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Abstract

The secretary problem or game of Googol are classic models for online selection problems.
In this paper we consider a variant of the problem and explore its connections to data-
driven online selection. Specifically, we are given n cards with arbitrary non-negative
numbers written on both sides. The cards are randomly placed on n consecutive positions
on a table, and for each card, the visible side is also selected at random. The player sees the
visible side of all cards and wants to select the card with the maximum hidden value. To
this end, the player flips the first card, sees its hidden value and decides whether to pick it
or drop it and continue with the next card. We study algorithms for two natural objectives:
maximizing the probability of selecting the maximum hidden value, and maximizing the
expectation of the selected hidden value. For the former objective we obtain a simple
0.45292-competitive algorithm. For the latter, we obtain a 0.63518-competitive algorithm.
Our main contribution is to set up a model allowing to transform probabilistic optimal
stopping problems into purely combinatorial ones. For instance, we can apply our results
to obtain lower bounds for the single sample prophet secretary problem.
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1. Introduction

In the classic game of Googol we are given n cards with n different arbitrary positive
numbers written on them. The cards are shuffled and spread on a table with the numbers
facing down. The cards are flipped one at a time, in a uniform random order, and we have
to decide when to stop. The goal is to maximize the probability that the last flipped card
has the overall greatest number.

In this work we study a variant of this problem that we call The two-sided game of
Googol. Similar to the classic version, we are given n cards that we have to flip in random
uniform order. However, here the cards have numbers on both sides, so we have 2n different
arbitrary non-negative numbers instead of n, written on each side of each card. The cards
are shuffled and spread on a table so that, independently for each card, either side faces up
with probability 1/2. We can see all the numbers that landed facing up (while the other
side is hidden), and flip one card at a time, revealing the number that was facing down.
Again we have to decide when to stop. We study the secretary and the prophet variants. In
the secretary variant, the goal is to maximize the probability of stopping at the maximum
number over the numbers that landed facing down. In the prophet variant, the goal is to
maximize the ratio between the expectation of the last number revealed before stopping,
and the expected maximum of the numbers that landed facing down.

1.1 Optimal Stopping and Prophet Inequalities

The two-sided game of Googol naturally fits within the theory of optimal stopping theory
which is concerned with choosing the right time to take a particular action, so as to maximize
the expected reward. Two landmark examples within this theory are the secretary problem
(or game of Googol) described above, and the prophet inequality. In the latter a gambler
faces a finite sequence of non-negative independent random variablesX1, . . . , Xn with known
distributions Fi from which iteratively a prize is drawn. After seeing a prize, the gambler
can either accept the prize and the game ends, or reject the prize and the next prize is
presented to her. The classical result of Krengel and Sucheston (1977, 1978) states that
the gambler can obtain at least half of the expected reward that a prophet can make who
knows the realizations of the prizes beforehand. That is, sup{E[Xt] : t stopping rule } ≥
1
2E{sup1≤i≤nXi}. Moreover, this bound is best possible. Remarkably, Samuel-Cahn (1984)
showed that the bound of 1/2 can be obtained by a single threshold rule, which stops as
soon as a prize is above a fixed threshold. We refer the reader to the survey by Hill and
Kertz (1992) for further classic results.

1.2 Posted price mechanisms and the prophet inequality

Posted price mechanisms are simple mechanisms used to sell one or many items among
one or many buyers. The mechanism is straightforward, buyers arrive sequentially, and
upon their arrival they are offered a (possibly different) price for the item(s). Based on
her valuation for the item, the buyer decides whether to purchase or not. It turns out that
there is a connection between posted price mechanisms and prophet inequalities. When
there is one item and many buyers, the posted price mechanism has an analogy to the
classic prophet inequality, where the arriving values can be seen as the valuations of the
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arriving buyers and the threshold for accepting each value can be seen as the price offered
to the buyers. The buyer will purchase the item if their valuation is higher than the offered
price, the same way as the decision maker will stop at a certain value if it is greater than
its threshold.

In recent years, motivated by the connections between optimal stopping and posted
price mechanisms (Hajiaghayi et al., 2007; Chawla et al., 2010; Correa et al., 2019c), there
has been a regained interest in studying algorithms for variants of the classic prophet in-
equalities. The survey of Lucier (2017) is a good starting point to understand the economic
perspective of prophet inequalities, while the letter of Correa et al. (2019b) provides a re-
cent overview of results for single choice prophet inequalities. Due to this regained interest,
new variants of the prophet inequality setting have been studied, including problems when
the gambler has to select multiple items, when the selected set has to satisfy combinatorial
constraints, when the market is large, when prior information is inaccurate, among many
others (Abolhassani et al., 2017; Kleinberg and Weinberg, 2012; Dutting et al., 2020; Ehsani
et al., 2018; Dütting and Kesselheim, 2019).

1.3 Prophet Secretary Problem and data-driven variants

Particularly relevant to our work is the prophet secretary problem. In this version, a gambler
faces a finite sequence of non-negative independent random variablesX1, . . . , Xn with known
distributions Fi, as in the prophet inequality. However, the order in which these random
variables are faced is a uniform random permutation, as in the secretary problem. As
in the prophet inequality, the goal of the gambler is to maximize the expectation of the
selected prize. The problem was first studied by Esfandiari et al. (2017) who found a
bound of 1 − 1/e. Later, Ehsani et al. (2018) showed that the bound of 1 − 1/e can even
be achieved using a single threshold. The factor 1 − 1/e was first beaten by Azar et al.
(2018) by a tiny margin, while the current best bound is 0.67 (Correa et al., 2021b). In
terms of upper bounds it was unclear until very recently whether there was a separation
between prophet secretary and the i.i.d prophet inequality, where the random variables are
identically distributed. For the latter problem, Hill and Kertz (1982) provided the family
of worst possible instances from which Kertz (1986) proved the largest possible bound one
could expect is 0.7451. Correa et al. (2017) established that this value is actually tight
for the i.i.d. prophet inequality. On the other hand, Correa et al. (2021b) showed that no
algorithm can achieve an approximation factor better than

√
3 − 1 ≈ 0.73 for the prophet

secretary problem, establishing the separation between the problems. Interestingly, Liu
et al. (2020) show that this separation is somewhat weak by showing that if we are allowed
to remove a small number of random variables from the prophet secretary problem one can
recover the 0.7451 bound of the i.i.d. case.

Some recent work has started to investigate data-driven versions of the prophet inequal-
ity, since the full distributional knowledge seems quite strong for many applications. In
this context, Azar et al. (2014) consider a version in which the gambler only has access to
one sample from each distribution. They prove a prophet inequality with an approximation
guarantee of 1/4 for this problem and left open whether achieving 1/2 is possible. This
question was recently answered on the positive by Rubinstein et al. (2020) who uses an ele-
gant approach to prove that just taking the maximum of the samples as threshold leads to
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the optimal guarantee. If the instance is further specialized to be i.i.d., until the conference
version of the current paper the best known bound was 1−1/e, while it was known that one
cannot achieve a guarantee better than ln(2) ≈ 0.69 (Correa et al., 2019a). In subsequent
work, the lower bound of 1− 1/e was improved to 0.67 by Correa et al. (2020).

The classic approach to tackle data-driven variants of stochastic optimization problems
has two steps: first learn the distributions and then optimize the objective using the learnt
distribution. The analysis then focuses on calculating the estimation error and to what
extent it is propagated by the optimization procedure. Most work on data-driven variants
of the prophet inequality follows this strategy. In our problem, the number of samples is
too small to learn the distributions (in fact, we only have one sample per distribution).
Consequently, our approach is different: Noting that the samples and the actual values
are interchangeable, we exploit the combinatorial structure of the problem to optimize the
objective for every possible set of realized values. Very recent work has focused on using
this technique, with exciting results. Examples of this line of research are the works of
Correa et al. (2020), Correa et al. (2021a), Kaplan et al. (2020), Kaplan et al. (2022) and
Caramanis et al. (2022).

1.4 Connection to the two-sided game of Googol

Our problem is closely related to the single-sample version of the secretary problem and the
prophet secretary problem, which combine the data-driven approach of Azar et al. (2014)
and the random arrival order of Esfandiari et al. (2017). In these problems we are given n
distributions, which are unknown to us, and only have access to a single sample from each.
Then n values are drawn, one from each distribution, and presented to us in random order.
When we get to see a value, we have to decide whether to keep it and stop, or to drop
it and continue. In the single-sample secretary problem the goal again is to maximize the
probability of stopping with the largest value, while in the single-sample prophet secretary
problem the goal is to maximize the expectation of the value at which we stopped divided
by the expectation of the maximum of the values.

It is immediate to observe that an algorithm for the two-sided game of Googol that
has a guarantee of α, for either the secretary or prophet variants of the problem, readily
implies the same approximation guarantee for the single-sample secretary problem and
single-sample prophet secretary problem respectively, as noted in Rubinstein et al. (2020).
Indeed, if we consider an instance of the two-sided game of Googol where the values on
card i are independent draws from a distribution Fi we exactly obtain the single-sample
secretary and the single-sample prophet secretary problems.

1.5 Our results

Most of our results come from analyzing three basic algorithms. The first is the Open
moving window algorithm, in which we stop the first time the card just flipped is larger
than all the currently visible values. The second is the Closed moving window algorithm, in
which we additionally require that in the last flipped card the value just revealed is larger
than the value that was visible before. Finally we consider the Full window algorithm in
which we simply take the largest value initially visible as threshold (and therefore stop the
first time we see a value larger than all values we have seen).

4



The Two-Sided Game of Googol

We first study the secretary variant of the two-sided game of Googol in which the goal
is to maximize the probability of choosing the maximum hidden value. For this problem we
prove that the closed window algorithm gets the maximum value with probability 0.4529.
Of course, this value is more than 1/e which is the best possible for the classic secretary
problem (Dynkin, 1963; Lindley, 1961; Ferguson, 1989), but it is less than 0.5801 which is
the best possible guarantee for the i.i.d. full information secretary problem, i.e., when the
full distribution is known (Gilbert and Mosteller, 1966). Remarkably, Nuti (2020) showed
that this latter bound holds in the full information case with nonidentical random variables
arriving in random order. For our two-sided game of Googol, an improved upper bound, of
0.502, for the probability of choosing the maximum hidden value can be derived from the
work of Campbell and Samuels (1981).

Next, we concentrate on the main subject of this paper which is the prophet variant
of the two-sided game of Googol. Here, the goal is to maximize the ratio between the
expectation of the chosen value, and that of the maximum hidden value. In this case we
start by observing that all three algorithms described above can only give a guarantee of 1/2.
Indeed, consider an instance with two cards. Card 1 has values 0 and 1 on each side while
card 2 has the numbers ε and ε2. Clearly the expectation of the maximum hidden value
is 1/2 + O(ε) (the value 1 is hidden with probability 1/2) while the open moving window
algorithm gets in expectation 1/4+O(ε) (to get the value of 1 the algorithm needs that it is
hidden and that card 1 is the first card). For the other two algorithms, consider the instance
in which card 1 has the values 1 and 1 − ε while card 2 has the values ε and 0. Clearly
the expectation of the maximum hidden value is 1 − O(ε), but since now neither of the
algorithms can stop when 1−ε is revealed, both algorithms obtain 1/2+O(ε). However, by
randomizing the choice of the algorithm we significantly improve the approximation ratio.

