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Gábor Lugosi lugosi@upf.es

Department of Economics,
Pompeu Fabra University,
Ramon Trias Fargas 25-27, 08005 Barcelona, Spain

Editor: Peter Bartlett

Abstract

We derive new margin-based inequalities for the probability of error of classifiers. The
main feature of these bounds is that they can be calculated using the training data and
therefore may be effectively used for model selection purposes. In particular, the bounds
involve empirical complexities measured on the training data (such as the empirical fat-
shattering dimension) as opposed to their worst-case counterparts traditionally used in
such analyses. Also, our bounds appear to be sharper and more general than recent results
involving empirical complexity measures. In addition, we develop an alternative data-based
bound for the generalization error of classes of convex combinations of classifiers involving
an empirical complexity measure that is easier to compute than the empirical covering
number or fat-shattering dimension. We also show examples of efficient computation of the
new bounds.
Keywords: classification, margin-based bounds, error estimation, fat-shattering dimension

1. Introduction

A large body of recent research on classification focuses on developing upper bounds on the
probability of misclassification of a classifier which may be computed using the same data
that were used to design the classifier. An interesting family of such bounds is based on
“margins”, that is, on the confidence a classifier assigns to each well-classified data point. It
was already pointed out by Vapnik and Chervonenkis (1974) that usual error bounds based
on the vc dimension may be improved significantly in the case of linear classifiers that
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classify the data well with a large margin. This idea, in turn, has lead to the development
of Support Vector Machines (see Vapnik, 1998). Similar, but more general, bounds have
been derived based on the notion of the fat shattering dimension (see Anthony and Bartlett,
1999, for a survey). The main purpose of this paper is to obtain improved bounds which
depend on a data-dependent version of the fat shattering dimension. The new bounds may
improve the obtained estimates significantly for many distributions appearing in practice.

Suppose the feature space X is a measurable set and the observation X and its label
Y form a pair (X, Y ) of random variables taking values in X × {0, 1}. Let F be a class of
real measurable functions on X . For f ∈ F , let L(f) denote the probability of error of the
prediction rule obtained by thresholding f(X) at 1/2, that is,

L(f) = P
{

sgn(f(X) − 1/2) �= Y
}

where

sgn(t) =

{
1 if t ≥ 0
0 if t < 0.

The margin of f on (x, y) ∈ X × {0, 1} is defined by

margin(f(x), y) =

{
f(x) − 1/2 if y = 1
1/2 − f(x) if y = 0.

Let the data Dn = ((X1, Y1), . . . , (Xn, Yn)) consist of independent and identically dis-
tributed (i.i.d.) copies of (X, Y ). For f ∈ F and γ > 0, define the sample error of f
on Dn with respect to γ as

L̂γ
n(f) =

1
n

n∑
i=1

I{margin(f(Xi),Yi)<γ}

where IA denotes the indicator of an event A.
It is well known that in many cases L(f) may be upper bounded by the margin error

L̂γ
n(f) plus a quantity that typically decreases with increasing γ, see, for example, Bartlett

(1998), Anthony and Bartlett (1999), Shawe-Taylor et al. (1998). In particular, covering
numbers and the fat-shattering dimension of F at scale γ have been used to obtain useful
bounds on the probability of error of classifiers. In this paper we develop improved, data-
dependent bounds, and show that the empirical version of the fat-shattering dimension may
also be used to bound the probability of error.

Our bounds are closely related to results of Shawe-Taylor and Williamson (1999) who
obtained generalization bounds in terms of the margin error L̂γ

n(f) and empirical covering
numbers in the case when the empirical error equals zero. One novelty in our approach
is that we appeal to general concentration-of-measure inequalities derived by Boucheron,
Lugosi, and Massart (2000) in dealing with the empirical fat-shattering dimension. In a
recent work Bartlett and Mendelson (2002) develop data-dependent bounds of the same kind
as those offered in this paper. The bounds in Bartlett and Mendelson (2002) are based on
Rademacher and Gaussian complexities and are used in deriving easy-to-compute bounds
in some important special cases such as support vector machines and neural networks.
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The results of Bartlett and Mendelson (2002) and of the present paper are not directly
comparable. Our Theorem 3 is close in spirit to the basic results of Bartlett and Mendelson.

The rest of the paper is organized as follows. In Sections 2 and 3 we present the main
data-dependent upper bounds for the probability of misclassification. In Section 4 we also
develop an alternative data-based bound which provides a more easily computable data-
dependent bound on the generalization error of classes of convex combinations of classifiers.
In Section 5 we provide nontrivial examples of function classes for which the data-dependent
quantities appearing in the main inequalities of Section 2 may be either computed exactly
or bounded efficiently. Section 6 contains the proofs of the theorems.

2. Bounding by the random fat-shattering dimension

For γ > 0, a sequence xn
1 = (x1, . . . , xn) ∈ X n is said to be γ-shattered by F if there is an

(r1, . . . , rn) ∈ R
n such that for each (b1, . . . , bn) ∈ {0, 1}n there is an f ∈ F satisfying for

all i = 1, . . . , n,

f(xi) ≥ ri + γ if bi = 1, and f(xi) ≤ ri − γ if bi = 0

or, equivalently,
(2bi − 1)(f(xi) − ri) ≥ γ. (1)

The (empirical) fat-shattering dimension (γ-dimension) of F in a sequence xn
1 = (x1, . . . , xn) ∈

X n is defined for any γ > 0 by

fatF ,xn
1
(γ) = max{m : F γ-shatters a subsequence of length m of xn

1}.

Note that for Xn
1 = (X1, . . . , Xn), fatF ,Xn

1
(γ) is a random quantity whose value depends on

the data. The (worst-case) fat-shattering dimension

fatF ,n(γ) = sup
xn
1∈Xn

fatF ,xn
1
(γ)

was used by Kearns and Schapire (1994), Alon et al. (1997), Shawe-Taylor et al. (1998),
and Bartlett (1998) to derive useful bounds. In particular, Anthony and Bartlett (1999)
show that if d = fatF ,n(γ/8), then for any 0 < δ < 1/2, with probability at least 1 − δ, all
f ∈ F satisfies

L(f) < L̂γ
n(f) + 2.829

√
1
n

(
d log2

(
32en

d

)
ln(128n)

)
+ 2.829

√
ln(4/δ)

n
. (2)

(Throughout this paper logb denotes the logarithm to the base b and ln denotes the natural
logarithm.)

Before stating the first two main theorems, we need to introduce the notion of covering
and packing numbers. Let (S, ρ) be a metric space. For ε > 0, the ε-covering number
Nρ(ε, S) of S is defined as the minimum number of open balls of radius ε in S whose union
covers S. (If no such finite cover exists, we formally define Nρ(ε, S) = ∞.)

A set W ⊂ S is said to be ε-separated if ρ(x, y) ≥ ε for all distinct x, y ∈ W . The
ε-packing number Mρ(ε, S) is defined as the maximum cardinality of an ε separated subset
of S.
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For xn
1 = (x1, . . . , xn) ∈ X n and a family G of functions mapping X into R, let Gxn

1

denote the subset of R
n given by

Gxn
1

=
{

(g(x1), . . . , g(xn)) : g ∈ G}.

Let ρ∞ denote the l∞ metric on R
n, given for any un

1 , vn1 ∈ R
n by ρ∞(un

1 , vn1 ) = max1≤i≤n |ui−
vi| and, for ε > 0 and xn

1 ∈ X n, define

N∞(ε,G, xn
1 ) = Nρ∞(ε,Gxn

1
)

and

M∞(ε,G, xn
1 ) = Mρ∞(ε,Gxn

1
).

