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Abstract 
Machine learning for text classification is the cornerstone of document categorization, news 
filtering, document routing, and personalization.  In text domains, effective feature selection is 
essential to make the learning task efficient and more accurate.  This paper presents an empirical 
comparison of twelve feature selection methods (e.g. Information Gain) evaluated on a benchmark 
of 229 text classification problem instances that were gathered from Reuters, TREC, OHSUMED, 
etc.  The results are analyzed from multiple goal perspectives—accuracy, F-measure, precision, 
and recall—since each is appropriate in different situations. 
 The results reveal that a new feature selection metric we call ‘Bi-Normal Separation’ (BNS), 
outperformed the others by a substantial margin in most situations.  This margin widened in tasks 
with high class skew, which is rampant in text classification problems and is particularly 
challenging for induction algorithms. 
 A new evaluation methodology is offered that focuses on the needs of the data mining 
practitioner faced with a single dataset who seeks to choose one (or a pair of) metrics that are most 
likely to yield the best performance.  From this perspective, BNS was the top single choice for all 
goals except precision, for which Information Gain yielded the best result most often.  This 
analysis also revealed, for example, that Information Gain and Chi-Squared have correlated 
failures, and so they work poorly together.  When choosing optimal pairs of metrics for each of the 
four performance goals, BNS is consistently a member of the pair—e.g., for greatest recall, the 
pair BNS + F1-measure yielded the best performance on the greatest number of tasks by a 
considerable margin. 
Keywords: support vector machines, document categorization, ROC, supervised learning 

1 Introduction 
The potential is great for machine learning to categorize, route, filter and search for relevant 
information.  For example, to build and populate a Web portal or news directory, a person would 
identify a modest number of training examples for each category, and then an induction algorithm 
can learn the pattern and identify additional matches to populate the directory.  However, as 
problem sizes continue to scale up with the explosive growth of the Internet, essential research is 
required to further improve classification efficiency and accuracy.  One leg of this research is in 
induction algorithms, where Support Vector Machines (SVM) have recently shown great promise 
(e.g., Yang & Liu, 1999). The other leg, our topic of study here, is in feature selection—no degree 
of clever induction can make up for a lack of predictive signal in the input features. 

In text classification, one typically uses a ‘bag of words’ model: each position in the input 
feature vector corresponds to a given word or phrase. For example, the occurrence of the word 
‘free’ may be a useful feature in discriminating spam email. The number of potential words often 
exceeds the number of training documents by more than an order of magnitude.  Feature selection 
is necessary to make large problems computationally efficient—conserving computation, storage 
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and network resources for the training phase and for every future use of the classifier.  Further, 
well-chosen features can improve classification accuracy substantially, or equivalently, reduce the 
amount of training data needed to obtain a desired level of performance. Opinions differ as to 
why this is so, but it is frequently acknowledged. 

This paper presents an empirical study of twelve feature selection metrics evaluated on a 
benchmark of 229 text classification problem instances that originated from Reuters, 
OHSUMED, TREC, etc. (Han & Karypis, 2000).  Our primary focus is on obtaining the best 
overall classification performance regardless of the number of features needed to obtain that 
performance. We also analyze which metrics excel when only a very small number of features is 
selected, which is important for situations where machine resources are severely limited, fast 
classification is needed, or large scalability is demanded.  We analyze the results from each of the 
perspectives of accuracy, precision, recall, and F-measure, since each serves different purposes. 

In text classification problems, there is typically a substantial class distribution skew, and it 
worsens as the problem size scales up.  For example, in selecting news articles that best match 
one’s personalization profile, the positive class of interest contains many fewer articles than the 
negative background class, esp. if the background class contains all news articles posted on the 
Internet worldwide.  For multi-class problems, the skew increases with the number of classes.  
The skew of the classification tasks used in this study is 1:31 on average, and 4% exceed 1:100.  
While much machine learning research does not consider such extreme skews, the future holds 
classification tasks with ever increasing skews.  For example, in an information retrieval setting, 
the user may possess only a single positive example to contrast against a large database of 
presumably negative training examples. 

High class skew presents a particular challenge to induction algorithms, which are hard 
pressed to beat the high accuracy achieved by simply classifying everything as the negative 
majority class. We hypothesize that feature selection should then be relatively more important in 
difficult, high-skew situations. This study also contrasts the performance under high-skew and 
low-skew situations, validating this hypothesis. 

Finally, we introduce a novel analysis that is focused on a subtly different goal: to give 
guidance to the data mining practitioner about which feature selection metric or combination is 
most likely to obtain the best performance for the single given dataset at hand, supposing their text 
classification problem is drawn from a distribution of problems similar to that studied here. 

The results on these benchmark datasets showed that the well-known Information Gain 
metric is a decent choice if one’s goal is precision, but for accuracy, F-measure, and in particular 
for recall, a new feature selection metric we call ‘Bi-Normal Separation,’ showed outstanding 
performance.  In high-skew situations, its performance is exceptional. 

