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Abstract

We extend Q-learning to a noncooperative multiagent context, using the framework of general-
sum stochastic games. A learning agent maintains Q-functions over joint actions, and performs
updates based on assuming Nash equilibrium behavior over the current Q-values. This learning
protocol provably converges given certain restrictions on the stage games (defined by Q-values) that
arise during learning. Experiments with a pair of two-player grid games suggest that such restric-
tions on the game structure are not necessarily required. Stage games encountered during learning
in both grid environments violate the conditions. However, learning consistently converges in the
first grid game, which has a unique equilibrium Q-function, but sometimes fails to converge in
the second, which has three different equilibrium Q-functions. In a comparison of offline learn-
ing performance in both games, we find agents are more likely to reach a joint optimal path with
Nash Q-learning than with a single-agent Q-learning method. When at least one agent adopts Nash
Q-learning, the performance of both agents is better than using single-agent Q-learning. We have
also implemented an online version of Nash Q-learning that balances exploration with exploitation,
yielding improved performance.

Keywords: Reinforcement Learning, Q-learning, Multiagent Learning

1. Introduction

Researchers investigating learning in the context of multiagent systems have been particularly at-
tracted to reinforcement learning techniques (Kaelbling et al., 1996, Sutton and Barto, 1998), per-
haps because they do not require environment models and they allow agents to take actions while
they learn. In typical multiagent systems, agents lack full information about their counterparts, and
thus the multiagent environment constantly changes as agents learn about each other and adapt their
behaviors accordingly. Among reinforcement techniques, Q-learning (Watkins, 1989, Watkins and
Dayan, 1992) has been especially well-studied, and possesses a firm foundation in the theory of
Markov decision processes. It is also quite easy to use, and has seen wide application, for example
to such areas as (to arbitrarily choose four diverse instances) cellular telephone channel allocation
(Singh and Bertsekas, 1996), spoken dialog systems (Walker, 2000), robotic control (Hagen, 2001),
and computer vision (Bandera et al., 1996). Although the single-agent properties do not transfer
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directly to the multiagent context, its ease of application does, and the method has been employed
in such multiagent domains as robotic soccer (Stone and Sutton, 2001, Balch, 1997), predator-and-
prey pursuit games (Tan, 1993, De Jong, 1997, Ono and Fukumoto, 1996), and Internet pricebots
(Kephart and Tesauro, 2000).

Whereas it is possible to apply Q-learning in a straightforward fashion to each agent in a mul-
tiagent system, doing so (as recognized in several of the studies cited above) neglects two issues
specific to the multiagent context. First, the environment consists of other agents who are simi-
larly adapting, thus the environment is no longer stationary, and the familiar theoretical guarantees
no longer apply. Second, the nonstationarity of the environment is not generated by an arbitrary
stochastic process, but rather by other agents, who might be presumed rational or at least regular
in some important way. We might expect that accounting for this explicitly would be advantageous
to the learner. Indeed, several studies (Littman, 1994, Claus and Boutilier, 1998, Hu and Wellman,
2000) have demonstrated situations where an agent who considers the effect of joint actions outper-
forms a corresponding agent who learns only in terms of its own actions. Boutilier (1999) studies
the possibility of reasoning explicitly about coordination mechanisms, including learning processes,
as a way of improving joint performance in coordination games.

In extending Q-learning to multiagent environments, we adopt the framework of general-sum
stochastic games. In astochastic game, each agent’s reward depends on the joint action of all agents
and the current state, and state transitions obey the Markov property. The stochastic game model
includes Markov decision processes as a special case where there is only one agent in the system.
General-sum gamesallow the agents’ rewards to be arbitrarily related. As special cases, zero-
sum games are instances where agents’ rewards are always negatively related, and in coordination
games rewards are always positively related. In other cases, agents may have both compatible and
conflicting interests. For example, in a market system, the buyer and seller have compatible interests
in reaching a deal, but have conflicting interests in the direction of price.

The baseline solution concept for general-sum games is theNash equilibrium(Nash, 1951).
In a Nash equilibrium, each player effectively holds a correct expectation about the other players’
behaviors, and acts rationally with respect to this expectation. Acting rationally means the agent’s
strategy is a best response to the others’ strategies. Any deviation would make that agent worse
off. Despite its limitations, such as non-uniqueness, Nash equilibrium serves as the fundamental
solution concept for general-sum games.

In single-agent systems, the concept of optimal Q-value can be naturally defined in terms of an
agent maximizing its own expected payoffs with respect to a stochastic environment. In multiagent
systems, Q-values are contingent on other agents’ strategies. In the framework of general-sum
stochastic games, we define optimal Q-values as Q-values received in a Nash equilibrium, and refer
to them asNash Q-values. The goal of learning is to find Nash Q-values through repeated play.
Based on learned Q-values, our agent can then derive the Nash equilibrium and choose its actions
accordingly.

In our algorithm, calledNash Q-learning(NashQ), the agent attempts to learn its equilibrium
Q-values, starting from an arbitrary guess. Toward this end, the Nash Q-learning agent maintains a
model of other agents’ Q-values and uses that information to update its own Q-values. The updating
rule is based on the expectation that agents would take their equilibrium actions in each state.

Our goal is to find the best strategy for our agent, relative to how other agents play in the game.
In order to do this, our agents have to learn about other agents’ strategies, and construct a best
response. Learning about other agents’ strategies involves forming conjectures on other agents’
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behavior (Wellman and Hu, 1998). One can adopt a purely behavioral approach, inferring agent’s
policies directly based on observed action patterns. Alternatively, one can base conjectures on a
model that presumes the agents are rational in some sense, and attempt to learn their underlying
preferences. If rewards are observable, it is possible to construct such a model. The Nash equi-
librium approach can then be considered as one way to form conjectures, based on game-theoretic
conceptions of rationality.

We have proved the convergence of Nash Q-learning, albeit under highly restrictive technical
conditions. Specifically, the learning process converges to Nash Q-values if every stage game (de-
fined by interim Q-values) that arises during learning has a global optimum point, and the agents
update according to values at this point. Alternatively, it will also converge if every stage game has
a saddle point, and agents update in terms of these. In general, properties of stage games during
learning are difficult to ensure. Nonetheless, establishing sufficient convergence conditions for this
learning process may provide a useful starting point for analysis of extended methods or interesting
special cases.

We have constructed two grid-world games to test our learning algorithm. Our experiments
confirm that the technical conditions for our theorem can be easily violated during the learning
process. Nevertheless, they also indicate that learning reliably converges in Grid Game 1, which
has three equally-valued global optimal points in equilibrium, but does not always converge in Grid
Game 2, which has neither a global optimal point nor a saddle point, but three sets of other types of
Nash Q-values in equilibrium.

For both games, we evaluate the offline learning performance of several variants of multiagent
Q-learning. When agents learn in an environment where the other agent acts randomly, we find
agents are more likely to reach an optimal joint path with Nash Q-learning than with separate single-
agent Q-learning. When at least one agent adopts the Nash Q-learning method, both agents are
better off. We have also implemented an online version of Nash Q-learning method that balances
exploration with exploitation, yielding improved performance.

Experimentation with the algorithm is complicated by the fact that there might be multiple
Nash equilibrium points for a stage game during learning. In our experiments, we choose one Nash
equilibrium either based on the expected reward it brings, or based on the order it is ranked in
solution list. Such an order is determined solely by the action sequence, which has little to do with
the property of Nash equilibrium.

In the next section, we introduce the basic concepts and background knowledge for our learn-
ing method. In Section 3, we define the Nash Q-learning algorithm, and analyze its computational
complexity. We prove that the algorithm converges under specified conditions in Section 4. Sec-
tion 5 presents our experimental results, followed by sections summarizing related literature and
discussing the contributions of this work.

2. Background Concepts

As noted above, our NashQ algorithm generalizes single-agent Q-learning to stochastic games by
employing an equilibrium operator in place of expected utility maximization. Our description
adopts notation and terminology from the established frameworks of Q-learning and game theory.

2.1 Single-Agent Q-Learning

Q-learning (Watkins and Dayan, 1992) defines a learning method within aMarkov decision process.
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Definition 1 A Markov Decision Process is a tuple〈S,A, r, p〉, where S is the discrete state space, A
is the discrete action space, r: S×A→ R is the reward function of the agent, and p: S×A→ ∆(S)
is the transition function, where∆(S) is the set of probability distributions over state space S.

In a Markov decision process, an agent’s objective is to find a strategy (policy)π so as to maxi-
mize the sum of discounted expected rewards,

v(s,π) =
∞

∑
t=0

βtE(rt |π,s0 = s), (1)

wheres is a particular state,s0 indicates the initial state,rt is the reward at timet, β ∈ [0,1) is the
discount factor.v(s,π) represents thevalue for states under strategyπ. A strategyis a plan for
playing a game. Hereπ = (π0, . . . ,πt , . . .) is defined over the entire course of the game, whereπt

is called thedecision ruleat timet. A decision rule is a functionπt : Ht → ∆(A), whereHt is the
space of possible histories at timet, with eachHt ∈ Ht , Ht = (s0,a0, . . . ,st−1,at−1,st), and∆(A) is
the space of probability distributions over the agent’s actions.π is called astationary strategyif
πt = π̄ for all t, that is, the decision rule is independent of time.π is called abehavior strategyif its
decision rule may depend on the history of the game play,πt = ft(Ht).