Our main result is to show that a simple randomization of the three proposed algorithms
achieves a guarantee of 0.635 > 1 − 1/e. Interestingly, our bound surpasses that of Azar
et al. (2018) which until very recently was the best known bound for (the full information)
prophet secretary. Furthermore, our bound also beats the bound of 1 − 1/e obtained by
Correa et al. (2019a) for the i.i.d. single-sample prophet inequality.1 So our bound not only
improves upon these known bounds, but also works in a more general setting. The key
behind the analysis is a very fine description of the performance of each of the three basic
algorithms. Indeed for each algorithm we exactly compute the probability that they obtain
any of the 2n possible values.2 With this performance distribution at hand it remains to set
the right probabilities of choosing each so as to maximize the expectation of the obtained
value.

To wrap-up the work we consider a large data-set situation which naturally applies to a
slightly restricted version of the single sample prophet secretary problem. The assumption
states that, with high probability, if we rank all 2n values from largest to smallest, the
position of the maximum over all cards of the minimum of the two values in the card lies far
down the list (i.e., when ranking the 2n values the first few values correspond to a maximum
in its card). This assumption holds for instance in the single-sample i.i.d. prophet inequality,

1. This was the best known lower bound for the problem until the conference version of the paper. This
bound was improved to 0.67 in Correa et al. (2020).

2. In this respect, our result for the secretary variant can be seen as a warm up for the prophet variant of
the problem.
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Instance
Prophet Secretary Secretary

(E(ALG) ≥ αE(OPT )) P(ALG = OPT ) ≥ α

Single Sample 1
2 ≤ 0.635 ≤ α ≤ ln(2) 1

e ≤ 0.452 ≤ α ≤ 0.502
[R20] [*] [C19] [D63] [*] [CS81]

Full information 0.669 ≤ α ≤
√

3− 1 α = 0.5801
[CSZ21] [N20]

Table 1: Summary of known results for prophet secretary and secretary problems in the
single-sample and full information settings. Results marked [*] are proven in this
work. [R20] refers to Rubinstein et al. (2020), [C19] refers to Correa et al. (2019a),
[D63] refers to Dynkin (1963), [CS81] refers to Campbell and Samuels (1981),
[CSZ21] refers to Correa et al. (2021b), and [N20] refers to Nuti (2020).

under the large market assumption used by Abolhassani et al. (2017), or whenever the
underlying distributions of the prophet secretary instance overlap enough. For this variant
we design an optimal moving window algorithm and prove that it achieves an approximation
ratio of 0.642.

Table 1 summarizes our results and the previous best bounds for the problems we
consider.

2. Preliminaries, basic algorithms and statement of our results

2.1 Warm-up: Why is the problem hard?

Let us start the discussion by noting that the two-sided game of Googol presents some
difficulties that go much beyond those of the classic game of Googol. To illustrate these
difficulties, we present the ordinal algorithms3 that achieve the highest possible competitive
ratio in the prophet variant of the problem, for n = 2 and n = 3.

In the case n = 2 the optimal algorithm turns out to be simple and natural. It can
be explained as follows. When flipping the first card, three of the four numbers will be
known. If the number that was revealed is the highest among the three numbers seen so
far, then stop with that number. Otherwise, select the number hidden in the second card.
A slightly tedious, but straightforward calculation shows that this algorithm achieves an
approximation ratio of 3/4.

However, the situation changes dramatically when n = 3. This case already illustrates
how complicated the optimal ordinal algorithm can be, and serves to motivate the devel-
opment of simple algorithms that perform competitively. In what follows we describe the
optimal ordinal algorithm in this case. This is obtained through a factor revealing linear

3. An algorithm which decides to stop or not based on the relative ranking of the observed elements, not
on the numerical values of the elements.
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program which is developed in detail in Appendix A. Unfortunately, the size of the linear
program grows exponentially with n, and the execution needs to compute a family of co-
efficients via brute force, making it intractable even for n = 5. So let us describe some of
the surprising aspects of the optimal algorithm when n = 3. At the moment of flipping the
first card, four numbers will be observed. If the revealed number is the highest among the
four numbers observed so far, and the number at the other side of the flipped card is the
fourth or third lowest among the four numbers observed so far, then stop. On the contrary,
if the revealed number is the highest and the number on the other side of the flipped card
is second highest, then stop with probability 0.95. This randomization seems odd, but it is
necessary to achieve the optimal ratio. Indeed, if we require this sole case to be decided in
a deterministic way (stop with probability 0 or 1), then the approximation ratio obtained
is strictly lower. The first step of the optimal algorithm is completed by noting that if the
revealed number on the first card is not the highest among the four observed, then the
algorithm drops that number and continues. For the second step the situation gets even
messier so an exhaustive description of the algorithm can be found in Table 2.1. Finally, at
step 3 the algorithm always stops.

This delicate and surprising behavior can be explained by the fact that the algorithm
has to be robust not only against the numbers written in the cards, as it happens for the
classic game of Googol, but also against how the 2n numbers are coupled among the cards.
The way that the numbers are coupled has an important impact on how the game can
develop, in terms of how these rankings among the visible numbers change through the
process. Consequently, under different couplings the same “picture” of the game can give
very different information about which action is the most convenient to take. The algorithm
then must carefully balance its performance in all of the possible couplings, otherwise the
adversary would simply choose the worst case coupling.

2.2 Problem statement

Formal problem statement. We are given 2n different and arbitrary positive numbers,
organized into n pairs that we denote as {(ai, bi)}ni=1, representing the numbers written in
both sides of each card. These pairs of numbers are shuffled into sets U and D: for each
i = 1, ..., n an independent unbiased coin is tossed, if the coin lands head, then ai = Ui ∈ U
and bi = Di ∈ D, otherwise bi = Ui ∈ U and ai = Di ∈ D. The set U = {U1, ..., Un}
represents the numbers that landed facing up, and the numbers in D = {D1, ..., Dn} are
those facing down. The numbers in U are revealed, and a random uniform permutation
σ ∈ Σn is drawn. Then the elements in D are revealed in n steps: at each step i ∈ [n], the
value Dσ(i) and the index σ(i) are revealed. After this, we must decide whether to stop or
to continue to step i+ 1.

We study algorithms (stopping rules) for the two variants. Let τ be the step at which
we stop. In the secretary variant the objective is to maximize P(Dσ(τ) = maxD), and in
the prophet variant the objective is to maximize E(Dσ(τ))/E(maxD). Note that the latter
is equivalent to just maximizing E(Dσ(τ)) since the algorithm does not control E(maxD).

Ranking and couples. Our analyses rely of the ranking of the 2n values of the instance,
so let us denote by Y1 > Y2 > · · · > Y2n the 2n numbers in U ∪ D ordered from the largest
to the smallest. Without loss of generality we can assume that there are no ties among the
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Card 1 ranks Card 2 ranks Card 3 ranks Prob. of stopping

(1,4) (2,3) (5,?) 0.15

(1,5) (2,3) (4,?) 0.15

(2,3) (4,1) (5,?) 1

(2,3) (5,1) (4,?) 1

(2,4) (3,1) (5,?) 1

(2,4) (5,1) (3,?) 1

(2,5) (4,1) (3,?) 1

(2,5) (3,1) (4,?) 1

(3,2) (4,1) (5,?) 1

(3,2) (5,1) (4,?) 1

(3,4) (1,2) (5,?) 1

(3,4) (2,1) (5,?) 1

(3,4) (5,1) (2,?) 1

(3,5) (1,2) (4,?) 1

(3,5) (2,1) (4,?) 0.1

(3,5) (4,1) (2,?) 1

(4,2) (1,3) (5,?) 0.3

(4,3) (2,1) (5,?) 1

(4,3) (5,1) (2,?) 1

(4,5) (1,2) (3,?) 1

(4,5) (2,1) (3,?) 1

(4,5) (3,1) (2,?) 1

(4,5) (3,2) (1,?) 1

(5,3) (1,2) (4,?) 1

(5,3) (2,1) (4,?) 1

(5,3) (4,1) (2,?) 1

(5,4) (1,2) (3,?) 0.3

(5,4) (2,1) (3,?) 1

(5,4) (2,3) (1,?) 0.5

(5,4) (3,1) (2,?) 1

Table 2: Optimal policy at the second card for n = 3. The last column shows the prob-
ability of stopping with the second card in each possible scenario. The table is
read as follows. The three cards are represented by an order pair (a, b), where a
(respectively, b) represents the rank, among the five numbers seen so far, of the
side of the card that was originally facing up (respectively, down). The ? sign
in the third card simply represents that it has not been flipped yet. The first
row, thus, means that if the initially hidden numbers from cards 1 and 2 are fifth
and first highest seen so far, respectively, and the numbers on the other side of
these cards are second and fourth, respectively, then stop with probability 1. In
all configurations not shown, we do not stop with the second card and continue to
the third card.
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2n values. Indeed, their difference can be arbitrarily small and we can modify our threshold
algorithms so they break ties at random while maintaining the probabilities of selecting
each value. We say that indices i and j are a couple, and denote it by i ∼ j if Yi and Yj
are written in the two sides of the same card, i.e., if (Yi, Yj) = (a`, b`) or (Yj , Yi) = (a`, b`)
for some ` ∈ [n].

Parameter k. We introduce k, an instance-dependent parameter that plays a key role in
our analyses. We define k to be the smallest index so that k is the couple of some k′ < k.
In particular, Y1, Y2, . . . , Yk−1 are all written on different cards. Note that k and k′ only
depend on numbers in the cards4, i.e., on the numbers {(ai, bi)}ni=1, and not on the coin
tosses or on the permutation σ. We will restrict all our analysis to the numbers Y1, ..., Yk,
which is easily justified by the observation that maxD always lies in the set {Y1, ..., Yk}.

Random arrival times. For most of our analyses it will be useful to consider the fol-
lowing reinterpretation of the randomness of both the coins tosses (hidden sides) and the
random permutation (flipping order). Consider that each of the 2n numbers arrives in a
uniform random time in the interval (−1, 1] as follows. For every index ` smaller than its
couple `′ (i.e. ` ∼ `′, Y` > Y`′) an independent random arrival time θ` uniform in (−1, 1] is
sampled and `′ receives opposite arrival time θ`′ = C(θ`), where

C(x) =

{
x− 1, if x > 0,

x+ 1, otherwise.

The reinterpretation can the be done as follows. For each j ∈ [2n], if θj > 0, the number
Yj is facing down, i.e., Yj ∈ D, and if θj ≤ 0 then Yj is facing up, i.e., Yj ∈ U . Therefore,
we get to see all values whose corresponding arrival time is negative and the order in which
we scan the hidden values Yj ∈ D is increasing in θj .

Throughout this work we use the term value to refer to the numbers written in the cards
Y1, Y2, . . . , Y2n, while we use the term element to refer to a side of a particular card, that
is an element in {U1, . . . , Un, D1, . . . , Dn}. Of course these sets are the same so the point
is the way they are ordered: the i-th value corresponds to Yi, whereas the i-th element
corresponds to the i-th number in the list Uσ(1), . . . , Uσ(n), Dσ(1), . . . , Dσ(n).

