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Abstract

A learning procedure takes as input a dataset and performs inference for the parameters
θ of a model that is assumed to have given rise to the dataset. Here we consider learning
procedures whose output is a probability distribution, representing uncertainty about θ
after seeing the dataset. Bayesian inference is a prime example of such a procedure, but
one can also construct other learning procedures that return distributional output. This
paper studies conditions for a learning procedure to be considered calibrated, in the sense
that the true data-generating parameters are plausible as samples from its distributional
output. A learning procedure whose inferences and predictions are systematically over- or
under-confident will fail to be calibrated. On the other hand, a learning procedure that is
calibrated need not be statistically efficient. A hypothesis-testing framework is developed
in order to assess, using simulation, whether a learning procedure is calibrated. Several
vignettes are presented to illustrate different aspects of the framework.
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1. Introduction

Given a parametric model and a dataset purported to be generated from the model, the
modern workflow for parameter inference first identifies a statistical paradigm (e.g. Bayesian
inference), performs any required numerical computation using an appropriate numerical
method, then inspects the results and refines the approach until some desiderata (e.g. poste-
rior predictive checks, or a convergence diagnostic for a Markov chain Monte Carlo method)
are satisfied. This paper takes a holistic perspective and refers to the overall workflow as a
learning procedure. Our focus is on learning procedures that produce distributional output,
examples of which include workflows based on Bayesian and generalised Bayesian infer-
ence (Bissiri et al., 2016), fractional posteriors (Bhattacharya et al., 2019), empirical Bayes
(Casella, 1985), variational Bayes (Blei et al., 2017), approximate Bayesian computation
(Beaumont et al., 2002), Bayesian synthetic likelihood (Price et al., 2018), and also ap-
proaches that have a non-Bayesian motivation, such as the maximum entropy approach
(Jaynes, 1982).

It is natural to hope that a learning procedure is calibrated, in the sense that the true
data-generating parameters are plausible as samples from the distributional output. Indeed,
a learning procedure that is not calibrated can produce inferences and predictions that are
either biased or over/under-confident, and lead users to draw spurious conclusions in model
selection problems. The consequences of over-confidence, in particular, could be dire when
those inferences are used in safety-critical applications. This point has been discussed
at length in the literature, such as in investigating frequentist coverage of credible sets
in Bayesian inference and in calibrating probabilistic forecasts. However, the literature
appears to lack a definition of “calibration” that is sufficiently general to be applied to an
arbitrary learning procedure that produces distributional output. The aim of this paper is
to introduce a general definition of “calibration” and accompany this with a methodology
for testing whether a learning procedure is calibrated.

The term calibration is unfortunately overloaded in the statistical literature. It is also
used to refer to the parameter inference task in applications that involve a computer model.
For example, Kennedy and O’Hagan (2001) write that “the process of fitting the model
to the observed data by adjusting the parameters is known as calibration”. For avoidance
of doubt, we use the standard terminology of parameter inference to refer to the task of
estimating parameters of a model. The term ‘calibration’ is also used in the literature on
forecast assessment. There the useage is close to the notions proposed in this paper, though
in that literature the focus is on testing calibration at the level of the data rather than at
the level of the parameters. This is discussed further in Sections 2.3.2 and 2.4.2. We reserve
the term calibration for the specific notions proposed in this paper.

The outline of the paper is as follows: Section 2 presents our proposed definitions, where
we identify both strong and weak senses in which a learning procedure can be said to be
calibrated. To ensure our definitions are precise in a mathematical sense, we conceptualise
a learning procedure as a mathematical object in Section 2.1 and impose mild regularity
assumptions on this object in Section 2.2. In Section 2.3 our notion of strong calibration
is presented, illustrated by examples in Section 2.3.1, and compared to existing definitions
in the literature in Section 2.3.2. Likewise, in Section 2.4 our notion of weak calibration is
presented, illustrated by examples in Section 2.4.1, and compared to existing definitions in

2



Testing Whether a Learning Procedure is Calibrated

the literature in Section 2.4.2. Several vignettes are provided in Section 3, showing through
simulations that our proposed definitions of calibration both accord with intuition and can
be tested for. A brief discussion concludes the paper in Section 4.

1.1 Notation

For a measurable space S, P(S) will denote the set of probability measures on S. For s ∈ S
let δ(S) ∈ P(s) denote the Dirac distribution on s. For a measurable function f : S → R,
a measurable set A ⊆ R, and a probability measure ν ∈ P(S), let f−1(A) := {x ∈ S |
f(x) ∈ A} denote the preimage of A and recall that the pushforward measure f#ν ∈ P(R)
is defined as (f#ν)(A) := ν(f−1(A)).

2. What it Means for a Learning Procedure to be Calibrated

This section sets out our proposed definitions of strong and weak calibration, provides
examples of learning procedures that are strongly and weakly calibrated, and relates our
definitions to existing work.

2.1 Set-Up

Let Θ be a measurable space, which will play the role of the parameter space in this work.
It is assumed that there is a unique “true” parameter θ ∈ Θ and we consider the parameter
inference task of estimating θ based on a dataset. Let Y be a measurable space in which
datasets are realised.

Definition 1 (Learning Procedure). A learning procedure is a function

µ : P(Θ)× Y → P(Θ)

(µ0, y) 7→ µ(µ0, y).

Here µ0 is interpreted as an initial belief distribution, quantifying uncertainty about the
parameter θ before any data have been observed, and y denotes a dataset. The distribu-
tional output µ(µ0, y) is interpreted as a quantification of the uncertainty associated with
the parameter θ, after the data y have been observed.

The standard example of a learning procedure is Bayesian inference, wherein µ0 is the
prior distribution and µ(µ0, y) is the posterior distribution, this being determined by the
prior, the observed data y, and a likelihood function that must be specified. However,
Definition 1 is general enough to accommodate any workflow that produces distributional
output. In particular, Definition 1 does not pre-suppose that a data-generating model
exists or is known to the user, so that the definition of a learning procedure may be applied
even in the M-open setting (Bernardo and Smith, 1994, §6.1.2). Further, one may consider
that computational procedures such as variational inference or Monte Carlo form part of
the learning procedure, and in this sense a myriad of different learning procedures can be
considered.

Note that we call µ0 a belief distribution following Bissiri et al. (2016) and reserve
the term prior for use only in the Bayesian context. We also emphasise that a learning
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procedure need not depend upon the initial belief distribution µ0; for example, in the
maximum entropy approach (Jaynes, 1982) a distributional output is produced that does
not explicitly depend on any initial belief, so that effectively µ(µ0, y) ≡ µ(y).

In the next section we will introduce the mathematical facts required for our notions of
strong and weak calibration in Sections 2.3 and 2.4.

2.2 A Mathematical Characterisation

The definitions that we will present rely on cumulative distribution functions (cdfs) and
their inverses, and we therefore impose regularity conditions to ensure that such inverse
cdfs are well-defined. That is, we impose sufficient regularity to restrict our attention
in the sequel to inverse cdfs that are well-defined functions, as opposed to dealing with
generalised functions that are set-valued.

Definition 2 (Regular Distribution). Let Θ be a measurable space equipped with a reference
measure λ. A distribution ν ∈ P(Θ) is regular (with respect to λ) if it admits a probability
density function (pdf) pν := dν/dλ such that pν > 0 on Θ (i.e. the measures ν and λ are
equivalent). The set of all regular distributions will be denoted Pr(Θ).

When Θ is a Borel- or Lebesgue-measurable subset of Euclidean space, the reference mea-
sure λ will be assumed to be Lebesgue measure. For −∞ ≤ a < b ≤ ∞ and a uni-
variate distribution γ ∈ P((a, b)), we let Fγ : (a, b) → [0, 1] denote the associated cdf
Fγ(x) := γ((a, x]) =

∫ x
a dγ. Our first result, Lemma 3, is classical (e.g. Rosenblatt, 1952)

and underpins methods for simulation of univariate random variables using inverse cdfs.
This result establishes that the level of regularity in Definition 2 is sufficient for the inverse
cdf approach to simulation of such distributions to be applied. It also ensures that our
subsequent constructions that depend on Definition 2 are well-defined.

Lemma 3. For −∞ ≤ a < b ≤ ∞ and ν ∈ Pr((a, b)) we have that Fν(X) ∼ U(0, 1)
whenever X ∼ ν.

Proof Since ν admits a pdf pν on (a, b), the fundamental theorem of calculus implies
that Fν is differentiable with DFν(θ) = pν(θ). In particular, since pν > 0 we have that
Fν is continuous and strictly increasing and therefore the sets F−1

ν (z) are singletons for all
z ∈ [0, 1]. Let X ∼ ν and Z := Fν(X). Then, from the change of variables formula, Z
admits a pdf q(z) on [0, 1] with

q(z) =
∑

θ:Fν(θ)=z

pν(θ)|DFν(θ)|−1 = pν(θ)
1

pν(θ)
= 1,

which is indeed the pdf of U(0, 1).

The random variable Fν(X) is sometimes called the probability integral transform; see e.g.
Dawid (1984); Diebold et al. (1997). When Θ 6⊂ R, the cdf of a distribution ν ∈ Pr(Θ)
is not in general well-defined. To characterise such distributions analogously to the above,
consider a set of test functions of the form f : Θ → (a, b), with the property that each
univariate marginal f#ν does admit an invertible cdf. We next establish that regular
distributions are characterised by a certain (large) set of such statistics.
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Definition 4 (Test Functions FΘ). Consider measurable functions of the form f : Θ →
(a, b) for some −∞ ≤ a < b ≤ ∞ . Then the test functions FΘ are the set of all such f for
which f#ν ∈ Pr((a, b)) whenever ν ∈ Pr(Θ).