The standard solution to the problem above is through an iterative search method (Puterman,
1994) that searches for a fixed point of the followingBellmanequation:

v(s,π∗) = max
a

{
r(s,a)+β∑

s′
p(s′|s,a)v(s′,π∗)

}
, (2)

wherer(s,a) is the reward for taking actiona at states, s′ is the next state, andp(s′|s,a) is the
probability of transiting to states′ after taking actiona in states. A solutionπ∗ that satisfies (2) is
guaranteed to be an optimal policy.

A learning problem arises when the agent does not know the reward function or the state tran-
sition probabilities. If an agent directly learns about its optimal policy without knowing either the
reward function or the state transition function, such an approach is calledmodel-free reinforcement
learning, of which Q-learning is one example.

The basic idea of Q-learning is that we can define a functionQ (henceforth, theQ-function)
such that

Q∗(s,a) = r(s,a)+β∑
s′

p(s′|s,a)v(s′,π∗). (3)

By this definition,Q∗(s,a) is the total discounted reward of taking actiona in states and then
following the optimal policy thereafter. By equation (2) we have

v(s,π∗) = max
a

Q∗(s,a).

If we know Q∗(s,a), then the optimal policyπ∗ can be found by simply identifying the action that
maximizesQ∗(s,a) under the states. The problem is then reduced to finding the functionQ∗(s,a)
instead of searching for the optimal value ofv(s,π∗).

Q-learning provides us with a simple updating procedure, in which the agent starts with arbitrary
initial values ofQ(s,a) for all s∈ S,a∈ A, and updates the Q-values as follows:

Qt+1(st ,at) = (1−αt)Qt(st ,at)+αt

[
rt +βmax

a
Qt(st+1,a)

]
, (4)
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whereαt ∈ [0,1) is the learning rate sequence. Watkins and Dayan (1992) proved that sequence (4)
converges toQ∗(s,a) under the assumption that all states and actions have been visited infinitely
often and the learning rate satisfies certain constraints.

2.2 Stochastic Games

The framework of stochastic games (Filar and Vrieze, 1997, Thusijsman, 1992) models multiagent
systems with discrete time1 and noncooperative nature. We employ the term “noncooperative” in
the technical game-theoretic sense, where it means that agents pursue their individual goals and
cannot form an enforceable agreement on their joint actions (unless this is modeled explicitly in
the game itself). For a detailed distinction between cooperative and noncooperative games, see the
discussion by Harsanyi and Selten (1988).

In a stochastic game, agents choose actions simultaneously. The state space and action space
are assumed to be discrete. A standard formal definition (Thusijsman, 1992) follows.

Definition 2 An n-player stochastic gameΓ is a tuple〈S,A1, . . . ,An, r1, . . . , rn, p〉, where S is the
state space, Ai is the action space of player i (i= 1, . . . ,n), ri : S×A1×·· ·×An → R is the payoff
function for player i, p: S×A1×·· ·×An → ∆(S) is the transition probability map, where∆(S) is
the set of probability distributions over state space S.

Given states, agents independently choose actionsa1, . . . ,an, and receive rewardsr i(s,a1, . . . ,an),
i = 1, . . . ,n. The state then transits to the next states′ based on fixed transition probabilities, satis-
fying the constraint

∑
s′∈S

p(s′|s,a1, . . . ,an) = 1.

In adiscounted stochastic game, the objective of each player is to maximize the discounted sum
of rewards, with discount factorβ ∈ [0,1). Let πi be the strategy of playeri. For a given initial state
s, playeri tries to maximize

vi(s,π1,π2, . . . ,πn) =
∞

∑
t=0

βtE(r1
t |π1,π2, . . . ,πn,s0 = s).

2.3 Equilibrium Strategies

A Nash equilibrium is a joint strategy where each agent’s is a best response to the others’. For a
stochastic game, each agent’s strategy is defined over the entire time horizon of the game.

Definition 3 In stochastic gameΓ, a Nash equilibrium point is a tuple of n strategies(π1∗, . . . ,πn∗)
such that for all s∈ S and i= 1, . . . ,n,

vi(s,π1
∗, . . . ,π

n
∗)≥ vi(s,π1

∗, . . . ,π
i−1
∗ ,πi ,πi+1

∗ , . . . ,πn
∗) for all πi ∈ Πi ,

whereΠi is the set of strategies available to agent i.

The strategies that constitute a Nash equilibrium can in general be behavior strategies or sta-
tionary strategies. The following result shows that there always exists an equilibrium in stationary
strategies.

1. For a model of continuous-time multiagent systems, see literature ondifferential games(Isaacs, 1975, Petrosjan and
Zenkevich, 1996).
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Theorem 4 (Fink, 1964) Every n-player discounted stochastic game possesses at least one Nash
equilibrium point in stationary strategies.

In this paper, we limit our study to stationary strategies. Non-stationary strategies, which allow
conditioning of action on history of play, are more complex, and relatively less well-studied in the
stochastic game framework. Work on learning in infinitely repeated games (Fudenberg and Levine,
1998) suggests that there are generally a great multiplicity of non-stationary equilibria. This fact is
partially demonstrated by Folk Theorems (Osborne and Rubinstein, 1994).

3. Multiagent Q-learning

We extend Q-learning to multiagent systems, based on the framework of stochastic games. First, we
redefine Q-values for multiagent case, and then present the algorithm for learning such Q-values.
Then we provide an analysis for computational complexity of this algorithm.

3.1 Nash Q-Values

To adapt Q-learning to the multiagent context, the first step is recognizing the need to consider
joint actions, rather than merely individual actions. For ann-agent system, the Q-function for any
individual agent becomesQ(s,a1, . . . ,an), rather than the single-agent Q-function,Q(s,a). Given
the extended notion of Q-function, and Nash equilibrium as a solution concept, we define aNash Q-
valueas the expected sum of discounted rewards when all agents follow specified Nash equilibrium
strategies from the next period on. This definition differs from the single-agent case, where the
future rewards are based only on the agent’s own optimal strategy.

More precisely, we refer toQi∗ as aNash Q-functionfor agenti.

Definition 5 Agent i’sNash Q-functionis defined over(s,a1, . . . ,an), as the sum of Agent i’s current
reward plus its future rewards when all agents follow a joint Nash equilibrium strategy. That is,

Qi
∗(s,a

1, . . . ,an) =
r i(s,a1, . . . ,an)+β ∑

s′∈S

p(s′|s,a1, . . . ,an)vi(s′,π1∗, . . . ,πn∗), (5)

where(π1∗, . . . ,πn∗) is the joint Nash equilibrium strategy, ri(s,a1, . . . ,an) is agent i’s one-period
reward in state s and under joint action(a1, . . . ,an), vi(s′,π1∗, . . . ,πn∗) is agent i’s total discounted
reward over infinite periods starting from state s′ given that agents follow the equilibrium strategies.

In the case of multiple equilibria, different Nash strategy profiles may support different Nash
Q-functions.

Table 1 summarizes the difference between single agent systems and multiagent systems on the
meaning of Q-function and Q-values.

3.2 The Nash Q-Learning Algorithm

The Q-learning algorithm we propose resembles standard single-agent Q-learning in many ways,
but differs on one crucial element: how to use the Q-values of the next state to update those of the
current state. Our multiagent Q-learning algorithm updates with future Nash equilibrium payoffs,
whereas single-agent Q-learning updates are based on the agent’s own maximum payoff. In order to
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Multiagent Single-Agent
Q-function Q(s,a1, . . . ,an) Q(s,a)
“Optimal”
Q-value

Current reward + Future rewards
when all agents play speci-
fied Nash equilibrium strategies
from the next period onward
(Equation (5))

Current reward + Future rewards
by playing the optimal strat-
egy from the next period onward
(Equation (3))

Table 1: Definitions of Q-values

learn these Nash equilibrium payoffs, the agent must observe not only its own reward, but those of
others as well. For environments where this is not feasible, some observable proxy for other-agent
rewards must be identified, with results dependent on how closely the proxy is related to actual
rewards.

Before presenting the algorithm, we need to clarify the distinction between Nash equilibria for
astage game(one-period game), and for the stochastic game (many periods).

Definition 6 An n-player stage game is defined as(M1, . . . ,Mn), where for k= 1, . . . ,n, Mk is agent
k’s payoff function over the space of joint actions, Mk = {rk(a1, . . . ,an)|a1 ∈ A1, . . . ,an ∈ An}, and
rk is the reward for agent k.

