ε > 0 with ε <
(

maxF∗
L (1/2)−

minF∗
L (1/2)

)

/4. Recall, that such ε actually exist by our assumption (34) and Lemma 19. For
δ > 0 and n ≥ n0 we define

X+
ε,δ,n :=

{

x ∈ Xε,δ( f̃P,λn
) : f (x)+bε,δ( f̃P,λn

) ∈ maxF∗
L (1/2)+ εBR

}

X−
ε,δ,n :=

{

x ∈ Xε,δ( f̃P,λn
) : f (x)+bε,δ( f̃P,λn

) ∈ minF∗
L (1/2)+ εBR

}

X0
ε,δ,n := Xε,δ( f̃P,λn

)\
(

X+
ε,δ,n ∪X−

ε,δ,n

)

.
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Furthermore let us assume that we have a training set T of length n with ‖ f̃T,λn
− f̃P,λn

‖∞ < ε/3 and
PX
(

E( f̃T,λn
+ b̃T,λn

,ε)
)

≤ δ. Let us suppose that we have a sample (xi,yi) of T with xi ∈ X+
ε,δ,n. If

b̃T,λn
≥ bε,δ( f̃P,λn

)−2ε we get

f̃T,λn
(x)+ b̃T,λn

≥ f̃P,λn
(x)+bε,δ( f̃P,λn

)−3ε ≥ maxF∗
L (1/2)−4ε

and hence we find f̃T,λn
(x) + b̃T,λn

∈ maxF∗
L (1/2) + 4εBR by (33). Since minF∗

L (1/2) 6∈
maxF∗

L (1/2) + 4εBR by the choice of ε the sample xi is Pn-a.s. a support vector in all minimal
representations of f̃T,λn

if yi = −1 (cf. Lemma 20). If b̃T,λn
< bε,δ( f̃P,λn

)−2ε we find

f̃T,λn
(x)+ b̃T,λn

< f̃P,λn
(x)+bε,δ( f̃P,λn

)− ε ≤ maxF∗
L (1/2) .

Therefore, xi is Pn-a.s. a support vector in all minimal representations of f̃T,λn
if yi = 1. Obviously,

analogous considerations can be made for samples in X−
ε,δ,n. Finally, for a sample xi ∈ X0

ε,δ,n we
obtain

f̃T,λn
(x)+ b̃T,λn

< f̃P,λn
(x)+bε,δ( f̃P,λn

)+
2
3

ε < maxF∗
L (1/2)− ε/3

and therefore xi is Pn-a.s. a support vector of a minimal representation of f̃T,λn
if yi = 1.

With the above considerations the proof can be finished as in the case 0 6∈ ∂2L(1,F∗
L (1/2)) ∩

∂2L(−1,F∗
L (1/2)).

Finally, the remaining case 0 ∈ ∂2L(Y,R) with 0 6∈ ∂2L(1,R) ∩ ∂2L(−1,R) can be
treated similarly to our considerations in the case 0 ∈ ∂2L(1,R) ∩ ∂2L(−1,R) with
0 6∈ ∂2L(1,F∗

L (1/2))∩∂2L(−1,F∗
L (1/2)).

Proof of Proposition 11 It is easy to see that the assertion is a simple consequence of
0 6∈ ∂2L

(

1,F∗
L (α)

)

∩∂2L
(

−1,F∗
L (α)

)

for all α 6= 1/2 (cf. Lemma 20).

Proof of Proposition 12 In order to prove the assertion it suffices to show

0 6∈ ∂2L(−1,F∗
L (α)∩R) ∪ ∂2L(1,F∗

L (α)∩R).

for all α ∈ (0,1). Let us assume the converse, i.e. that there exists an α ∈ (0,1), a y ∈ Y and
a t ∈ F∗

L (α)∩R with 0 ∈ ∂2L(y, t). Without loss of generality we may assume y = 1. Since L
is differentiable we have ∂2L(1, t) = {0}. Hence 0 ∈ ∂2C(α, t) implies 0 ∈ ∂2L(−1, t) which
contradicts Lemma 19.

Proof of Example 2 Due to space limitations we only sketch the proof: let ( f̃T,λn
, b̃T,λn

) be a
solution of (2) with a representation

f̃T,λn
=

n

∑
i=1

yiαik(xi, .)

found by solving the dual problem of (2) (see Cristianini and Shawe-Taylor, 2000, Ch. 6). Since
Xcont = X this representation is almost surely minimal. Furthermore, we have

0 =
n

∑
i=1

yiαi = ∑
(xi,yi)∈X1

1

αi − ∑
(xi,yi)∈X−1

1

αi + ∑
(xi,yi)∈X1

−1

αi − ∑
(xi,yi)∈X−1

−1

αi .
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Without loss of generality we may assume P(X−1
1 ) ≥ P(X1

−1) and R L,P > 0. We fix a ρ ∈ (0,1/3).

Let us assume that we have a training set T that is representative on X j
i , i, j ∈ {−1,1} up to ρ and

additionally satisfies both PX
(

E( f̃P,λn
+ b̃P,λn

,ρ)
)

≤ ρ and ‖ f̃T,λn
+ b̃T,λn

− f̃P,λn
− b̃P,λn

‖∞ ≤ ρ. Recall,
that the probability of such training sets converge to 1 by Proposition 38. Then Remark 32 for the
L1-SVM yield

∑
(xi,yi)∈X−1

1

αi ≥ n
(

P(X−1
1 )−ρ

) 1
2λnn

≥ 1
2λn

(

P(X−1
1 )−ρ

)

.

Analogously we find

∑
(xi,yi)∈X1

−1

αi ≤ n
(

P(X1
−1)+ρ

) 1
2λnn

≤ 1
2λn

(

P(X1
−1)+ρ

)

.

Together, both estimates almost surely lead to

1
2λn

(

P(X−1
1 )−P(X1

−1)−2ρ
)

≤ ∑
(xi,yi)∈X1

1

αi − ∑
(xi,yi)∈X−1

−1

αi

≤ ∑
(xi,yi)∈X1

1
αi>0

αi

≤ 1
2λn

card
{

i : (xi,yi) ∈ X1
1 is a support vector

}

.

Since up to ρn exceptions all samples in X−1
1 ∪X1

−1 are support vectors the assertion then easily
follows.
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