Intuitively, FΘ rules out functions f that take a constant value on a non-null set, in order
to avoid the situation where f#ν contains an atom and the cdf Ff#ν : (a, b)→ [0, 1] is not
invertible. In the univariate case Θ = R, the set FΘ contains functions f for which the
gradient exists and is nonzero almost everywhere and, moreover, the preimages f−1(z) have
cardinality n such that 0 < n < ∞ for each z ∈ (a, b). Indeed, in this case f#ν admits an
everywhere positive (Lebesgue) pdf on (a, b) of the form

pf#ν(z) =
∑

θ∈f−1(z)

pν(θ) |Df(θ)|−1 . (1)

Since by assumption f#ν is regular on (a, b), from Lemma 3 we have that Ff#ν(f(θ)) ∼
U(0, 1) whenever X ∼ ν. For the multivariate case Θ = Rd, by the co-area formula the
(Lebesgue) pdf of f#ν is

pf#ν(z) =

∫

f−1(z)
pν(θ)|det(Df(θ)Df(θ)T)|− 1

2 Hd−1(dθ), (2)

where Hd−1 indicates the (d − 1) dimensional Hausdorff measure on Θ (Diaconis et al.,
2013, Proposition 2). In this case, the requirement on the Jacobian determinant is that
det(DfDfT) 6= 0 almost everywhere. As H0 is equivalent to the counting measure, (2)
collapses back to (1) when d = 1.

The restriction of attention to FΘ is essentially without loss of generality, as evidenced
by the following result, whose proof is contained in Section A.1:

Lemma 5 (Regular Distributions are Characterised by FΘ). Let Θ = Rd for some d ∈ N.
Suppose that µ, ν ∈ Pr(Θ) and

∫
f dµ =

∫
f dν for all f ∈ FΘ. Then µ = ν.

Now we have the mathematical tools to define what it means for a learning procedure
to be calibrated. In Section 2.3 we introduce a strong notion of calibration, which clarifies
the sense in which the true parameter can be considered plausible as a sample from the dis-
tributional output. Then, in Section 2.4, we consider a strictly weaker notion of calibration
that is more easily tested.

2.3 Strongly Calibrated Learning Procedures

To assess whether a learning procedure is calibrated we must specify what it is calibrated
against, and this requires a data-generating model. Thus, the assessment framework we
present exists in the M-complete setting (Bernardo and Smith, 1994, §6.1.2).

Definition 6 (Data-Generating Model). A data-generating model is a function

P : Θ→ P(Y )

θ 7→ Pθ,

where Pθ carries the interpretation of a statistical model from which data are generated.
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In this section we present a strong notion of what it means for a learning procedure
to be calibrated to a data-generating model. It simplifies matters to restrict to learning
procedures that produce regular distributional output:

Definition 7 (Regular Learning Procedure). A learning procedure µ : P(Θ) × Y → P(Θ)
is regular if µ(µ0, y) ∈ Pr(Θ) for all µ0 ∈ Pr(Θ) and all y ∈ Y .

Definition 8 (Strongly Calibrated). Let B ⊆ Pr(Θ) denote a set of belief distributions and
P a data-generating model. A regular learning procedure µ is said to be strongly calibrated
to (B,P ) if

θ ∼ µ0

y | θ ∼ Pθ

}
=⇒ Ff#µ(µ0,y)(f(θ)) ∼ U(0, 1) (3)

for all f ∈ FΘ and for all µ0 ∈ B. If the set B contains a single element, µ0, then we say
simply that µ is strongly calibrated to (µ0, P ).

The assumption that both the belief distribution and learning procedure are regular
excludes some important learning procedures. For example, in Bayesian inference one
sometimes uses an improper, “uninformative” prior such as p(θ) ∝ 1, which would not
be regular unless Θ0 is bounded. To study such a learning procedure in the framework of
Definition 8 one could consider constructing an “artificial” learning procedure that took a
regular distribution µ0 as input, but ignored this for the purposes of inference and instead
used an improper prior—though, one would still need to ensure that the learning procedure
itself returned a regular output, which is not guaranteed for an improper prior. In addition
to this, any application of Bayesian inference for which the support of the posterior is a
strict subset of Θ (e.g. procedures with truncated likelihoods) will fail to be regular. The
distributional output of approximate Bayesian computation (abc) may not be regular for
similar reasons. This motivates the introduction of weakly calibrated learning procedures in
Section 2.4, for which the regularity assumption can be relaxed.

To gain intuition for Definition 8, notice that the unknown data-generating parameter
θ is statistically identical to a sample from the distributional output µ(µ0, y) when the
learning procedure is strongly calibrated. This intuition is clarified in the following remark:

Remark 9 (Correct Coverage for Credible Sets). Suppose that the learning procedure µ
is strongly calibrated to (µ0, P ). If the distribution µ(µ0, y) is used to construct a 1 − α
probability credible set for θ, then this interval will indeed contain θ with probability 1 − α
under the hierarchical data-generating model θ ∼ µ0, y | θ ∼ Pθ.

Thus, the distributional output from a strongly calibrated learning procedure can be mean-
ingfully related to the parameter inference task. Note, however, that even a small degree
of misspecification can lead to failure of calibration. Thus strong calibration captures the
absence of systematic errors, similar to the notion of an unbiased estimator.

Next we present an actionable test for the hypothesis that a learning procedure is
strongly calibrated. We emphasise that this test can in theory be applied to any learn-
ing procedure (i.e. any workflow used for parameter inference that returns distributional
output), providing that the regularity requirements are satisfied and that one is able to
simulate from the data-generating model.
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Remark 10 (Testing whether a Learning Procedure is Strongly Calibrated). Fix µ0 ∈
Pr(Θ) and let

θi
iid∼ µ0

yi | θi iid∼ Pθi

Then we can test whether a (regular) learning procedure µ is strongly calibrated to (µ0, P )
by picking a test function f ∈ FΘ and using any goodness-of-fit test for the hypothesis

Ff#µ(µ0,yi)(f(θi))
iid∼ U(0, 1).

Such a test will not have power against all alternatives unless, for example, d = 1 and
f(θ) = θ. To increase the power of the test in higher dimensions, multiple f should be
simultaneously considered. Methodology for selecting a suitable test function is proposed in
Section 3.4.

Remark 11. For simplicity we have assumed that each θi is associated with exactly one yi.
In practice this need not be the case; each parameter could be associated with many pieces
of data. For example in some applications a sample from µ0 may be more difficult to obtain
than repeated measurements y1, . . . , yn ∼ Pθi. However we note that this will violate the
independence assumption in Remark 10, and would require a more complicated test to be
used.

Remark 12 (Quantification of Strong Calibration). The departure from uniformity of the
law of Ff#µ(µ0,y)(f(θ)) under θ ∼ µ0, y | θ ∼ Pθ can be used to assess the nature and extent
to which the learning procedure fails to be strongly calibrated. Histograms can provide an
intuitive visualisation; see Section 3.3.

In the next section we illustrate Definition 8 with some examples for which strong
calibration can be verified. Then, in Section 2.3.2 we discuss the relationship between
Definition 8 and earlier work.

2.3.1 Examples of Strongly Calibrated Learning Procedures

Our first example confirms the intuition that the Bayesian framework is strongly calibrated
to the prior and the data-generating model.

Example 1 (Bayes is Strongly Calibrated). If θ ∼ µ0 and y | θ ∼ Pθ then (θ, y) can be
considered to be a sample from the joint distribution of the parameters and dataset. In
the Bayesian framework (with the data-generating model P correctly specified), µ(µ0, y) is
defined as the conditional distribution of the parameters given the data, and thus θ | y ∼
µ(µ0, y). Thus if µ0 and µ are regular, it follows from Lemma 3 that Ff#µ(µ0,y)(f(θ)) ∼
U(0, 1) for all f ∈ FΘ. Thus Bayesian inference is strongly calibrated to (Pr(Θ), P ).

The following example1 shows that strongly calibrated learning procedures do not nec-
essarily yield accurate estimators:

1. This example is similar in spirit to the climatological forecaster in Example 2 of Gneiting et al. (2007),
who uses only historical frequencies to predict tomorrow’s weather, agnostic of any recent data that may
have been obtained.
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Example 2 (Data-Agnostic Learning Procedure is Strongly Calibrated). The trivial learn-
ing procedure that takes µ(µ0, y) := µ0 is strongly calibrated to (Pr(Θ), P ), since for θ ∼ µ0

and µ0 ∈ Pr(Θ),
Ff#µ(µ0,y)(f(θ)) = Ff#µ0(f(θ)) ∼ U(0, 1)

for all f ∈ FΘ.

The implication of Example 2 is that strong calibration alone is not sufficient to justify the
practical application of a learning procedure, and additional desiderata, such as statistical
efficiency, will typically also need to be taken into account.2 This paper focusses on cali-
bration and does not attempt to discuss other desiderata and how they should be balanced
in the applied context.

One can consider situations between the two extremes of Example 1 and Example 2:

Example 3 (Partial Posteriors are Strongly Calibrated). A partial posterior corresponds to
performing full Bayesian inference using only summary statistics s : Y → S of the dataset.
These have recently been proposed as a tool for compensating for model misspecification
(Lewis et al., 2021). For the partial posterior learning procedure, µ(µ0, y) is the conditional
distribution of the parameters given the summarised data s(y) and θ | s(y) ∼ µ(µ0, y).
When both the prior and the partial posterior learning procedure are regular, it follows from
Lemma 3 that Ff#µ(µ0,y)(f(θ)) ∼ U(0, 1) for all f ∈ FΘ. Thus partial posteriors are strongly
calibrated to (Pr(Θ), P ).

Next we present an example that is a clear departure from the Bayesian framework,
in that it clearly does not return a posterior distribution and yet is provably strongly
calibrated:

Example 4 (Probabilistic Stationary Iterative Methods are Strongly Calibrated). Let
Θ = Rd and consider the data-generating model Pθ = δ(Aθ) that returns a Dirac distri-
bution on y = Aθ, where A is a non-singular matrix. An ideal learning procedure would
return µ(µ0, y) = δ(A−1y) = δ(θ), but in many practical scenarios the exact action of
A−1 on y cannot be computed, either due to poor conditioning of the matrix A or due to
the O(d3) computational cost associated with inverting A. This motivates the use of an
alternative procedure, called a probabilistic iterative method, recently proposed in Cock-
ayne et al. (2021) and based on classical iterative methods for solving linear systems (see
e.g. Saad, 2003). To describe the procedure, let Ry : Θ→ Θ be an map, constructed using
y, such that θ is a solution of the fixed point equation θ = Ry(θ). For example, the choice
Ry(θ) = (I−εA)θ+εy, ε > 0, corresponds to a classical iterative method called Richardson’s
method. Consider then the learning procedure µ(µ0, y) := Ry#µ0, whose output is conjugate
under a Gaussian input µ0, being an affine transform, and can be exactly computed at cost
O(d2). Cockayne et al. (2021) proved that, under mild conditions, the iterative application
of Ry produces a sequence of distributions on Θ that contract to δ(θ), and that this proce-
dure is strongly calibrated to (G(Rd), P ), where G is the set of all Gaussian distributions

2. For example, “maximizing the sharpness of the predictive distributions subject to calibration” was pro-
posed in Gneiting et al. (2007), although their use of the term “calibration” is distinct from the present
paper, being focussed on forecast assessment. See Section 2.3.2 for further discussion of the literature
on forecast assessment.