The next result is an improvement over (2) in that we are able to replace the worst-case
fat-shattering dimension fatF ,n(γ/8) by its empirical counterpart fatF ,Xn

1
(γ/8). Since for

certain “lucky” distributions of the data the improvement is significant, such an empirical
bound can play a crucial role in model selection.

Theorem 1 Let F be a class of real measurable functions on X , let γ > 0, and set d(Xn
1 ) =

fatF ,Xn
1

(γ/8). Then for any 0 < δ < 1, the probability that all f ∈ F satisfy

L(f) ≤ L̂γ
n(f) +

√
1
n

(
9d(Xn

1 ) + 12.5 ln
8
δ

)
ln

(
32en

d(Xn
1 )

)
ln(128n)

is greater than 1 − δ.

The following result improves Theorem 1 if L̂γ
n(f) is very small.

Theorem 2 Consider the notation of Theorem 1. Then for any 0 < δ < 1, the probability
that all f ∈ F satisfy

L(f) ≤ inf
α>0

[
(1 + α) L̂γ

n(f) +
1 + α

nα

(
18d(Xn

1 ) + 25 ln
8
δ

)
ln

(
32en

d(Xn
1 )

)
ln(128n)

]
is greater than 1 − δ.

The proofs of Theorems 1 and 2 are found in Section 6.
The result of Shawe-Taylor and Williamson (1999) assumes L̂γ

n(f) = 0 and in that case
states an inequality similar to the second inequality of Theorem 2.

Remark. As a reviewer pointed out to us, the factor (1 + α)/α in the second term of the
upper bound in the theorem may be replaced by (1 + 4α + α2)/(4α). This improves the
bound by a constant factor whenever α <

√
3.
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3. An alternative data-based bound

In this section we propose another new data-dependent upper bound for the probability of
error. The estimate is close, in spirit, to the recently introduced estimates of Koltchinskii
and Panchenko (2002) based on Rademacher complexities, and the maximum discrepancy
estimate of Bartlett, Boucheron, and Lugosi (2001).

Assume that n is even, and, for each f ∈ F , consider the empirical error

L̂
(2)
n/2(f) =

2
n

n∑
i=n/2+1

I{sgn(f(Xi)−1/2) 
=Yi}

measured on the second half of the data. This may be compared with the sample error of
f , with respect to margin γ, measured on the first half of the data

L̂γ
n/2(f) =

2
n

n/2∑
i=1

I{margin(f(Xi),Yi)<γ} .

We have the following data-based estimate for the probability of error of any classifier in
F :

Theorem 3 Let F be a class of real measurable functions on X , let γ > 0. Then for any
0 < δ < 1/2, the probability that all f ∈ F satisfy

L(f) < L̂γ
n(f) + sup

f ′∈F

(
L̂
(2)
n/2(f

′) − L̂γ
n/2(f

′)
)

+ 3

√
ln(2/δ)

2n

is at least 1 − δ.

The proof is postponed to Section 6.

Remark. Theorem 3 is, modulo a small constant factor, always at least as good as Theo-
rem 1. This may be seen by observing that by concentration of supf∈F

(
L̂
(2)
n/2(f) − L̂γ

n/2(f)
)

(which can be easily quantified using the bounded difference inequality (McDiarmid, 1989)),

sup
f∈F

(
L̂
(2)
n/2(f) − L̂γ

n/2(f)
)
≈ E sup

f∈F

(
L̂
(2)
n/2(f) − L̂γ

n/2(f)
)

with very large probability. By inspecting the proof of Theorem 1 it is easy to see that this
expectation, with very large probability, does not exceed a quantity of the form

c

√
1
n

(
d(Xn

1 ) + ln
1
δ

)
ln

(
32en

d(Xn
1 )

)
ln(n)

for an appropriate constant c. The details are omitted.
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4. Convex hulls

In this section we consider an important class of special cases. Let H be a class of “base”
classifiers, that is, a class of functions h : H → {0, 1}. Then we may define the class F of
all (finite) convex combinations of elements of H by

F =

{
f(x) =

N∑
i=1

wihi(x) : N ≥ 1, w1, . . . , wN ≥ 0,
N∑
i=1

wi = 1, h1, . . . , hN ∈ H
}

. (3)

Voting methods such as bagging and boosting choose a classifier from a class of classifiers
of the above form. A practical disadvantage of the upper bounds appearing in Theorems 1
and 3 is that their computation may be prohibitively complex. For example, the bound of
Theorem 3 involves optimization over the whole class F . In the argument below we show,
using ideas of Koltchinskii and Panchenko (2002), that at the price of weakening the bound
of Theorem 3 we may obtain a data-dependent bound whose computation is significantly
less complex than that of the bound of Theorem 3. Observe that to calculate the upper
bound of the theorem below, it suffices to optimize over the “small” class of base classifiers
H.

Theorem 4 Let F be a class of the form (3). Then for any 0 < δ < 1/2 and γ > 0, the
probability that all f ∈ F satisfy

L(f) < L̂γ
n(f) +

1
γ

sup
h∈H

(
L̂
(1)
n/2(h) − L̂

(2)
n/2(h)

)
+

(
5 +

2
γ

)√
ln(4/δ)

2n

is at least 1 − δ, where L̂
(1)
n/2(h) = 2

n

∑n/2
i=1 I{sgn(h(Xi)−1/2) 
=Yi}.

The proof, based on arguments of Koltchinskii and Panchenko (2002) and concentration
inequalities, is given in Section 6.

Remark. To interpret this new bound note that, for all δ > 0, by the bounded difference
inequality (McDiarmid, 1989), with probability at least 1 − δ,

sup
h∈H

(
L̂
(1)
n/2(h) − L̂

(2)
n/2(h)

)
≤ E sup

h∈H

(
L̂
(1)
n/2(h) − L̂

(2)
n/2(h)

)
+

√
2 ln(1/δ)

n
.

The expectation on the right-hand side may be further bounded by the Vapnik-Chervonenkis
inequality (see Devroye and Lugosi, 2000, for this version):

E sup
h∈H

(
L̂
(1)
n/2(h) − L̂

(2)
n/2(h)

)
≤

√
8E log2 SH(Xn

1 )
n

where SH(Xn
1 ) is the random shatter coefficient, that is, the number of different ways the

data points X1, . . . , Xn can be classified by elements of the base class H. We may convert
this bound into another data-dependent bound by recalling that, by Boucheron et al. (2000,
Theorem 4.2), log2 SH(Xn

1 ) is strongly concentrated around its mean. Putting the pieces
together, we obtain that, with probability at least 1 − δ, all f ∈ F satisfy

L(f) < L̂γ
n(f) +

4
γ

√
log2 SH(Xn

1 )
n

+
(

5 +
12
γ

)√
ln(8/δ)

2n
.
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Remark. The bound of Theorem 4 may be significantly weaker than that of Theorem 3.
As an example, consider the case when X = [0, 1], and let H be the class of all indicator
functions of intervals in R. In this case, Anthony and Bartlett (1999, Theorem 12.11) shows
that fatF ,n(γ) ≤ 2/γ+1, and therefore Theorem 1 (and even (2)) yields a bound of the order

O

(√
ln2 n/(γn)

)
. Thus, the dependence of the bound of Theorem 4 on γ is significantly

worse than those of Theorems 1 and 3. This is the price we pay for computational feasibility.
It is an interesting problem to determine the optimal dependence of the bounds on the
margin parameter γ.

5. Examples

In this section we present three examples of function classes for which the empirical fat-
shattering dimension may be either computed exactly or bounded efficiently.

5.1 Example 1: convex hulls of one-dimensional piecewise-linear sigmoids

Consider the problem of measuring the empirical fat-shattering dimension of a simple func-
tion class, the class of convex combinations of one-dimensional “piecewise-linear sigmoids”
with bounded slope. Our results here show that, at least in one-dimension, it is possible to
measure the empirical fat-shattering dimension in polynomial time, and that the empirical
fat-shattering dimension measured on a given data set can be considerably lower than the
worst-case fat-shattering dimension.