Scope: In this study, we consider each binary class decision as a distinct problem instance 
and select features for it separately.  This is the natural setting for 2-class problems, e.g. in 
identifying spam vs. valuable email.  This is also an important subcomponent for good multi-class 
feature selection for two different types of problems:  (1) ‘1-of-m’ multi-class problems, e.g. 
determining where to file a new item for sale in the large Ebay.com classified ad categories (2) 
‘n-of-m’ problems (aka topic or keyword identification) where a single set of features for all m 
problems is used.  In such situations, selecting features separately for each class (vs. altogether) 
can extend the reach of induction algorithms to greater problem sizes with greater levels of class 
skew. 

The choice of the induction algorithm is not the object of study here.  Previous studies have 
shown SVM (Schölkopf & Smola, 2002) to be a consistent top performer (e.g., Yang & Liu, 
1999; Joachims, 1998; Dumais et al., 1998), and a pilot study comparing the use of the popular 
Naïve Bayes algorithm, logistic regression, and C4.5 decision trees confirmed its superiority.  We 
use the default parameters and a linear kernel; later studies may wish to explore the interaction of 
feature selection and model tuning. 
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1.1 Related Work 
For context, we mention that a large number of studies on feature selection have focused on non-
text domains.  These studies typically deal with much lower dimensionality, and often find that 
wrapper methods perform best (e.g., Kohavi & John, 1997).  Wrapper methods, such as 
sequential forward selection or genetic search, perform a search over the space of all possible 
subsets of features, repeatedly calling the induction algorithm as a subroutine to evaluate various 
subsets of features.  For large scale problems, however, wrapper methods are often impractical, 
and instead feature scoring metrics (filter methods) are used independently on each feature. This 
paper is only concerned with feature scoring metrics; nevertheless, we note that advances in 
scoring methods should be welcome to wrapper techniques for use as heuristics to guide their 
search more effectively. 

Previous feature selection studies for text domain problems have been a great help in 
providing guidance and motivation for this study, which features a more extensive variety of 
metrics, a larger set of benchmark problems, and one of the best induction algorithms of late, 
support vector machines.  For example, the valuable study by Yang and Pedersen (1997) 
considered five feature selection metrics on the standard Reuters dataset and OHSUMED.  It did 
not consider SVM, which they later found to be superior to the algorithms they had studied, LLSF 
and kNN (Yang and Liu, 1999).  The question remains then: do their findings generalize to SVM?   
The study by Mladenic and Grobelnik (1999) promoted Odds Ratio over a wide variety of 
metrics, but for a different dataset and only for the Multinomial Naïve Bayes algorithm.  Various 
other studies are incomparable for various reasons, such as considering disjoint goals—accuracy 
vs. F-measure, and best performance vs. best performance at a small number of features. The 
need remains to compare these disjoint sets of metrics on a common and substantial dataset with 
the state-of-the-art induction algorithm and to analyze the results from each prospective goal. 
This study recommends feature selection strategies for varied situations, e.g. different tradeoffs 
between precision and recall, for when resources are tight, and for highly skewed datasets. 

Furthermore, most text feature selection studies consider the problem of selecting one set of 
features for 1-of-m or n-of-m multi-class problems. This fails to explore the best possible 
accuracy obtainable for any single class, which is especially important for high class skew, for 
which we present an explicit analysis.   

2 Feature Selection Filtering Methods 
The overall feature selection procedure is to score each potential feature according to a particular 
feature selection metric, and then take the best k features. Scoring involves counting the 
occurrences of a feature in training positive- and negative-class training examples separately, and 
then computing a function of these.  

Before we enumerate the feature selection metrics we studied, we briefly describe filters that 
are commonly applied prior to using the feature selection metric, which can have a substantial 
bearing on the final outcome. 

First, rare words may be eliminated, on the grounds that they are unlikely to be present to aid 
in future classifications.  For example, words occurring two or fewer times may be removed.  
Word frequencies typically follow a Zipf distribution: the frequency of each word’s occurrence is 
proportional to 1/rankp, where rank is its rank among words sorted by frequency, and p is a fitting 
factor close to 1.0 (Miller 1958).  Easily half of the total number of distinct words may occur only 
a single time, so eliminating words under a given low rate of occurrence yields great savings.  
The particular choice of threshold value can have an effect on accuracy, which we demonstrate in 
the discussion section. If we eliminate rare words based on a count from the whole dataset before 
we split off a training set, we have leaked some information about the test set to the training 
phase. Without expending a great deal more resources for cross-validation studies, this research 
practice is unavoidable, and is acceptable in that it does not use the class labels of the test set. 
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Additionally, overly common words, such as ‘a’ and ‘of’, may also be removed on the 
grounds that they occur so frequently as to not be discriminating for any particular class.  
Common words can be identified either by a threshold on the number of documents the word 
occurs in, e.g. if it occurs in over half of all documents, or by supplying a stopword list.  
Stopwords are language-specific and often domain-specific.  Depending on the classification task, 
they may run the risk of removing words that are essential predictors, e.g. the word ‘can’ is 
discriminating between ‘aluminum’ and ‘glass’ recycling.   

It is also to be mentioned that the common practice of stemming or lemmatizing—merging 
various word forms such as plurals and verb conjugations into one distinct term—also reduces the 
number of features to be considered.  It is properly, however, a feature engineering option. 