8



Testing Whether a Learning Procedure is Calibrated

supported on Rd. This example speaks to one potential use of Definition 8, in providing
theoretical justification for non-traditional learning procedures which nevertheless produce
meaningful distributional output.

Next our attention turns to the relationship between Definition 8 and existing concepts
in the literature.

2.3.2 Relation to Existing Concepts

Here we compare and contrast our notion of strong calibration with concepts appearing in
earlier work and in related fields.

Frequentist Coverage: There is a rich literature that aims to assess learning procedures
according to frequentist desiderata. In particular, one can ask whether credible sets have
correct frequentist coverage, which is analogous to fixing θ = θ0 and asking if y ∼ Pθ0 implies
Ff#µ(µ0,y)(f(θ0)) ∼ U(0, 1); i.e. the only randomness is introduced during generation of the
dataset. This differs to our notion of strong calibration in that we sample θ from µ0

while, in the frequentist assessment, θ is fixed. In particular, it is possible to prove certain
learning procedures are strongly calibrated, but no learning procedure can be expected
to attain correct frequentist coverage in general. The literature on frequentist assessment
therefore focuses on weaker notions of coverage, such as asymptotically correct frequentist
coverage, where the data are of the form y = (y1, . . . , yn) and credible sets are required
to have correct frequentist coverage in the n → ∞ limit. In finite-dimensional Bayesian
analyses where a Bernstein–von–Mises theorem holds, asymptotically correct frequentist
coverage is guaranteed (Freedman, 1999). Results on frequentist coverage have also been
established in finite dimensions for variational Bayes (Wang and Blei, 2019). In infinite-
dimensional settings, a Bayesian learning procedure can fail to have even asymptotically
correct frequentist coverage (Cox, 1993; Freedman, 1999). An active area of research is
to establish sufficient conditions for asymptotically correct frequentist coverage, and recent
results have been established that hold uniformly over a set of values for θ0; for results in
this direction see Szabó et al. (2015) and references therein.

Forecast Assessment: Dawid (1984) refers to the question of whether a probabilistic
forecasting system is in some sense “good” as “the fundamental question of prequential
statistics”. Our notion of strong calibration is closely related to a concept developed in
that literature to answer this question, for which the term probabilistic calibration is used
(Dawid, 1982; Diebold et al., 1997; Gneiting et al., 2007; Gneiting and Ranjan, 2013). An
important distinction between forecast assessment and the present paper is the sense in
which probabilistic calibration is applied; here we estimate a “true” parameter θ, which is
not a random variable, whereas in forecast assessment there remains inherent randomness
in the quantities being predicted.

In the econometrics literature, Diebold et al. (1997) considered a sequence of forecasts
(Qi)

n
i=1 ⊂ Pr(R), representing predictions for corresponding quantities (qi)

n
i=1 ⊂ R. The

authors advocated a visual diagnostic, called a correlogram, to assess whether {FQi(qi)}ni=1

are plausible as an independent random sample from U(0, 1); see also Christoffersen (1998);
Berkowitz (2001). In the statistics community, Gneiting and Ranjan (2013) proposed to
compare the variance of the {FQi(qi)}ni=1 to 1/12, the variance of a U(0, 1) random variable,
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with the sequence of forecasts being called overdispersed if this variance is smaller than
1/12, and underdispersed if it is larger; see the review of Gneiting and Katzfuss (2014). This
literature contains elements that are similar in spirit to our notion of strong calibration,
except that a parametric statistical model is not explicitly involved; an important distinction
that we require when assessing whether a learning procedure is calibrated.

In the meteorology literature, the calibration of probabilistic forecasts is routinely as-
sessed using rank histograms (Anderson, 1996; Talagrand et al., 1997; Hamill and Colucci,
1997; Hamill, 2001). For computational reasons, a forecast is typically represented by a
discrete distribution µ(µ0, y) ≈ 1

M

∑M
m=1 δ(θ

m), produced based on initial belief µ0 and
after observing data y, assumed to have arisen from a data-generating model P . To assess
the forecast, an ensemble of synthetic datasets {ym}Mm=1 is simulated as ym ∼ Pθm . For a
test function f ∈ FY , the rank statistic

r({f(ym)}Mm=1, f(y)) :=

M∑

m=1

I[f(ym) < f(y)]

will be uniformly distributed on {0, 1, . . . ,M} if the forecast is calibrated. This is assessed
empirically by producing a histogram of rank statistics for a collection of T ensembles of syn-
thetic datasets {{ymt }Mm=1}Tt=1 and corresponding real datasets {yt}Tt=1, where t = 1, . . . , T
may index distinct times, spatial locations, or both. Denoting the empirical measure as-
sociated with an ensemble of synthetic datasets as ν̂t = 1

M

∑M
m=1 δ(y

m
t ), the rank statistic

r({f(ymt )}Mm=1, f(yt)) is related to the cdf of ν̂t by

Ff#ν̂t(f(yt)) =
1

M
r({f(ymt )}Mm=1, f(yt)).

Checking for rank histogram uniformity is therefore similar in spirit to the test for strong
calibration in Remark 10, with relaxations to allow for the fact that the learning procedure
produces an empirical distribution output and that the true parameters {θt}Tt=1 that gave
rise to the real datasets {yt}Tt=1 are unknown, so that testing occurs in the data domain Y
rather than in the parameter domain Θ.

Signal Processing: An important goal in signal processing is to estimate a time-dependent
latent state {θt}Tt=1, θt ∈ Rd, based on time-series data {yt}Tt=1. For Gaussian filtering al-
gorithms, such as the extended Kalman filter (see Law et al., 2015, p84), the output of the
learning procedure is a sequence of Gaussian distributions N (mt,Σt). These serve to quan-
tify uncertainty as to the unknown value of the parameter θt, t = 1, . . . , T . Such a filtering

algorithm is considered to be calibrated if the Z-score Σ
−1/2
t (θt−mt) is plausible as a sample

from N (0, 1). The average normalised estimation error squared (anees) (Bar-Shalom and
Birmiwal, 1983; Drummond et al., 1998)

1

T

T∑

t=1

(θt −mt)
>Σ−1

t (θt −mt)

attempts to quantify this property, with values of anees close to 1 when the learning
procedure is calibrated. Li et al. (2002) argued against the use of anees on the grounds
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that it “penalises optimism much more severely than pessimism”.3 These authors then
proposed the non-credibility index (nci)

10

T

T∑

t=1

log10

(
(θt −mt)

>Σ−1
t (θt −mt)

(θt −mt)>Σ̄−1
t (θt −mt)

)

where Σ̄t is the covariance matrix of the random vector θt−mt, where the randomness here
refers to the generation of the dataset. The nci, which is also called the inclusion indicator
in Li and Zhao (2006), takes values close to 0 if the filtering algorithm is calibrated and is
quite widely used (e.g. Prüher et al., 2020). Further discussion can be found in Li et al.
(2011). The anees is similar in spirit to our Definition 8, but it is adapted to learning
procedures that produce Gaussian output and to a temporal data-generating model.

Validation of Algorithms for Bayesian Computation: Cook et al. (2006) observed
that Bayesian inference is strongly calibrated to the prior and the data-generating model4

and presented the argument used in Example 1. Their interest was in validating software for
Bayesian inference, and general learning procedures were not considered. They proposed
a goodness-of-fit test for the case Θ = Rd that corresponds to Remark 10, using a test
statistic of the form

T :=

n∑

i=1

(F−1
N (0,1)(Ff#µ(µ0,yi)(f(θi))))

2 (4)

for some f ∈ FΘ. If the null hypothesis holds and the learning procedure is strongly
calibrated, then T ∼ χ2

n. Cook et al. (2006) focused on software that uses Markov chain
Monte Carlo (mcmc), meaning that cdfs are not exactly computed, and advocated an
empirical approximation to the cdf based on approximate samples {θmi }Mm=1 from µ(µ0, yi)
generated using mcmc.

A similar approach was used to analyse abc in Wegmann et al. (2009), who performed
a Kolmogorov–Smirnov (ks) test for uniformity, and in Prangle et al. (2014) who used the
name coverage property and advocated a visual diagnostic plot. In more recent work, Lee
et al. (2019); Xing et al. (2019) proposed the use of credible sets to circumvent access
to cdfs; this is similar in spirit to taking f to be an indicator function in Definition 8.
In Talts et al. (2018) the authors modified the approach of Cook et al. (2006) to address
issues surrounding empirical approximation of the cdf, such as discretisation artefacts when
displayed as a histogram if an appropriate continuity correction or binning scheme is not
used. Talts et al. (2018) showed that, for iid samples {θmi }Mm=1 from the posterior given
yi, rank statistics r({f(θmi )}Mm=1, f(θi)) for a test function f ∈ FΘ will follow a discrete
uniform distribution on {0, 1, . . .M}, and proposed to use this to test calibration rather
than checking the (continuous) uniformity of estimated quantiles. Further, Talts et al.
(2018) proposed to alleviate departures from uniformity in the rank statistics arising from
the use of dependent mcmc rather than iid samples by thinning the mcmc samples using
a heuristic based on the estimated chain autocorrelations.

3. It is unclear to us whether this is a problem, since in most statistical applications estimates that are
conservative are generally preferred to estimates that are over-confident.