Consider the family Gα of one-dimensional piecewise-linear sigmoids with bounded slope.
Formally, for xa, xb, ya, yb ∈ R such that xa < xb, let

g(xa,xb,ya,yb)(x) =


ya if x ≤ xa

yb if x ≥ xb

ya + yb−ya

xb−xa
(x − xa) otherwise

and let Gα = {g(xa,xb,ya,yb) :
∣∣∣ yb−ya

xb−xa

∣∣∣ ≤ 2α}. Let Fα be the set of functions constructed
by (3) using Gα as the set of base classifiers. The next lemma will serve as a basis for a
constructive algorithm that can measure fatFα,xn

1
(γ) on any data set xn

1 = {x1, . . . , xn} ⊂ R.

Lemma 5 An ordered set xn
1 = {x1, . . . , xn} ⊂ R, xi < xi+1, i = 1, . . . , n− 1, is γ-shattered

by Fα if and only if
n∑

i=2

1
di

≤ α

γ
(4)

where di = xi − xi−1.

The proof of Lemma 5 is found in Section 6.
Lemma 5 shows that to find the empirical fat-shattering dimension of a data set xn

1 , we
have to find the largest subset of xn

1 for which (4) holds. Suppose that the points of xn
1 are

indexed in increasing order, and let dij = xi − xj . First consider the problem of finding a
subsequence of xn

1 of length k that minimizes the cost
∑k−1

i=1
1

dji+1,ji
over all subsequences
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of length k. Let S(k; p, r) = (xp = xj1 , . . . , xjk+1
= xr) denote the optimal subsequence of

length k + 1 between xp and xr, and let C(k; p, r) =
∑k

i=1
1

dji,ji+1
be the cost of S(k; p, r).

Observe that any subsequence (xji , . . . , xji+	−1
) of S(k; p, r) of length + is optimal over all

subsequences of length + between xji and xji+	−1
, so C(k; p, r) can be defined recursively as

C(k; p, r) =


1

dp,r
if k = 1

min
q:p+k−1≤q≤r−1

(
C(k − 1; p, q) + C(1; q, r)

)
if k > 1.

Observe also that if C(k−1; 1, r) is known for all the O(n) different indices r, then C(k; 1, r)
can be calculated in O(n2) time for all r. Thus, by using a dynamic programming ap-
proach, we can find the sequence C(1; 1, n), C(2; 1, n), . . . , C(k; 1, n) in O(n2k) time. To
compute fatFα,xn

1
(γ), notice that fatFα,xn

1
(γ) = k if and only if C(k−1; 1, n) ≤ α

γ and either
C(k; 1, n) > α

γ or k = n. The algorithm is given formally in Figure 1.

FatLinearSigmoid(X, α, γ)

1 n ← X.length
2 for p ← 1 to n − 1 do
3 for r ← p + 1 to n do
4 C[1, p, r] ← 1

X[r]−X[p]
5 k ← 1
6 while C[k, 1, n] ≤ α

γ do
7 k ← k + 1
8 if k = n then
9 return k

10 for r ← k + 1 to n do
11 C[k, 1, r] ← ∞
12 for q ← k to r − 1 do
13 c ← C[k − 1, 1, q] + C[1, q, r]
14 if c < C[k, 1, r] then
15 C[k, 1, r] ← c
16 return k

Figure 1: FatLinearSigmoid(X, α, γ) computes fatFα,xn
1
(γ) in O(n2 fatFα,xn

1
) time. The input

array X contains the data points in increasing order.

It is clear from Lemma 5 that the worst-case fat-shattering dimension fatFα,n(γ) = n for
all γ > 0 if the data points may take any value in R. Thus, the data-dependent dimension
fatFα,xn

1
(γ) presents a qualitative improvement. If the data points x1, . . . , xn are restricted

to fall in the an interval of length A then it follows from Lemma 5 and the inequality
between arithmetic and harmonic means that fatFα,n(γ) =

⌊√
Aα/γ

⌋
+ 1. This upper

bound is achieved by equispaced data points. Even in this case, the empirical fat-shattering
dimension may be significantly smaller than its worst-case upper bound, and the differ-
ence is larger if the data points are very unevenly distributed. To experimentally quantify
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this intuition, we compared the fat-shattering dimension of data sets drawn from different
distributions over [0, 1]. Figure 2(a) shows that even in the case of uniform distribution,
for high α/γ ratio we gain approximately 20% over the data-independent fat-shattering
dimension. As the points become more and more unevenly distributed (Gaussian distri-
butions with decreasing standard deviations), the difference between the data-independent
and data-dependent fat-shattering dimensions increases.

(a)
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0 500 1000 1500 2000

Empirical fat dimension in terms of class complexity and margin

data independent
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Gaussian, σ = 0.01

Gaussian, σ = 0.001

√
α/γ

fa
t F

α
,x

n 1
(γ
)

(b)
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uniform
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√
α/γ

⌊ √ A
n
α
/
γ
⌋ +

1

Figure 2: The first figure shows the empirical fat-shattering dimensions of different data sets as a
function of the class complexity α and the margin γ. The second figure indicates the
upper bound (5) based on the empirical diameter An of the data. The solid lines in both
figures show the data-independent fat-shattering dimension fatFα,n(γ) =

⌊√
Aα/γ

⌋
+ 1

achieved by equispaced data points. We generated data sets of 1000 points drawn from
the uniform distribution in [0, 1], and from the mixture of two identical Gaussians with
means 1/4 and 3/4, and standard deviations indicated by the figure. The Gaussian
mixtures were truncated to [0, 1] to keep their data-independent fat-shattering dimension
finite.

The empirical diameter An = maxi xi − mini xi can also be used to bound the data-
dependent fat-shattering dimension from above since

fatFα,xn
1
(γ) ≤

⌊√
Anα/γ

⌋
+ 1. (5)

The computation of (5) is, of course, trivial. Figure 2(b) shows that if the empirical di-
ameter An is significantly smaller then the a-priori diameter A, the bound (5) can provide
an improvement over the data-independent fat-shattering dimension. Such simple upper
bounds for the empirical fat-shattering dimension may be useful in practice and may be
easy to obtain in more general situations as well. However, if the data is unevenly dis-
tributed in the empirical support [mini xi, maxi xi], fatFα,xn

1
(γ) can be much smaller than

the empirical diameter-based bound (5).
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5.2 Example 2: one-dimensional piecewise-linear sigmoids with Lp constraint

In the practice of neural networks, the L2 regularization constraint is more often considered
than boosting’s L1 constraint mainly because it is easier to optimize an objective function
with an L2 constraint. Below we consider the general case of Lp regularization constraint.
Interestingly, the empirical fat-shattering dimensions of such classes depend not only on the
weight constraint but also on the number of neurons as we show below in a one-dimensional
example.

Consider the class of linear combinations of N one-dimensional piecewise-linear sigmoids
with an Lp constraint,

Fα,N,p =

{
f(x) =

N∑
i=1

wigi(x) : w1, . . . , wN ≥ 0,
N∑
i=1

wp
i ≤ 1, g1, . . . , gN ∈ Gα

}

where p ≥ 1, and Gα is the same as in Example 1. First, observe that Jensen’s inequality
implies (

1
N

N∑
i=1

wj

)p

≤ 1
N

N∑
i=1

wp
j ≤ 1

N
,

so using the second half of the proof of Lemma 5 we can show the following.

Lemma 6 If an ordered set xn
1 = {x1, . . . , xn} ⊂ R, xi < xi+1, i = 1, . . . , n − 1, is γ-

shattered by Fα,N,p, then
n∑

i=2

1
di

≤ α

γ
N

p−1
p (6)

where di = xi − xi−1.