An ancillary feature engineering choice is the representation of the feature value.  Often a 
Boolean indicator of whether the word occurred in the document is sufficient.  Other possibilities 
include the count of the number of times the word occurred in the document, the frequency of its 
occurrence normalized by the length of the document, the count normalized by the inverse 
document frequency of the word.  In situations where the document length varies widely, it may 
be important to normalize the counts.  For the datasets included in this study, most documents are 
short, and so normalization is not called for.  Further, in short documents words are unlikely to 
repeat, making Boolean word indicators nearly as informative as counts. This yields a great 
savings in training resources and in the search space of the induction algorithm.  It may otherwise 
try to discretize each feature optimally, searching over the number of bins and each bin’s 
threshold.  For this study, we selected Boolean indicators for each feature.  This choice also 
widens the choice of feature selection metrics that may be considered, e.g. Odds Ratio deals with 
Boolean features, and was reported by Mladenic and Grobelnik (1999) to perform well. 

A final choice in the feature selection policy is whether to rule out all negatively correlated 
features. Some speculate that classifiers built from positive features only may be more robust in 
the special situation where the background class may shift and retraining is not an option, 
although this has yet to be validated.  Additionally, some classifiers work primarily with positive 
features, e.g. the Multinomial Naïve Bayes model, which has been shown to be both better than 
the traditional Naïve Bayes model (McCallum & Nigam, 1998), and considerably inferior to other 
induction methods for text classification (e.g., Yang & Liu, 1999; Dumais et al., 1998).  Negative 
features are numerous, given the large class skew, and quite valuable in practical experience:  For 
example, when scanning a list of Web search results for the author’s home page, a great number 
of hits on George Foreman the boxer show up and can be ruled out strongly via the words ‘boxer’ 
and ‘champion,’ of which the author is neither.  The importance of negative features is 
empirically confirmed in the evaluation. 

2.1 Metrics Considered 
Here we enumerate the feature selection metrics we evaluated. Their formulae are shown in 
Table 1, including footnotes about their properties.  In the interest of brevity, we omit their varied 
mathematical justifications that have appeared in the literature (e.g., Mladenic & Grobelnik, 
1999; Yang & Pedersen, 1997).  In the following subsection, we show a novel graphical analysis 
that reveals the widely different decision curves they induce.  Paired with an actual sample of 
words, this yields intuition about their empirical behavior. 

Commonly Known Metrics:  

Chi: Chi-Squared is the common statistical test that measures divergence from the 
distribution expected if one assumes the feature occurrence is actually independent of the class 
value.  As a statistical test, it is known to behave erratically for very small expected counts, which 
are common in text classification both because of having rarely occurring word features, and 
sometimes because of having few positive training examples for a concept. 
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Name Description Formula 

Acc Accuracy tp – fp 

Acc2 Accuracy balanced† | tpr – fpr | 

BNS Bi-Normal Separation† | F-1(tpr) – F-1(fpr) |   where F is the Normal c.d.f. 
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Pow Power (1 – fpr)k – (1 – tpr)k where k=5 

PR Probability Ratio tpr / fpr 

Rand Random‡o random() 
†  Acc2, BNS, DFreq, IG, and Odds select a substantial number of negative features. 
‡  Chi, IG, DFreq, and Rand also generalize for multi-class problems. 
o  DFreq and Rand do not require the class labels. 

 
Notation: 
 tp: true positives = number of positive cases containing word fn: false negatives 
 fp: false positives = number of negative cases containing word tn: true negatives 
 pos: number of positive cases = tp + fn Ppos  = pos / all  
 neg: number of negative cases = fp + tn Pneg  = neg / all 
 tpr: sample true positive rate = tp / pos Pword = (tp+fp) / all 
 fpr: sample false positive rate = fp / neg Pword = 1-P(word) 
 precision = tp / (tp+fp) recall = tpr 
 
Note: Metrics such as BNS, Chi and IG are naturally symmetric with respect to negatively 
correlated features. For the metrics that devalue all negative features, we invert any negative 
feature, i.e. tpr’ = 1 – tpr  and  fpr’ = 1 – fpr, without reversing the classes.  Hence, without 
loss of generality, tpr > fpr. 
 

Table 1.  Feature Selection Metrics 
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IG: Information Gain measures the decrease in entropy when the feature is given vs. absent. 
Yang and Pederson (1997) reported IG and Chi performed best in their multi-class benchmarks.  
In contrast, they found Mutual Information and Term Strength performed terribly, and so we do 
not consider them further. IG has a generalized form for nominal valued attributes. 

Odds: Odds Ratio reflects the odds of the word occurring in the positive class normalized by 
that of the negative class.  It has been used for relevance ranking in information retrieval.  In the 
study by Mladenic and Grobelnik (1999), it yielded the best F-measure for Multinomial Naïve 
Bayes, which works primarily from positive features.  To avoid division by zero, we add one to 
any zero count in the denominator. 

PR: (Log) Probability Ratio is the sample estimate probability of the word given the 
positive class divided by the sample estimate probability of the word given the negative class. It 
induces the same decision surface as the log probability ratio, log(tpr/fpr) (Mladenic and 
Grobelnik, 1999), and is faster to compute. Since it is not defined at fpr=0, we explicitly establish 
a preference for features with higher tp counts along the axis by substituting fpr’=1e-8.  