Once the random coins for all cards and the random uniform permutation are all se-
lected, we are left with the following situation. A list E = (e1, . . . , e2n) = (Uσ(1), . . . , Uσ(n),
Dσ(1), . . . , Dσ(n)) of 2n different positive elements are presented one-by-one to an algorithm.
The algorithm must observe and skip the first n elements of the list, since they correspond
to the values that landed facing up on the cards. The next n elements correspond to values
that landed facing down (in such a way that the s-th and the s + n-th elements form a
couple). The algorithm must decide immediately after observing the s-th element whether
to select it and stop, or to continue with the next element.

2.3 Basic algorithms

We now present generic moving window algorithms for selecting one of the last n elements
of a given list E = (e1, . . . , e2n). This family of algorithms form the basis of the algorithms
employed in this work, which are described next.

4. This notation was introduced by Rubinstein et al. (2020)
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Generic moving window algorithm. For every s ∈ {n+ 1, . . . , 2n}, the algorithm first
specifies, possibly in a random or implicit way, a window of elements

Ws = {er : r ∈ {`s, . . . , s− 1}} (1)

scheduled to arrive immediately before s (the window may be empty). Then the algorithm
proceeds as follows. It observes the first n elements without selecting them. For every
s ≥ n + 1, the algorithm observes the s-th element, es, and selects it if es is larger than
every element in its window5, i.e. if es > maxWs. Otherwise, the algorithm rejects it and
continues.

We now present three basic moving window algorithms for deciding when to stop. Each
of them can be described by a sequence of left extremes (`s)

2n
s=n+1 that will define the

elements inside the window Ws.

Open moving window algorithm (ALGo ). This algorithm corresponds to the fol-
lowing strategy: flip the next unflipped card and accept its value x if and only if x is the
largest of the n values that are currently visible (i.e., the i-th element is accepted if and
only if it is larger than the n− i currently unflipped cards, and is also larger than the i− 1
previously flipped cards). In terms of the generic moving window, the left extreme of Ws is
`s = s− n+ 1 for n+ 1 ≤ s ≤ 2n.

Closed moving window algorithm (ALGc ). This algorithm works similarly to the
previous one, with a slight difference. In this strategy, the element on the back of the last
flipped card, the one that was facing up, is also required to be smaller than the element to
be selected. In terms of the generic moving window, the left extreme of Ws is `s = s − n
for n+ 1 ≤ s ≤ 2n.

Full window algorithm (ALGf ). This algorithm corresponds to the algorithm pre-
sented by Rubinstein et al. (2020). It stops when the revealed element is larger than all
element seen so far. Note that this is equivalent to stop with the first element that is larger
than all elements that landed facing up. In terms of the generic moving window, the left
extreme of Ws is `s = 1 for n+ 1 ≤ s ≤ 2n.

Randomizing between these three algorithms, we can obtain algorithm ALG∗r , which picks
ALGo or ALGc with probability (1− r)/2 each, and ALGf with probability r.

2.4 Statement of our results

Our main results are:

Theorem 1 For any instance of the two-sided game of Googol,

P(ALGc = maxD) ≥ ln 2

(
1− ln 2

2

)
≈ 0.45292.

Theorem 2 There exists a value r∗ ∈ [0, 1] such that for any instance of the two-sided
game of Googol, E(ALG∗r∗) ≥ αE(maxD) with α = 4−5 ln 2

5−6 ln 2 ≈ 0.635184.

5. If Ws = ∅ then we say that es is trivially selected.
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The moving windows can also be seen from the perspective of the random arrival times.
For ALGo, the window for an element that arrives at time θ > 0 can be defined as all
elements arriving in (θ − 1, θ). For ALGc, this changes to [θ − 1, θ), while for ALGf it
becomes [−1, θ). Therefore, we can define threshold functions6 for ALGo , ALGc , and
ALGf as To(θ) = max{Yj : θj ∈ (θ − 1, θ)}, Tc(θ) = max{Yj : θj ∈ [θ − 1, θ)} and
Tf (θ) = max{Yj : θj ∈ [−1, θ)}, respectively. This motivates the definition of a fourth
algorithm, ALG(t), for which the window for an element that arrives at time θ is defined
as all elements that arrive in [max{−1, θ − 1− t}, θ).

Our third result shows that for large k, this type of algorithms perform better.

Theorem 3 For t∗ ≈ 0.1128904, and any instance of the two-sided game of Googol, as k
goes to infinity, E[ALG(t∗)]/E[maxD] is at least R∞(t∗) ≈ 0.6426317.

The assumption that k goes to infinity holds, for instance, in the single-sample i.i.d.
prophet inequality, under the large market assumption used by Abolhassani et al. (2017), or
whenever the underlying distributions of a large prophet secretary instance overlap enough.
Moreover, the guarantee of ALG(t) for not so large values of k is already very close to
R∞(t∗). For example, the guarantee of ALG(t) for k ≥ 20 is at least R∞(t∗)− 0.00031.

2.5 Preliminary lemmas

To wrap up this section, we establish two basic lemmas that will be useful throughout the
work. The first is used to compute the probability of selecting any element arriving before
a given element es. It is clear to see that all our algorithms satisfy the conditions.

Lemma 4 (Moving window lemma) Suppose the windows’ left extremes (`s)s∈{n+1,...2n}
specified by a moving window algorithm satisfy

`n+1 ≤ `n+2 ≤ · · · ≤ `2n ≤ n+ 1 (2)

Let s be an index with n + 1 ≤ s and let eM = max{er : n + 1 ≤ r ≤ s} be the maximum
value arriving between positions n + 1 and s. The algorithm selects some element in the
set {er : n + 1 ≤ r ≤ s} if and only if eM is larger than every element in its window,
i.e. eM > maxWM . Moreover, if the window Ws of s is nonempty and eJ = maxWs

then the algorithm does not stop strictly before es if and only if J ≤ n or (J ≥ n + 1 and
eJ < maxWJ).

Proof. Suppose the algorithm selects some er with n + 1 ≤ r ≤ s. Note that er cannot
arrive after eM because in that case eM > er would be in the window Wr of er contradicting
that er was selected. Then er must be eM or an element arriving before eM . In any case, by
condition (2), `r ≤ `M . Since er is selected, er ≥ max{et : `r ≤ t ≤ r − 1} ≥ max{et : `M ≤
t ≤ n}. But then, as eM is the largest element arriving between n + 1 and s, we also
conclude that eM > max{et : `M ≤ t ≤ M − 1} = maxWM . For the converse suppose
that eM > maxWM then the algorithm will pick eM unless it has already selected another

6. These thresholds specify the minimum value under which the algorithm stops for each possible arrival
time.

11
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element er arriving before eM . In any case, the algorithm stops by selecting some element
er, with n+ 1 ≤ r ≤ s.

Let us show the second statement of the lemma. Suppose that the window of s is
nonempty and let J be the index of the maximum element in its window. Let also M ′ be
the largest element arriving between steps n+ 1 and s− 1. Since eM ′ is also in the window
of s, we conclude that either J ≥ n + 1 and M ′ = J , or J ≤ n and eJ > eM ′ . Suppose
J ≥ n + 1. By the first part of the lemma, not stopping strictly before es is equivalent
to eM ′ < maxWM ′ , and since M ′ = J , eJ < maxWJ . If on the other hand J ≤ n then
eJ > eM ′ and by assumption (2), `M ′ ≤ `s ≤ J ≤ n + 1 ≤ M ′ ≤ s − 1. We conclude that
eJ is also in the window of M ′ and therefore maxWM ′ ≥ eJ > eM ′ , which is equivalent to
not stopping strictly before es.

As a final ingredient for our results we need the following lemma about independent
uniform random variables in (−1, 1].

Lemma 5 Let X0, X1, . . . , Xm be i.i.d. random variables distributed uniformly in (−1, 1].
Define the event E : X0 > 0 and, for all i ∈ {1, . . . ,m}, Xi ∈ [X0 − 1, X0). Conditioned
on event E, {1 − X0, X1 + 1 − X0, X2 + 1 − X0, . . . , Xm + 1 − X0} is a family of m + 1
i.i.d. random variables distributed uniformly in [0, 1).

Proof. Conditioned on E and on the realization a ∈ (0, 1] of the variable X0, the family
{Xi + 1 − a}i∈{1,...,m} is mutually independent. Since this is true for every realization a
of X0, we can uncondition on a and deduce that the family {1 − X0, X1 + 1 − X0, X2 +
1 − X0, . . . , Xm + 1 − X0} is mutually independent only conditioned on E. Furthermore,
since under E, X0 distributes uniformly in (0, 1] we conclude that 1 − X0 is uniform in
[0, 1). Finally, under E, for i > 0, Xi distributes uniformly in [X0 − 1, X0), and therefore,
Xi + 1−X0 distributes uniformly in [0, 1).

3. Maximizing the probability of picking the maximum

In this section we present a lower bound for the secretary variant of the two-sided game
of Googol. Recall that the objective is to maximize the probability of stopping at the
maximum value that landed facing down. If we were maximizing the probability of stopping
the overall maximum value (the classical secretary problem), the best strategy would be to
skip a constant number of elements (roughly 1/e) and then select the first element larger
than all previous ones (Lindley (1961); Dynkin (1963)). Since we cannot select any number
from the first half, we would be tempted to try the full window algorithm ALGf that selects
the first element in the second half that is larger than all previous ones. Unfortunately, this
algorithm does not select any element if the top one, Y1, appears in the first half. It turns
out that the best algorithm among the three basic algorithms presented is the closed moving
window algorithm ALGc that we analyze below.

Theorem 1 For any instance of the two-sided game of Googol,

P(ALGc = maxD) ≥ ln 2

(
1− ln 2

2

)
≈ 0.45292.
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To prove Theorem 1 the interpretation using random arrival times over (−1, 1] will be
of use. Recall that k is the smallest index so that k is the couple of some k′ < k. The idea
of the proof is to compute, for a fixed value k, the probability of winning, that is, selecting
the largest number in D. To compute this, we partition the event of winning by identifying
which value Yi is picked and which element Yj is the largest inside its window. We find out
that the worst case is when k −→∞ and conclude the bound.

Define the events E1: Yj is the largest element inside Yi’s window, E2: Yi = maxD, E3:
the algorithm selects Yi. Define Qij as the event of E1, E2 and E3 happening simultaneously.
The following lemma will be of use to compute the probability of winning.

Lemma 6 For 1 ≤ i ≤ k − 1,H

P(Qij) =


1
2j

1
i

(
1− 1

j

)
i+ 1 ≤ j ≤ k − 1,

1
2k−1

1
i j = k,

0 otherwise.

Proof. If j < i and E1 holds, Yi will not be selected, therefore P(Qij |j < i) = 0. Also,
note that a window of length 1 will contain either Yk or Yk′ , where k′ is the couple of k, so
if j > k, E1 can not hold and P(Qij |j > k) = 0. So assume that i+ 1 ≤ j ≤ k.

Observe now that E1 is equivalent to the event that C(θ1), . . . , C(θi−1), C(θi+1), . . . ,
C(θj−1), θj are inside the interval [θi − 1, θi). As this interval has length 1 and all variables
are independent and uniformly chosen from [−1, 1), P(E1 | θi > 0, j < k) = 1/2j−1. The
case j = k is slightly different, because θk = C(θk′). If i = k′ then θk = θi − 1 ∈ [θi − 1, θi),
and if i 6= k′ then θk = C(θl) for some l ∈ {1, . . . , j − 1} \ {i}. In both cases, we need to
impose only j − 2 variables in [θi − 1, θi), resulting in P(E1 | θi > 0, j = k) = 1/2k−2.