4. Though, the result was not described in such terms in that work.
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Validation of Bayesian Workflows: The aforementioned authors including Cook et al.
(2006) focussed on the correctness of algorithms for Bayesian computation, but one can take
a broader view in which a Bayesian workflow (e.g. including prior elicitation, selection of a
likelihood, and so forth; see Gelman et al. (2020)), also form part of the learning procedure
to be assessed. The earliest related work in this direction of which we are aware is Monahan
and Boos (1992), who stated a definition similar to our strong calibration (albeit in terms
of credible sets). These authors considered generalised Bayesian inference and provided the
argument used in Example 3. A ks test for uniformity of Fµ(µ0,yi)(θi) was proposed in the
case where Θ is one-dimensional.

Harrison et al. (2015) proposed a notion of calibration that is similar in spirit to our
Definition 8, motivated by the often challenging computational workflows encountered in
applications to astronomy. First, the authors take a collection of candidate values θi for
the parameter and generate associated datasets yi | θi iid∼ Pθi . The values θi “may be the
same for each simulation generated or differ between them, depending on the nature of the
inference problem”. Then, recasting into our notation, these authors proposed to “test the
null hypothesis that each set of assumed parameter values θi is drawn from the corresponding
derived posterior µ(µ0, y)”. This procedure coincides with our notion of strong calibration

only if θi
iid∼ µ0. The authors considered Bayesian workflows (“our validation procedure

[...] allows for the verification of the implementation and any simplifying assumptions
of the data model”) and proposed a “multiple simultaneous version of [a novel, multi-
dimensional] Kolmogorov–Smirnov test” for the calibrated null hypothesis. This multi-
dimensional Kolmogorov–Smirnov (mks) test provides an ingenious way to circumvent the
selection of a test function f in Remark 10, being based on highest probability density
regions instead of cdfs. However, the mks test does not have power against all alternatives
to the calibrated null hypothesis, even in dimension d = 1, and the description of the test
as a multi-dimensional ks test is misleading, as when d = 1 the test does not correspond to
a standard ks test.

Summary: In summary, the content of Sections 2.1 to 2.3 and 2.3.1 departs from existing
work on this topic in that:

1. where similar hypothesis tests have been performed in Monahan and Boos (1992);
Cook et al. (2006); Harrison et al. (2015), they were used only to verify the correctness
of algorithms and/or workflows for some form of Bayesian computation, while we
proposed a notion of strong calibration that is ambivalent to any particular statistical
framework;

2. Definition 8 is sufficiently precise to allow for logical deduction, such as proving the
strong calibration property holds for a non-traditional learning procedure such as that
in Example 4.

The main drawback with Definition 8 appears to be practical, since testing for strong
calibration in principle requires access to the cdf of f#µ(µ0, y) for at least one test function
f ∈ FΘ. In some cases the cdf will be explicitly available or easily approximated, but in
other cases it will not. Therefore, in the next section we propose a second, strictly weaker
notion of calibration which can be tested without access to the cdf.

12
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2.4 Weakly Calibrated Learning Procedures

Testing whether a learning procedure is strongly calibrated may be challenging in practice.
Furthermore, as discussed in Section 2.3, the requirement that both µ0 and the learning
procedure are regular in the sense of Definitions 2 and 7 will often be too strong, given the
diverse algorithms for uncertainty quantification that have been proposed in literature. We
therefore propose a second, weaker definition that requires neither additional structure to
define a cdf nor regularity of the distributions involved:

Definition 13 (Weakly Calibrated). Let B ⊆ P(Θ) denote a set of belief distributions and
P a data-generating model. A learning procedure µ is said to be weakly calibrated to (B,P )
if either of the following equivalent properties hold:

(i)

∫∫
µ(µ0, y) dPθ(y) dµ0(θ) = µ0.

(ii) θ 7→
∫
µ(µ0, y) dPθ(y) is a µ0-invariant Markov kernel on Θ.

for all µ0 ∈ B. If the set B contains a single element, µ0, we say simply that µ is weakly
calibrated to (µ0, P ).

To give some intuition, the definition (i) above states that if one randomises the true param-
eter according to θ ∼ µ0, generates synthetic data according to y ∼ Pθ, and then samples
ϑ ∼ µ(µ0, y) from the distributional output, this should be identical in distribution to sam-
pling ϑ from µ0 directly. Similarly to Remark 12, one could consider quantifying departures
from weak calibration in terms of a statistical divergence between the two measures appear-
ing in (i), but here we focus on testing for equality and quantitative descriptions will not
be pursued. Focussing on (ii), note that a sufficient condition is provided by the detailed
balance condition (Eq. 20.5 in Meyn and Tweedie, 2009)

µ0(dθ)

∫
µ(µ0, y)(dϑ) dPθ(y) = µ0(dϑ)

∫
µ(µ0, y)(dθ) dPϑ(y), ∀θ, ϑ ∈ Θ. (5)

On the other hand, the existence of non-reversible Markov kernels that are µ0 invariant
(e.g. Bierkens, 2016) demonstrates that (5) is not a necessary condition for (ii) to hold.

The main practical advantage of Definition 13 is that we may test whether a learning pro-
cedure is weakly calibrated without access to cdfs of any univariate summary f#µ(µ0, y),
f ∈ FΘ:

Remark 14 (Testing whether a Learning Procedure is Weakly Calibrated). Let µ0 ∈ P(Θ)
and let

θi
iid∼ µ0

yi | θi iid∼ Pθi

ϑi | θi, yi iid∼ µ(µ0, yi).

Then weak calibration of a learning procedure µ to (µ0, P ) can be tested using any goodness-

of-fit test for the null hypothesis that ϑi
iid∼ µ0. Alternatively if µ0 and µ are each regular,
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one could instead test for weak calibration by picking one or more functions f ∈ FΘ and
using any goodness-of-fit test for the null hypothesis

Ff#µ0(f(ϑi))
iid∼ U(0, 1).

This is of course equivalent to the procedure described in Remark 14 provided a sufficiently
large set of f ∈ Fr(Θ) are used, but we write it in this way to draw a comparison with
Remark 10.

2.4.1 Examples of Weakly Calibrated Learning Procedures

A natural question is whether a learning procedure that is strongly calibrated to (B,P ) is
also weakly calibrated to (B,P ), as the nomenclature suggests. This is indeed the case, as
stated below and proven in Section A.2.

Lemma 15 (Strongly Calibrated =⇒ Weakly Calibrated). Let Θ = Rd for some d ∈ N.
Suppose that µ is a regular learning procedure that is strongly calibrated to (B,P ), where
B ⊆ Pr(Θ) and P is a data-generating model. Then the learning procedure µ is also weakly
calibrated to (B,P ).

By virtue of Lemma 15, the learning procedures that were shown to be strongly calibrated
in Section 2.3.1 are also weakly calibrated. However, the converse is not true in general,
and the following example provides a cautionary tale:

Example 5 (Weakly Calibrated 6=⇒ Strongly Calibrated). A learning procedure µ may
produce quite unreasonable distributional output µ(µ0, y) and yet be weakly calibrated. As
a concrete example, consider Θ = R, an initial belief distribution µ0 = N (0, 1), and a
data-generating model Py(θ) distributed according to y = θ + ε, with independent noise
ε ∼ N (0, 1). The Bayesian learning procedure produces µ(µ0, y) = N (y/2, 1/2) and is both
weakly and strongly calibrated to (µ0, Py) (see the left hand panel in Figure 1). The “mirror
Bayes” learning procedure, which flips the sign of the datum y before the Bayesian learning
procedure is applied, produces µ(µ0, y) = N (−y/2, 1/2), which is not strongly calibrated
to (µ0, Py) but is nevertheless weakly calibrated to (µ0, Py) (see the right hand panel in
Figure 1).

Thus there is a trade-off between strong and weak calibration, where the more straight-
forward approach to testing afforded by weak calibration occurs at the expense of failing to
rule out pathologically bad learning procedures, such as Example 5.

An important class of learning procedures that are widely used and yet are not weakly
calibrated are the generalised Bayesian learning procedures (Bissiri et al., 2016). These
are typically not weakly calibrated to the data-generating model and the prior, since these
learning procedures are motivated by the M-open setting (Bernardo and Smith, 1994, §6.1.2)
where the data-generating model may be misspecified. A canonical example of a generalised
Bayesian procedure is presented next:

Example 6 (Fractional Posteriors are not Weakly Calibrated). To avoid technical obfus-
cation, in this example we abuse notation and assume that µ0 and µ(µ0, y) can be identified
with densities with respect to the reference measure λ on Θ, i.e. µ0(A) =

∫
A µ0(θ) dλ(θ)
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θ

Strongly
calibrated

θ

Weakly
calibrated

y

µ0 (θi, yi) µ(µ0, yi)
1
n

∑n
i=1 µ(µ0, yi)

Figure 1: Strong versus weak calibration. Centre: (θi, yi) pairs (blue, orange, green circles)
were generated from the joint distribution described by a reference distribution
µ0 and data generating model P (purple heatmap and contours). Left: Distribu-
tional output µ(µ0, yi) (blue, orange, and green dash-dotted lines) from a learning
procedure that is strongly calibrated. Note how the true parameters θi (blue,
orange, and green dotted lines) are plausible as samples from their associated
distributions µ(µ0, yi). Right: Distributional output from a learning procedure
that is not strongly calibrated but nevertheless weakly calibrated. Note that the
average of the distributional outputs µ(µ0, yi) (black dashed line) is close to µ0

(solid black line), even though the individual θi, in some cases, lie far out in
the tails of the associated distributions µ(µ0, yi), and thus are not plausible as
samples from said distributions.

for each µ0-measurable set A (and analogously for µ(µ0, y)). Similarly, we assume that Pθ
admits a density p(· | θ) with respect to a suitable reference measure dy on Y .5

Here we consider fractional posteriors (Bhattacharya et al., 2019), a prototypical in-
stance of a generalised Bayesian learning procedure. As with partial posteriors in Exam-
ple 3, fractional posteriors have been proposed as a remedy for model misspecification (e.g.
in SafeBayes, Grünwald and van Ommen (2017)). The distributional output of a fractional
posterior is defined as µ(µ0, y)(θ) := p(y|θ)tµ0(θ)/pt(y), θ ∈ Θ, where t ∈ [0, 1] and we
have defined pt(y) :=