DFreq: Document Frequency simply measures in how many documents the word appears. 
Since it can be computed without class labels, it may be computed over the entire test set as well.  
Selecting frequent words will improve the chances that the features will be present in future test 
cases.  It performed much better than Mutual Information in the study by Yang and Pedersen, but 
was consistently dominated by IG and Chi (which, they point out, each have a significant 
correlation with frequent terms).  

Additional Metrics:  

Rand: Random ranks all features randomly and is used as a baseline for comparison.  
Interestingly, it scored highest for precision in the study by Mladenic and Grobelnik (1999), 
although this was not considered valuable because its recall was near zero. 

F1: F1-measure is the harmonic mean of the precision and recall.  This metric is motivated 
because in many studies the F-measure is the ultimate measure of performance of the classifier.  
Note that it focuses on the positive class, and hence negative features, even if inverted, are 
devalued compared to positive features.  This is ultimately its downfall as a feature selection 
metric, esp. for precision.  

OddN: Odds Ratio Numerator is the numerator of Odds Ratio.  
Acc: Accuracy estimates the expected accuracy of a simple classifier built from the single 

feature, i.e. P( 1 for + class and 0 for – class) = P(1|+) Ppos + P(0|-) Pneg = tpr Ppos + (1-fpr) Pneg, 
which simplifies to the simple decision surface tp – fp.  Note that it takes the class skew into 
account. Since Pneg is large, fpr has a strong influence. 

Acc2: Accuracy2 is similar, but supposes the two classes were balanced in the equation 
above, yielding the decision surface equivalent to tpr – fpr.  This removes the strong preference 
for low fpr. It induces the same decision surface as the ‘ExpProbDiff(W)’ metric studied by 
Mladenic and Grobelnik (1999). 

BNS: Bi-Normal Separation is a new feature selection metric we defined as F-1(tpr) - 
F-1(fpr), where F-1 is the standard Normal distribution’s inverse cumulative probability function 
(a.k.a. z-score). To avoid the undefined value F-1(0), zero is substituted by 0.0005, half a count 
out of 1000.  

For intuition, suppose the occurrence of a given feature in each document is modeled by the 
event of a random Normal variable exceeding a hypothetical threshold.  The prevalence rate of 
the feature corresponds to the area under the curve past the threshold. If the feature is more 
prevalent in the positive class, then its threshold is further from the tail of the distribution than 
that of the negative class.  (Refer to Figure 1.)  The BNS metric measures the separation between 
these two thresholds. 
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An alternate view is motivated by ROC threshold analysis: The metric measures the 
horizontal separation between two standard Normal curves where their relative position is 
uniquely prescribed by tpr and fpr, the area under the tail of each curve (cf. a traditional 
hypothesis test where tpr and fpr estimate the center of each curve). The BNS distance metric is 
therefore proportional to the area under the ROC curve generated by the two overlapping Normal 
curves, which is a robust method that has been used in the medical testing field for fitting ROC 
curves to data in order to determine the efficacy of a treatment. Its justifications in the medical 
literature are many and diverse, both theoretical and empirical (Hanley, 1988; Simpson & Fitter, 
1973), such as fitting well both actual and artificial data that violates the Normal assumption. 

Pow: Power, although theoretically unmotivated, is considered because it prefers frequent 
terms (Yang & Pedersen, 1997), aggressively avoids common fp words, and can generate a 
variety of decision surfaces given parameter k, with higher values corresponding to a stronger 
preference for positive words.  We chose k=5 after a pilot study. 

2.2 Graphical Analysis 
In order to gain a more intuitive grasp of the feature selection biases of these various metrics, we 
present graphs of example decision boundaries these metrics induce.  We illustrate with a 
prototypical binary text classification problem from the Cora dataset (see 0): 50 research papers 
on probabilistic machine learning methods vs. 1750 other computer science papers. Refer to the 
ROC graph in Figure 2. The dots represent the true positive and false positive counts for each 
potential word feature, gathered from the titles and abstracts of the papers. The distribution of the 
words looks similar for many text classification tasks.  

There are no strongly predictive features in the top left or bottom right corners, and due to the 
high class skew, there are many more negatively correlated words along the x-axis than positive 
words along the y-axis. Very few words have high frequency and they tend to be non-predictive, 
i.e. they stay close to the diagonal as they approach the upper right corner. This partly supports 
the practice of eliminating the most frequent words—the vertical dotted line near 400 depicts a 
cut-off threshold that eliminates words present in >¼ of all documents—but note that this 
eliminates merely 28 words out of 12,500. Likewise, the practice of eliminating stopwords is of 
limited usefulness. The diamonds mark 97 words that appear on a stopword list of 152 English 
words. These do tend to be non-predictive, but eliminating them removes only a tiny fraction of 
the many potential words, and most feature selection metrics would discard them anyway. 