Define the auxiliary events F1 : max{0, C(θ1), . . . , C(θi−1)} = 0 and F2 : max{0, C(θ1),
. . . , C(θi−1), C(θi+1), . . . , C(θj−1), θj)} 6= θj . Note that given E1, event E2 is equivalent to
θ1, . . . , θi−1 ≤ 0 < θi, which in turn is equivalent to θi > 0 and F1. From here E1 and
E2 happening simultaneously is equivalent to E1, F1 and θi > 0. Also, by Lemma 4, E3

is equivalent to either θj ≤ 0, or θj > 0 and Yj is smaller than some element arriving in
[θj − 1, θj).

We claim first that for j = k, Qik is equivalent to E1, F1 and θi > 0 (which is equivalent
to E1, E2). Indeed, suppose that E1, E2 hold. If j = k we distinguish 2 cases. If i ∼ k, then
we have that θk ≤ 0. If i 6∼ k and θk > 0 then the couple k′ of k, will satisfy that Yk′ > Yk
and θk′ ∈ [θj − 1, θj ]. In both cases, E3 holds.

Now we claim that for 1 ≤ j ≤ k − 1, Qij is equivalent to all events E1, F1, F2 and
θi > 0 happening simultaneously. For that, suppose that E1, and E2 hold. Under that
conditioning, E3 holds in two cases, either θj ≤ 0, or θj > 0 and for some ` ∈ {1, . . . , j −
1} \ {i}, θj − 1 ≤ θ` < θj , the latter being the same as C(θ`) ∈ [−1, θj − 1) ∪ [θj , 1]. But
recall that by E1, every ` ∈ {1, . . . , j − 1} \ {i} satisfies C(θ`) ∈ [θi − 1, θi). Therefore,
E3 holds if and only if θj ≤ 0 or for some ` ∈ {1, . . . , j − 1} \ {i}, C(`) ∈ [θj , θi). This is
equivalent to event F2, concluding the claim.

We are ready to compute the probability of Qij . Note that θj being or not the maximum
of the set {0, C(θ1), . . . , C(θi−1), C(θi+1), . . . , C(θj−1), θj} does not depend on the inner
ordering of the set {0, C(θ1), . . . , C(θi−1)} = 0. This implies that F1 and F2 are independent
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events. Since F1 is equivalent to max{1− θi, C(θ1) + 1− θi, . . . , C(θi−1) + 1− θi} = 1− θi,
from Lemma 5, P(F1|E1, θi > 0) = 1/i, and since F2 is equivalent to max{1 − θi, C(θ1) +
1 − θi, . . . , C(θi−1) + 1 − θi, C(θi+1) + 1 − θi, . . . , C(θj−1) + 1 − θi, θj + 1 − θi} 6= θj + 1 −
θi, P(F2|E1, θi > 0) = 1 − 1/j. Putting all together and using independence, P(Qik) =
P(E1, θi > 0, F1) = 1

2
1

2k−2
1
i , and for 1 ≤ j ≤ k − 1 P(Qij) = P(E1, θi > 0, F1, F2) =

1
2

1
2j−1

1
i

(
1− 1

j

)
. This concludes the proof of the lemma.

With Lemma 6, we can compute the probability of winning as:

P(Win) =
k−1∑
i=1

k∑
j=i+1

P(Qij) =
k−1∑
i=1

 k−1∑
j=i+1

1

2j
1

i

(
1− 1

j

)
+

1

2k−1

1

i


=
Hk−1

2k−1
+

k−2∑
i=1

k−1∑
j=i+1

1

2j
1

i

j − 1

j
,

where Hs =
∑s

i=1
1
i is the s-th harmonic number. Note that the probability of winning

only depends on k and denote it F (k). The following lemma helps to find the worst case
scenario for our algorithm.

Lemma 7 F (k) is non-increasing in k.

Proof. To prove the lemma we note that for k ≥ 2:

F (k + 1)− F (k) =
Hk

2k
− Hk−1

2k−1
+
k−1∑
i=1

1

2k
1

i

(
1− 1

k

)
=
Hk

2k
+
Hk−1

2k

(
1− 1

k

)
− Hk−1

2k−1
=

1−Hk−1

k2k
≤ 0.

Proof of Theorem 1. To prove the main theorem of the section we use the previous
results to give a lower bound for the probability of winning. The worst case happens for
k −→∞:

P(Win) ≥ min
k≥2

Fk = lim
k→∞

Fk =
∞∑
i=1

1

i

∞∑
j=i+1

1

2j

(
1− 1

j

)

=
∞∑
i=1

1

i

∞∑
j=i+1

(
1

2j
−
∫ 1/2

0
xj−1dx

)
=
∞∑
i=1

1

i

(
1

2i
−
∫ 1/2

0

xi

1− x
dx

)

=

∞∑
i=1

∫ 1/2

0
xi−1dx−

∫ 1/2

0

1

1− x

∫ x

0

∞∑
i=1

yi−1dydx

=

∫ 1/2

0

1

1− x
dx−

∫ 1/2

0

1

1− x

∫ x

0

1

1− y
dydx

= ln 2

(
1− ln 2

2

)
≈ 0.45292.

Notice that Fk is exactly the probability that ALGc wins. This implies that this bound
is the best we can hope for using this specific algorithm.
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4. Maximizing the expected value

In this section we present a lower bound for the prophet variant of the two-sided game
of Googol, in which the objective is to maximize E(Dσ(τ))/E(maxD). We analyze a com-
bination of the three basic algorithms presented in Section 2. More precisely, for a fixed
r ∈ [0, 1], we define ALG∗r as follows. With probability (1 − r)/2 run ALGo, with proba-
bility (1− r)/2 run ALGc, and with probability r run ALGf . This combination allows us
to obtain the main result of the section.

Theorem 2 There exists a value r∗ ∈ [0, 1] such that for any instance of the two-sided
game of Googol, E(ALG∗r∗) ≥ αE(maxD) with α = 4−5 ln 2

5−6 ln 2 ≈ 0.635184.

This ratio is better than 1− 1/e ≈ 0.632 obtained in Correa et al. (2019a), which until
the conference version of this paper was the best know bound for for the i.i.d. prophet
secretary problem with samples, which is a particular case of our problem.

Recall that none of the 3 basic algorithms can guarantee a ratio better than 1
2 by it-

self, even in very simple cases. Indeed, as shown in the introduction, for the instance
{(1, 0), (ε, ε2)} we have that E(maxD) = 1/2 + O(ε) and E(ALGo) = 1/4 + O(ε). Fur-
thermore, if we consider the instance {(1, 1 − ε), (ε, 0)} then E(maxD) = 1 − O(ε) but
E(ALGc) = E(ALGf) = 1/2 +O(ε).

The intuition of our result is that the situations where each of the three algorithms
perform poorly are very different. As we are able to compute exactly the distribution of the
outcome of each algorithm, we can balance their distributions, so that in all cases ALG∗r
performs well. We can state this in terms of the ordered values Y1, ..., Yk. On the one hand,
since ALGf is very restrictive, it has good chances of stopping at Y1 when it is in D. On
the other hand, ALGc has higher probability of stopping at Yi than ALGf , for 1 < i < k.
But none of the two algorithms can stop at Yk, whereas ALGo stops at Yk with positive
probability. This comes at the cost of sacrificing a bit of the better elements, but as showed
in the examples, it is very important for the case when k is small.

Roughly speaking, the proof of Theorem 2 goes as follows. For each of the basic algo-
rithms we compute in lemmas 8, 9 and 10 the probability that they stop with the value Yj
for each j < k, and express it as a series truncated in k and an extra term that depends on
k. Then in Lemma 11 we prove that in the combined formula, for certain values of r, the
extra term can be replaced with the tail of the series, so the formula does not depend on k.
Finally, for a specific value of r, we show in lemmas 12 and 13 an approximate stochastic
dominance and conclude, i.e., we make use of the following general observation.

Observation 1 If minj≤k
P(ALG≥Yj)
P(maxD≥Yj) ≥ α, then E(ALG) ≥ αE(maxD).7

4.1 Distribution of the maximum

As noted before, P(maxD = Yi) = 0 if i > k. For the remaining values, Rubinstein et al.
(2020) did a simple analysis for the distribution of maxD.

For Yi to be the maximum of D we need: (1) Yi ∈ D and (2) Yj ∈ U for all 1 ≤ j < i.
If 1 ≤ i < k all these events are independent with probability 1

2 , so we have P(maxD =

7. Recall that maxD can only take values in {Y1, ..., Yk}, so the implication follows immediately.
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Yi) = (1
2)i. If i = k, the fact that Yk is facing downwards implies that its couple is facing

upwards, so we need one less coin toss for the events to happen simultaneously. Putting all
together:

P(maxD = Yi) =


1
2i

i < k
1

2k−1 i = k

0 i > k

Therefore we have that, P(maxD ≥ Yi) = 1− 1
2i

if 1 ≤ i < k and P(maxD ≥ Yk) = 1.

4.2 Analysis of the basic algorithms

In this section we precisely derive the distribution of the obtained value of each of the
basic algorithms. In the next section we combine these distributions to find an improved
randomized algorithm. In what follows, we will denote by k′ the couple of k. Note that
the identities of k and k′ depend only on the instance, and not on the realizations of the
random coins or the random permutation.

Lemma 8 For every 1 ≤ i ≤ k − 1,

P(ALGc = Yi) =
1

2k−1
+

k−1∑
j=i+1

1

2j

(
1− 1

j

)
and

P(ALGc ≥ Yk) =

k−1∑
j=1

1

2jj
.

Proof. Intuitively, for each j > i, we condition on that Yj is the maximum value in the
window of Yi and show that ALGc stops in Yi with probability (1 − 1/j). More precisely,
fix an index i ≤ k − 1. For j ≤ i, j 6= i, denote by Fj the event that θi ≥ 0 (or equivalently
Yi ∈ D) and that j is the smallest index such that θj ∈ [θi−1, θi). If j < k then P(Fj) = 1/2j

because the variables {θ`}`≤j are all independent and uniformly distributed in (−1, 1], and
for any given θi ≥ 0, the interval [θi−1, θi) has length 1. For Fk we have that θk ∈ [θi−1, θi)
if and only if θk′ = C(θk) 6∈ [θi − 1, θi). Since the variables {θ`}`≤k, 6̀=k′ are all independent,
P(Fk) = 1/2k−1.

Note that if for some j < i, θj ∈ [θi − 1, θi), then ALGc 6= Yi, because its threshold
Tc(θi) will be at least Yj > Yi. Also note that either θk or θk′ is in [θi − 1, θi), so the events
(Fj)

k
j=i+1 (that are pairwise disjoint) completely cover the event {ALGc = Yi}. Thus we

have the identity

P(ALGc = Yi) =
1

2k−1
P(ALGc = Yi|Fk) +

k−1∑
j=i+1

1

2j
· P(ALGc = Yi|Fj). (3)

Now, for j > i, conditional on Fj , ALGc = Yi if and only if ALGc does not stop before
observing Yi. Using lemmas 4 and 5 we will show that P(ALGc = Yi|Fk) = 1 and that
P(ALGc = Yi|Fj) = (1− 1/j) if i < j < k, and conclude the first formula of the lemma.
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Conditional on Fk, the maximum value in the window of Yi is Yk, but Yk is not larger
than all elements in its window, because Yk′ is in it (it is on the other side of its card). So
Lemma 4 implies that P(ALGc = Yi|Fk) = 1.