∫
p(y | ϑ)tµ0(ϑ) dϑ, assuming that pt(y) > 0. As an example, con-

sider µ0 = N (0, 1), p(y | θ) = N (y; θ, σ2), σ > 0. Our aim is to verify condition (i) in
Definition 13, which requires the distribution

∫∫
µ(µ0, y) dPθ(y) dµ0(θ) = N

(
ϑ; 0,

t2(σ2 + 1) + σ2(t+ σ2)

(t+ σ2)2

)

5. Note that this is not the same as assuming µ and µ0 are regular, since their pdfs are not required to be
positive on Θ.
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i=1 µ(µ0, yi)

Figure 2: Potential consequences of uncalibrated methods. Centre: as in Fig. 1. Left:
Distributional output µ(µ0, yi) (blue, orange, and green dash-dotted lines) from
a learning procedure that is overconfident. The true parameters θi will tend to
be further in the tails of µ(µ0, yi). Right: Distributional output from a learning
procedure that is overly conservative. True parameters θi tend to be close to the
mode of µ(µ0, yi). The width of the distribution µ(µ0, yi) suggests that, when
the mode is used as an estimator, this estimator has higher uncertainty than
the typical error. In both cases the average of the distributional outputs (black
dashed line) differs from µ0 (solid black line).

to be equal to N (ϑ; 0, 1), i.e.

t2(σ2 + 1) + σ2(t+ σ2)

(t+ σ2)2
= 1 =⇒ t2(σ2 + 1) + σ2(t+ σ2) = (t+ σ2)2 =⇒ σ2t(t− 1) = 0.

Thus, fractional posteriors are weakly calibrated if and only if either t = 1, which reduces
to standard Bayesian inference (Example 1), or t = 0, which is data-agnostic (Example 2).

Finally we present two examples of learning procedures that are neither strongly nor
weakly calibrated, to demonstrate the potential consequences of methods not being cali-
brated.

Example 7 (Consequences of Uncalibrated Methods). We return to the setting of Exam-
ple 5. Recall that we have an initial belief distribution µ0 = N (0, 1) and a data-generating
model Py(θ) such that y = θ+ ε with independent noise ε ∼ N (0, 1). The Bayesian learning
procedure µ(µ0, y) = N (y/2, 1/2) is both weakly and strongly calibrated to (µ0, Py).

Consider the setting of learning procedures that return distributional output µ̃(µ0, y) =
N (y/2, η/2) for some η > 0, that is, the procedures have the same mean as the Bayesian
learning procedure but a different variance for η 6= 1. We illustrate the output in Fig. 2.
When η = 0.5 < 1 (left panel), the learning procedures are overconfident. The out-
put µ̃(µ0, y) is narrower and more peaked than the correctly specified Bayesian procedure
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µ(µ0, y), with the consequence that the true parameter θi typically lies further in the tails of
the distribution than for the correctly specified procedure. Thus, the misspecified procedure
will often suggest a high degree of confidence in the wrong value of the parameter θi.

Conversely, when σ = 2 > 1 (right panel), the learning procedures are overly conserva-
tive. The procedure µ̃(µ0, y) produces a distributional output that is wider and flatter than
the correctly specified Bayesian procedure µ(µ0, y). Thus the true value of the parameter
θi will typically be closer to the mean than the posterior variance would suggest, with the
consequence that a user will often associate an accurate estimator of θ with a high degree of
uncertainty. In both cases σ = 0.5 and σ = 2 note that the average of µ(µ0, yi) differs from
µ0.

2.4.2 Relation to Existing Concepts

Here we compare and contrast our notion of weak calibration with concepts appearing in
earlier work and in related fields.

Forecast Assessment: Our notion of weak calibration is closely related to a concept
developed in the literature on forecast assessment, for which the term marginal calibration
is used (Gneiting et al., 2007). As previously mentioned in Section 2.3.2, an important
distinction between forecast assessment and the present paper is the sense in which notions
such as probabilistic calibration and marginal calibration are applied. This leads to major
differences between forecast assessment and the present work. For example, probabilistic
calibration does not imply marginal calibration in the context of forecast assessment,6 while
our notion of strong calibration does imply weak calibration in the context of testing whether
learning procedures are calibrated, as established in Lemma 15.

Validation of Algorithms for Bayesian Computation: The invariance property that
underpins our notion of weak calibration has previously been noted in the Bayesian context.
Talts et al. (2018) call this “self-consistency of the data-averaged posterior”. It appears to
have been first used in Geweke (2004), who proposed to use it to check the correctness of
mcmc algorithms and their code. Therein, the author proposed to alternatively sample
from y | θ and θ | y, the latter using mcmc. For a correctly implemented mcmc method, θ
will be marginally distributed according to the prior µ0 after an initial burn-in period has
passed. Geweke (2004) performed a collection of univariate hypothesis tests for this weak
calibration null hypothesis, followed by a Bonferroni correction to adjust for multiple testing.
Our Definition 13 is similar in spirit, but is precise enough to permit logical deduction, such
as Lemma 15, and yet general enough to cover learning procedures which need not exist
within a Bayesian context. Additionally, we do not assume the structure of mcmc that is
required to render this Gibbs-like approach practical.

This completes our formal discussion of what it means for a learning procedure to be
called “calibrated”. The next section presents several vignettes designed to illustrate our
the general framework.

6. A simple example of a forecaster who is marginally calibrated but not probabilistically calibrated is
provided by the unfocussed forecaster of Gneiting et al. (2007); see also Hamill (2001). These examples
have no analogue in our context, due to the fact that there is no inherent randomness in the “true”
parameter θ, while the quantity being predicted is inherently random in the setting of forecast assessment.
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3. Vignettes

In this section we exploit our framework to test whether or not several popular learning
procedures are calibrated, with five separate vignettes presented. The first two vignettes,
Sections 3.1 and 3.2, consider learning procedures that are motivated as being approxima-
tions to Bayesian inference and are widely used: Gaussian approximations to non-Gaussian
posteriors and approximate Bayesian computation, respectively. In challenging applications,
the output produced using these approximations can fail to resemble the usual Bayesian
posterior; we therefore view these approximations as learning procedures in their own right
and we ask whether their distributional output is calibrated. Section 3.3 presents a topical
application to recently developed probabilistic ordinary differential equation (ode) solvers.
Section 3.4 concerns the challenge of performing a goodness-of-fit test for strong calibration
in multiple dimensions, where a suitable test function f must first be identified. The final
vignette, Section 3.5 examines how our notions of calibration can be extended to the setting
where the data-generating model is misspecified.

3.1 Gaussian Approximations

A common approach in statistics is to output a Gaussian distribution which approximates,
in some sense, the distributional output of an idealised learning procedure. The targeted
learning procedure will often be Bayesian inference, however Gaussian approximations can
also be used within different inferential paradigms. As an example of such an approach,
Gaussian approximations are often the output of variational inference methods, wherein the
learning procedure outputs the member of a family of distributions (in this case Gaussian)
which minimises a divergence from the target distribution (Blei et al., 2017). A distinct but
related approach is that of fitting a Gaussian approximation based on only local information.
The Laplace approximation, which outputs a Gaussian distribution centred at a maximum
of the log density of the target distribution and with covariance equal to the inverse of the
Hessian of the log density at this point, is a canonical example of such a method.

As a first simulation study we test the calibration of Laplace approximations to the
Bayesian posterior in a model with a location parameter θ. We assign a prior µ0 = N (0, 1),
and a Student’s t data-generating model Pθ such that y consists of n independent draws
from a T (θ, 1, ν) distribution. To be specific, y = (y(n))Nn=1, with y(n) iid∼ T (θ, 1, ν) for
n ∈ {1, . . . , N}.

The true posterior in this case is non-Gaussian and so our expectation is that a Laplace
approximation will be neither strongly nor weakly calibrated. However, for ν → ∞ or
N →∞ (and ν > 2) the posterior will become increasingly close to Gaussian, in the former
case due to the Student’s t distribution becoming increasingly close to Gaussian as ν →∞,
and in the latter due to the asymptotic normality of the posterior as N → ∞ by the
Bernstein–von Mises theorem for ν > 2. We therefore would expect it to be increasingly
challenging for the tests in Remark 10 and Remark 14 to reject respectively strong and
weak calibration as ν →∞ or N →∞.

In univariate cases such as this, we may employ the identity test function f(θ) = θ and
a one-sample ks test to check for uniformity in the tests in Remarks 10 and 14. Laplace
approximations were computed for 106 realisations from the hierarchical model θi

iid∼ µ0,
yi | θi iid∼ Pθi , for each of ν ∈ {1, 2, . . . 20} with N = 5 and for each of N ∈ {1, 2, . . . 20}
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Figure 3: Gaussian approximations: ks test statistics (left) and p-values (right) for strong
and weak calibration of Laplace approximations in the t-distribution example for
varying degrees of freedom ν and N = 5 (top) and varying number of data N
and ν = 3 (bottom).

with ν = 3. The strong and weak calibration test results are summarised in Figure 3. As
expected, we see that the power of both the strong and weak calibration tests decrease as
ν and N increase, with the ks test statistics (defined in (7)) showing decreasing departures
from uniformity. While the strong calibration test rejects the null hypothesis at a 0.05
significance criterion for all values of ν and N tested, the weak calibration test fails to
reject at a 0.05 level for most of the ν range. However, for the results with varying N ,
we see that weak calibration test correctly rejects the null hypothesis at a 0.05 significance
level up to N = 20.

A test of strong calibration is clearly preferable to a test of weak calibration in situations
where it is possible to be performed. However, these results indicate that the weaker test in
Remark 14 is still able to provide a useful check of calibration in some situations, with the
benefit of being simpler to compute and more widely applicable than the test in Remark 10.

3.2 Approximate Bayesian Computation

Performing Bayesian inference in settings for which the data-generating model Pθ does not
have a tractable pdf is challenging, with abc methods (Beaumont et al., 2002) often used
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Figure 4: Approximate Bayesian computation: Empirical cdfs for both abc and noisy abc
in the g-and-k quantile distribution example, for tolerances ε = 1 (left), ε = 2
(middle) and ε = 10 (right). The values of the ks test statistics are shown in the
legend.

as an alternative in such situations. The key idea in abc is that, in contrast to the standard
Bayesian procedure of conditioning on the observed dataset y = yobs, one instead conditions
on the event that d(y, yobs) < ε, for some distance d : Y × Y → [0,∞) and some tolerance
ε > 0. Typically the distance is specified by embedding the data into a finite-dimensional
normed vector space S via a summary statistic function s : Y → S and specifying the
distance as d(y, yobs) = ‖s(y)− s(yobs)‖.