Let σ−k be the product of strategies of all agents other thank, σ−k ≡ σ1 · · ·σk−1 ·σk+1 · · ·σn.

Definition 7 A joint strategy(σ1, . . . ,σn) constitutes aNash equilibriumfor the stage game(M1, . . . ,Mn)
if, for k = 1, . . . ,n,

σkσ−kMk ≥ σ̂kσ−kMk for all σk ∈ σ̂(Ak).

Our learning agent, indexed byi, learns about its Q-values by forming an arbitrary guess at time
0. One simple guess would be lettingQi

0(s,a
1, . . . ,an) = 0 for all s∈ S,a1 ∈ A1, . . . ,an ∈ An. At

each timet, agenti observes the current state, and takes its action. After that, it observes its own
reward, actions taken by all other agents, others’ rewards, and the new states′. It then calculates a
Nash equilibriumπ1(s′) · · ·πn(s′) for the stage game(Q1

t (s
′), . . . ,Qn

t (s
′)), and updates its Q-values

according to

Qi
t+1(s,a

1, . . . ,an) = (1−αt)Qi
t(s,a

1, . . . ,an)+αt
[
r i
t +βNashQi

t(s
′)
]
, (6)

where
NashQi

t(s
′) = π1(s′) · · ·πn(s′) ·Qi

t(s
′), (7)

Different methods for selecting among multiple Nash equilibria will in general yield different up-
dates.NashQi

t(s
′) is agenti’s payoff in states′ for the selected equilibrium. Note thatπ1(s′) · · ·πn(s′)·

Qi
t(s

′) is a scalar. This learning algorithm is summarized in Table 2.
In order to calculate the Nash equilibrium(π1(s′), . . . ,πn(s′)), agenti would need to know

Q1
t (s

′), . . . ,Qn
t (s

′). Information about other agents’ Q-values is not given, so agenti must learn
about them too. Agenti forms conjectures about those Q-functions at the beginning of play, for
example,Qj

0(s,a
1, . . . ,an) = 0 for all j and alls,a1, . . . ,an. As the game proceeds, agenti observes

1045



HU AND WELLMAN

Initialize:
Let t = 0, get the initial states0.
Let the learning agent be indexed byi.
For all s∈ Sandaj ∈ Aj , j = 1, . . . ,n, let Qj

t (s,a1, . . . ,an) = 0.
Loop

Choose actionai
t .

Observer1
t , . . . , r

n
t ;a1

t , . . . ,a
n
t , andst+1 = s′

UpdateQj
t for j = 1, . . . ,n

Qj
t+1(s,a

1, . . . ,an) = (1−αt)Q
j
t (s,a1, . . . ,an)+αt [r

j
t +βNashQj

t (s′)]
whereαt ∈ (0,1) is the learning rate, andNashQk

t (s
′) is defined in (7)

Let t := t +1.

Table 2: The Nash Q-learning algorithm

other agents’ immediate rewards and previous actions. That information can then be used to up-
date agenti’s conjectures on other agents’ Q-functions. Agenti updates its beliefs about agentj ’s
Q-function, according to the same updating rule (6) it applies to its own,

Qj
t+1(s,a

1, . . . ,an) = (1−αt)Q
j
t (s,a

1, . . . ,an)+αt

[
r j
t +βNashQj

t (s
′)
]
. (8)

Note thatαt = 0 for (s,a1, . . . ,an) 6= (st ,a1
t , . . . ,a

n
t ). Therefore (8) does not update all the entries

in the Q-functions. It updates only the entry corresponding to the current state and the actions
chosen by the agents. Such updating is calledasynchronous updating.

3.3 Complexity of the Learning Algorithm

According to the description above, the learning agent needs to maintainn Q-functions, one for each
agent in the system. These Q-functions are maintained internally by the learning agent, assuming
that it can observe other agents’ actions and rewards.

The learning agent updates(Q1, . . . ,Qn), where eachQj , j = 1, . . . ,n, is made ofQj(s,a1, . . . ,an)
for all s,a1, . . . ,an. Let |S| be the number of states, and let|Ai | be the size of agenti’s action space
Ai . Assuming|A1|= · · ·= |An|= |A|, the total number of entries inQk is |S| · |A|n. Since our learning
agent has to maintainn Q-tables, the total space requirement isn|S| · |A|n. Therefore our learning
algorithm, in terms of space complexity, is linear in the number of states, polynomial in the number
of actions, but exponential in the number of agents.2

The algorithm’s running time is dominated by the calculation of Nash equilibrium used in the
Q-function update. The computational complexity of finding an equilibrium in matrix games is
unknown. Commonly used algorithms for 2-player games have exponential worst-case behavior,
and approximate methods are typically employed forn-player games (McKelvey and McLennan,
1996).

2. Given known locality in agent interaction, it is sometimes possible to achieve more compact representations using
graphical models (Kearns et al., 2001, Koller and Milch, 2001).
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4. Convergence

We would like to prove the convergence ofQi
t to an equilibriumQi∗ for the learning agenti. The

value ofQi∗ is determined by the joint strategies of all agents. That means our agent has to learn
Q-values of all the agents and derive strategies from them. The learning objective is(Q1∗, . . . ,Qn∗),
and we have to show the convergence of(Q1

t , . . . ,Q
n
t ) to (Q1∗, . . . ,Qn∗).

4.1 Convergence Proof

Our convergence proof requires two basic assumptions about infinite sampling and decaying of
learning rate. These two assumptions are similar to those in single-agent Q-learning.

Assumption 1 Every state s∈ S and action ak ∈ Ak for k = 1, . . . ,n, are visited infinitely often.

Assumption 2 The learning rateαt satisfies the following conditions for all s, t,a1, . . . ,an:

1. 0≤αt(s,a1, . . . ,an) < 1,∑∞
t=0 αt(s,a1, . . . ,an) = ∞,∑∞

t=0[αt(s,a1, . . . ,an)]2 < ∞, and the latter
two hold uniformly and with probability 1.

2. αt(s,a1, . . . ,an) = 0 if (s,a1, . . . ,an) 6= (st ,a1
t , . . . ,a

n
t ).

The second item in Assumption 2 states that the agent updates only the Q-function element corre-
sponding to current statest and actionsa1

t , . . . ,a
n
t .

Our proof relies on the following lemma by Szepesvári and Littman (1999), which establishes
the convergence of a general Q-learning process updated by a pseudo-contraction operator. LetQ

be the space of allQ functions.

Lemma 8 (Szepesv́ari and Littman (1999), Corollary 5) Assume thatαt satisfies Assumption 2
and the mapping Pt : Q→Q satisfies the following condition: there exists a number0 < γ < 1 and
a sequenceλt ≥ 0 converging to zero with probability 1 such that‖ PtQ−PtQ∗ ‖≤ γ ‖Q−Q∗ ‖+λt

for all Q ∈Q and Q∗ = E[PtQ∗], then the iteration defined by

Qt+1 = (1−αt)Qt +αt [PtQt ] (9)

converges to Q∗ with probability 1.

Note thatPt in Lemma 8 is a pseudo-contraction operator because a “true” contraction operator
should map every two points in the space closer to each other, which means‖ PtQ−PtQ̂ ‖≤ γ ‖
Q− Q̂ ‖ for all Q,Q̂∈ Q. Even whenλt = 0, Pt is still not a contraction operator because it only
maps everyQ∈Q closer toQ∗, not mapping any two points inQ closer.

For ann-player stochastic game, we define the operatorPt as follows.

Definition 9 Let Q= (Q1, . . . ,Qn), where Qk ∈ Qk for k = 1, . . . ,n, andQ = Q1× ·· ·×Qn. Pt :
Q→Q is a mapping on the complete metric spaceQ into Q, PtQ = (PtQ1, . . . ,PtQn), where

PtQ
k(s,a1, . . . ,an) = rk

t (s,a
1, . . . ,an)+βπ1(s′) . . .πn(s′)Qk(s′), for k = 1, . . . ,n,

where s′ is the state at time t+1, and(π1(s′), . . . ,πn(s′)) is a Nash equilibrium solution for the stage
game(Q1(s′), . . . ,Qn(s′)).
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We prove the equationQ∗ = E[PtQ∗] in Lemma 11, which depends on the following theorem.

Lemma 10 (Filar and Vrieze (1997), Theorem 4.6.5)The following assertions are equivalent:

1. (π1∗, . . . ,πn∗) is a Nash equilibrium point in a discounted stochastic game with equilibrium

payoff
(

v1(π1∗, . . . ,πn∗), . . . ,vn(π1∗, . . . ,πn∗)
)

, where vk(π1∗, . . . ,πn∗) =
(

vk(s1,π1∗,

. . . ,πn∗), . . . ,vk(sm,π1∗, . . . ,πn∗)
)

, k = 1, . . . ,n.