For the case i < j < k, we have that conditional on Fj , Yj is the maximum value in the
window of Yi, so Lemma 4 implies that ALGc stops in (0, θi) if and only if θj ≥ 0 and Yj is
larger than all elements in its window, i.e., θ` 6∈ [θj − 1, θj), for all ` < j. This is equivalent
to max{0, C(θ1), ..., C(θi−1), C(θi+1), ..., C(θj−1), θj} = θj . Now, Lemma 5 implies that
conditional on Fj , the random variables {0 − (θi − 1), C(θ1) − (θi − 1), ..., C(θi−1) − (θi −
1), C(θi+1) − (θi − 1), ..., C(θj−1) − (θi − 1), θj − (θi − 1)} are independent and uniformly
distributed in (0, 1). Hence, conditional on Fj , ALGc stops in (0, θi) with probability 1/j,
so P(ALGc = Yi|Fj) = (1− 1/j). This proves the first formula.

For computing P(ALGc ≥ Yk), which is the probability that ALGc stops, define as Ej
the event that j is the smallest index such that θj > 0 (or equivalently, that Yj = maxD).
It is clear that for j < k, P(Ej) = 1/2j , that P(Ek) = 1/2k−1, and that P(Ej) = 0 if
j > k. For j < k , conditional on Ej , Lemma 4 implies that ALGc stops if and only if
max{C(θ1), C(θ2), ..., C(θj−1), θj} = θj . But this happens with probability 1/j. Conditional
on Ek, ALGc never stops. This concludes the proof of the lemma.

Lemma 9 For every 1 ≤ i ≤ k − 1,

P(ALGo = Yi) =
1

2k−1

(
1−

1{i 6=k′}

k − 1

)
+

k−1∑
j=i+1

1

2j

(
1− 1

j

)
and

P(ALGo ≥ Yk) =
1

2k−1(k − 1)
+

k−1∑
j=1

1

2jj
.

Proof. Recall that ALGo cannot select a value Yj with j > k. Suppose now that we
run ALGo and ALGc in the same instance and realization. Since ALGc is more restrictive
than ALGo , if ALGo stops, it stops earlier than ALGc . Nevertheless, note that Yk is the
only value that can be accepted by ALGo but not by ALGc . Hence, for 1 ≤ i ≤ k − 1,
if ALGo = Yi then ALGc = Yi, and if ALGc = Yi then either ALGo = Yi or ALGo = Yk.
Thus, we can write the following identity for the case 1 ≤ i ≤ k − 1.

P(ALGo = Yi) = P(ALGc = Yi)− P(ALGc = Yi and ALGo = Yk) . (4)

Thus, we just need to compute the negative term in Equation (4). In order to have ALGo =
Yk we need that θk > 0 and that θj 6∈ (θk − 1, θk], for all 1 ≤ j ≤ k − 1, with j 6= k′. Note
that this is also a sufficient condition, because values that are smaller than Yk cannot be
accepted by ALGo . Thus, P(ALGo = Yk) = 1/2k−1. If i = k′, then θi = θk′ = θk−1, which
is negative if θk is positive, so P(ALGc = Yk′ and ALGo = Yk) = 0.

Assume now that i 6= k′. Conditional on ALGo = Yk, we have that ALGc = Yi if Yi
arrives after Yk and all other values in {Y1, ..., Yk} arrive either before the window of Yk or
after Yi, i.e., if θk < θi and θj ∈ (−1, θk−1)∪(θi, 1], for all j ≤ k−1, with j 6∈ {i, k′}. This is
equivalent to say that C(θi) = min{0, C(θ1), ..., C(θk′−1), C(θk′+1), ..., C(θk−1)}. Note that
Lemma 5 implies that conditional on ALGo = Yk, the variables {0− (θk − 1), C(θ1)− (θk −
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1), ..., C(θk′−1)− (θk − 1), C(θk′+1)− (θk − 1), ..., C(θk−1)− (θk − 1)} are independent and
uniformly distributed in [0, 1]. Then, P(ALGc = Yi|ALGo = Yk) = 1/(k − 1).

We conclude the first formula by replacing the just computed probability and the for-
mula of Lemma 8 in Equation (4). For the second one, we have that P(ALGo ≥ Yk) =∑k

i=1 P(ALGo = Yi) = P(ALGo = Yk) − (k − 2) 1
2k−1(k−1)

+
∑k−1

i=1 P(ALGc = Yi) =
1
2k
− (k − 2) 1

2k−1(k−1)
+ P(ALGc ≥ Yk) = P(ALGc ≥ Yk) + 1

2k−1(k−1)
.

Lemma 10 For every 1 ≤ i ≤ k − 1,

P(ALGf = Yi) =
1

2k−1

1

k − 1
+

k−1∑
j=i+1

1

2j(j − 1)

and

P(ALGf ≥ Yk) =
1

2
.

Proof. Let Fj be the event that Yj is the maximum value (j is the minimum index) such
that θj < 0. Roughly speaking, we condition on each Fj and show that ALGf = Yi if Yi is
the value with earliest arrival time from {Y1, ..., Yj−1}.

Note that the events Fj are pairwise disjoint, and since either θk or θk′ is negative,
P(Fj) = 0 if j > k. Thus, the events Fj for 1 ≤ j ≤ k form a partition of the probability
space. Note also that conditional on Fj , by definition ALGf cannot accept any value smaller

than Yj . Therefore P(ALGf = Yi) =
∑k

j=i+1 P(ALGf = Yi|Fj)P(Fj).

For j ≤ k − 1 the arrival times θ1, ..., θj are all independent and uniform in (−1, 1], so
P(Fj) = 1/2j . Conditional on Fj we have that θ1, ..., θj−1 are independent and uniform
in [0, 1]. Moreover, conditional on Fj , ALGf simply accepts the element in {Y1, ..., Yj−1}
with earliest arrival time, as they are exactly the ones larger than maxU = Yj . Hence,
P(ALGf = Yi|Fj) = 1/(j − 1).

The case of Fk is slightly different. Fk is equivalent to the event that θ1, ..., θk−1 > 0,
because θk′ > 0 implies that θk < 0, so P(Fk) = 1/2k−1. Again ALGf simply accepts the
first element larger than Yk, so it accepts Yi with probability 1/(k− 1). This concludes the
proof of the first formula.

For computing P(ALGf ≥ Yk), note that this is simply the probability that θ1 > 0,
which is 1/2. This is because Y1 is the overall largest value, so if it arrives before 0, nothing
can be accepted, and if it arrives after 0, then Y1 itself (and possibly other values with
earlier arrival times) can be accepted.

4.3 The combined algorithm

We now use the distributions obtained in the last section in order to obtain an improved
randomized algorithm. To this end we combine lemmas 9, 8 and 10 to conclude that for
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1 ≤ i ≤ k − 1,

P(ALG∗r = Yi) =
1− r
2k−1

+
r − 1{i 6=k′} · (1− r)/2

2k−1(k − 1)
+

k−1∑
j=i+1

1

2j

(
(1− r)− (1− r)

j
+

r

j − 1

)

≥ 1− r
2k−1

+
r − (1− r)/2
2k−1(k − 1)

+

k−1∑
j=i+1

1

2j

(
(1− r)− (1− r)

j
+

r

j − 1

)
. (5)

The inequality comes from the fact that −1{i 6=k′} ≥ −1. Now we use the following lemma
to complete the summation in Equation (5) using the extra term.

Lemma 11 For every 3−4 ln(2)
5−6 ln(2) ≤ r ≤ 2/3, and any k ≥ 2,

∑
j≥k

1

2j

(
1− r − 1− r

j
+

r

j − 1

)
≤ 1− r

2k−1
+
r − (1− r)/2
2k−1(k − 1)

.

Proof. Rearranging terms, we obtain the following.∑
j≥k

1

2j

(
1− r − 1− r

j
+

r

j − 1

)
=

1− r
2k−1

−
∑
j≥k

1− r
2jj

+
∑
j≥k−1

r/2

2jj

=
1− r
2k−1

+
r/2

2k−1(k − 1)
−
∑
j≥k

1− 3r/2

2jj

=
1− r
2k−1

+
r/2

2k−1(k − 1)
− (1− 3r/2)

2k−1(k − 1)

∑
j≥1

(k − 1)

2j(j + k − 1)
.

(6)

Therefore, it is enough to prove that −(1 − 3r/2)
∑

j≥1
(k−1)

2j(j+k−1)
≤ r − 1/2. Since r ≤

2/3, the term (1 − 3r/2) is positive. Note that for k ≥ 2, we have
∑

j≥1
(k−1)/(j+k−1)

2j
≥∑

j≥1
1

2j(j+1)
= 2 ln(2)−1. Thus, it would be enough to prove that −(1−3r/2)(2 ln 2−1) ≤

r−1/2. Rearranging the terms in the last expression and multiplying by −1, we obtain the
equivalent condition 3− 4 ln 2 ≤ r(5− 6 ln 2).

In what follows, we apply Lemma 11 to derive a bound on the distribution of the accepted
element that does not depend on k. Then, we select a specific value for r that balances
these bounds, and allows us to approximate the distribution of maxD. We define now the
function

a(r) :=
∑
j≥2

1

2j

(
(1− r)− (1− r)

j
+

r

j − 1

)
= 1− ln 2 +

r(3 ln 2− 2)

2
. (7)

This function appears in the next lemma we prove as the approximation factor of the
distribution of maxD.

Lemma 12 For r∗ = 3−4 ln 2
5−6 ln 2 we have that for all 1 ≤ i ≤ k − 1,

P(ALG∗r∗ = Yi) ≥
1

2i
2a(r∗) . (8)
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Proof. Applying Lemma 11 on Equation (5) we can write the following for r∗ ≤ r ≤ 2/3.

P(ALG∗r = Yi) ≥
∑
j≥i+1

1

2j

(
(1− r)− (1− r)

j
+

r

j − 1

)
. (9)

Note that this immediately gives the desired bound for i = 1 and any r in the interval
[r∗, 2/3]. We will prove directly that it also holds for i = 2 and will proceed by induction
for i ≥ 3. For i = 2, Equation (9) combined with the definition of a(r) gives that

P(ALG∗r = Y2) ≥ a(r)− 1

4

(
(1− r)− (1− r)

2
+ r

)
= a(r)− 1 + r

8
.

Therefore, it is enough to prove that a(r∗)− 1+r∗

8 ≥ a(r∗)/2, which is equivalent to 4a(r∗) ≥
1 + r∗. If we replace a(r∗) with the explicit formula in the right hand of Equation (7) and
rearrange terms, we obtain the inequality 3 − 4 ln(2) ≥ r∗(5 − 6 ln(2)). Note that this is
satisfied with equality by r∗.