As a consequence of Example 3, the learning procedure that exactly conditions on s(y) =
s(yobs), i.e. abc with tolerance ε = 0, is guaranteed to be strongly calibrated. Likewise in the
limit of ε→∞ the abc posterior will be strongly calibrated, as the posterior will collapse
to the prior (see Example 2). For ε ∈ (0,∞) the abc posterior will in general however be
neither strongly nor weakly calibrated. To resolve this lack of calibration of abc methods,
Fearnhead and Prangle (2012) proposed the noisy abc algorithm, which is calibrated for
any tolerance ε ≥ 0. Rather than conditioning on the event ‖s(y)− s(yobs)‖ < ε, noisy abc
replaces s(yobs) with noisy summary statistics s̃obs generated according to s̃obs = s(yobs)+εx,
with x uniformly distributed on the unit ball in S. The distributional output of noisy abc
is the partial posterior based on s̃obs, which takes into account the additional noise in the
data-generating model, and is therefore strongly calibrated by an extension of the argument
in Example 3.

Here we consider the parameter inference task for a g-and-k distribution. The g-and-k
distribution is defined through the inverse of its cdf (quantile function) and it does not have
a closed-form pdf (though the pdf can be evaluated numerically; Rayner and MacGillivray,
2002). Here we aim to infer the location parameter θ, which is assigned a prior µ0 = N (0, 1),
given a dataset y ∈ RN , N = 20, generated according to the data-generating model

Pθ : y(n) = θ + b

(
1 + 0.8

1− exp(−gun)

1 + exp(−gun)

)
un(1 + u2

n)k,
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Figure 5: Approximate Bayesian computation: ks test statistics (top) and p-values (bot-
tom) for strong (left) and weak (right) calibration of abc and noisy abc in the
g-and-k quantile distribution example, for various tolerances ε > 0.

with un
iid∼ N (0, 1), n ∈ {1, 2, . . . N}, b = 1, g = 2 and k = 0.5. For the tests that follow

we computed independent realisations from the hierarchical model θi
iid∼ µ0, yi | θi iid∼ Pθi .

In each case, data were summarised as a vector s : RN → R5 consisting of the five quartiles
of the dataset, and rejection sampling was used to generate M samples {θmi }Mm=1 from the
distributional output of both abc and noisy abc, for tolerances ε ∈ {1, 2, . . . 10}. Single
samples (M = 1) can be directly used to test for weak calibration, as per Remark 14.
However, the intractability of the distributional output for abc and noisy abc precludes
a straightforward test for strong calibration. Instead, we consider a variant of the test for
strong calibration in Remark 10, which in a similar spirit to Talts et al. (2018), wherein we
test whether the rank statistics r({θmi }Mm=1, θi) are iid samples from the discrete uniform
distribution on {0, 1, . . .M}. For testing strong calibration, a total of 104 realisations of
the hierarchical model were considered with M = 100, while for the less computationally
demanding test for weak calibration a total of 106 realisations were considered with M = 1.

Figure 4 presents empirical cdfs for both abc and noisy abc, on which our test for
strong calibration is based. Figure 5 presents the ks test statistics and corresponding p-
values for both strong and weak calibration, for different values of the tolerance ε > 0. In
each case noisy abc is, as expected, seen to be better calibrated than abc. Both the strong
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and weak calibration tests correctly fail to reject the null hypothesis at a 0.05 significance
level for noisy abc, which is strongly (and weakly) calibrated, for all values of the tolerance ε.
The strong calibration test fails to reject the null hypothesis that abc is strongly calibrated
for the highest two tolerances ε ≥ 9. The weak calibration test on the other hand correctly
rejects at a 0.05 level the null hypothesis that abc is weakly calibrated for all ε. The
apparent greater power of the weak calibration test here likely arises from the much larger
number of model realisations used — 106 compared to 104 for the strong test — for a
given computational expenditure due to the need to generate only M = 1 abc sample per
realisation rather than M = 100. A final interesting point of note is that both weak and
strong calibration show a “dip” in the ks test statistic at ε = 1, reflecting that as ε → 0
classical abc tends towards a Bayesian procedure, which is guaranteed to be calibrated.

3.3 Calibration of Probabilistic ODE Solvers

A traditional (adaptive) numerical method for the approximate solution of an ode accepts,
as its input, an error tolerance τ > 0 and returns, as its output, an approximation to the
solution of the ode. In general it is not guaranteed that the resulting approximation has
error less than τ , but empirical analysis over a range of typical odes can provide reassurance
that the error will be below τ for many problems practically encountered. In contrast to the
traditional approach, there has been a concerted research effort in recent years to develop
probabilistic numerical methods (pnms) for odes. A pnm returns a probability distribution
over the solution space of the ode, representing epistemic uncertainty associated with the
unknown true solution of the ode. The scale of this distributional output can be used as
the basis for selecting a suitable time step size in order to drive the uncertainty below a
user-specified tolerance τ , if desired. Compared to traditional numerical methods, which
have benefited from over a century of development, important questions regarding their
behaviour of pnms remain unanswered, including whether such methods are calibrated.
Most pnms exploit Gaussian process (gp) models for the solution of the ode, motivated by
mathematical convenience rather than detailed knowledge of the ode to be solved. These
models typically include hyperparameters for the gp, which are jointly estimated along
with the solution of the ode. Given that pnm act on the basis of a default gp model,
essentially independent of initial belief µ0 regarding the ode at hand, it is unclear whether
hyperparameter estimation is sufficient to ensure pnm are calibrated.

The principal application of pnms for odes is to inverse problems, where an ode’s
parameters are to be estimated based on a dataset. This usually requires the numerical
solution of many odes, each corresponding to different values of the parameters, to see
which parameter values are compatible with the dataset. The motivation for pnms in this
setting is that the solution of the odes can be viewed as an unknown latent quantity and
integrated out, potentially using a fast-but-crude pnm in place of an adaptive ode solver
and adjusting credible sets for ode parameters in a way commensurate with the accuracy of
the pnm used. However, the success of this approach hinges on whether the underlying pnm
is calibrated, as otherwise under- or over-confident parameter inferences could be produced.
To shed light on this question, we considered the probabilistic numerical solution of the
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Figure 6: Calibration of probabilistic ODE solvers: Samples (blue) from the strong cali-
bration test statistic Ff#µ(µ0,yi)(f(θi)) (c.f. Remark 10), with f(θ) = θ(1)(10)

(top row), θ(2)(10) (middle row), and from the weak calibration test statistic
ϑi ∼ µ(µ0, yi) (bottom row; c.f. Remark 14). The reference distribution, cor-
responding to the null hypothesis that the learning procedures are calibrated, is
in each case shown in red. The p-values for the associated hypothesis tests (see
main text for details) are shown in the top right-hand corner of each panel.

following Lotka–Volterra ode

dθ

dt
=

[
αθ(1) + βθ(1)θ(2)

γθ(2) + δθ(1)θ(2)

]
, θ(0) =

[
10
10

]
, t ∈ [0, 10], (6)

with an initial belief distribution µ0 induced over the solution space of differentiable func-
tions θ(t) on [0, 10] by sampling parameters (α, β, γ, δ) from a probability distribution π on
[0,∞)4. For this experiment we took the distribution π to be

α, γ
iid∼ logNormal(0, 0.25), β, δ

iid∼ logNormal(−2, 0.1),

which produces a variety of periodic trajectories typically associated with this type of
predator-prey model. The following pnms were considered: Chkrebtii et al. (2016), which
employs a particle-based approach requiring parallel simulations to produce empirical cred-
ible sets; Teymur et al. (2018), which is based on stochastic perturbation of traditional nu-
merical methods, continuing a line of work that originated in Conrad et al. (2017); Schober
et al. (2019) and Tronarp et al. (2019), which are both based on Gaussian filtering but with
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different approaches to the (local) linearisation of (6); and Teymur et al. (2021), which is
based on a probabilistic version of Richardson extrapolation. Each method has user-defined
settings that can in principle affect the selection of its hyperparameters, and thus, its cali-
bration in the senses used in this paper; for this experiment we considered one setting only
for each pnm, with full details contained in Appendix B. In particular, default settings were
used for some pnms, whilst the settings of other pnms were manually selected. Thus we
do not claim to draw general conclusions about the specific pnms involved; our aim is only
to show how diverse algorithms can be analysed using the notions of calibration we have
introduced.

Tests of strong and weak calibration were performed, in each case using the test functions
fj(θ) = θ(j)(10), j ∈ {1, 2}, i.e. the value of the solution at the final time point. Results

are displayed in Figure 6. The top two rows show histograms of Ff#µ(µ0,yi)(θ
(j)
i (10)) for j ∈

{1, 2}, using 100 samples θi drawn from µ0. A Kolmogorov–Smirnov test of uniformity was
then used to test whether the pnms are strongly calibrated (c.f. Remark 10). The bottom
panels show scatter plots of samples ϑi(10) where ϑi ∼ µ(µ0, yi), overlaid on contours of
µ0 (empirically obtained). A kernel two-sample test (Gretton et al., 2012) was performed
based on samples from the intractable distribution µ0 to assess whether the pnms are weakly
calibrated (c.f. Remark 14). The results of these simulations show that strong calibration is
not a property enjoyed by most pnm at present. The only instance where strong calibration
was not emphatically rejected is Teymur et al. (2018), for inference of the first component
θ(1)(10). It is interesting to note that Teymur et al. (2018) performs an exhaustive grid
search for gp hyperparameter estimation, which can require more computation compared
to the other pnm considered, and this may explain its relative success in this calibration
assessment. The remaining pnm perform poorly in different ways, including being over-
confident (e.g. Schober et al., 2019) and under-confident (e.g. Tronarp et al., 2019). However,
we reiterate that these conclusions will depend on additional user-specified settings, specific
to how each pnm is implemented. On the other hand, weak calibration was never rejected,
and indeed this was also the case over a much wider variety of algorithm settings (not
presented). This suggests that weak calibration of pnms, in as far as this testing framework
is concerned, is indeed a weak requirement.