For each of the feature selection metrics depicted on the graph, we scored all word features 
and determined the score threshold that selects exactly 100 words.  We then plotted the isocline 
having that threshold value.  For example, the BNS threshold is 1.417, selecting high-scoring 
features above its upper curve and below its symmetric lower curve. We see that the isoclines for 
Odds Ratio and BNS go all the way to the origin and top right corner, while IG and Chi 
progressively cut off the top right—and symmetrically the bottom left—eliminating many 
negative features that Odds and BNS include.  In contrast, BNS selects fewer positive words than 
IG, for example. PR is the most extreme, selecting only positive features, since there are no words 
in the bottom right. The DFreq line selects 100 words to its right (after we removed the ‘too 
common’ words to the right of the dotted line); observe that this swath selects mostly non-
predictive and negative features. Refer to Appendix C for graphs of the other metrics. 

fp%

tp%

   

tp%

fp%

 
Figure 1.  Two views of Bi-Normal Separation using the Normal probability distribution:   

   (left) Separation of thresholds.  (right) Separation of curves (ROC analysis). 
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Figure 2.  Decision boundary curves for the feature selection metrics Probability Ratio, 
Document Frequency, Odds Ratio, Bi-Normal Separation, Chi-Squared, and 
Information Gain.  Each curve selects the ‘best’ 100 words, each according to its 
view, for discriminating abstracts of probabilistic reasoning papers from others.  
Dots represent actual words, and many of the 12,500 words overlap near the origin. 
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Figure 3.  Zoomed-in version of Figure 2, detailing where most words occur. 

Since word frequencies tend toward a Zipf distribution, most of the potential word features 
appear near the origin.  This implies that feature selection is most sensitive to the shape of the 
decision boundary in these dense regions.  Figure 3 shows a zoomed-in view. Here there are 
many words with identical tp and fp counts, which overlay a single dot in the visualization. For 
example, the positive words ‘bayes,’ ‘causation’ and ‘posterior’ collide at (0,3), and there are 
1536 distinct words at point (2,0). The bold diagonal line near the origin shows a rare word cutoff 
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of < 3 occurrences, which eliminates 7333 words for this dataset.  This represents substantial 
resource savings (~60%) and the elimination of fairly uncertain words that are unlikely to re-
occur at a rate that would be useful for classification.  

3 Experimental Method 
Performance measures: A number of studies on feature selection, primarily those outside the 
text domain, have focused on accuracy.  Accuracy and error rate can be weak indicators of 
performance when there is substantial class skew.   For example, some classes in the TREC 
datasets are represented by seven positive examples out of 927, giving the trivial majority 
classifier an accuracy of 99.2%, and thereby compressing the range of interesting values to the 
remaining 0.8%.  Therefore, the information retrieval community, which is often faced with much 
greater class skews than the machine learning community has traditionally addressed, prefers the 
measures precision (the percentage of items classified as positive that actually are positive), 
recall (the percentage of positives that are classified as positive), and the F-measure (their 
harmonic average, see Table 1).  While several studies have sought solely to maximize the F-
measure, there are common situations where precision is to be strongly preferred over recall, e.g. 
when the cost of false positives is high, such as mis-filtering a legitimate email as spam.  
Precision should also be the focus when delivering Web search results, where the user is likely to 
look at only the first page or two of results; the retrieval strategy might be switched dynamically 
if the user ends up exhausting the result list. Finally, there are situations where accuracy is the 
most appropriate measure, even when there is high class skew, e.g. equal misclassification costs. 
For these reasons, we analyze performance for each of the four performance goals. 

There are two methods for averaging the F-measure over a collection of 2-class classification 
problems. One is the macro-averaged F-measure, which is the traditional arithmetic mean of the 
F-measure computed for each problem.  Another is the micro-averaged F-measure, which is an 
average weighted by the class distribution.  The former gives equal weight to each problem, and 
the latter gives equal weight to each document classification (which is equivalent to overall 
accuracy for a 1-of-m problem).  Since highly skewed, small classes tend to be more difficult, the 
macro-averaged F-measure tends to be lower.  (The two are equal for the uniform multi-class 
distribution.)  We focus on macro-averaging because we are interested in average performance 
across different problems, without regard to the training set size of each. To measure performance 
for a given problem instance, we use 4-fold stratified cross-validation, and take the average of 5 
such runs.   0 contains pseudo-code to describe the complete measurement procedure. 

A data mining practitioner has a different goal in mind: to choose a feature selection 
technique that maximizes their chances of having the best metric for their single dataset of 
interest. Supposing the classification problems in this study are representative of problems 
encountered in practice, we compute for each metric, the percentage of problem instances for 
which it was optimal, or within a given error tolerance of the best method observed for that 
instance.  Furthermore, we use this framework to determine the best pair of techniques to try in 
combination. This analysis has greater practical value than the practice of wins/ties/losses 
because of correlated failures, as discussed below. 

Induction Algorithm: We performed a brief pilot study using a variety of classifiers, 
including Naïve Bayes, C4.5, logistic regression and SVM with a linear kernel (each using the 
WEKA open-source implementation with default parameters).  The results confirmed previous 
findings that SVM is an outstanding method (Yang & Liu, 1999; Joachims, 1998; Dumais et al., 
1998), and so the remainder of our presentation uses it alone. It is an interesting target for feature 
selection because no comparative text feature selection studies have yet considered it, and its use 
of features is entirely along the decision boundary between the positive and negative classes, 
unlike many traditional induction methods that model the density. We note that the traditional 
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Naïve Bayes model fared better than C4.5 for these text problems, and that it was fairly sensitive 
to feature selection, having its performance peak at a much lower number of features selected.   