For i ≥ 3 we simply prove that if r ≤ 1/3, then

∑
j≥i+1

1

2j

(
(1− r)− (1− r)

j
+

r

j − 1

)
≥ 1

2

∑
j≥i

1

2j

(
(1− r)− (1− r)

j
+

r

j − 1

)
. (10)

In fact, note that we can change the index in the right-hand side of Equation (10) to get
the same range as in the sum of the left-hand side. So when we write the inequality for
each term of the two summations, we obtain

1

2j

(
(1− r)− 1− r

j
+

r

j − 1

)
≥ 1

2j

(
(1− r)− 1− r

j − 1
+

r

j − 2

)
⇔

1

j − 1
− 1

j
≥ r

(
1

j − 2
− 1

j

)
⇔

j − 2

2(j − 1)
≥ r .

which holds whenever j ≥ 4 and r ≤ 1/3. Since r∗ = 3−4 ln 2
5−6 ln 2 ≈ 0.270, we conclude that

Equation (10) holds for r∗, and therefore, Equation (8) holds for all 1 ≤ i ≤ k − 1.

Lemma 13 For any k ≥ 2, we have that P(ALG∗r∗ ≥ Yk) ≥ 2a(r∗).

Proof. Using lemmas 8, 9 and 10 we get the following inequality.

P(ALG∗r∗ ≥ Yk) = (1− r∗)

 1

2k(k − 1)
+

k−1∑
j=1

1

2jj

+
r∗

2
. (11)
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Define now the function G(k) = 1
2k(k−1)

+
∑k−1

j=1
1

2jj
. We minimize G to obtain a general

lower bound for Equation (11). We have that

G(k + 1)−G(k) =
1

2kk
+

1

2k+1k
− 1

2k(k − 1)

=
2(k − 1) + (k − 1)− 2k

2k+1k(k + 1)

=
k − 3

2k+1k(k + 1)
.

Hence, G(2) ≥ G(3), and G(k) ≤ G(k+ 1) for k ≥ 3, so G is minimized when k = 3. Thus,

P(ALG∗r∗ ≥ Yk) ≥ (1− r∗)
(

1

16
+

1

2
+

1

8

)
+
r∗

2

=
11− 3r∗

16

=
55− 66 ln 2− 9 + 12 ln 2

16(5− 6 ln 2)

=
16(4− 5 ln 2)

16(5− 6 ln 2)
+

26 ln 2− 18

16(5− 6 ln 2)

≥ 2a(r∗).

The last inequality comes from the fact that 26 ln 2−18
16(5−6 ln 2) ≈ 0.00162 ≥ 0 and that

a(r∗) = 1− ln 2 +
r(3 ln 2− 2)

2

=
(2− 2 ln 2)(5− 6 ln 2) + (3− 4 ln 2)(3 ln 2− 2)

2(5− 6 ln 2)

=
4− 5 ln 2

2(5− 6 ln 2)
.

With the last two lemmas we are ready to prove the main theorem of this section.
Proof of Theorem 2. Summing the lower bound in Lemma 12 it follows that for all
1 ≤ i ≤ k − 1,

P(ALG∗r∗ ≥ Yi) ≥ 2a(r∗) ·
(

1− 1

2i

)
= 2a(r∗)P(maxD ≥ Yi) .

From Lemma 13 we get that also P(ALG∗r∗ ≥ Yk) ≥ 2a(r∗) · P(maxD ≥ Yk). Therefore, as
maxD ∈ {Y1, ..., Yk} with probability 1, we conclude that E(ALG∗r∗) ≥ 2a(r∗) · E(maxD).
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5. Large data sets (large k)

In this section we consider the case in which k is large and show that for that case one
can obtain better guarantees for the prophet two-sided game of Googol. This case appears
very often, for instance, in the i.i.d. prophet secretary problem with unknown (continuous)
distributions, all permutations of [2n] are equally likely to be the ordering of the 2n values
in the cards. The probability that k is at least k0 equals the probability that the top t
elements of the list are written in different cards. Note that for any ` = o(

√
n),

P(k ≥ `) =

(
1− 1

2n− 1

)
·
(

1− 2

2n− 2

)
· · ·
(

1− `− 1

2n− (`− 1)

)
≥
(

1− `

2n− `

)`
≥ 1− `2

2n− `
≥ 1− o(1).

Our algorithm uses a moving window of length strictly larger than 1, as outlined in section
2.

Moving window algorithm of length 1 + t (ALG(t)). We first draw n uniform vari-
ables in [0, 1] and we sort them from smallest to largest8 as 0 < τ1 < τ2 < · · · < τn < 1.
We interpret τj as the arriving time of the s-th hidden value that we reveal, and therefore,
τs − 1 = C(τj) is the arriving time of the corresponding s-th face up value. The algorithm
will accept the s-th face up value x = Dσ(s) if and only if x is larger than any value arrived
in the previous 1 + t time units, i.e. if and only if x is larger than all elements arriving in
[max(τs − 1− t,−1), τs]

Observe that ALG(0) and ALG(1) are exactly the algorithms ALGc and ALGf defined
in previous sections. Below we analyze the performance of ALG(t).

Lemma 14 For every 1 ≤ i ≤ k − 1,

P(ALG(t) = Yi) = b(k, t) +
k−1∑
j=i+1

a(j, t)

2j
, (12)

where a(j, t) =
1− (1− t)j−1(1 + t)

j − 1
+ (1− t)j−1(1 + t)− (1− t)j

j
,

b(k, t) =
1

2k−1

(
1− (1− t)k−1

k − 1
+ (1− t)k−1

)
,

and

P(ALG(t) ≥ Yk) =
1

2
+
k−1∑
i=2

(1− t)j

2jj
.

Proof. Fix an index i ≤ k − 1. Recall that θi ∈ [−1, 1) denotes the arriving time of
Yi. Let J be the random variable denoting the index of the largest element arriving in
the window of Yi, or equivalently, the smallest index such that θj ∈ [θi − 1 − t, θi). Since
[max(θi−1− t,−1), θi) has length at least 1, it always contains θk or C(θk) = θk′ (or both),
we conclude that J ≤ k.

8. We assume that the drawn values are all distinct as this happens with probability 1
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Note that the algorithm selects Yi if and only if the next three events occur: (I) θi > 0,
(II) J > i, as otherwise, YJ > Yi would be inside the window of Yi, and (III) No element is
selected before Yi’s arrival. By Lemma 4, the third event occurs if and only if the maximum
element9 X arriving in [0, θi) is smaller than some element in its own window. Note that
this happens in two cases: either θJ < 0 (and therefore YJ is in the window of X), or θJ ≥ 0
and YJ is smaller than some element arriving in its own window.

In what follows fix some j with i + 1 ≤ j ≤ k − 1. We will compute the probability of
both selecting Yi and J = j.

Case 1: 0 ≤ θi ≤ t. In order to impose that J = j we need that all j − 2 arrival times
(θl : l ∈ [j − 1] \ {i}) are outside the interval [−1, θi] and θj is inside. Furthermore, in
this case every element arriving in [0, θj) is strictly smaller than Yj . Therefore in order to
impose that no element is selected before Yi’s arrival we need that θj < 0. It follows that

P(ALG(t) = Yi, J = j, θi ∈ [0, t]) =
1

2

∫ t

0
P(θj < 0)

∏
l∈[j−1]\{i}

P(θl > 1− x)dx

=
1

2

∫ t

0

1

2

(
1− x

2

)j−2

dx =
1

2j
· 1− (1− t)j−1

j − 1
.

Case 2: t < θi ≤ 1 and θj < 0. We now need that all j−2 arrival times θl, l ∈ [j−1]\{i}
fall outside [θi− t− 1, θi] and θj is inside. Since we are imposing θj < 0, we actually require
that θj ∈ [θi − t − 1, 0]. Since θJ < 0 this is enough to guarantee that Yi will be selected.
Therefore,

P(ALG(t) = Yi, J = j, θi ∈ (t, 1] ∧ θj < 0)

=
1

2

∫ 1

t
P(θj ∈ [x− t− 1, 0])

∏
l∈[j−1]\{l}

P(θl 6∈ [x− t− 1, x])dx

=
1

2

∫ 1

t

1 + t− x
2

(
1− t

2

)j−2

dx =
(1− t)j−1(1 + t)

2j+1
.

Case 3: t < θi ≤ 1 and 0 ≤ θj < t. As before we need that all j − 2 arrival times
θl, l ∈ [j − 1] \ {i} fall outside [θi − t − 1, θi] and θj ∈ [0, t). Since θj ≥ 0 we also need
that at least one of Yl, l ∈ [j − 1] \ {j} arrives in Yj ’s window [−1, θj) and since they must
be outside Yi’s window this reduces to the event that not all j − 2 arrival times fall in the
interval (θi, 1]. Therefore,

P(ALG(t) = Yi, J = j, θi ∈ (t, 1] ∧ 0 ≤ θj < t)

=
1

2

∫ 1

t
P(θj ∈ [0, t))P(∀l ∈ [j − 1] \ {i}, θl 6∈ [x− t− 1, x] and not all in (x, 1])dx

=
1

2

∫ 1

t

t

2

((
1− t

2

)j−2

−
(

1− x
2

)j−2
)
dx =

t(1− t)j−1

2j
− t(1− t)j−1

2j(j − 1)
.

9. If no element arrives in [0, θi) then event (III) also occurs
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Case 4: t < θi ≤ 1 and t ≤ θj < θi. Once again we need that all j − 2 arrival times
θl, l ∈ [j − 1] \ {i} fall outside [θi − t− 1, θi] and θj ∈ [t, θi). Since θj ≥ 0 we also need that
at least one of Yl, l ∈ [j − 1] \ {j} arrives in Yj ’s window [θj − 1− t, θj) and since they must
be outside Yi’s window this reduces to the event that not all j − 2 arrival times fall in the
set [−1, θj − t− 1) ∪ (θi, 1]. Therefore,

P(ALG(t) = Yi ∧ J = j ∧ θi ∈ (t, 1] ∧ t ≤ θj < x)

=
1

2

∫ 1

t
P(θj ∈ [t, x))P(∀l ∈ [j − 1] \ {i}, θl 6∈ [x− t− 1, x]

and not all in [−1, θj − t− 1) ∪ (x, 1])dx

=
1

2

∫ 1

t

∫ x

t

((
1− t

2

)j−2

−
(

1− x+ y − t
2

)j−2
)
dydx

=
1

2j

∫ 1

t
(1− t)j−2(x− t)− (1− t)j−1 − (1− x)j−1

j − 1
dx =

(1− t)j

2j+1
− (1− t)j

2jj
.

Putting all cases together we get that for all 1 ≤ i ≤ k − 1 and i+ 1 ≤ j ≤ k − 1,

P(ALG(t) = Yi ∧ J = j) =
1

2j
·
(

1− (1− t)j−1(1 + t)

j − 1
+ (1− t)j−1(1 + t)− (1− t)j

j

)
.

(13)

Now let us consider the case J = k. In this case we only need to impose that all k − 2
arrival times θl, l ∈ [k− 1] \ {i} fall outside the window of Yi. No matter who the couple of
k is, the previous condition implies that k is inside the window of Yi. Therefore,

P(ALG(t) = Yi ∧ J = k) =
1

2

∫ t

0

(
1− x

2

)k−2

dx+

(
1− t

2

)k−1

=
1

2k−1

(
1− (1− t)k−1

k − 1
+ (1− t)k−1

)
. (14)

By combining (13) and (14) together we finish the proof of the first equality of this
lemma, (12).

We now compute the probability that ALG(t) selects one of the top k values Y1, . . . , Yk.
Observe first that the algorithm never selects a value Yj with j > k. This is because the
window of Yj always contains θk or C(θk) = θk′ , and both Yk and Yk′ are larger than Yj .
By this observation, P(ALG(t) ≥ Yk) equals the probability that the algorithm stops by
selecting something.