2. For each s∈ S, the tuple
(
π1∗(s), . . . ,πn∗(s)

)
constitutes a Nash equilibrium point in the stage

game
(

Q1∗(s), . . . ,Qn∗(s)
)

with Nash equilibrium payoffs
(

v1(s,π1∗, . . . ,πn∗), . . . ,

vn(s,π1∗, . . . ,πn∗)
)

, where for k= 1, . . . ,n,

Qk
∗(s,a

1, . . . ,an) = rk(s,a1, . . . ,an)+β ∑
s′∈S

p(s′|s,a1, . . . ,an)vk(s′,π1
∗, . . . ,π

n
∗). (10)

This lemma links agentk’s optimal valuevk in the entire stochastic game to its Nash equilibrium
payoff in the stage game(Q1∗(s), . . . ,Qn∗(s)). In other words,vk(s) = π1(s) . . .πn(s)
Qk∗(s). This relationship leads to the following lemma.

Lemma 11 For an n-player stochastic game, E[PtQ∗] = Q∗, where Q∗ = (Q1∗, . . . ,Qn∗).

Proof. By Lemma 10, given thatvk(s′,π1∗, . . . ,πn∗) is agentk’s Nash equilibrium payoff for the stage
game(Q1∗(s′), . . . ,Qn∗(s′), and(π1∗(s), . . . ,πn∗(s)) is its Nash equilibrium point, we havevk(s′,π1∗, . . . ,πn∗)=
π1∗(s′) · · ·πn∗(s′)Qk∗(s′). Based on Equation (10) we have

Qk
∗(s,a

1, . . . ,an)
= rk(s,a1, . . . ,an)+β ∑

s′∈S

p(s′|s,a1, . . . ,an)π1
∗(s

′) · · ·πn
∗(s

′)Qk
∗(s

′)

= ∑
s′∈S

p(s′|s,a1, . . . ,an)
(

rk(s,a1, . . . ,an)+βπ1
∗(s

′) · · ·πn
∗(s

′)Qk
∗(s

′)
)

= E[Pk
t Qk

∗(s,a
1, . . . ,an)],

for all s, a1, . . . ,an. ThusQk∗ = E[PtQk∗]. Since this holds for allk, E[PtQ∗] = Q∗. �

Now the only task left is to show that thePt operator is a pseudo-contraction operator. We prove
a stronger version than required by Lemma 8. OurPt satisfies‖ PtQ−PtQ̂ ‖≤ β ‖ Q− Q̂ ‖ for all
Q,Q̂∈ Q. In other words,Pt is a real contraction operator. In order for this condition to hold, we
have to restrict the domain of the Q-functions during learning. Our restrictions focus on stage games
with special types of Nash equilibrium points:global optima, andsaddles.

Definition 12 A joint strategy(σ1, . . . ,σn) of the stage game(M1, . . . ,Mn) is aglobal optimal point
if every agent receives its highest payoff at this point. That is, for all k,

σMk ≥ σ̂Mk for all σ̂ ∈ σ(A).

A global optimal point is always a Nash equilibrium. It is easy to show that all global optima have
equal values.
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Game 1 Left Right
Up 10, 9 0, 3

Down 3, 0 -1, 2

Game 2 Left Right
Up 5, 5 0, 6

Down 6, 0 2, 2

Game 3 Left Right
Up 10, 9 0, 3

Down 3, 0 2, 2

Figure 1: Examples of different types of stage games

Definition 13 A joint strategy(σ1, . . . ,σn) of the stage game(M1, . . . ,Mn) is asaddle pointif (1) it
is a Nash equilibrium, and (2) each agent would receive a higher payoff when at least one of the
other agents deviates. That is, for all k,

σkσ−kMk ≥ σ̂kσ−kMk for all σ̂k ∈ σ(Ak),
σkσ−kMk ≤ σkσ̂−kMk for all σ̂−k ∈ σ(A−k).

All saddle points of a stage game are equivalent in their values.

Lemma 14 Let σ = (σ1, . . . ,σn) andδ = (δ1, . . . ,δn) be saddle points of the n-player stage game
(M1, . . . ,Mn). Then for all k,σMk = δMk.

Proof. By definition of a saddle point, for everyk,k = 1, . . . ,n,

σkσ−kMk ≥ δkσ−kMk, and (11)

δkδ−kMk ≤ δkσ−kMk. (12)

Combining (11) and (12), we have

σk σ−kMk ≥ δkδ−kMk. (13)

Similarly, by the definition of a saddle point we can prove that

δkδ−kMk ≥ σkσ−kMk. (14)

By (13) and (14), the only consistent solution is

δk δ−kMk = σkσ−kMk.

�
Examples of stage games that have a global optimal point or a saddle point are shown in Figure 1.

In each stage game, player 1 has two action choices:Up andDown. Player 2’s action choices are
LeftandRight. Player 1’s payoffs are the first numbers in each cell, with the second number denoting
player 2’s payoff. The first game has only one Nash equilibrium, with values (10, 9), which is a
global optimal point. The second game also has a unique Nash equilibrium, in this case a saddle
point, valued at (2, 2). The third game has two Nash equilibria: a global optimum, (10, 9), and a
saddle, (2, 2).

Our convergence proof requires that the stage games encountered during learning have global
optima, or alternatively, that they all have saddle points. Moreover, it mandates that the learner
consistently choose either global optima or saddle points in updating its Q-values.
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Assumption 3 One of the following conditions holds during learning.3

Condition A. Every stage game(Q1
t (s), . . . ,Q

n
t (s)), for all t and s, has a global optimal point,

and agents’ payoffs in this equilibrium are used to update their Q-functions.
Condition B. Every stage game(Q1

t (s), . . . ,Q
n
t (s)), for all t and s, has a saddle point, and

agents’ payoffs in this equilibrium are used to update their Q-functions.

We further define the distance between two Q-functions.

Definition 15 For Q,Q̂∈Q, define

‖ Q− Q̂ ‖ ≡ max
j

max
s

‖ Qj(s)− Q̂j(s) ‖( j,s)

≡ max
j

max
s

max
a1,...,an

|Qj(s,a1, . . . ,an)− Q̂j(s,a1, . . . ,an)|.

Given Assumption 3, we can establish thatPt is a contraction mapping operator.

Lemma 16 ‖ PtQ−PtQ̂ ‖≤ β ‖ Q− Q̂ ‖ for all Q,Q̂∈Q.

Proof.

‖ PtQ−PtQ̂ ‖ = max
j
‖ PtQ

j −PtQ̂
j ‖( j)

= max
j

max
s

| βπ1(s) · · ·πn(s)Qj(s)−βπ̂1(s) · · · π̂n(s)Q̂j(s) |

= max
j

β | π1(s) · · ·πn(s)Qj(s)− π̂1(s) · · · π̂n(s)Q̂j(s) |

We proceed to prove that

|π1(s) · · ·πn(s)Qj(s)− π̂1(s) · · · π̂n(s)Q̂j(s)| ≤‖Qj(s)− Q̂j(s) ‖ .

To simplify notation, we useσ j to representπ j(s), andσ̂ j to represent̂π j(s). The proposition we
want to prove is

|σ jσ− jQj(s)− σ̂ j σ̂− j Q̂j(s)| ≤‖Qj(s)− Q̂j(s) ‖ .

Case 1: Suppose both(σ1, . . . ,σn) and (σ̂1, . . . , σ̂n) satisfy Condition A in Assumption 3, which
means they are global optimal points.

If σ jσ− jQj(s)≥ σ̂ j σ̂− j Q̂j(s), we have

σ jσ− jQj(s)− σ̂ j σ̂− j Q̂j(s)
≤ σ jσ− jQj(s)−σ jσ− j Q̂j(s)
= ∑

a1,...,an

σ1(a1) · · ·σn(an)
(
Qj(s,a1, . . . ,an)− Q̂j(s,a1, . . . ,an)

)

≤ ∑
a1,...,an

σ1(a1) · · ·σn(an) ‖ Qj(s)− Q̂j(s) ‖ (15)

= ‖ Qj(s)− Q̂j(s) ‖,
3. In our statement of this assumption in previous writings (Hu and Wellman, 1998, Hu, 1999), we neglected to include

the qualification that thesamecondition be satisfied by all stage games. We have made the qualification more explicit
subsequently (Hu and Wellman, 2000). As Bowling (2000) has observed, the distinction is essential.
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The second inequality (15) derives from the fact that‖ Qj(s)− Q̂j(s) ‖= maxa1,...,an |Qj(s,
a1, . . . ,an)− Q̂j(s,a1, . . . ,an)|.

If σ jσ− jQj(s)≤ σ̂ j σ̂− j Q̂j(s), then

σ̂ j σ̂− j Q̂j(s)−σ jσ− jQj(s)≤ σ̂ j σ̂− jQj(s)− σ̂ j σ̂− jQj(s),

and the rest of the proof is similar to the above.

Case 2: Suppose both Nash equilibria satisfy Condition B of Assumption 3, meaning they are saddle
points.