Datasets: We were fortunate to obtain a large number of text classification problems in 
preprocessed form made available by Han and Karypis (2000), the details of which are laid out in 
their paper and in 0. We added a dataset of computer science paper abstracts gathered from 
Cora.whizbang.com that were categorized into 36 classes, each containing 50 training examples 
to control the class skew.  Taken altogether, these 19 multi-class datasets represent 229 binary 
text classification problem instances, with a positive class size of 149 on average, and class skews 
averaging 1:31 (median 1:17, 95th percentile 1:97).   

Feature Engineering and Selection: Each feature represents the Boolean occurrence of a 
forced-lowercase word. Han and Karypis (2000) report having applied a stopword list and 
Porter’s suffix-stripping algorithm.  From an inspection of word counts in the data, it appears they 
also removed rare words that occurred < 3 times in most datasets.  Stemming and stopwords were 
not applied to the Cora dataset, and we used the same rare word threshold. We varied the number 
of selected features in our experiments from 10 to 2000.  Yang and Pedersen (1997) evaluated up 
to 16,000 words, but the F-measure had already peaked below 2000 for Chi-Squared and IG.  If 
features are selected well, most information should be contained in the initial features selected. 

4 Empirical Results 
Figure 4 shows the macro-averaged F-measure for each of the feature selection metrics as we 
vary the number of features to select.  The absolute values are not of interest here, but rather the 
overall trends and the separation of the top performing curves. The most striking feature is that 
the only metrics to perform better than using all the features available are BNS (the boldface 
curve) and to a limited extent IG (dashed). BNS performed best by a wide margin when using 500 
to 1000 features.  This is a significant result in that BNS has not been used for feature selection 
before, and the significance level, even in the barely visible gap between BNS and IG at 100 
features, is greater than 99% confidence in a paired t-test of the 229*5 runs. Like the results of 
Yang and Pedersen (1997), performance begins to decline around 2000 features, and ultimately 
must come down to the level of using all the features. 

If for scalability reasons one is limited to 20-50 features, the best available metric is IG (or 
Acc2, which is simpler to program).  Surprisingly, Acc2, which ignores class skew, outperformed 
Acc, which accounts for skew.  IG dominates the performance of Chi at every size of feature set. 

Accuracy: The results for accuracy look qualitatively identical to those for the F-measure, 
although compressed into a much smaller range by the class skew (see Appendix D).  BNS again 
performed the best by a smaller, but still >99% confident, margin.  At 100 features and below, 
however, IG again performed best, with Acc2 being statistically indistinguishable at 20 features.  

Precision-Recall Tradeoffs: As discussed, one’s goal in some situations may focus on 
precision or on recall, rather than F-measure.  The precision vs. recall scatter-plot in Figure 5 
highlights the tradeoffs of the different metrics, evaluated at 1000 features selected.  As with F-
measure, the performance figures are macro-averaged across the five-trial average performance of 
each of the 229 sample problems.  We see that the success of BNS with regard to its high F-
measure is because it obtained on average much higher recall than any other method.  If, on the 
other hand, precision is the central goal, IG and Chi perform best by a smaller but still significant 
margin to the other metrics.  (At 500 features and below, IG dominated all other metrics.) 

4.1 Class Skew Analysis 
In classification tasks with high class skew, it can be difficult to obtain good recall, since 

induction algorithms are often focused on the goal of accuracy. The scatter-plot in Figure 6 
shows,  for each of the  229 classification tasks,  its class skew  vs.  its average  F-measure  (using  
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Figure 4.  F-measure averaged over 229 problems for each metric, varying the number of features. 
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Figure 5.  Precision-Recall tradeoffs from Figure 4 at 1000 features selected. 

1000 features selected by BNS).  We see that for lower values of class skew, the SVM classifier 
usually achieves good F-measure, but as the skew increases, the results vary more widely.  The 
Cora dataset, with its controlled skew of 1:35, is visible as a vertical line of points in the figure.  
Although the skew is the same for each of its classes, the scores vary due to the quality of the 
available predictive features with respect to each class. The vertical dotted line in the figure 
shows the 90th percentile of class skew values studied, i.e. 23 of the 229 classification tasks have 
a skew exceeding 1:67.  In the following analysis, we differentiate the performance of the various 
feature selection metrics above and below this threshold.   

Figure 7 shows the F-measure performance of each of the metrics for low-skew and high-
skew situations.  It is remarkable that in low-skew situations, BNS is the only metric that 
performed substantially better than using all features. Observe that under low skew, BNS 
performed best overall, but if one is limited to just a few features, then IG is a much better choice. 
In contrast, under high skew, BNS performed best by a wide margin for any number of features 
selected.  Figure 8 shows the same, but for Precision. Under low skew, IG performs best and 
eventually reaches the performance of using all features. Under high skew, on the other hand, 
BNS performed substantially better than IG. 
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Figure 7.  Average F-measure for each metric in low-skew and high-skew situations 

(threshold 1:67, the 90th percentile), as we vary the number of features.  (To improve 
readability, we omitted Rand, DFreq, and PR.) 
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Figure 8.  As Figure 7, but for precision. 
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Figure 6.  F-measure vs. skew for each of the 229 classification tasks.  (BNS @ 1000 features) 
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4.2 Best Chances of Attaining Maximum Performance 
The problem of choosing a feature selection metric is somewhat different when viewed from the 
perspective of a data mining practitioner whose task is to get the best performance on a given set 
of data, rather than averaging over a large number of datasets.  Practitioners would like guidance 
as to which metric is most likely to yield the best performance for their single dataset at hand.  
Supposing the problem instance is drawn from a distribution similar to that in this study, we offer 
the following analysis: For each feature selection metric, we determine the percentage of the 229 
problem instances for which it matched the best performance found within a small tolerance 
(taking the maximum over any number of features, and averaging over the 5 trials for each 
problem instance, i.e. ‘average maximum’). We repeat this separately for F-measure, precision, 
recall and accuracy. 