Let M be the random variable denoting the index of the largest value arriving after 0,
i.e. θM ≥ 0 and θi < 0, for all i < M . By Lemma 4, ALG(t) stops by selecting a value if
and only if YM is larger than every value arriving in its window [max(θM − 1− t, 1), θM )).
Observe that if M = k, this is impossible because the couple of k is always in that interval.
Therefore,
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P(ALG(t) ≥ Yk) =

k∑
j=1

P(ALG(t) ≥ Yk,M = j)

=

k∑
j=1

1

2

∫ 1

0
P(∀i ∈ [j − 1], θi ∈ [−1, x− 1− t)dx.

=
1

2
+
k−1∑
j=2

1

2

∫ 1

t

(
x− t

2

)j−1

dx =
1

2
+
k−1∑
j=2

(1− t)j

2jj
.

Algorithm ALG(t) has a very poor performance for k = 2. For example, in the instance
{(1, 1−ε), (ε, 0)}, we have Y1 = 1, Y2 = 1−ε and k = 2. By Lemma 14, P(ALG(t) ≥ Y2) =
1/2. Therefore E(ALG(t)) ≤ 1/2, while E(maxD) ≥ 1− ε.

We will now study the behaviour of ALG(t) when k is large. For that, define

Rk(i, t) =
P(ALG(t) ≥ Yi)
P(maxD ≥ Yi)

=
1

1− (1/2)i

i∑
l=1

k−1∑
j=l+1

b(k, t) +
a(j, t)

2j
.

Rk(t) = P(ALG(t) stops) =
1

2
+

k−1∑
j=2

(1− t)j

2jj
.

Consider also their limits as k →∞, which since kb(k, t)→ 0 can be computed as

R∞(i, t) =
1

1− (1/2)i

i∑
l=1

∞∑
j=l+1

a(j, t)

2j
.

R∞(t) =
1

2
+

∞∑
j=2

(1− t)j

2jj
=
t

2
+ ln

(
2

1 + t

)
.

Recall that the competitiveness of ALG(t) is at least mini≥1R∞(i, t), and we are looking
for the value t that maximizes this minimum. In Figure 1 we plot a few of these R∞(i, t),
for small values of i, together with function R∞(t). From the plot we observe that the t∗

maximizing the minima of all the curves satisfies R∞(1, t∗) = R∞(t∗). By simplifying the
sums, we obtain that t∗ ≈ 0.1128904 is the only root of:

R∞(1, t)−R∞(t) = 2− (5t)/2− (3 + t) ln 2 + (4 + t) ln(1 + t).

To formally prove that R∞(t∗) ≈ 0.6426317 is the sought guarantee we need the following
lemma.

Lemma 15 Let a(j, t) be defined as in Lemma 14. For all j ≥ 3, we have a(j, t∗) ≥
a(j + 1, t∗)

Proof. Below, we tabulate a few values of a(j, t∗) with t∗ ≈ 0.1128904, and we observe
that a(j, t∗) ≥ a(j + 1, t∗) for all j ∈ {3, . . . , 9}:
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R[1,t]

R[2,t]

R[3,t]

R[4,t]

R[t]
0.2 0.4 0.6 0.8 1.0

0.55

0.60

0.65

0.70

Figure 1: Auxiliary functions to analyze ALG(t), as k tends to ∞.

j 3 4 5 6 7 8 9 10

a(j, t∗) 0.705194 0.696462 0.65704 0.607906 0.556898 0.50734 0.460684 0.417513

Let us prove that the inequality also holds for j ≥ 10. By rearranging terms, a(j, t) ≥
a(j + 1, t) is equivalent to

1

(1− t)j−1

(
1

j − 1
− 1

j

)
≥ −t(1 + t)− t(1− t)

j
− (1− t)2

j + 1
+

1 + t

j − 1
.

But note that the right hand side, evaluated at t∗ ≥ 1/9 is:

−t∗(1 + t∗)− t∗(1− t∗)
j

− (1− t∗)2

j + 1
+

1 + t∗

j − 1
≤ (1 + t∗)

(
1

j − 1
− t∗

)
≤ (1 + t∗)

(
1

j − 1
− 1

9

)
,

which is nonpositive for all j ≥ 10. Then, it is smaller than the left hand side which is
positive.

Theorem 3 For t∗ ≈ 0.1128904, and any instance of the two-sided game of Googol, as k
goes to infinity, E[ALG(t∗)]/E[maxD] is at least R∞(t∗) ≈ 0.6426317.

Proof. We will prove that for all i ≥ 1, R∞(i, t∗) ≥ R∞(t∗). Denote for all i ≥ 1,
Pi = limk→∞ P(ALG(t∗) = Yi) =

∑∞
j=i+1 a(j, t∗)/2j . By choice of t∗, R∞(1, t∗) = R∞(t∗) ≈

0.6426317. Furthermore we we can numerically evaluate R∞(2, t∗) = P1+P2
1−1/4 ≈ 0.6547 ≥

R∞(t∗) and R∞(3, t∗) = P1+P2+P3
1−1/8 ≈ 0.654331 ≥ R∞(t∗).

To finish the proof, we will show that for all i ≥ 4, R∞(i, t∗) ≥ R∞(i + 1, t∗), and
therefore, for all i ≥ 4, R∞(i, t∗) ≥ limj→∞R∞(j, t∗) = R∞(t∗). For this, we will also need
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the inequality P1 ≈ 0.3213158 ≥ 0.304065 ≈ 8P4. By Lemma 15, for all i ≥ 2,

Pi =
∞∑

j=i+1

a(j, t∗)

2j
≥

∞∑
j=i+1

a(j + 1, t∗)

2j
= 2Pi+1.

Therefore,
i∑

`=1

P` ≥ 8P4 +
i∑

`=2

P` ≥ 2iPi+1 + Pi+1

i∑
`=2

2i+1−` = Pi+1(2i+1 − 2).

We conclude that,

R(i+ 1, t∗) =
Pi+1 +

∑i
`=1 P`

1− 1/2i+1
≤

(
1 +

1

2i+1 − 2

) i∑
`=2

Pl

2i+1 − 1

2i+1

=

i∑
`=2

Pl

2i+1 − 2

2i+1

= R∞(i, t∗).

To conclude this section we observe that the guarantee obtained in the k = ∞ case is
still useful for moderately high values of k. Indeed, note that for all j ≥ 1, and all t ∈ (0, 1),

|a(j, t)| ≤ 2, |b(k, t)| ≤ 2

2k−1
.

Therefore, for all 1 ≤ i ≤ k − 1 and all k ≥ 3.∣∣∣∣∣∣P(ALG(t) = Yi)−
∞∑

j=i+1

a(j, t)

2j

∣∣∣∣∣∣ =

∣∣∣∣∣∣b(k, t)−
∞∑
j=k

a(j, t)

2j

∣∣∣∣∣∣ ≤ 2

2k−1
+2

∞∑
j=k

1

2j
=

4

2k−1
=

1

2k−3
.

Therefore,

|Rk(i, t)−R∞(i, t)| = 1

1− 1/2k

∣∣∣∣∣∣
i∑

`=1

P(ALG(t) = Y`)−
∞∑

j=`+1

a(j, t)

2j

∣∣∣∣∣∣ ≤ 2i

2k−3
≤ 16k

2k
.

We also have that

|Rk(t)−R∞(t)| =

∣∣∣∣∣∣
∞∑
j=k

(1− t)j

2jj

∣∣∣∣∣∣ ≤ 1

2k−1
≤ 16k

2k
.

From here,

min(Rk(t
∗), min

1≤i≤k−1
Rk(i, t

∗)) ≥ min(R∞(t∗), min
1≤i≤k−1

Rk(i, t
∗))− 16k

2k
= R∞(t∗)− 16k

2k
.

Thus the guarantee of ALG(t) for not so large values of k is already very close to
R∞(t∗) ≈ 0.6426317. For example, the guarantee of ALG(t) for k ≥ 20 is at least R∞(t∗)−
0.00031.
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6. Concluding remarks

The two-sided game of Googol has close connections with optimal stopping theory and our
results have direct implications for the Prophet Secretary problem with samples and the
Secretary problem with samples. This connection immediately suggests other variants of
the problem. We state here two that we consider of interest, together with some initial
thoughts on the challenges they present if one tries to apply the techniques of this paper.

The d-sided game of Googol. In this variant our “cards” have d > 2 sides. More
precisely, we are given n dice (instead of cards) with d sides each. The dice have arbitrary
non-negative numbers on all sides, so we have d · n different numbers in total. The dice
are shuffled and tossed on a table so that, for each die independently, any of its d faces
lands face-down with probability 1/d. For all dice, we observe all d − 1 faces that did not
land face-down. In uniform random order we get to flip one die at a time, revealing the
hidden number. As in the two-sided game of Googol, we must decide when to stop in order
to maximize either the Secretary objective or the Prophet objective. Naturally, the case
where the adversary chooses a distribution for each die and writes i.i.d. samples on each
face models the Prophet Secretary problem and the Secretary problem with d− 1 samples
for each distribution, instead of only one.

Our analysis of the two-sided game of Googol relies on the parameter k, the smallest
index of a number (in the decreasing ordering of the 2n numbers) such that it is paired with
a larger number. The importance of k comes from the fact that maxD is always one of the
largest k numbers out of the 2 · n numbers. This parameter is determined by the decisions
of the adversary, so we consider all possible cases. To do a similar analysis in the d-sided
version, we would have to define several parameters to account for all possible groupings of
the sequence of d · n numbers.

Free-order two-sided game of Googol. A natural variant of our two-sided game of
Googol is to allow the decision-maker to choose in which order the cards will be flipped.
Certainly, our algorithm can also be applied to this setting, as flipping in uniform random
order is one possible option. However, it is not obvious whether we can take advantage of
the free order. On one hand, the adversary could pair the 2n numbers randomly, deeming
useless the extra power of the decision-maker. On the other hand, when the pairing is
random, the problem appears to be much easier. In fact, for the resulting problem a 0.671-
approximation is possible, as shown by Correa et al. (2020).
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Appendix A. Factor revealing LP

In this section we develop a linear program whose solution describes the optimal ordinal10

algorithm for instances of size n of the two-sided game of Googol. This linear program is
based on the techniques used in Buchbinder et al. (2014). Before we describe the linear
program we must introduce some additional notation. Afterwards we develop the linear
program formulation and close by presenting numerical results for n = 2 and n = 3.

A.1 Additional notation

Recall that we denote by Y1 > · · · > Y2n the 2n numbers of a particular instance. We
define a setting s as a particular coupling of the values Y1 > · · · > Y2n of the instance in
the n cards. For example, if we have n = 2 cards then we have three possible settings:
{(Y1, Y2), (Y3, Y4)}, {(Y1, Y3), (Y2, Y4)}, and {(Y1, Y4), (Y2, Y3)}. We denote the set of all
possible settings by S. The different settings can be seen as different matching between the
values Y1, . . . , Y2n. For any setting, let ks be the smallest index so that k is the couple of
some k′ < k. In particular, Y1, Y2, . . . , Yks−1 are all written on different cards.