3.4 Data-Driven Goodness-of-Fit Testing for Strong Calibration

For multivariate parameter inference tasks, where e.g. Θ = Rd, d > 1, it will not be possible
in general to identify a single test function f ∈ FΘ that has power against all alternatives to
the strong calibration null. Indeed, even a simultaneous test using all coordinate functions
fi(θ) = θ(i), i = 1, . . . , d, does not have power against all alternatives, since a multivariate
distribution is not uniquely determined by its univariate marginals. Nevertheless, the rich-
ness of the set FΘ is such that we expect some f ∈ FΘ to yield a test with the power to
reject the null hypothesis, due to Lemma 5. A strategy to select a suitable test function f
is therefore required.

Following a generic approach to goodness-of-fit testing, one way to proceed is to consider
splitting the collection of simulated parameter-dataset pairs into two disjoint sets: S1 :=
{(θi, yi)}si=1, S2 := {(θi, yi)}Si=s+1. The first subset S1 can be used to identify a suitable
test function f , after which a goodness-of-fit test can be conducted using f and S2. The
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independence of S1 and S2 ensures that a test conducted in this way is valid. To select a
suitable test function, one first identifies a sufficiently small subset Fs ⊂ FΘ of test functions
and, for each f ∈ Fs, a univariate goodness-of-fit test is performed using S1. The element
of Fs that gives rise to the strongest evidence against the null hypothesis, based on S1,
is selected. The main advantage of a data-splitting approach is that the selection of f is
data-driven, as opposed to f being user-specified. The role of data to inform the selection
of f is anticipated to be increasingly important in higher dimensional settings, d � 1. To
explore this, we consider now a setting that is, at least notionally, infinite dimensional.

Let θ : [0, 1]→ R be a continuous function-valued parameter, so that Θ = C(0, 1) is the
set of continuous functions on [0, 1]. For µ0 we consider a hierarchical, non-stationary gp
of the form θ(x) := σ(x)g(x), g ∼ GP(0, k) with k(x, x′) := exp(−(x − x′)2/`2), σ ∼ ν for
some distribution ν to be specified, and for simplicity ` = 0.1 is fixed. Consider the data-
generating model that returns y = (y(1), . . . , y(10)), where y(n) = θ(xn) and xn ∼ U(0, 1) are
independently sampled. A popular, pragmatic workflow acknowledges the non-stationarity
encoded in µ0 but, for computational convenience, fits instead a stationary, non-hierarchical
gp of the form θ(x) = σ0g(x), where the scalar σ0 is estimated using maximum likelihood.
Estimating σ0 from data enables the scale of the distributional output to roughly adapt to
the scale of the dataset, but this is insufficient to ensure the learning procedure is strongly
calibrated (Karvonen et al., 2020). Our interest here is in whether we can detect failure of
strong calibration, and for this purpose we consider a simple form of ν that sets σ(x) =
1 + x with probability one. It can be expected that simplified gp regression produces a
“compromise” value of σ0, which leads to under-confident inferences for θ(x) when x is
close to 0 and over-confident inferences when x is close to 1.

For the set of candidate test functions Fs, we consider the evaluation functions fx(θ) :=
θ(x), indexed by x ∈ [0, 1]. A number, S, of parameter-dataset pairs were generated, of
which s = S

2 were assigned to S1 and used to identify a promising location x∗ ∈ [0, 1] at
which to perform a hypothesis test of strong calibration using the held-out S2. Since the
marginals (fx)#µ(µ0, y) are Gaussian, it is natural to use a χ2

s test, as per (4). Thus we
select x∗ to minimise the p-value of a two-sided χ2

s test, based on fx and computed using
S1, over x ∈ [0, 1]. The total number of simulated parameter-dataset pairs S was varied
from 10 to 150 and, through repeated simulation, the p-values of a two-sided χ2

s test of
strong calibration, based on the estimated x∗ and S1, were computed. As a baseline, we
also computed p-values for a user-specified test function centred at xb := 0.5. In Figure 7
(left) we plot log p-values as a function of x, for s = 10 (top) and s = 150 (bottom), for
one typical realisation of S1. These results indicate that values of x close to 0 are likely to
provide the most power for our hypothesis test. Here x∗ is indicated as a vertical red line
and xb indicated as a vertical blue line; the identification of a suitable x∗ is seen to be easier
when the number, s, of simulations available in S1 is increased. Finally, in Figure 7 (right)
we plot the p-values obtained when the x∗-based and xb-based tests are applied to S2. To
avoid reporting an artefact of the random seed, average log p-values are reported, along
with standard errors, based on 100 independent realisations of S1 and S2. It is seen that
the data-driven goodness-of-fit test (based on x∗) is more powerful than the user-specified
test (based on xb).

This illustration makes clear that, for a data-splitting approach to work well, the size of
the set Fs of candidate test functions should be carefully controlled, relative to the number
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Figure 7: Data-driven goodness-of-fit testing for strong calibration: Here we consider an
infinite-dimensional parameter θ ∈ C(0, 1). On the left, we display typical p-
values obtained using a test based on the evaluation functional fx(θ) = θ(x) and
a number s of independent simulations of the parameter and dataset (top: s = 10,
bottom: s = 150). The right hand panel displays average p-values obtained when
the procedure is applied to 100 independent realisations of S1 and S2, each of size
s, using either the data-driven choice x = x∗ or the fixed choice x = xb of test.

s of samples in S1. For example, if we simply took Fs = FΘ, then for any α ∈ (0, 1) there
would be infinitely many elements of Fs for which the null hypothesis is rejected at level α
by virtue only of the fact that S1 is a finite set. Consideration of multiple data splits can
also be exploited to increase the power of such a test (Romano and DiCiccio, 2019).

3.5 Robust Calibration

Our proposed notions of strong and weak calibration can be extended to the M-open setting
(Bernardo and Smith, 1994, §6.1.2) where the data-generating model may be misspecified.
This permits us to define notions of “robust calibration”, which are analogous (and or-
thogonal) to the notions of “robust estimation” that are already widely studied (Berger,
1994; Huber and Ronchetti, 2009). For example, suppose that a learning procedure µ is
strongly calibrated to (µ0, P ). Then, for any f ∈ FΘ, the distribution Uf,P of the random
variable Ff#µ(µ0,y)(f(θ)), where θ ∼ µ0, y | θ ∼ Pθ, is by definition U(0, 1). Thus, when the
data-generating model P is misspecified, we may quantify the loss of strong calibration in
terms of a statistical divergence between Uf,Q and U(0, 1).

Here we adopt a more practical perspective, using the framework of Section 2.3 to test
the strong calibration null hypothesis in settings where the data-generating model is mis-
specified. For example, consider a Bayesian learning procedure µ for a location parameter
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Figure 8: Robust calibration: Results of ks tests for strong calibration, comparing standard
Bayesian inference (“Bayes”) to the method of fractional posteriors (also called
robust Bayes; “RBayes”) with exponents t ∈ {0.1, 0.2, 0.3}, in a setting where
the likelihood is misspecified. Note that in the right panel the RBayes lines for
t = 0.1, t = 0.2 and t = 0.3 coincide.

θ, which is assigned a prior µ0 = N (0, 3), based on a likelihood Y | θ ∼ N (θ, 1). Our
assessment will be performed using the data-generating model

Pθ : Y | θ ∼
{
N (θ, 1) w.p. 1− ε
N (5, 1) w.p. ε

,

where ε ∈ [0, 1] is a probability of obtaining a contaminated observation, so that for ε > 0
the likelihood is misspecified and the Bayesian learning procedure is not strongly calibrated
to (µ0, P ). Fractional posteriors with exponent t ∈ [0, 1], as defined in Example 6, have
been proposed as learning procedures that can offer robustness to misspecification of the
likelihood e.g. in Grünwald and van Ommen (2017). Our aim is to assess this claim within
our testing framework.

Results of performing a ks test of the strong calibration null hypothesis, using the
identity test function f(θ) = θ, are displayed for a variety of values of t and ε in Figure 8.
Clearly the only circumstance in which any of the learning procedures is strongly calibrated
is when ε = 0 and the Bayesian procedure is used. Otherwise, according to the test statistic
in the left panel, fractional posteriors are marginally better calibrated when ε > 0 than
the Bayesian procedure, though regarding the p-values in the right panel one sees that the
values of the statistic in these cases are still sufficiently sufficiently large to emphatically
reject the strong calibration null hypothesis.

Finally, we note that other senses of “robust calibration” could be considered, analogous
to the various notions of “robust estimation” that have been studied (Berger, 1994; Huber
and Ronchetti, 2009). For example, one could consider a setting where true parameters
θ are drawn from a distribution other than µ0 and assess the consequences, in terms of
calibration, for a learning procedure that uses µ0 as the initial belief distribution.
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4. Discussion

The desire that a parameter used to generate a dataset should appear plausible as a sample
from the distributional output of a learning procedure, such as a Bayesian posterior, is
foundational and, at least in an informal sense, widely understood and accepted. Despite
this, a precise and widely applicable notion of what it means for a learning procedure
to be “calibrated” appears not to have been put forward. Our aim in this paper was
to propose such a definition, together with a framework for testing whether a learning
procedure is calibrated. In particular, we proposed a property called strong calibration
(Definition 8), which provides an explicit sense in which output from the learning procedure
can be considered to be meaningful. A strictly weaker property, called weak calibration, was
also proposed (Definition 13), which has the advantage of being more straightforward to test.
Several vignettes were provided to illustrate the generality and usefulness of the framework.

Our hope, in writing this manuscript, is to stimulate further critical discussion around
calibration as a desideratum for a learning procedure, and to bring together some of the
disparate strands of literature where related concepts and domain-specific definitions have
been developed (cf. Section 2.3.2).