Figure 9a shows these results for the goal of maximum F-measure as we vary the acceptable 
tolerance from 1% to 10%.  As it increases, each metric stands a greater chance of attaining close 
to the maximum, thus the trend. We see that BNS attained within 1% of best performance for 
65% of the 229 problems, beating IG at just 40%.  Figure 9b shows similar results for Accuracy, 
F-measure, Precision and Recall (but using 0.1% tolerance for accuracy, since large class skew 
compresses the range). Note that for precision, there is no single clear winner, and that several 
metrics beat BNS, notably IG. This is seen more clearly in Figure 10a, which shows these results 
for varying tolerances. IG consistently dominates at higher tolerances, though the margin is less 
striking than for BNS in Figure 9a. (Rand is below 50%.) 

4.2.1 Residual Win Analysis 
If one were willing to invest the extra effort to try two different metrics for one’s dataset at hand 
and select the metric with better precision via cross-validation, the two leading metrics, IG and 
Chi, would seem a logical choice. (Referring to Figure 5 and Figure 10a.)  However, it may be 
that whenever IG fails to attain the maximum, Chi also fails.  To evaluate this, we performed a 
residual analysis for each metric in which we counted the residual problem instances where it 
attained near optimum on only those tasks for which the leading metric failed.  Indeed, whenever 
IG failed to attain the maximum, Chi had the most correlated failures and was as bad as Rand.  
When IG failed, BNS performed the best, which is surprising given its lackluster precision seen 
in Figure 10a.  Figure 10b shows these results represented as the total percentage of problems for 
which IG or a second ‘backup’ metric attained the best precision.  In contrast to Chi, BNS had the 
least correlated failures with IG and so it is a better backup choice. 

This led us to repeat the analysis to determine the optimal pair of metrics that together 
attained the best precision most often.  The best pair found for precision is BNS+Odds (overlaid 
on Figure 10b as a dot-dashed line).  It is surprising to some extent that the top individual metric, 
IG, is not a member of the best pair.  We repeated this analysis for each goal:  For recall, 
BNS+F1 was best by a very wide margin compared to other pairs.  Less strikingly, BNS+IG was 
best for F-measure, and BNS+OddN was best for accuracy. 

5 Discussion 
It is difficult to beat the performance of SVM using all available features. In fact, it is sometimes 
claimed that feature selection is unnecessary for SVMs. Nonetheless, this study shows that BNS 
can improve the performance for all goals (except precision in low-skew situations, where using 
all the features may give better results).   

Of the other metrics, IG is often competitive. IG is used by decision tree algorithms, e.g. 
C4.5, to select on which feature each node should split.  Our findings raise the possibility that 
BNS may be useful to enhance decision trees for nodes with high class skew.  
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We have performed this study with binary features. For real-valued attributes, one may either 
threshold them to produce binary features, or replace the tp and fp counts with scaled sums. It 
would be useful to generalize BNS somehow for nominal valued attributes. 

In the foregoing experiments, positively and negatively correlated features were selected 
symmetrically. To better understand the role that each plays in skewed problems, we performed a 
similar suite of experiments on the Cora dataset where we systematically varied their relative 
weighting. We multiplied the BNS score by a weight α for positive features, and by (1-α) for 
negative features. Refer to the precision and recall graphs in Figure 22 in Appendix D. Briefly, 
they reveal that by preferring positive features (α=60%), we get good precision with relatively 
few features selected, however, recall suffers in comparison with unweighted BNS. If we instead 
prefer negative features (α=40%), we can get outstanding recall once many features are selected, 
but at the cost of poor precision. If we nearly eliminate positive features (α=10%), we defeat the 
induction algorithm altogether. We conclude that the role of positive features is precision (which 
is a widely held belief), and the role of negative features is recall. Optimal F-measure on the 
entire benchmark was obtained with the two in balance, i.e. unweighted BNS. Given this 
understanding and the graphical analysis presented in Figure 2, we can better appreciate why 
unbalanced feature selection metrics such as PR, DFreq and Chi are not effective. 
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Figure 9.  (a) Percentage of problems on which each metric scored within x% tolerance of the 

best F-measure of any metric.  (b) Same, for F-measure, recall, and precision at a fixed 
tolerance of 1%, and for accuracy at a tolerance of 0.1%. 
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Figure 10.  (a) As Figure 9a, but for precision.  (b) Same axes and scale, but for each metric 