Unfortunately, we cannot prove the reverse statement, i.e., that (6) implies that Fα,N,p

γ-shatters xn
1 . However, the size of the largest subset of xn

1 for which (6) holds is an
upper bound of fatFα,N,p,x

n
1
(γ), so it can be used to upper bound the error probability in

Theorem 1. To find the largest subset, we can use Algorithm FatLinearSigmoid with
line 6 replaced by

6 while C[k, 1, n] ≤ α
γ N

p−1
p do

5.3 Example 3: multivariate Lipschitz functions

In this section we consider a simple multivariate function class, the class of Lipschitz func-
tions

Lip2α = {f : R
d → R,∀x, y ∈ R

d : ‖f(x) − f(y)‖ ≤ 2α‖x − y‖}.

Although this function class is seldom used in practice, it has the same “flavor” as some
function classes used in practical algorithms (such as the support vector machines or neural
networks with weight decay) that control the capacity of the classifiers by implicitly con-
straining the slope of the underlying discriminant functions. Of course Lip2α is easier to
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deal with since function classes used by practical algorithms tend to have data-dependent,
non-uniform constraints on their slope.

We first show that the computation of the exact empirical fat-shattering dimension of
this class is NP-hard. Then we describe a greedy approximation algorithm that computes
lower and upper bounds of the empirical fat-shattering dimension in polynomial time. We
demonstrate on real data sets that the upper bound can be by several orders of magnitude
better then the data-independent fat-shattering dimension, especially if the data dimension
is large.

To show that the computation of the exact empirical fat-shattering dimension of class
Lip2α is NP-hard, we rely on the following simple fact.

Lemma 7 A set xn
1 = {x1, . . . , xn} ⊂ R

d, is γ-shattered by Lip2α if and only if no two
points in xn

1 are closer to each other than
γ
α .

Proof. By the definition of Lip2α, if two points are closer than γ
α , then no f ∈ Lip2α can

separate the two points with different labels by a margin of 2γ. On the other hand, if no
two points in xn

1 are closer to each other than γ
α , then for any labeling {y1, . . . , yn} ∈ {0, 1}n

we can construct a γ-separating function in Lip2α in the following way. For each xi ∈ xn
1

let

fi(x) =

{
(2yi − 1)(γ − ‖x − xi‖2α) if ‖x − xi‖ ≤ γ

2α ,

0 otherwise,

and let f(x) =
∑n

i=1 fi(x). Each fi is in Lip2α, and at every point x ∈ R
d at most one

function fi can take a nonzero value so f ∈ Lip2α. At the same time, since f(xi) = fi(xi) =
(2yi − 1)γ, f γ-separates xn

1 . �

Thus, to find the empirical fat-shattering dimension fatLip2α,x
n
1
(γ) we have to find the

size of the largest subset of xn
1 that satisfies the condition of Lemma 7. To this end, we

define a graph Gα,γ(V, E) where V = xn
1 and two points are connected with an edge if

and only if they are closer to each other than γ
α . Finding the size of the largest subset of

xn
1 that satisfies the condition of Lemma 7 is equivalent to finding the size of a maximum

independent vertex set MaxInd(G) of Gα,γ , which is an NP-hard problem. There are
results that show that for a general graph, even the approximation of MaxInd(G) within a
factor of n1−ε, for any ε > 0, is NP-hard (Hastad, 1996). On the positive side, it was shown
that for such geometric graphs as Gα,γ , MaxInd(G) can be approximated arbitrarily well
by polynomial time algorithms (Erlebach et al., 2001). However, approximating algorithms
of this kind scale exponentially with the data dimension both in terms of the quality of the
approximation and the running time1 so they are of little practical use for d > 2. Hence,
instead of using these algorithms, we apply a greedy approximation method that provides
lower and upper bounds of fatLip2α,x

n
1
(γ) in polynomial time in both n and d.

The approach is based on the basic relation between packing and covering numbers.
Let N (r, xn

1 ) be the smallest subset of xn
1 such that for every x ∈ xn

1 there exists a point c
(called center) in N (r, xn

1 ) such that ‖x − c‖ ≤ r, and let M(r, xn
1 ) be the largest subset of

1. Typically, the computation of an independent vertex set of G of size at least
(
1− 1

k

)d
MaxInd(G) requires

O(nkd

) time.
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xn
1 such that for every c1, c2 ∈ M(r, xn

1 ), ‖c1 − c2‖ > r. For notational simplicity we will
denote N (r, xn

1 ) and M(r, xn
1 ) by Nr and Mr, respectively. Let Nr = |Nr| and Mr = |Mr|.

By the definition of Mr and fatLip2α,x
n
1
(γ) it is clear that fatLip2α,x

n
1
(γ) = Mγ/α, and it is

well known that Mr ≤ Nr/2. To find the exact values of Mr and Nr/2 is a hard problem.
However, the size of any r-packing is a lower bound to Mr, and the size of any r

2 -covering
is an upper bound. To compute these lower and upper bounds, we designed two algorithms
that, for each ri in a predefined sequence r1, r2, . . . , rN , construct an ri-packing and an ri

2 -
covering, respectively, of xn

1 . We omit the details of these algorithms but show on Figure 3
the results on four datasets2 from the UCI data repository (Blake et al., 1998).

It is clear from Lemma 7 that the worst-case fat-shattering dimension fatLip2α,n(γ) = n
for all γ > 0 if the data points may take any value in R

d. If the support S of the data
distribution is finite, then fatLip2α,n(γ) is equal to the γ

α -packing number of S which can
still be by several orders of magnitude larger than the data-independent fat-shattering
dimension, especially if the data dimension is large.

6. Proofs

The main ideas behind the the proofs of Theorems 1 and 2 are rather similar. Both proofs
use, in a crucial way, the fact that the empirical fat shattering dimension is sharply con-
centrated around its expected value. However, to obtain the best bounds, the usual sym-
metrization steps need to be revisited and appropriate modifications have to be made. We
give the somewhat more involved proof of Theorem 2 in detail, and only indicate the main
steps of the proof of Theorem 1. In both proofs we let (Xi, Yi), i = n + 1, . . . , 2n, be i.i.d.
copies of (X, Y ), independent of Dn, and define, for each f ∈ F ,

L̂′
n(f) =

1
n

2n∑
i=n+1

I{sgn(f(Xi)−1/2) 
=Yi} and L̂′γ
n(f) =

1
n

2n∑
i=n+1

I{margin(f(Xi),Yi)<γ}.

Proof of Theorem 2

Step 1 For any positive measurable function ε(Xn
1 ) of Xn

1 ,

P
{
∃f ∈ F : L(f) > inf

α>0

[
(1 + α) L̂γ

n(f) + ε2(Xn
1 )

1 + α

α

]}
≤ P

{
sup
f∈F

L(f) − L̂γ
n(f)√

L(f)
> ε(Xn

1 )

}

Proof. Assume that the event supf∈F (L(f) − L̂γ
n(f))/

√
L(f) > ε(Xn

1 ) does not occur.
Then for all f ∈ F , we have L(f) − L̂γ

n(f) ≤ ε(Xn
1 )

√
L(f). There are two cases. Either

2. In a preprocessing step, categorical attributes were binary coded in a 1-out-of-n fashion. Data points with
missing attributes were removed. Each attribute was normalized to have zero mean and 1/

√
d standard

deviation. The four data sets were the Wisconsin breast cancer (n = 683, d = 9), the ionosphere
(n = 351, d = 34), the Japanese credit screening (n = 653, d = 42), and the tic-tac-toe endgame
(n = 958, d = 27) database.
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Figure 3: Upper and lower bounds of fatLip2α,xn
1
(γ) for four datasets from the UCI data repository.

f ∈ F is such that L(f) < (1 + 1/α)2ε(Xn
1 )2 or L(f) ≥ (1 + 1/α)2ε(Xn

1 )2. In the first case,

L(f) ≤ L̂γ
n(f) + (1 + 1/α)ε(Xn

1 )2 .