If σ jσ− jQj(s)≥ σ̂ j σ̂− j Q̂j(s), we have

σ jσ− jQj(s)− σ̂ j σ̂− j Q̂j(s) ≤ σ jσ− jQj(s)−σ j σ̂− j Q̂j(s) (16)

≤ σ j σ̂− jQj(s)−σ j σ̂− j Q̂j(s) (17)

≤ ‖Qj(s)− Q̂j(s) ‖,
The first inequality (16) derives from the Nash equilibrium property ofπ1∗(s). Inequality (17) derives
from condition B of Assumption 3.

If σ jσ− jQj(s)≤ σ̂ j σ̂− j Q̂j(s), a similar proof applies.
Thus

‖ PtQ−PtQ̂ ‖ ≤ max
j

max
s

β|π1(s) · · ·πn(s)Qj(s)− π̂1(s) · · · π̂n(s)Q̂j(s)|
≤ max

j
max

s
β ‖ Qj(s)− Q̂j(s) ‖

= β ‖ Q− Q̂ ‖ .

�

We can now present our main result: that the process induced by NashQ updates in (8) converges
to Nash Q-values.

Theorem 17 Under Assumptions 1–3, the sequence Qt = (Q1
t , . . . ,Q

n
t ), updated by

Qk
t+1(s,a

1, . . . ,an) =
(
1−αt

)
Qk

t (s,a
1, . . . ,an)+ αt

(
rk
t +βπ1(s′) · · ·πn(s′)Qk

t (s
′)
)

for k = 1, . . . ,n,

where(π1(s′), . . . ,πn(s′)) is the appropriate type of Nash equilibrium solution for the stage game
(Q1

t (s
′), . . . ,Qn

t (s
′)), converges to the Nash Q-value Q∗ = (Q1∗, . . . ,Qn∗).

Proof. Our proof is direct application of Lemma 8, which establishes convergence given two con-
ditions. First,Pt is a contraction operator, by Lemma 16, which entails that it is also a pseudo-
contraction operator. Second, the fixed point condition,E(PtQ∗) = Q∗, is established by Lemma 11.
Therefore, the following process

Qt+1 = (1−αt)Qt +αt [PtQt ]

converges toQ∗. �
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(Q1
t ,Q

2
t ) Left Right
Up 10, 9 0, 3

Down 3, 0 -1, 2

(Q1∗,Q2∗) Left Right
Up 5, 5 0, 6

Down 6, 0 2, 2

Figure 2: Two stage games with different types of Nash equilibria

Lemma 10 establishes that a Nash solution for the converged set of Q-values corresponds to a
Nash equilibrium point for the overall stochastic game. Given an equilibrium in stationary strategies
(which must always exist, by Theorem 4), the corresponding Q-function will be a fixed-point of the
NashQ update.

4.2 On the Conditions for Convergence

Our convergence result does not depend on the agents’ action choices during learning, as long as
every action and state are visited infinitely often. However, the proof crucially depends on the
restriction on stage games during learning because the Nash equilibrium operator is in general not
a contraction operator. Figure 2 presents an example where Assumption 3 is violated.

The stage game(Q1
t ,Q

2
t ) has a global optimal point with values (10, 9). The stage game(Q1∗,Q2∗)

has a saddle point valued at (2, 2). Then‖Q1
t −Q1∗ ‖= maxa1,a2 |Q1

t (a
1,a2)−Q1∗(a1,a2)|= |10−5|=

5. |π1π2Q1
t −π1∗π2∗Q1∗|= |10−2|= 8≥‖Q1

t −Q1∗ ‖. ThusPt does not satisfy the contraction mapping
property.

In general, it would be unusual for stage games during learning to maintain adherence to
Assumption 3. Suppose we start with an initial stage game that satisfies the assumption, say,
Qi

0(s,a
1,a2) = 0, for all s,a1,a2 and i = 1,2. The stage game(Q1

0,Q
2
0) has both a global opti-

mal point and a saddle point. During learning, elements ofQ1
0 are updated asynchronously, thus the

property would not be preserved for(Q1
t ,Q

2
t ).

Nevertheless, in our experiments reported below, we found that convergence is not necessarily
so sensitive to properties of the stage games during learning. In a game that satisfies the property at
equilibrium, we found consistent convergence despite the fact that stage games during learning do
not satisfy Assumption 3. This suggests that there may be some potential to relax the conditions in
our convergence proof, at least for some classes of games.

5. Experiments in Grid-World Games

We test our Nash Q-learning algorithm by applying it to two grid-world games. We investigate
the convergence of this algorithm as well as its performance relative to the single-agent Q-learning
method.

Despite their simplicity, grid-world games possess all the key elements of dynamic games:
location- or state-specific actions, qualitative transitions (agents moving around), and immediate
and long-term rewards. In the study of single-agent reinforcement learning, Sutton and Barto (1998)
and Mitchell (1997) employ grid games to illustrate their learning algorithms. Littman (1994) ex-
perimented with a two-player zero-sum game on a grid world.
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12

21

Figure 3: Grid Game 1

21

Figure 4: Grid Game 2

5.1 Two Grid-World Games

The two grid-world games we constructed are shown in Figures 3 and 4. One game has deterministic
moves, and the other has probabilistic transitions. In both games, two agents start from respective
lower corners, trying to reach their goal cells in the top row. An agent can move only one cell a
time, and in four possible directions:Left, Right, Up, Down. If two agents attempt to move into the
same cell (excluding a goal cell), they are bounced back to their previous cells. The game ends as
soon as an agent reaches its goal. Reaching the goal earns a positive reward. In case both agents
reach their goal cells at the same time, both are rewarded with positive payoffs.

The objective of an agent in this game is therefore to reach its goal with a minimum number of
steps. The fact that the other agent’s “winning” does not preclude our agent’s winning makes agents
more prone to coordination.

We assume that agents do not know the locations of their goals at the beginning of the learning
period. Furthermore, agents do not know their own and the other agent’s payoff functions.4 Agents
choose their actions simultaneously. They can observe the previous actions of both agents and the
current state (the joint position of both agents). They also observe the immediate rewards after both
agents choose their actions.

5.1.1 REPRESENTATION ASSTOCHASTIC GAMES

The action space of agenti, i = 1,2, is Ai ={Left, Right, Down, Up}. The state space isS=
{(0 1),(0 2), . . . ,(8 7)}, where a states = (l1, l2) represents the agents’ joint location. Agenti’s
locationl i is represented by position index, as shown in Figure 5.5

If an agent reaches the goal position, it receives a reward of 100. If it reaches another position
without colliding with the other agent, its reward is zero. If it collides with the other agent, it receives
−1 and both agents are bounced back to their previous positions. LetL(l ,a) be the potential new

4. Note that a payoff function is a correspondence from all state-action tuples to rewards. An agent may be able to
observe a particular reward, but still lack the knowledge of the overall payoff function.

5. Given that two agents cannot occupy the same position, and excluding the cases where at least one agent is in its goal
cell, the number of possible joint positions is 57 for Grid Game 1 and 56 for Grid Game 2.

1053



HU AND WELLMAN

6 7 8

3 4 5

0 1 2

Figure 5: Location index for the grid-world games

location resulting from choosing actiona in positionl . The reward function is, fori = 1,2,

r i
t =




100 if L(l i
t ,a

i
t) = Goali

−1 if L(l1
t ,a1

t ) = L(l2
t ,a2

t ) andL(l2
t ,a2

t ) 6= Goalj , j = 1,2
0 otherwise.

The state transitions are deterministic in Grid Game 1. In Grid Game 2, state transitions are de-
terministic except the following: if an agent choosesUp from position 0 or 2, it moves up with prob-
ability 0.5 and remains in its previous position with probability 0.5. Thus, when both agents choose
actionUp from state (0 2), the next state is equally likely (probability 0.25 each) to be (0 2), (3 2),
(0 5), or (3 5). When agent 1 choosesUp and agent 2 choosesLeft from state (0 2), the probabilities
for reaching the new states are:P((0 1)|(0 2),Up,Left) = 0.5, andP((3 1)|(0 2),Up,Left) = 0.5.
Similarly, we haveP((1 2)|(0 2),Right,Up) = 0.5, andP((1 5)|(0 2),Right,Up) = 0.5.

5.1.2 NASH Q-VALUES

A Nash equilibrium consists of a pair of strategies(π1∗,π2∗) in which each strategy is a best response
to the other. We limit our study to stationary strategies for the reasons discussed in Section 2.3. As
defined above, a stationary strategy assigns probability distributions over an agent’s actions based
on the state, regardless of the history of the game. That means if the agent visits the states at two
different times, its action choice would be the same each time. A stationary strategy is generally
written asπ = (π̄, π̄, . . .), whereπ̄ =

(
π(s1), . . . ,π(sm)

)
.