combined with IG.   (Except the BNS+Odds curve is not combined with IG.) 
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In the preparation of the datasets, word features were omitted that occurred fewer than two 
times in the (training & testing) corpus.  Some text preparation practices remove many more rare 
words to dramatically reduce the size of the data.  We performed an experiment with the Cora 
dataset, varying this rare word threshold up to 25 occurrences.  At each threshold, we measured 
the F-measure, precision, recall and accuracy (averaged over five runs and macro-averaged over 
all 36 classes) for SVM using 1000 features selected via BNS.  As shown in Figure 11, each of 
these performance measures tends to drop as the threshold increases. (The accuracy curve has a 
linear decrease from 98.2% to 97.5%, but is omitted to improve readability of the other curves.)  
As an exception to the trend, recall first experiences a slight rise up to a threshold of about ten 
occurrences. This is explainable given our understanding of the roles of positive and negative 
features, and the fact that the rare word threshold removes words near the origin. The effect is to 
remove some eligible positive words, forcing BNS to select more negative words, which aids 
recall at the cost of precision.  

We conclude that to effectively reduce the size of one’s dataset without adversely impacting 
classification performance, one should set the rare word cutoff low, and then perform aggressive 
feature selection using a metric (which runs in linear time to the size of the dataset).  If recall is 
one’s sole goal, then a greater proportion of rare words should be eliminated. 

6 Conclusion 

This paper presented an extensive comparative study of feature selection metrics for the high-
dimensional domain of text classification, focusing on support vector machines and 2-class 
problems, typically with high class skew. It revealed the surprising performance of a new feature 
selection metric, Bi-Normal Separation.  

Another contribution of this paper is a novel evaluation methodology that considers the 
common problem of trying to select one or two metrics that have the best chances of obtaining 
the best performance for a given dataset. Somewhat surprisingly, selecting the two best-
performing metrics can be sub-optimal: when the best metric fails, the other may have correlated 
failures, as is the case for IG and Chi for maximizing precision.  The residual analysis determined 
that BNS paired with Odds Ratio yielded the best chances of attaining the best precision.  For 
optimizing recall, BNS paired with F1 was consistently the best pair by a wide margin. 

Future work could include extending the results for nominal and real-valued feature values, 
and demonstrating BNS for non-text domains. The feature scoring methods we considered are 
oblivious to the correlation between features; if there were ten duplicates of a predictive feature, 
each copy would be selected. To handle this, wrapper techniques are called for, which search for 
an optimal subset of features (Kohavi & John, 1997; Guyon et al., 2002). BNS may prove a 
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Figure 11.  Performance for BNS at 1000 features as we vary the rare-word cutoff. 
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useful heuristic to guide such a search or to perform pre-selection of features for increased 
scalability.  Finally, recent research has shown that tuning parameters such as C and B for SVMs 
may yield significant performance improvements. As feature selection and model tuning have 
been studied independently, there lies an opportunity to study the interaction of the two together. 
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Appendix A:  Datasets 
 
Dataset Source Docs Words Ratio Cutoff Classes Class Sizes (sorted) 
cora36 whizbang.com 1800 5171 3 3 36 50 (each) 
fbis TREC 2463 2000 1 10 17 38 43 46 46 46 48 65 92 94 119 121 125 139 

190 358 387 506 
la1 TREC 3204 31472 10 1 6 273 341 354 555 738 943 
la2 TREC 3075 31472 10 1 6 248 301 375 487 759 905 
oh0 OHSUMED 1003 3182 3 3 10 51 56 57 66 71 76 115 136 181 194 
oh5 OHSUMED 918 3012 3 3 10 59 61 61 72 74 85 93 120 144 149 
oh10 OHSUMED 1050 3238 3 3 10 52 60 61 70 87 116 126 148 165 165 
oh15 OHSUMED 913 3100 3 3 10 53 56 56 66 69 98 98 106 154 157 
ohscal OHSUMED 11162 11465 1 3 10 709 764 864 1001 1037 1159 1260 1297 1450 

1621 
re0 Reuters-21578 1504 2886 2 3 13 11 15 16 20 37 38 39 42 60 80 219 319 608 
re1 Reuters-21578 1657 3758 2 3 25 10 13 15 17 18 18 19 19 20 20 27 31 31 32 37 

42 48 50 60 87 99 106 137 330 371 
tr11 TREC 414 6429 16 3 9 6 11 20 21 29 52 69 74 132 
tr12 TREC 313 5804 19 3 8 9 29 29 30 34 35 54 93 
tr21 TREC 336 7902 24 3 6 4 9 16 35 41 231 
tr23 TREC 204 5832 29 3 6 6 11 15 36 45 91 
tr31 TREC 927 10128 11 3 7 2 21 63 111 151 227 352 
tr41 TREC 878 7454 8 3 10 9 18 26 33 35 83 95 162 174 243 
tr45 TREC 690 8261 12 3 10 14 18 36 47 63 67 75 82 128 160 
wap WebACE 1560 8460 5 3 20 5 11 13 15 18 33 35 37 40 44 54 65 76 91 91 97 

130 168 196 341 
 
The ‘ratio’ is the number of words divided by the number of documents, and  
is directly influenced by the rare-word cutoff used, shown in the following column. 
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Figure 12.  Sizes of positive and negative classes for each of the 229 binary classification 

tasks.  Note the Cora dataset has 36 data points overlaid at (1750,35). 
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