In the second case L(f) ≤ L̂γ
n(f) + L(f)/(1 + 1/α), which, after rearranging, implies

L(f) ≤ L̂γ
n(f)(1 + α).

Thus, for every f ∈ F ,

L(f) ≤ inf
α>0

[
L̂γ
n(f)(1 + α) + (1 + 1/α)ε(Xn

1 )2
]

which implies the statement.

Step 2 For any n ≥ 1 and measurable function ε(Xn
1 ) of Xn

1 such that nε2(Xn
1 ) ≥ 2 with

probability one,

P

{
sup
f∈F

L(f) − L̂γ
n(f)√

L(f)
> ε(Xn

1 )

}
≤ 4P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
(L̂′

n(f) + L̂γ
n(f))/2

> ε(Xn
1 )

 .
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Proof. Define F ′, a random subset of F , by

F ′ = F ′(Xn
1 ) =

{
f ∈ F : L(f) − L̂γ

n(f) > ε(Xn
1 )

√
L(f)

}
and note that I{F ′=∅} and X2n

n+1 are independent. Observe that if f ∈ F ′ (implying L(f) >

ε2(Xn
1 ) > 0) and additionally L̂′

n(f) ≥ L(f) (implying also L̂′
n(f) > L̂γ

n(f)), then

L̂′
n(f) − L̂γ

n(f)√
(L̂′

n(f) + L̂γ
n(f))/2

≥ L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f)
=

√
L̂′

n(f)− L̂γ
n(f)√

L̂′
n(f)

≥
√

L(f)− L̂γ
n(f)√
L(f)

> ε(Xn
1 ).

On the other hand, conditioning on Xn
1 , for f ∈ F ′ (using that nL(f) > nε2(Xn

1 ) ≥ 2) it is
known that P{L̂′

n(f) > L(f)|Xn
1 } ≥ 1/4 (Slud, 1977, see, e.g.,)). Thus

P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
(L̂′

n(f) + L̂γ
n(f))/2

> ε(Xn
1 )

 ≥ P{∃f ∈ F ′ : L̂′
n(f) > L(f)}

= E
[
P{∃f ∈ F ′ : L̂′

n(f) > L(f)|Xn
1 }

]
≥ E

[
I{F ′ 
=∅} sup

f∈F ′
P{L̂′

n(f) > L(f)|Xn
1 }

]
≥ 1

4
P{F ′ �= ∅}

=
1
4
P

{
sup
f∈F

L(f) − L̂γ
n(f)√

L(f)
> ε(Xn

1 )

}
.

Step 3 For any ε > 0,

P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

>

√(
9
n

d(Xn
1 ) +

ε2

2

)
ln

(
32en

d(Xn
1 )

)
ln(128n)


≤ P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

>

√(
3
n

d(X2n
1 ) +

ε2

4

)
ln

(
32en

d(X2n
1 )

)
ln(128n)

 + e−
nε2

25

Proof. Define the event A = {d(X2n
1 ) > 3d(Xn

1 ) + nε2/12}. Then we can write

P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

>

√(
9
n

d(Xn
1 ) +

ε2

2

)
ln

(
32en

d(Xn
1 )

)
ln(128n)


≤ P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

>

√(
9
n

d(Xn
1 ) +

ε2

2

)
ln

(
32en

d(Xn
1 )

)
ln(128n) , Ac

 + P{A}

≤ P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

>

√(
3
n

d(X2n
1 ) +

ε2

4

)
ln

(
32en

d(X2n
1 )

)
ln(128n) , Ac

 + P{A}
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≤ P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

>

√(
3
n

d(X2n
1 ) +

ε2

4

)
ln

(
32en

d(X2n
1 )

)
ln(128n)

 + P{A}.

It remains to show that P{A} ≤ e−
nε2

25 . If A occurs, then, letting M = nε2/12,

3d(Xn
1 ) + M < d(X2n

1 ) ≤ d(Xn
1 ) + d(X2n

n+1),

and hence d(X2n
n+1) > 2d(Xn

1 ) + M . Moreover, by Chernoff’s bounding method for any
λ > 0,

P{A} ≤ P{d(X2n
n+1) > 2d(Xn

1 ) + M} = P{eλ(d(X
2n
n+1)−2d(Xn

1 )−M) > 1}
≤ E

[
eλ(d(X

2n
n+1)−2d(Xn

1 )−M)
]

= E
[
eλd(X

2n
n+1)

]
E
[
e−2λd(Xn

1 )
]
e−λM

= E
[
eλd(X

n
1 )
]
E
[
e−2λd(Xn

1 )
]
e−λM , (7)

since X1, . . . , X2n are i.i.d. The random fat-shattering dimension d(Xn
1 ) is a configuration

function in the sense of Boucheron et al. (2000, Section 3), and therefore it satisfies the
concentration inequality given in equation (18) of Boucheron et al. (2000): for any λ ∈ R,

lnE
[
eλ(d(X

n
1 )−Ed(Xn

1 ))

]
≤ E

[
d(Xn

1 )
]
(eλ − λ − 1).

This and (7) imply

P{A} ≤ E
[
eλd(X

n
1 )
]
E
[
e−2λd(Xn

1 )
]
e−λM ≤ e(e

λ−1)Ed(Xn
1 )e(e

−2λ−1)Ed(Xn
1 )e−λM

= e(e
λ+e−2λ−2)Ed(Xn

1 )−λM = e− ln(
√

5+1
2

)M < e− ln(
√

5+1
2

)nε2

12

< e−
nε2

25 ,

where in the second equality we set λ = ln(
√
5+1
2 ) so that eλ + e−2λ − 2 = 0.

Step 4 For γ > 0, let πγ : R → [1/2 − γ, 1/2 + γ] be the “hard-limiter” function

πγ(t) =


1/2 − γ if t ≤ 1/2 − γ

t if 1/2 − γ < t < 1/2 + γ

1/2 + γ if t ≥ 1/2 + γ

and set πγ(F) = {πγ ◦ f : f ∈ F}. Then for any ε > 0,

P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

>

√(
3
n

d(X2n
1 ) +

ε2

4

)
ln

(
32en

d(X2n
1 )

)
ln(128n)


≤ P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

>

√
2
n

lnN∞(γ/2, πγ(F), X2n
1 ) + 4ε2

 .(8)
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Proof. The probability on the left hand side is upper bounded by

P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

>

√
3
n

d(X2n
1 ) ln

(
32en

d(X2n
1 )

)
ln(128n) + 4ε2

 ,

since ln( 32en
d(X2n

1 )
) ln(128n) ≥ ln(16e) ln(128) > 16.

The following upper bound on the random covering number of πγ(F) in terms of the
random fat-shattering dimension of F is given in Anthony and Bartlett (1999, Theorem
12.13):

N∞(γ/2, πγ(F), Xn
1 ) ≤ 2(64n)d(X

n
1 ) log2(16en/d(X

n
1 )). (9)

It is easy to see that (9) implies

2 lnN∞(γ/2, πγ(F), X2n
1 ) ≤ 3d(X2n

1 ) ln
(

32en

d(X2n
1 )

)
ln(128n)

and hence (8) holds.