Note that whenever an agent’s policy depends only on its location (assuming it is sequence of
pure strategies), the policy defines apath, that is, a sequence of locations from the starting position
to the final destination. Two shortest paths that do not interfere with each other constitute a Nash
equilibrium, since each path (strategy) is a best response to the other.

An example strategy for Agent 1 in Grid Game 1 is shown in Table 3. In the right column, a
particular action (e.g.,Up) is shorthand for the probability distribution assigning probability one to
that action. The notation (l1 any) refers to any state where the first agent is in locationl1. States
that cannot be reached given the path are omitted in the table. The strategy shown represents the
left path in the first graph of Figure 6. The reader can verify that this is a best response to Agent 2’s
path in that graph.

Figure 6 shows several other pure-strategy Nash equilibrium paths. Symmetric variants of these
are also equilibria, not shown. The Nash equilibrium paths for Grid Game 2 are depicted in Figure 7.
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STATE s π1(s)
(0 any) Up
(3 any) Right
(4 any) Right
(5 any) Up

Table 3: A stationary strategy for agent 1 in Grid Game 1

Figure 6: Selected Nash equilibrium paths, Grid Game 1

The value of the game for agent 1 is defined as its accumulated reward when both agents follow
their Nash equilibrium strategies,

v1(s0) = ∑
t

βtE(rt |π1
∗,π

2
∗,s0).

In Grid Game 1 and initial states0 = (0 2), this becomes, givenβ = 0.99,

v1(s0) = 0+0.99·0+0.992 ·0+0.993 ·100

= 97.0.

Based on the values for each state, we can then derive the Nash Q-values for agent 1 in states0,

Q1(s0,a
1,a2) = r1(s0,a

1,a2)+β∑
s′

p(s′|s0,a
1,a2)v1(s′).

ThereforeQ1∗(s0,Right,Le f t)=−1+0.99v1((0 2))= 95.1, andQ1∗(s0,U p,U p)= 0+0.99v1((3 5))=
97.0.

The Nash Q-values for both agents in state (0 2) of Grid Game 1 are shown in Table 4. There
are three Nash equilibria for this stage game(Q1(s0),Q2(s0)), and each is a global optimal point
with the value (97.0, 97.0).

For Grid Game 2, we can derive the optimal values similarly for agent 1:

v1((0 1)) = 0+0.99·0+0.992 ·0 = 0,

v1((0 x)) = 0, for x = 3, . . . ,8,

v1((1 2)) = 0+0.99·100= 99,

v1((1 3)) = 0+0.99·100= 99= v1((1 5)),
v1((1 x)) = 0, for x = 4,6,8.
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Figure 7: Nash equilibrium paths, Grid Game 2

Left Up
Right 95.1, 95.1 97.0, 97.0

Up 97.0, 97.0 97.0, 97.0

Table 4: Grid Game 1: Nash Q-values in state (0 2)

However, the value forv1((0 2)) = v1(s0) can be calculated only in expectation, because the agents
have a 0.5 probability of staying in their current location if they chooseUp. We solvev1(s0) from
the stage game(Q1∗(s0),Q2∗(s0)).

The Nash Q-values for agent 1 in states0 = (0 2) are

Q1
∗(s0,Right,Left) = −1+0.99v1((s0)),

Q1
∗(s0,Right,Up) = 0+0.99(

1
2

v1((1 2))+
1
2

v1((1 3)) = 98,

Q1
∗(s0,Up,Left) = 0+0.99(

1
2

v1((0 1))+
1
2

v1((3 1)) = 0.99(0+
1
2

99) = 49,

Q1
∗(s0,Up,Up) = 0+0.99(

1
4

v1((0 2))+
1
4

v1((0 5))+
1
4

v1((3 2))+
1
4

v1((3 5)))

= 0.99(
1
4

v1((0 2))+0+
1
4

99+
1
4

99)

= 0.99
1
4

v1(s0)+49.

These Q-values and those of agent 2 are shown in Table 5.1.2. We defineRi ≡ vi(s0) to be agent
i’s optimal value by following Nash equilibrium strategies starting from states0, wheres0 = (0 2).

Given Table 5.1.2, there are two potential pure strategy Nash equilibria: (Up, Left) and (Right,
Up). If (Up, Left) is the Nash equilibrium for stage game(Q1∗(s0),Q2∗(s0)), thenv1(s0)= π1(s0)π2(s0)Q1(s0)=
49, and thenQ1∗(s0,Right,Left) = 47. Therefore we can derive all the Q-values as shown in the
first table in Figure 8. If (Right, Up) is the Nash equilibrium,v1(s0) = 98, and we can derive
another set of Nash Q-values as shown in the second table in Figure 8. In addition, there exists
a mixed-strategy Nash equilibrium for stage game(Q1∗(s0),Q2∗(s0)), which is (π1(s0),π2(s0)) =
({P(Right) = 0.97,P(Up) = 0.03)},{P(Left) = 0.97,P(Up) = 0.03}), and the Nash Q-values are
shown in the third table of Figure 8.6

As we can see, there exist three sets of different Nash equilibrium Q-values for Grid Game 2.
This is essentially different from Grid Game 1, which has a unique Nash Q-value for every state-

6. See Appendix A for a derivation.
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Left Up
Right −1+0.99R1,−1+0.99R2 98, 49

Up 49, 98 49+ 1
40.99R1,49+ 1

40.99R2

Table 5: Grid Game 2: Nash Q-values in state (0 2)

Left Up
Right 47, 96 98, 49

Up 49, 98 61, 73

Left Up
Right 96, 47 98, 49

Up 49, 98 73, 61

Left Up
Right 47.87, 47.87 98, 49

Up 49, 98 61.2, 61.2

Figure 8: Three Nash Q-values for state (0 2) in Grid Game 2

action tuple. The convergence of learning becomes problematic when there are multiple Nash Q-
values. Furthermore, none of the Nash equilibria of the stage game(Q1∗(s0),Q2∗(s0)) of Grid Game 2
is a global optimal or saddle point, whereas in Grid Game 1 each Nash equilibrium is a global
optimum.

5.1.3 THE LEARNING PROCESS

A learning agent, say agent 1, initializesQ1(s,a1,a2) = 0 andQ2(s,a1,a2) = 0 for all s,a1,a2. Note
that these are agent 1’s internal beliefs. They have nothing to do with agent 2’s beliefs. Here we
are interested in how agent 1 learns the Nash Q-functions. Since learning is offline, it does not
matter whether agent 1 is wrong about agent 1’s actual strategies during the learning process. But
agent 1 has learned the equilibrium strategies, which stipulate what both agents will do when they
both know enough information about the game and both act rationally.

A game starts from the initial state(0 2). After observing the current state, agents choose
their actions simultaneously. They then observe the new state, both agents’ rewards, and the action
taken by the other agent. The learning agent updates its Q-functions according to (8). In the new
state, agents repeat the process above. When at least one agent moves into its goal position, the
game restarts. In the new episode, each agent is randomly assigned a new position (except its goal
cell). The learning agent keeps the Q-values learned from previous episodes. The training stops
after 5000 episodes. Each episode on average takes about eight steps. So one experiment usually
requires about 40,000 steps. The total number of state-action tuples in Grid Game 1 is 424. Thus
each tuple is visited 95 times on average. The learning rate is defined as the inverse of the number
of visits. More specifically,αt(s,a1,a2) = 1

nt(s,a1,a2) , wherent(s,a1,a2) is the number of times

the tuple(s,a1,a2) has been visited. It is easy to show that this definition satisfies the conditions
in Assumption 2. Whenαt = 1

95 ≈ 0.01, the results from new visits hardly change the Q-values
already learned.

When updating the Q-values, the agent applies a Nash equilibrium value from the stage game
(Q1(s′),Q2(s′)), possibly necessitating a choice among multiple Nash equilibria. In our implemen-
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Left Up
Right -1, -1 49, 0

Up 0, 0 0, 97

Table 6: Grid Game 1: Q-values in state (0 2) after 20 episodes if always choosing the first Nash

Left Up
Right 31, 31 0, 65

Up 0, 0 49, 49

Table 7: Grid Game 2: Q-values in state (0 2) after 61 episodes if always choosing the first Nash

tation, we calculate Nash equilibria using the Lemke-Howson method (Cottle et al., 1992), which
can be employed to generate equilibria in a fixed order.7 We then define afirst-Nashlearning agent
as one that updates its Q-values using the first Nash equilibrium generated. Asecond-Nashagent
employs the second if there are multiple equilibria, otherwise it uses the only available one. Abest-
expected-Nashagent picks the Nash equilibrium that yields the highest expected payoff to itself.

5.2 Experimental Results

5.2.1 Q-FUNCTIONS DURING LEARNING

Examination of Q-values during learning reveals that both grid games violate Assumption 3. Table 6
shows the results for first-Nash agents playing Grid Game 1 from state (0 2) after certain learning
episodes. The only Nash equilibrium in this stage game, (Right, Up), is neither a global optimum
nor a saddle point. In Grid Game 2, we find a similar violation of Assumption 3. The unique Nash
equilibrium (Up, Up) in the stage game shown in Table 7 is neither a global optimum nor a saddle
point.