We now turn our focus on the information available whenever we have to decide whether
to stop the game or not. At step i we know exactly n + i elements out of the 2n of the
instance. At this step we can characterize all the information available (for an ordinal
algorithm) by what we define as a history h, which consists of two tuples (d1, . . . , di) and
(u1, . . . , ui). Here dj represents the ranking of element Dσ(j) among the n + i elements
seen so far. Similarly, uj represents the ranking of element Uσ(j). We denote by Hi to the
set of possible histories we can face at step i and define H = ∪ni=1Hi to be the set of all
possible histories we can encounter at some step of the game. Notice that at any step, the
history contains all the information an ordinal algorithm can utilize. Indeed, the ranking of
the remaining n− i numbers facing upwards cannot be mapped to the remaining numbers
Dσ(i+1), . . . , Dσ(n) facing downwards, as we do not know the order in which we will explore
them. Also, the history at a given step contains the history of previous steps, as we can
compute the rankings without considering the most recently observed elements. For a given
history h that occurs at step i denote by Ch the set of histories seen from step 1 to i − 1
before seeing h at step i.

A.2 Linear program formulation

Our LP variables have the form xh for every h ∈ H. They are to be interpreted as the
probability of stopping when faced to a history h, given that the randomness of the game
(coin tosses and random permutation) is such that we will face h in the corresponding step
of the game. We denote the event that the randomness of the game is such that we will face
h in the corresponding step of the game by Bh. We clarify that Bh does not imply reaching
the step in which we observe history h, only that the randomness is such that if we reach
the corresponding step, we would observe h. The linear program is as follows:

10. An algorithm which decides to stop or not based on the relative ranking of the observed elements, not
on the numerical values of the elements.
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LPn = max α

s.t. xh ≤ 1−
∑
j∈Ch

xj ∀h ∈ H, (15)

α ≤
∑k

j=1

∑n
i=1

∑
j∈Hi

xhλhjs
1

2n

1− 2−k
∀s ∈ S,∀k ∈ [ks − 1] (16)

α ≤
ks∑
j=1

n∑
i=1

∑
h∈Hi

xhλhjs
1

2n
∀s ∈ S (17)

x ≥ 0.

Constraints (15) are called the feasibility constraints which manage to capture all ordinal
algorithms. Constraints (16) and (17) are called stochastic dominance constraints, which
relate the objective function with the worst case performance of the algorithm.

Feasibility constraints. This set of constraints forms a polytope that captures how any
ordinal online algorithm behaves. We first present Lemma 16, which establishes that any
ordinal algorithm has a representation which satisfies the feasibility constraints.

Lemma 16 Consider any ordinal algorithm ALG. Define xALG
h as the probability that the

algorithm will stop facing history h given Bh, then xALG satisfies the feasibility constraints.

Proof. We have

xALG
h = P(Stop facing history h|Bh)

≤ P(Face history h|Bh)

= 1− P(Stop before facing history h|Bh)

= 1−
∑
j∈Ch

P(Stop facing history j|Bh)

= 1−
∑
j∈Ch

P(Stop facing history j|Bj) (18)

= 1−
∑
j∈Ch

xALG
j .

Equality (18) holds because the algorithm does not see the future, so the decision to stop
facing j or before does not depend on what happens after j. That being said, j can lead to
histories different than h, but whatever history is sampled they will be identical up to j, so
the behavior of the algorithm up to seeing history j does not change if we condition of Bh
or Bj .

This establishes that any ordinal algorithm satisfies the feasibility constraint. In Lemma
17 we establish the other direction, that is, any solution to the linear program can be used
to construct a corresponding ordinal algorithm.
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Lemma 17 Let (x, α) be a feasible solution to the linear program. Define the algorithm
ALG as follows: when facing history h, stop with probability

xh
1−

∑
j∈Ch xj

.

Then this algorithm satisfies P(Stop facing history h|Bh) = xh.

Proof. Denote by Rh the event of seeing history h at some point (i.e. not stopping before
getting to see history h) and by Sh the event of stopping when seeing history h. We will
show by induction that P(Sh|Bh) = xh for every h ∈ H. The base case is for h ∈ H1

(histories seen in the first step). For these h we will get to face h with probability 1, and
we also have that Ch = ∅. With this in mind we compute

P(Sh|Bh) =
P(Sh ∧Bh)

P(Bh)
· P(Sh ∧Bh ∧Rh)

P(Sh ∧Bh ∧Rh)
· P(Rh ∧Bh)

P(Rh ∧Bh)

= P(Sh|Bh ∧Rh)P(Rh|Bh)
1

P(Rh|Bh ∧ Sh)
.

Clearly P(Rh|Bh ∧ Sh) = 1, as stopping at h implies we reached it, and as we discussed
P(Rh|Bh) = 1 because h ∈ H1 will always be reached. Finally,

P(Sh|Bh ∧Rh) =
xh

1−
∑

j∈Ch xj
= xh,

as Ch = ∅. Now assume this holds for all h ∈ Hj , j < i. Pick h ∈ Hi and recall

P(Sh|Bh) = P(Sh|Bh ∧Rh)P(Rh|Bh)
1

P(Rh|Bh ∧ Sh)

It still holds that P(Rh|Bh ∧ Sh) = 1. By the definition of the algorithm, we have

P(Sh|Bh ∧Rh) =
xh

1−
∑

j∈Ch xj
,

and we have

P(Rh|Bh) = 1− P(Stop before h|Bh)

= 1−
∑
j∈Ch

P(Sj |Bh)

= 1−
∑
j∈Ch

P(Sj |Bj)

= 1−
∑
j∈Ch

xj ,

where the last equality holds by our inductive hypothesis. Putting all together we get

P(Sh|Bh) =
xh

1−
∑

j∈Ch xj
·

1−
∑
j∈Ch

xj

 · 1 = xh.

This establishes the equivalence between the polyhedron defined by the feasibility con-
straint and the set of non-adaptive ordinal algorithms.
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Stochastic dominance constraints. The set of stochastic dominance constraints con-
nects the objective function of the linear program with the ratio between the expectation of
the value selected by the algorithm and the maximum hidden value. We develop constraints
of the form

P(maxD ≥ Yj)
P(ALG ≥ Yj)

≥ α ∀j ∈ {1, . . . , 2n}. (19)

With this we can multiply both sides of the above inequality by P(ALG ≥ Yj) and integrate
from 0 to infinity to obtain the ratio in expectation. This bound is also tight (assuming
that the solution α is such that one of the constraints is tight). To see this, assume that
the ratio between the expectation of the value chosen by the algorithm and the expectation
of the highest hidden value is β with β > α. choose j∗ such that the constraint is tight (i.e.
P(ALG ≥ Yj∗) = αP(maxD ≥ Yj∗)) and construct an instance with Yi = 1 for 1 ≤ i ≤ j∗

and Yi = 0 for i > j. Then we have E(ALG) = P(ALG ≥ Yj∗) and E(maxD) = P(maxD ≥
Yj∗), contradicting β > α.

We now compute P(maxD ≥ Yj). Notice that this probability distribution depends on
the particular setting s, as maxD can only take values in {Y1, . . . , Yks}. Through exactly
the same argument as the beginning of Section 4, for any setting s we have

P(maxD = Yj) =


1
2j

j < ks
1

2ks−1 j = ks

0 i > ks.

This implies

P(maxD ≥ Yj) =

{
1− 1

2j
j < ks

1 j ≥ ks.
(20)

We also need to compute P(ALG ≥ Yj) (characterized by LP variables xh) for any
setting s. This is established in the following Lemma.

Lemma 18 For any setting s ∈ S and j ∈ {1, . . . , 2n},

Ps(ALG = Yj) =
n∑
i=1

∑
h∈Hi

xhλhjs
1

2n
,

where λhjs = Ps(Bh|Yπ(i) = Yj) under setting s.

Proof. Use Ps(·) to denote the probability under a setting s and again use Bh to denote
the event that the randomness of the game is such that history h would appear eventually

32



The Two-Sided Game of Googol

(if the algorithm does not stop until the corresponding step). We develop

Ps(ALG = Yj) =
n∑
i=1

P(Stop at step i ∧ Yπ(i) = Yj)

=
n∑
i=1

∑
h∈Hi

Ps(Stop at step i ∧Di = Yj ∧Bh)

=
n∑
i=1

∑
h∈Hi

Ps(Stop at step i|Di = Yj ∧Bh)Ps(Yπ(i) = Yj ∧Bh)

=
n∑
i=1

∑
h∈Hi

Ps(Stop at step i|Bh)Ps(Di = Yj ∧Bh) (21)

=

n∑
i=1

∑
h∈Hi

xhPs(Bh|Yπ(i) = Yj)Ps(Di = Yj)

=
n∑
i=1

∑
h∈Hi

xhλhjs
1

2n
,

where in the last equality we implicitly define λhjs = Ps(Bh|Yπ(i) = Yj) and used that
Ps(Yπ(i) = Yj) = 1/(2n) for any setting s. The only subtle step here is equation (21),
where we use the fact that the whole behavior of the algorithm until step i is completely
determined by history h (which includes all histories seen until step i). This means that we
can discard Yπ(i) = Yj from the conditional.

Although we do not have closed expressions for coefficients λhjs, they can be computed
by enumeration for small values of n. Constraints (16) and (17) are obtained by replacing
in equation (19) the expressions obtained in (20) and Lemma 18, for every s ∈ S.

With all of these results we have established the following theorem:

Theorem 19 For instances of size n, the optimal algorithm for the two-sided game of
Googol has worst case ratio between the expected selected value and the expected maximum
hidden value equal to LPn.

A.3 Numerical results for small n

To close this section we present numerical results for the cases n = 2 and n = 3. We find
that for n = 2 the optimal algorithm is essentially the full window algorithm, with the
exception that it picks the second cards if it does no select the first one. The algorithm can
be described as follows: if the first revealed number (D1) is the highest among the three
numbers seen so far (U1, U2 and D1), then select it. Otherwise, select D2. This algorithm
achieves a ratio of 3/4, and all settings s have at least one tight stochastic dominance
constraint.

For n = 3 the result is far more interesting, as the algorithm is sensitive with small
changes in histories, and requires randomization. The algorithm is detailed in Table 2.1
and achieves a ratio of approximately 0.704. The table details the probability of stopping
when facing each history, where we omit all histories with probability 0 of stopping and we
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also omit step 3, where we stop with probability 1 no matter what history we face. The
first interesting behavior is that the algorithm will stop with probability 1 when the first
revealed number (D1) is the highest number seen so far, except if the number on the back
of the first card (U1) is the second highest among the numbers seen so far. In that case,
stop with probability 0.95. This randomization is necessary, as forcing the probability to
be 1 (0 respectively) decreases the ratio to 0.702 (0.583 respectively). The reason of this
randomization is necessary because of the setting s = {(Y1, Y6), (Y2, Y3), (Y4, Y5)}. In this
setting, whenever we see that D1 is best so far and U1 is second best so far, it is the case that
D1 = Y2. Moreover, whenever we skip these situations in this setting, we end up selecting
Y1. With the optimal solution and for setting s, the stochastic dominance constraints are
tight for j = 1 and j = 3, and there is slack for the case j = 2. Thus, if we were to increase
the probability of stopping when facing this history, we would increase the probability of
choosing Y2 in exchange of decreasing the probability of choosing Y1, which in turn reduces
the competitive ratio, as the constraint for j = 1 is already tight in this setting. Further
randomization is also necessary, as seen in the table.
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José Correa, Andrés Cristi, Boris Epstein, and José Soto. Sample-driven optimal stop-
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