Step 5 Suppose G is a minimal γ/2-cover of πγ(F) and σ1, . . . , σn are i.i.d. Rademacher
random variables (i.e., P{σ1 = 1} = P{σ1 = −1} = 1/2) which are also independent of
(Xi, Yi)2ni=1. Then for any positive measurable function β(X2n

1 ) of X2n
1 that depends only on

the set {X1, . . . , X2n},

P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

> β(X2n
1 )


≤ P

{
max
g∈G

∑n
i=1 σi(I

γ/2
n+i(g) − I

γ/2
i (g))√

w(g)
>

√
nβ(X2n

1 )

}
,

where Iγi (g) = I{margin(g(Xi),Yi)<γ} and w(g) =
∑n

i=1

∣∣∣Iγ/2n+i(g) − I
γ/2
i (g)

∣∣∣.
Proof. Recall that G is a set of functions with |G| = N∞(γ/2, πγ(F), X2n

1 ) elements such
that for any f ∈ F there exists a g ∈ G such that maxi≤2n |πγ(f(Xi)) − g(Xi)| < γ/2.
Observe that if f and g are such that maxi≤2n |πγ(f(Xi)) − g(Xi)| < γ/2, then

I{sgn(f(Xi)−1/2) 
=Yi} ≤ I{margin(g(Xi),Yi)<γ/2} , i = 1, . . . , 2n

and
I{margin(f(Xi),Yi)<γ} ≥ I{margin(g(Xi),Yi)<γ/2} , i = 1, . . . , 2n ,

which imply L̂′
n(f) ≤ L̂′γ/2

n (g) and L̂γ
n(f) ≥ L̂

γ/2
n (g). Thus, noting that the function

F (x, y) = (x − y)/
√

x + y is increasing in x and decreasing in y for x ≥ 0 and y ≥ 0, we
also have

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

≤ L̂′γ/2
n (g) − L̂γ

n(f)√
L̂′γ/2

n (g) + L̂γ
n(f)

≤ L̂′γ/2
n (g) − L̂

γ/2
n (g)√

L̂′γ/2
n (g) + L̂

γ/2
n (g)

.
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Thus, with Iγi (g) and w(g) as above, we see that

P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

> β(X2n
1 )


≤ P

max
g∈G

L̂′γ/2
n (g) − L̂

γ/2
n (g)√

L̂′γ/2
n (g) + L̂

γ/2
n (g)

> β(X2n
1 )


= P

max
g∈G

1
n

∑n
i=1(I

γ/2
n+i(g) − I

γ/2
i (g))√

1
n

∑n
i=1(I

γ/2
n+i(g) + I

γ/2
i (g))

> β(X2n
1 )


≤ P

{
max
g∈G

∑n
i=1(I

γ/2
n+i(g) − I

γ/2
i (g))√

w(g)
>

√
nβ(X2n

1 )

}
.

To finish the proof, observe that the last probability does not change if for i ≤ n, (Xi, Yi)
is exchanged with (Xn+i, Yn+1). In particular, if σ1, . . . , σn are i.i.d. Rademacher random
variables which are also independent of (Xi, Yi)2ni=1, then the last probability equals

P

{
max
g∈G

∑n
i=1 σi(I

γ/2
n+i(g) − I

γ/2
i (g))√

w(g)
>

√
nβ(X2n

1 )

}
.

Step 6 Set

β(Xn
1 ) =

√
2
n

lnN∞(γ/2,H, X2n
1 ) + 4ε2,

where ε > 0. Then

P

{
max
g∈G

∑n
i=1 σi(I

γ/2
n+i(g) − I

γ/2
i (g))√

w(g)
>

√
nβ(X2n

1 )

}
≤ e−2nε2 . (10)

Proof. We need the following well-known lemma:

Lemma 8 Let σ > 0, N ≥ 2, and let Z1, . . . , ZN be real-valued random variables such that
for all s > 0 and 1 ≤ i ≤ N , E

[
esZi

] ≤ es
2σ2/2. Then

P
{

max
i≤N

Zi > ε

}
≤ Ne−ε2/2σ2

.

Define the zero-mean random variables

Z(g) =
∑n

i=1 σi(I
γ/2
n+i(g) − I

γ/2
i (g))√

w(g)
,

and observe that, by Hoeffding’s inequality (Hoeffding, 1963), for any s > 0 and g ∈ G,
Z(g) satisfies

E
[
esZ(g)

∣∣∣(Xi, Yi)2ni=1

]
=

n∏
i=1

E
[
e
s

σi(I
γ/2
n+i

(g)−I
γ/2
i

(g))√
w(g)

∣∣∣(Xi, Yi)2ni=1

]
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≤
(

es
2/2w(g)

)w(g) · 1n−w(g) = es
2/2.

The proof is finished by applying Lemma 8 to the |G| = N∞(γ/2, πγ(F), X2n
1 ) random

variables {Z(g) : g ∈ G}, if we first condition on (Xi, Yi)2ni=1:

P
{

max
g∈G

Z(g) >
√

nβ(X2n
1 )

∣∣∣(Xi, Yi)2ni=1

}
≤ |G|e−nβ2(X2n

1 )/2

= e−2nε2

which implies (10).

Now it is a simple matter to to obtain the theorem. In Steps 1 and 2, we set

ε(Xn
1 ) =

√(
18
n

d(Xn
1 ) + ε2

)
ln

(
32en

d(Xn
1 )

)
ln(128n),

where nε2 ≥ 2 so that nε2(Xn
1 ) ≥ 2. Also, in Step 5 we set

β(Xn
1 ) =

√
2
n

lnN∞(γ/2,H, X2n
1 ) + 4ε2.

Then for any α > 0, Steps 1-6 imply

P

{
sup
f∈F

(L(f) − (1 + α) L̂γ
n(f)) >

1 + α

α

(
18
n

d(Xn
1 ) + ε2

)
ln

(
32en

d(Xn
1 )

)
ln(128n)

}

≤ P

{
sup
f∈F

L(f) − L̂γ
n(f)√

L(f)
>

√(
18
n

d(Xn
1 ) + ε2

)
ln

(
32en

d(Xn
1 )

)
ln(128n)

}

≤ 4P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
(L̂′

n(f) + L̂γ
n(f))/2

>

√(
18
n

d(Xn
1 ) + ε2

)
ln

(
32en

d(Xn
1 )

)
ln(128n)


< 4P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

>

√(
3
n

d(X2n
1 ) +

ε2

4

)
ln

(
32en

d(X2n
1 )

)
ln(128n)

 + 4e−
nε2

25

≤ 4P

sup
f∈F

L̂′
n(f) − L̂γ

n(f)√
L̂′

n(f) + L̂γ
n(f)

>

√
2
n

lnN∞(γ/2,H, X2n
1 ) + 4ε2

 + 4e−
nε2

25

≤ 4P

{
max
g∈G

∑n
i=1 σi(I

γ/2
n+i(g) − I

γ/2
i (g))√

w(g)
>

√
2 lnN∞(γ/2,H, X2n

1 ) + 4nε2

}
+ 4e−

nε2

25

≤ 4e−2nε2 + 4e−
nε2

25

< 8e−
nε2

25 .

If nε2 ≤ 2, the same bound obviously holds. Substituting ε2 = 25
n ln 8

δ yields the theorem.
�
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Proof of Theorem 1

Step 1 For any n ≥ 1 and measurable function ε(Xn
1 ) of Xn

1 such that nε2(Xn
1 ) ≥ 2 with

probability one, we have

P

{
sup
f∈F

(L(f) − L̂γ
n(f)) > ε(Xn

1 )

}
≤ 4P

{
sup
f∈F

(
L̂′

n(f) − L̂γ
n(f)

)
> ε(Xn

1 )

}
.