5.2.2 CONVERGENCERESULTS: THE FINAL Q-FUNCTIONS

After 5000 episodes of training, we find that agents’ Q-values stabilize at certain values. Some
learning results are reported in Table 8 and 9. Note that a learning agent always uses the same Nash
equilibrium value to update its own Q-function and that of the other agent.

We can see that the results in Table 8 are close to the theoretical derivation in Table 4, and the
results in Table 9 are close to the theoretical derivation in the first table of Figure 8. Although it is
impossible to validate theoretical asymptotic convergence with a finite trial, our examples confirm
that the learned Q-functions possess the same equilibrium strategies asQ∗.

For each states, we derive a Nash equilibrium(π1(s),π2(s)) from the stage game comprising the
learned Q-functions,(Q1(s),Q2(s)). We then compare this solution to a Nash equilibrium derived
from theory. Results from our experiments are shown in Table 10. In Grid Game 1, our learning
reaches a Nash equilibrium 100% of the time (out of 50 runs) regardless of the updating choice
during learning. In Grid Game 2, however, learning does not always converge to a Nash equilibrium
joint strategy.

7. The Lemke-Howson algorithm is quite effective in practice (despite exponential worst-case behavior), but limited to
two-player (bimatrix) games.
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Left Up
Right 86, 87 83, 85

Up 96, 91 95, 95

Table 8: Final Q-values in state (0 2) if choosing the first Nash in Grid Game 1

Agent 1
Left Up

Right 39, 84 97, 51
Up 46, 93 59, 74

Table 9: Final Q-values in state (0 2) if choosing the first Nash in Grid Game 2

5.3 Offline Learning Performance

In offline learning, examples (training data) for improving the learned function are gathered in the
training period, and performance is measured in the test period. In our experiments, we employ a
training period of 5000 episodes. The performance of the test period is measured by the reward an
agent receives when both agents follow their learned strategies, starting from the initial positions at
the lower corners.

Since learning is internal to each agent, two agents might learn different sets of Q-functions,
which yield different Nash equilibrium solutions. For example, agent 2 might learn a Nash equilib-
rium corresponding to the joint path in the last graph of Figure 6. In that case, agent 2 will always
chooseLeft in state (0 2). Agent 1 might learn the third graph of Figure 6, and therefore always
chooseRight in state (0 2). In this case agent 1’s strategy is not a best response to agent 2’s strategy.

We implement four types of learning agents: first Nash, second Nash, best-expected Nash, and
single–the single-agent Q-learning method specified in (4).

The experimental results for Grid Game 1 are shown in Table 11. For each case, we ran 50
trials and calculated the fraction that reach an equilibrium joint path. As we can see from the table,
when both agents employ single-agent Q-learning, they reach a Nash equilibrium only 20% of the
time. This is not surprising since the single-agent learner never models the other agent’s strategic
attitudes. When one agent is a Nash agent and the other is a single-agent learner, the chance of
reaching a Nash equilibrium increases to 62%. When both agents are Nash agents, but use different
update selection rules, they end up with a Nash equilibrium 80% of the time.8 Finally, when both
agents are Nash learners and use the same updating rule, they end up with a Nash equilibrium
solution 100% of the time.

The experimental results for Grid Game 2 are shown in Table 12. As we can see from the
table, when both agents are single-agent learners, they reach a Nash equilibrium 50% of the time.
When one agent is a Nash learner, the chance of reaching a Nash equilibrium increases to 51.3% on
average. When both agents are Nash learners, but use different updating rules, they end up with a
Nash equilibrium 55% of the time on average. Finally, 79% of trials with two Nash learners using
the same updating rule end up with a Nash equilibrium.

Note that during learning, agents choose their action randomly, based on a uniform distribution.
Though the agent’s own policy during learning does not affect theoretical convergence in the limit

8. Note that when both agents employ best-expected Nash, they may choose different Nash equilibria. A Nash equilib-
rium solution giving the best expected payoff to one agent may not lead to the best expected payoff for another agent.
Thus, we classify trials with two best-expected Nash learners in the category of those using different update selection
rules.
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Equilibrium selection Percentage of runs that reach a
Nash equilibrium

Grid Game 1 First Nash 100%
Second Nash 100%

Grid Game 2 First Nash 68%
Second Nash 90%

Table 10: Convergence Results

LEARNING STRATEGY
RESULTS OF

LEARNING

AGENT 1 AGENT 2 PERCENT THAT

REACH A NASH

EQUILIBRIUM

SINGLE SINGLE 20%

SINGLE
FIRST NASH 60%
SECOND NASH 50%
BEST EXPECTEDNASH 76%

FIRST NASH SECOND NASH 60%
BEST EXPECTEDNASH 76%

SECOND NASH BEST EXPECTEDNASH 84%
BEST EXPECTEDNASH BEST EXPECTEDNASH 100%
FIRST NASH FIRST NASH 100%
SECOND NASH SECOND NASH 100%

Table 11: Learning performance in Grid Game 1

(as long as every state and action are visited infinitely often), the policy of other agents does influ-
ence the single-agent Q-learner, as its perceived environment includes the other agents implicitly.
For methods that explicitly consider joint actions, such as NashQ, the joint policy affects only the
path to convergence.

For Grid Game 2, the single-single outcome can be explained by noting that given its counterpart
is playing randomly, the agent has two optimal policies: entering the center and following the
wall. To see their equivalence, note that if agent 1 choosesRight, it will successfully move with
probability 0.5 because agent 2 will chooseLeft with equal probability. If agent 1 choosesUp, it
will successfully move with probability 0.5 because this is the defined transition probability. The
value of achieving either location are the same, and therefore the two initial actions have the same
value. Given that the agents learn that there are two equal-valued strategies, there is a 0.5 probability
that they will happen to choose the complementary ones, hence the result.

Alternative training regimens, in which agents’ policies are updated during learning, should be
expected to improve the single-agent Q-learning results. Indeed, both Bowling and Veloso (2002)
and Greenwald and Hall (2003) found this to be the case in Grid Game 2 and other environments,

5.4 Online Learning Performance

In online learning, an agent is evaluated based on rewards accrued while it learns. Whereas ac-
tion choices in the training periods of offline learning are important only with respect to gaining
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LEARNING STRATEGY
RESULTS OF

LEARNING

AGENT 1 AGENT 2 PERCENT THAT

REACH A NASH

EQUILIBRIUM

SINGLE SINGLE 50%

SINGLE
FIRST NASH 54%
SECOND NASH 62%
BEST EXPECTEDNASH 38%

FIRST NASH SECOND NASH 64%
BEST EXPECTEDNASH 78%

SECOND NASH BEST EXPECTEDNASH 36%
BEST EXPECTEDNASH BEST EXPECTEDNASH 42%
FIRST NASH FIRST NASH 68%
SECOND NASH SECOND NASH 90%

Table 12: Learning performance in Grid Game 2

information, in online learning the agent must weigh value for learning (exploration) against direct
performance value (exploitation).

The Q-learning literature recounts many studies on the balance between exploration and ex-
ploitation. In our investigation, we adopt anε-Greedy exploration strategy, as described, for exam-
ple, by Singh et al. (2000). In this strategy, the agent explores with probabilityεt(s) and chooses the
optimal action with probability 1− εt(s). Singh et al. (2000) proved that whenεt(s) = c/nt(s) with
0 < c < 1, the learning policy satisfies the GLIE (Greedy in the Limit with Infinite Exploration)
property.

We test agent 1’s performance under three different strategies:exploit, explore, andexploit-
and-explore. In the exploit strategy, an agent always chooses the Nash equilibrium learned so far
if the state has been visited at least once (nt(s) ≥ 1). If nt(s) = 0, the agent will choose an action
randomly. In the explore strategy, an agent chooses an action randomly. In the exploit-and-explore
strategy, the agent chooses the Nash equilibrium action with probabilityεt(s) = 1

1+nt(s)
and chooses

a random action with probability 1− εt(s).
Our results are shown in Figure 9. The experiments show that when the other agent plays

exploit, the exploit-and-explore strategy gives agent 1 higher payoff than the exploit strategy. When
agent 2 is an explore or exploit-and-explore agent, agent 1’s payoff from exploit is very close to that
from exploit-and-explore, though the latter is still a little higher. One explanation for this is that the
exploit strategy is very easily trapped in local optima. When one agent uses the exploit-and-explore
strategy, it helps that agent to find an action that is not in conflict with another agent, so that both
agents will benefit.