4.1 Further Work

A particularly promising avenue for further research would be to develop measures of mis-
calibration using the ideas proposed in this paper. Generally speaking, when using approx-
imate methods such as Laplace approximation (cf. Section 3.1) or abc (cf. Section 3.2),
or generalised Bayesian methods (cf. Section 3.5), a user has purposefully departed from
the Bayesian framework due to challenges such as its lack of computational tractability or
the possibility that the model is misspecified. In such settings a measure of miscalibration
is likely to be of more use than a test for calibration, since exact calibration cannot be
expected to hold. A measure of miscalibration might allow a user to select the “most cali-
brated” method from among multiple alternatives, or perhaps even incorporate calibration
into a variational objective in a variational Bayesian framework (Knoblauch et al., 2021).

In the context of Definition 8, such a measure could be constructed by selecting some
test function f∗ ∈ FΘ and computing a statistical divergence between Ff∗#µ(µ0,y)(f

∗(θ)) and

U(0, 1). The former quantity is unlikely to be available in closed-form but could be estimated
using Monte Carlo techniques. Immediate challenges with this would concern selection of
a suitable divergence and a suitable f∗. For the latter, one could perhaps instead consider
selecting a subset Ftest ⊂ Fθ over which a supremum can be taken tractably. However, we
leave this task for future work.
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Appendix A. Proof of Theoretical Results

This appendix contains proofs for all novel results in the main text. For x ∈ Rd, we let
(−∞, x] := (−∞, x1]× · · · × (−∞, xd] and we write y ≤ x whenever y ∈ (−∞, x], i.e. when
yi ≤ xi for i = 1, . . . , d.

A.1 Proof of Lemma 5

Our proof of Lemma 5 makes use of the Kolmogorov distance

dK(µ, ν) := sup
x∈Rd

dK(x;µ, ν), (7)

dK(x;µ, ν) :=

∣∣∣∣
∫

1(−∞,x] dµ−
∫

1(−∞,x] dν

∣∣∣∣ , (8)

which is a metric on P(Rd) (Shorack, 2000, Theorem 2.4).

Proof [Proof of Lemma 5] Suppose that µ 6= ν, so that it suffices to exhibit an element
f ∈ FΘ for which

∫
f dµ 6=

∫
f dν. From the metric property of dK, there must exist

x∗ ∈ Rd such that ε := dK(x∗;µ, ν) > 0. Now, for c > 0, consider the function

f
(c)
x∗ : Rd → (0, 1), f

(c)
x∗ (x) :=

d∏

i=1

1

1 + e2c(xi−x∗i )
, (9)

which satisfies f
(c)
x∗ ∈ FΘ. Since f

(c)
x∗ converges pointwise to f

(∞)
x∗ := 1(−∞,x∗] outside of a

null set and |f (c)
x∗ | ≤ 1, the dominated convergence theorem implies that f

(c)
x∗ is a consistent

approximation of f
(∞)
x∗ in the c→∞ limit in both L1(µ) and L1(ν). Therefore, there exists

c∗ > 0 such that ‖f (c∗)
x∗ −f

(∞)
x∗ ‖L1(µ) < ε/2 and ‖f (c∗)

x∗ −f
(∞)
x∗ ‖L1(ν) < ε/2. For this f

(c∗)
x∗ ∈ FΘ

we have from the reverse triangle inequality that
∣∣∣∣
∫
f

(c∗)
x∗ dµ−

∫
f

(c∗)
x∗ dν

∣∣∣∣ =

∣∣∣∣
(∫

f
(c∗)
x∗ dµ−

∫
f

(∞)
x∗ dµ

)
+

(∫
f

(∞)
x∗ dµ−

∫
f

(∞)
x∗ dν

)

+

(∫
f

(∞)
x∗ dν −

∫
f

(c∗)
x∗ dν

)∣∣∣∣

≥
∣∣∣∣∣

∣∣∣∣
(∫

f
(c∗)
x∗ dµ−

∫
f

(∞)
x∗ dµ

)
+

(∫
f

(∞)
x∗ dν −

∫
f

(c∗)
x∗ dν

)∣∣∣∣
︸ ︷︷ ︸

(∗)

−
∣∣∣∣
∫
f

(∞)
x∗ dµ−

∫
f

(∞)
x∗ dν

∣∣∣∣
︸ ︷︷ ︸

=ε

∣∣∣∣∣.

The triangle inequality implies that

|(∗)| ≤ ‖f (c∗)
x∗ − f

(∞)
x∗ ‖L1(µ) + ‖f (∞)

x∗ − f (c∗)
x∗ ‖L1(ν) < ε/2 + ε/2 = ε,
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and so it follows that
∣∣∣
∫
f

(c∗)
x∗ dµ−

∫
f

(c∗)
x∗ dν

∣∣∣ 6= 0. Thus we have exhibited an element

f
(c∗)
x∗ ∈ FΘ for which

∫
f

(c∗)
x∗ dµ 6=

∫
f

(c∗)
x∗ dν. This completes the proof.

A.2 Proof of Lemma 15

First we derive a corollary of Lemma 5 that will be used to prove Lemma 15:

Corollary 16. Let Θ = Rd for some d ∈ N. Suppose that µ, ν ∈ Pr(Θ) and that the
independent random variables θ ∼ µ, ϑ ∼ ν satisfy P(f(θ) ≤ f(ϑ)) = 1/2 for all f ∈ FΘ.
Then µ = ν.

Proof If µ 6= ν then, as in the proof of Lemma 5, we can identify x∗ ∈ Rd such that
dK(x∗;µ, ν) > 0. Since µ and ν are regular, the function x 7→ dK(x;µ, ν) is continuous on
Rd and there exists an open neighbourhood N(x∗) of x∗ such that dK(x;µ, ν) > 0 for all
x ∈ N(x∗).

Suppose, to arrive at a contradiction, that P(f(θ) ≤ f(ϑ)) = 1/2 for all f ∈ FΘ. Then,

for all x ∈ N(x∗), we can construct functions f
(c)
x ∈ FΘ as per (9), for which it holds that

P(ϑ ≤ x) = P(f (∞)
x (θ) ≤ f (∞)

x (ϑ)) = lim
c→∞

P(f (c)
x (θ) ≤ f (c)

x (ϑ)) =
1

2
.

But ν was assumed to be regular, meaning that ν has a positive Lebesgue pdf, so that
P(ϑ ≤ x) = 1/2 cannot simultaneously hold for all x ∈ N(x∗). Indeed, since N(x∗) is
open, there exists x ∈ N(x∗) such that x∗i < xi for all i = 1, . . . , d. Then P(ϑ ≤ x) =
P(ϑ ≤ x∗) + ν(S), where S := (−∞, x] \ (−∞, x∗] is a measurable set with ν(S) > 0. This
contradiction completes the proof.

Proof [Proof of Lemma 15] Fix µ0 ∈ B. Let θ ∼ µ0, y|θ ∼ Pθ and ϑ|θ, y ∼ µ(µ0, y). First
we argue that the distribution ν :=

∫∫
µ(µ0, y) dPθ(y) dµ0(θ) of the random variable ϑ is

regular. Since µ is a regular learning procedure, µ(µ0, y) admits a pdf pµ(µ0,y) for each

y ∈ Rd. Thus, ν admits the pdf

pν(x) :=

∫
pµ(µ0,y)(x) dQ(y), Q :=

∫
Pθ dµ(θ)

and our task is to establish that this pdf is positive on Rd. Fix x ∈ Rd. Now, since
pµ(µ0,y)(x) > 0 for all y ∈ Rd, we have

Rd =
⋃

n∈N
Sn, Sn :=

{
y ∈ Rd

∣∣∣∣pµ(µ0,y)(x) >
1

n

}
.

Since Q is a probability distribution on Rd, it follows that for some n ∈ N, Q(Sn) > 0.
Therefore

pν(x) =

∫
pµ(µ0,y)(x) dQ(y) >

1

n
Q(Sn) > 0

and, since this argument holds for all x ∈ Rd, pν is a positive pdf on Rd and ν is regular.
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Next, since µ0 and the learning procedure µ are regular, and µ is strongly calibrated,
for each f ∈ FΘ,

Ff#µ(µ0,y)(f(θ)) = P(f(ϑ) ≤ f(θ)|θ, y) ∼ U(0, 1) (10)

and taking expectations of both sides yields

P(f(ϑ) ≤ f(θ)) =
1

2
. (11)

Since both µ0 and ν are regular, it follows from Corollary 16 and (11) that µ0 = ν, and so
ϑ has the marginal distribution µ0. Thus we have shown that the learning procedure µ is
weakly calibrated to the belief distribution µ0 and the data-generating model P .

Appendix B. Probabilistic Numerical Methods for ODEs

This appendix contains full details of how the pnms in Section 3.3 were implemented:

• The code for Chkrebtii et al. (2016) was taken from git.io/J33lL and the step-size
was set at h = 0.1. The following settings were used: nsolves = 100, N = 100,
nevalpoints = 500, lambda = 0.08 and alpha = 1. These values were manually
selected, over the default values recommended in the code, since they led to improved
calibration of the output. Rigorous optimisation of these settings was not attempted.

• The code for Teymur et al. (2018) was provided to us by the authors and is not
yet publicly released. The method used is the 2-step (i.e. order 3) probabilistic
Adams–Moulton method with step-size h = 0.5 and overall scaling parameter α = 0.3.
These values were manually selected with the intention of improving calibration of the
output, but rigorous optimisation of these settings was not attempted. The stepwise
perturbations are scaled using the global calibration procedure described in Conrad
et al. (2017).

• The code for both Schober et al. (2019) and Tronarp et al. (2019) derives from the
comprehensive open-source Python package probnum. On the advice of the authors of
this package we implemented the adaptive routine probnum/diffeq.probsolve ivp.
In this case the default values of tolerances were used. The only hyperparameter
it is required to set is algo order, which we set to 3. The setting method = EK0

corresponds to Schober et al. (2019), and method = EK1 corresponds to Tronarp et al.
(2019).

• The code for Teymur et al. (2021) was provided to us by the authors and expected
to be made public on full publication of that paper. This method is based on multi-
fidelity simulation, so we take h ∈ {0.1, 0.2, 0.4} and solve the ode using a 2-step
(i.e. order 2) Adams–Bashforth method. All other hyperparameters are optimised
automatically as part of the routine.
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