Proof. Define F ′, a random subset of F , by

F ′ = F ′(Xn
1 ) = {f ∈ F : L(f) − L̂γ

n(f) > ε(Xn
1 )}

and note that I{F ′=∅} and X2n
n+1 are independent. As in Step 2 of the previous proof,

nL(f) > nε2(Xn
1 ) ≥ 2 implies that for any f ∈ F ′, P{L̂′

n(f) > L(f)|Xn
1 } ≥ 1/4, and the

argument used there also shows that

P

{
sup
f∈F

(
L̂′

n(f) − L̂γ
n(f)

)
> ε(Xn

1 )

}
≥ 1

4
P{F ′ �= ∅} =

1
4
P

{
sup
f∈F

(
L(f) − L̂γ

n(f)
)

> ε(Xn
1 )

}
.

Step 2 For any ε > 0,

P

{
sup
f∈F

(
L̂′

n(f) − L̂γ
n(f)

)
>

√(
9
n

d(Xn
1 ) +

ε2

2

)
ln

(
32en

d(Xn
1 )

)
ln(128n)

}

≤ P

{
sup
f∈F

(
L̂′

n(f) − L̂γ
n(f)

)
>

√
2
n

lnN∞(γ/2, πγ(F), X2n
1 ) + 4ε2

}
+ e−

nε2

25 .

Proof. Combine Steps 3-4 in the proof of Theorem 2.

Step 3 Suppose G is a minimal γ/2-cover of πγ(F) and σ1, . . . , σn are i.i.d. Rademacher
random variables which are also independent of (Xi, Yi)2ni=1. Then for any positive measur-
able function β(X2n

1 ) of X2n
1 that depends only on the set {X1, . . . , X2n},

P

{
sup
f∈F

(
L̂′

n(f) − L̂γ
n(f)

)
> β(X2n

1 )

}
≤ P

{
max
g∈G

n∑
i=1

σi

(
I
γ/2
n+i(g) − I

γ/2
i (g)

)
> nβ(X2n

1 )

}
,

where Iγi (g) = I{margin(g(Xi),Yi)<γ}.

Proof. As in Step 5 of the proof of Theorem 2, for any f ∈ F there is a g ∈ G such that

L̂′
n(f) − L̂γ

n(f) ≤ L̂′γ/2
n (g) − L̂

γ/2
n (g). Since L̂′γ/2

n (g) − L̂
γ/2
n (g) = 1

n

∑n
i=1 I

γ/2
n+i(g) − I

γ/2
i (g),

the statement follows.

Step 4 Set

β(Xn
1 ) =

√
2
n

lnN∞(γ/2,H, X2n
1 ) + 4ε2,

where ε > 0. Then

P

{
max
g∈G

n∑
i=1

σi(I
γ/2
n+i(g) − I

γ/2
i (g)) > nβ(X2n

1 )

}
≤ e−2nε2 .
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Proof. The claim follows by formally setting w(g) = n in Step 6 of the proof of Theorem 2.

Now in Step 1 set

ε(Xn
1 ) =

√(
9
n

d(Xn
1 ) +

ε2

2

)
ln

(
32en

d(Xn
1 )

)
ln(128n).

with ε is such that nε2 ≥ 2, and in Step 3 set β(Xn
1 ) as in Step 4. Combining Steps 1-4 we

obtain

P

{
sup
f∈F

(L(f) − L̂γ
n(f)) >

√(
9
n

d(Xn
1 ) +

ε2

2

)
ln

(
32en

d(Xn
1 )

)
ln(128n)

}

≤ 4P

{
sup
f∈F

(L̂′
n(f) − L̂γ

n(f)) >

√(
9
n

d(Xn
1 ) +

ε2

2

)
ln

(
32en

d(Xn
1 )

)
ln(128n)

}

≤ 4P

{
sup
f∈F

(L̂′
n(f) − L̂γ

n(f)) >

√
2
n

lnN∞(γ/2,H, X2n
1 ) + 4ε2

}
+ 4e−

nε2

25

≤ 4P

{
max
g∈G

n∑
i=1

σi(I
γ/2
n+i(g) − I

γ/2
i (g)) >

√
2n lnN∞(γ/2,H, X2n

1 ) + 4n2ε2

}
+ 4e−

nε2

25

≤ 4e−2nε2 + 4e−
nε2

25

< 8e−
nε2

25 .

Substituting ε2 = 25
n ln 8

δ yields Theorem 1. �

Proof of Theorem 3

First note that

E sup
f∈F

(
L(f) − L̂γ

n(f)
)

= E sup
f∈F

E
[
L′
n(f) − L̂γ

n(f)
∣∣∣Dn

]
≤ E

[
E

[
sup
f∈F

(
L′
n(f) − L̂γ

n(f)
) ∣∣∣Dn

]]
= E sup

f∈F

(
L′
n(f) − L̂γ

n(f)
)

=
1
n
E sup

f∈F

n∑
i=1

(
I{sgn(f(Xn+i)−1/2) 
=Yn+i} − I{margin(f(Xi),Yi)<γ}

)
≤ 1

n
E

[
sup
f∈F

n/2∑
i=1

(
I{sgn(f(Xn+i)−1/2) 
=Yn+i} − I{margin(f(Xi),Yi)<γ}

)
+ sup

f∈F

n∑
i=n/2+1

(
I{sgn(f(Xn+i)−1/2) 
=Yn+i} − I{margin(f(Xi),Yi)<γ}

) ]
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=
2
n
E

sup
f∈F

n/2∑
i=1

(
I{sgn(f(Xn+i)−1/2) 
=Yn+i} − I{margin(f(Xi),Yi)<γ}

)
= E sup

f∈F

(
L̂
(2)
n/2(f) − L̂γ

n/2(f)
)

.

The proof may be finished by noting that, by McDiarmid’s bounded difference inequality
(McDiarmid, 1989), for every ε > 0,

P

{
sup
f∈F

(
L(f) − L̂γ

n(f)
)
≥ E sup

f∈F

(
L(f) − L̂γ

n(f)
)

+ ε

}
≤ e−2nε2

and

P

{
sup
f∈F

(
L̂
(2)
n/2(f) − L̂γ

n/2(f)
)
≤ E sup

f∈F

(
L̂
(2)
n/2(f) − L̂γ

n/2(f)
)
− ε

}
≤ e−nε2/2 .

Combining the three inequalities above, we obtain that, for any ε > 0,

P

{
∃f ∈ F : L(f) ≥ L̂γ

n(f) + sup
f∈F

(
L̂
(2)
n/2(f) − L̂γ

n/2(f)
)

+ ε

}

≤ P

{
sup
f∈F

(
L(f) − L̂γ

n(f)
)
≥ sup

f∈F

(
L̂
(2)
n/2(f) − L̂γ

n/2(f)
)

+ ε

}

≤ P

{
sup
f∈F

(
L(f) − L̂γ

n(f)
)
≥ E sup

f∈F

(
L(f) − L̂γ

n(f)
)

+
ε

3

}

+ P

{
sup
f∈F

(
L̂
(2)
n/2(f) − L̂γ

n/2(f)
)
≤ E sup

f∈F

(
L̂
(2)
n/2(f) − L̂γ

n/2(f)
)
− 2ε

3

}
≤ 2e−2nε2/9 .