6. Related Work

Littman (1994) designed a Minimax-Q learning algorithm for zero-sum stochastic games. A con-
vergence proof for that algorithm was provided subsequently by Littman and Szepesvári (1996).
Claus and Boutilier (1998) implemented a joint action learner, incorporating other agents’ actions
into its Q-function, for a repeated coordination game. That paper was first presented in a AAAI-
97 workshop, and motivated our own work on incorporating joint actions into Q-functions in the
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Figure 9: Online performance of agent 1 in three different environments

general-sum context. Our Nash Q-learning algorithm (Hu and Wellman, 1998) was the subject of
further clarification from Bowling (2000) and illustrations from Littman (2001b).

The Friend-or-Foe Q-learning (FFQ) algorithm (Littman, 2001a) overcomes the need for our as-
sumptions about stage games during learning in special cases where the stochastic game is known to
be a coordination game or zero-sum. In coordination games—where there is perfect correlation be-
tween agents’ payoffs—an agent employs Friend-Q, which selects actions to maximize an agent’s
own payoff. In zero-sum games—characterized by perfectnegativecorrelation between agents’
payoffs—an agent uses Foe-Q, which is another name for Minimax-Q. In both cases, the correla-
tions reduce the agents’ learning problem to that of learning its own Q-function. Littman shows that
FFQ converges generally, and to equilibrium solutions when the friend or foe attributions are cor-
rect. His analysis of our two grid-world games (Section 5) further illuminates the relation between
NashQ and FFQ.
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Sridharan and Tesauro (2000) have investigated the behavior of single-agent Q-learners in a
dynamic pricing game. Bowling and Veloso (2002) present a variant of single-agent Q-learning,
where rather than adopt the policy implicit in the Q-table, the agent performs hill-climbing in the
space of probability distributions over actions. This enables the agent to maintain a mixed strategy,
while learning a best response to the other agents. Empirical results (including an experiment with
our Grid Game 2) suggest that the rate of policy hill climbing should depend on the estimated quality
of the current policy.

Researchers continue to refine Q-learning for zero-sum stochastic games. Recent developments
include the work by Brafman and Tennenholtz (2000, 2001), who developed a polynomial-time
algorithm that attains near-optimal average reward in zero-sum stochastic games. Banerjee et al.
(2001) designed a Minimax-SARSA algorithm for zero-sum stochastic games, and presented evi-
dence of faster convergence than Minimax-Q.

One of the drawbacks of Q-learning is that each state-action tuple has to be visited infinitely
often. Q(λ) learning (Peng and Williams, 1996, Wiering and Schmidhuber, 1998) promises an inter-
esting way to speed up the learning process. To apply Q-learning online, we seek a general criterion
for setting the exploitation rate, which would maximize the agent’s expected payoff. Meuleau and
Bourgine (1999) studied such a criterion in single-agent multi-state environments. Chalkiadakis
and Boutilier (2003) proposed using Bayesian beliefs about other agents’s strategies to guide the
calculation. Since fully Bayesian updating is computationally demanding, in practice they update
strategies based on fictitious play.

This entire line of work has raised questions about the fundamental goals of research in multia-
gent reinforcement learning. Shoham et al. (2003) take issue with the focus on convergence toward
equilibrium, and propose four alternative, well-defined problems that multiagent learning might
plausibly address.

7. Conclusions

We have presented NashQ, a multiagent Q-learning method in the framework of general-sum stochas-
tic games. NashQ generalizes single-agent Q-learning to multiagent environments by updating its
Q-function based on the presumption that agents choose Nash-equilibrium actions. Given some
highly restrictive assumptions on the form of stage games during learning, the method is guaran-
teed to converge. Empirical evaluation on a pair of small but interesting grid games shows that the
method can often find equilibria despite the violations of our theoretical assumptions. In particular,
in a game possessing multiple equilibria with identical values, the method converges to equilibrium
with relatively high frequency. In a second game with a variety of equilibrium Q-values, the ob-
served likelihood of reaching an equilibrium is reduced. In both cases, however, employing NashQ
improves the prospect for reaching equilibrium over single-agent Q-learning, at least in the offline
learning mode.

Although NashQ is defined for the general-sum case, the conditions for guaranteed convergence
to equilibrium do not cover a correspondingly general class of environments. As Littman (2001a,b)
has observed, the technical conditions are actually limited to cases—coordination and adversarial
equilibria—for which simpler methods are sufficient. Moreover, the formal condition (Assump-
tion 3) underlying the convergence theorem is defined in terms of the stage gamesas perceived
during learning, so cannot be evaluated in terms of the actual game being learned. Of what value,
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then, are the more generally cast algorithm and result? We believe there are two main contributions
of the analysis presented herein.

First, it provides a starting point for further theoretical work on multiagent Q-learning. Certainly
there is much middle ground between the extreme points of pure coordination and pure zero-sum,
and much of this ground will also be usefully cast as special cases of Nash equilibrium.9 The NashQ
analysis thereby provides a known sufficient condition for convergence, which may be relaxed in
particular circumstances by taking advantage of other known structure in the game or equilibrium-
selection procedure.

Second, at present there isno multiagent learning method offering directly applicable perfor-
mance guarantees for general-sum stochastic games. NashQ is based on intuitive generalization of
both the single-agent and minimax methods, and remains a plausible candidate for the large body
of environments for which no known method is guaranteed to work well. One might expect it
to perform best in games with unique or concentrated equilibria, though further study is required
to support strong conclusions about its relative merits for particular classes of multiagent learning
problems.

Perhaps more promising than NashQ itself are the many conceivable extensions and variants
that have already begun to appear in the literature. For example, the “extended optimal response”
approach (Suematsu and Hayashi, 2002) maintains Q-tables for all agents, and anticipates the other
agents’ actions based on a balance of their presumed optimal and observed behaviors. Another
interesting direction is reflected in the work of Greenwald and Hall (2003), who propose a version
of multiagent Q-learning that employscorrelated equilibriumin place of the Nash operator applied
by NashQ. This appears to offer certain computational and convergence advantages, while requiring
some collaboration in the learning process itself.

Other equilibrium concepts—such as any of the many Nash “refinements” defined by game
theorists—specify by immediate analogy a variety of multiagent Q-learning. It is our hope that an
understanding of NashQ can assist search through all the plausible variants and hybrids, toward the
ultimate goal of designing effective learning algorithms for dynamic multiagent domains.

Appendix A. A Mixed Strategy Nash Equilibrium for Grid Game 2

We are interested in determining if there exists a mixed strategy Nash equilibrium for Grid Game
2. LetRi ≡ vi(s0) be agenti’s optimal value by following Nash equilibrium strategies starting from
states0, wheres0 = (0 2). The two agents’ Nash Q-values for taking different joint actions in state
s0 are shown in Table 5.1.2. The Nash Q-value is defined as the sum of discounted rewards of
taking a joint action at current state (in states0) and then following the Nash equilibrium strategies
thereafter.

Let (p,1− p) be agent 1’s probabilities of taking actionRightandUp, and(q,1−q) be agent 2’s
probabilities of taking actionLeftandUp. Then agent 1’s problem is

max
p

p[q(−1+0.99R1)+(1−q)98]+ (1− p)[49q+(1−q)(49+ 1
40.99R1]

s.t. p≥ 0

9. Indeed, the classes of games thatpossess, respectively, coordination or adversarial equilibria, are already far relaxed
from the pure coordination and zero-sum games, which were the focus of original studies establishing behaviors of
the equivalents of Friend-Q and Foe-Q.
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Left Up
Right 47.87, 47.87 98, 49

Up 49, 98 61.2, 61.2

Table 13: Nash Q-values in state (0 2)

Let µ be the Kuhn-Tucker multiplier on the constraint, so that the Lagrangian takes the form:

L = p[0.99R1q+98−99q]+ (1− p)[49+0.2475R1−0.2475R1q]−µp

The maximization condition requires that
∂L
∂p

= 0. Therefore we get

0.99R1q+98−99q−49−0.2475R1 +0.2475R1q = µ. (18)

Since we are interested in mixed strategy solution wherep> 0, the slackness condition implies that
µ= 0. Based on equation (18), we get

R1 =
99q−49

1.2375q−0.2475
. (19)

By symmetry in agent 1 and 2’s payoffs, we also have

R2 =
99p−49

1.2375p−0.2475
.

By definition,R1 = v1(s0). According to Lemma 10,v1(s0) = π1(s0)π2(s0)Q1(s0). Sinceπ1(s0) =
(p 1− p) andπ2(s0) = (q 1−q), therefore

R1 = (p 1− p)
( −1+0.99R1 98

49 49+ 1
40.99R1

)(
q

1−q

)

= pq(−1+0.99R1)+(1−q)p98+49q(1− p)+(1−q)(1− p)(49+0.2475R1).

From the above equation and (19), we have

−24.745+1.7325q+24.5025q2 = 0,

and solving yieldsq = 0.97.
By symmetry in the two agents’ payoff matrices, we havep = 0.97.
Therefore we haveR1 = R2 = 99×0.97−49

1.2375×0.97−0.2475 = 49.36. We can then rewrite Table 5.1.2 as
Table 13.
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