Setting ε =
√

(9/(2n)) ln(2/δ) concludes the proof. �

Proof of Theorem 4

By Theorem 3, with probability at least 1 − δ/2, for all f ∈ F we have

L(f) < L̂γ
n(f) + sup

f∈F

(
L̂
(2)
n/2(f) − L̂γ

n/2(f)
)

+ 3

√
ln(4/δ)

2n
. (11)

Defining φγ : R → R by

φγ(t) =


1 if t < 0
0 if t ≥ γ

1 − t/γ if t ∈ [0, γ)

and noting that for all t ∈ R, I{t≤0} ≤ φγ(t) ≤ I{t<γ}, we see that for all f ∈ F ,

L̂
(2)
n/2(f) − L̂γ

n/2(f) ≤ 2
n

n/2∑
i=1

[
φγ(margin(f(Xn/2+i), Yn/2+i)) − φγ(margin(f(Xi), Yi))

]
.
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Using McDiarmid’s bounded difference inequality for the supremum of the right-hand side
for f ∈ F , we obtain that with probability at least 1 − δ/4,

sup
f∈F

(
L̂
(2)
n/2(f) − L̂γ

n/2(f)
)

≤ 2
n
E

sup
f∈F

n/2∑
i=1

[
φγ(margin(f(Xn/2+i), Yn/2+i)) − φγ(margin(f(Xi), Yi))

]
+

√
2 ln(4/δ)

n

=
2
n
E

sup
f∈F

n/2∑
i=1

σi

[
φγ(margin(f(Xn/2+i), Yn/2+i)) − φγ(margin(f(Xi), Yi))

]
+

√
2 ln(4/δ)

n

where σ1, . . . , σn/2 are i.i.d. Rademacher random variables (i.e., P(σ1 = 1) = P(σ1 = −1) =
1/2) which are also independent of (Xi, Yi)ni=1. Since φγ is Lipschitz with parameter 1/γ,
we may use the “contraction principle” (see Ledoux and Talagrand, 1991, Theorem 4.2) to
obtain

E

sup
f∈F

n/2∑
i=1

σi

[
φγ(margin(f(Xn/2+i), Yn/2+i)) − φγ(margin(f(Xi), Yi))

]
≤ 1

γ
E

sup
f∈F

n/2∑
i=1

σi

[
margin(f(Xn/2+i), Yn/2+i) − margin(f(Xi), Yi)

]
=

1
γ
E

sup
f∈F

n/2∑
i=1

[
margin(f(Xn/2+i), Yn/2+i) − margin(f(Xi), Yi)

]
=

1
γ
E

sup
f∈F

n/2∑
i=1

[
(f(Xn/2+i) − 1/2)Ỹn/2+i − (f(Xi) − 1/2)Ỹi

]
where Ỹi = 2Yi − 1

=
1
γ
E

 sup
N,w1,...,wN
h1,...,hN∈H

N∑
j=1

wj

n/2∑
i=1

[
(hj(Xn/2+i) − 1/2)Ỹn/2+i − (hj(Xi) − 1/2)Ỹi

]
=

1
γ
E

sup
h∈H

n/2∑
i=1

[
(h(Xn/2+i) − 1/2)Ỹn/2+i − (h(Xi) − 1/2)Ỹi

]
where the last equality follows from the fact that the supremum of the previous line is always
achieved by a convex combination concentrated on just one base classifier. Once again, using

94



Data-dependent generalization bounds

the bounded difference inequality, we note that with probability at least 1 − δ/4,

E

sup
h∈H

n/2∑
i=1

[
(h(Xn/2+i) − 1/2)Ỹn/2+i − (h(Xi) − 1/2)Ỹi

]
≤ sup

h∈H

n/2∑
i=1

[
(h(Xn/2+i) − 1/2)Ỹn/2+i − (h(Xi) − 1/2)Ỹi

]
+

√
n ln(4/δ)

2

=
n

2
sup
h∈H

(
L̂
(1)
n/2(h) − L̂

(2)
n/2(h)

)
+

√
n ln(4/δ)

2
.

The statement of the theorem now follows by putting the pieces together using the union
bound. �

Proof of Lemma 5

First we show that if (4) holds, Fα γ-shatters xn
1 . Let (b1, . . . , bn) ∈ {0, 1}n be an arbitrary

binary vector, and let b̃i = 2bi − 1 for i = 1, . . . , n. For j = 2, . . . , n we define wj =
1

dj∑n
i=2

1
di

and gj = g(xj−1,xj ,−b̃jαdj+r,−b̃j−1αdj+r) where r = α∑n
j=2

1
dj

∑n
i=1 b̃i. By the definitions of Gα

and di it is clear that gj ∈ Gα for j = 2, . . . , n. Since
∑n

j=2 wj = 1, f(x) =
∑n

j=2 wjgj(x) ∈
Fα.

We show by induction that b̃if(xi) = α∑n
j=2

1
dj

for all i = 1, . . . , n. This together with

(4) means that b̃if(xi) ≥ γ for all i = 1, . . . , n; hence (1) is satisfied with ri = 0 for all
i = 1, . . . , n. For x1 we have

b̃1f(x1) = b̃1

n∑
i=2

wigi(x1)

= b̃1

n∑
i=2

1
di∑n

j=2
1
dj

(−b̃iαdi + r)

= −b̃1
α∑n

j=2
1
dj

n∑
i=2

b̃i + b̃1r
1∑n

j=2
1
dj

n∑
i=2

1
di

= −b̃1
α∑n

j=2
1
dj

n∑
i=2

b̃i + b̃1r

= −b̃1
α∑n

j=2
1
dj

n∑
i=2

b̃i + b̃1
α∑n

j=2
1
dj

n∑
i=1

b̃i

=
α∑n

j=2
1
dj

.

In the inductive step we assume that b̃i−1f(xi−1) = α∑n
j=2

1
dj

. Since the only base function

that can change between xi−1 and xi is gi, we have

b̃if(xi) = b̃if(xi−1) + b̃iwi (gi(xi) − gi(xi−1))
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= b̃if(xi−1) + b̃iwi

(
−b̃i−1αdi + b̃iαdi

)
= b̃if(xi−1) + wiαdi(1 − b̃ib̃i−1).

If b̃i−1 = b̃i then b̃if(xi) = b̃if(xi−1) = b̃i−1f(xi−1) = α∑n
j=2

1
dj

. If b̃i−1 �= b̃i then

b̃if(xi) = −b̃i−1f(xi−1) + 2wiαdi

= − α∑n
j=2

1
dj

+ 2
α∑n

j=2
1
dj

=
α∑n

j=2
1
dj

.

Next we show that if Fα γ-shatters xn
1 , (4) holds. Consider the two alternating labeling

b̃+i = −b̃−i = (−1)i, i = 1, . . . , n. If Fα γ-shatters xn
1 then by (1), there exists f+, f− ∈ Fα

such that for a given real vector (r1, . . . , rn),

b̃+i f+(xi) ≥ b̃+i ri + γ,

b̃−i f−(xi) ≥ b̃−i ri + γ,

for i = 1, . . . , n, so by setting f(x) = 1
2(f+(x) − f−(x)),

(−1)if(xi) ≥ γ.

By the definition of Gα, if g ∈ Gα then −g ∈ Gα, so f ∈ Fα, which means that f can be
written in the form

f =
N∑
j=1

wjg
(xaj ,xbj

,yaj ,ybj
)

where
∑N

j=1 wj = 1. Let αj = 1
2

∣∣∣ yb−ya

xb−xa

∣∣∣ and sj = sgn
(

yb−ya

xb−xa

)
for j = 1, . . . , N . Since

(−1)i(f(xi) − f(xi−1)) ≥ 2γ for all i = 2, . . . , n, and since f is continuous, there must be
a point x′

i between xi−1 and xi where (−1)i times the (left) derivative of f is not less then
2γ

xi−xi−1
. Therefore,

(−1)if ′(x′
i) = (−1)i

∑
j:xaj<x′

i≤xbj

wj2sjαj ≥ 2γ

di

for i = 2, . . . , n. Taking the sum of both sides from i = 2 to n yields

γ
n∑

i=2

1
di

≤
n∑

i=2

(−1)i
∑

j:xaj<x′
i≤xbj

wjsjαj

=
N∑
j=1

wjsjαj

∑
i:xaj<x′

i≤xbj

(−1)i
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≤
N∑
j=1

wjαj (since x′
2 < . . . < x′

n)

≤ α.

�
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