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Abstract
Performing exact Bayesian inference for complex models is computationally intractable.
Markov chain Monte Carlo (MCMC) algorithms can provide reliable approximations of the
posterior distribution but are expensive for large data sets and high-dimensional models. A
standard approach to mitigate this complexity consists in using subsampling techniques or
distributing the data across a cluster. However, these approaches are typically unreliable in
high-dimensional scenarios. We focus here on a recent alternative class of MCMC schemes
exploiting a splitting strategy akin to the one used by the celebrated alternating direction
method of multipliers (ADMM) optimization algorithm. These methods appear to provide
empirically state-of-the-art performance but their theoretical behavior in high dimension is
currently unknown. In this paper, we propose a detailed theoretical study of one of these
algorithms known as the split Gibbs sampler. Under regularity conditions, we establish
explicit convergence rates for this scheme using Ricci curvature and coupling ideas. We
support our theory with numerical illustrations.
Keywords: ADMM, approximate Bayesian inference, convergence rates, Markov chain
Monte Carlo, splitting

1. Introduction

We are interested in performing Bayesian inference for large data sets and potentially high-
dimensional models. For complex models, the posterior distribution is intractable and needs
to be approximated. To this end, many Markov chain Monte Carlo (MCMC) schemes have
been proposed over the past five years; see for instance Bardenet et al. (2017) for a recent
overview.

These methods can be loosely speaking divided into two groups: subsampling-based
techniques and divide-and-conquer approaches. Subsampling-based approaches are MCMC
techniques that only require accessing a subsample of the observations at each iteration:
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these include the popular stochastic gradient Langevin dynamics (SGLD) (Welling and
Teh, 2011; Dubey et al., 2016; Brosse et al., 2018; Chatterji et al., 2018; Baker et al.,
2019), subsampling versions of the Metropolis–Hastings algorithm (Bardenet et al., 2014;
Korattikara et al., 2014; Bardenet et al., 2017; Quiroz et al., 2019; Cornish et al., 2019) and
methods based on piecewise-deterministic MCMC schemes (Bouchard-Côté et al., 2018;
Bierkens et al., 2019). However, all the subsampling methods accessing O(1) data points at
each iteration only provide reliable posterior approximations if they rely on some control
variate ideas which require estimating the mode of the posterior and this posterior to be
concentrated (Welling and Teh, 2011; Dubey et al., 2016; Bardenet et al., 2017; Brosse et al.,
2018; Chatterji et al., 2018; Baker et al., 2019; Cornish et al., 2019). Practically, as pointed
out in Bardenet et al. (2017); Cornish et al. (2019), this means that such methods are of
limited practical interest as they only work well in scenarios where the Bernstein-von Mises
approximation of the target is excellent. Divide-and-conquer methods are techniques which
consider the common scenario where the data are distributed across a cluster. These schemes
run independent MCMC chains to estimate “local” posteriors on each node of the cluster
and then recombine these “local” posteriors to obtain an approximation of the full posterior
(Wang and Dunson, 2013; Neiswanger et al., 2014; Minsker et al., 2014; Wang et al., 2015;
Scott et al., 2016; Scott, 2017; Hasenclever et al., 2017). However, these methods often use
parametric or kernel density approximations of the local posteriors so as to combine them.
This can be unreliable in high-dimensional scenarios; see Bardenet et al. (2017) and Rendell
et al. (2021) for a detailed discussion.

An alternative approach to perform MCMC, amenable to a distributed implementation,
has been recently introduced independently in Vono et al. (2019) and Rendell et al. (2021);
see also Dai Pra et al. (2012); Chowdhury and Jermaine (2018) and Barbos et al. (2017)
for earlier related ideas. It is inspired by the well-known variable splitting technique used
in optimization, for instance by quadratic penalty approaches or the alternating direction
method of multipliers (ADMM), see Boyd et al. (2011). In the sampling context, this
corresponds to defining an artificial hierarchical Bayesian model where the parameter of
interest is becoming a “master” parameter which is artificially replicated as many times as
one “splits” the target distribution. In this context, we can then develop MCMC schemes
which alternate sampling the node parameters given the master parameter then the master
parameter given the node parameters. Experimentally, these methods appear promising
but it is yet unclear how such schemes behave in high-dimensional scenarios. This paper
aims at studying theoretically one of these samplers called split Gibbs sampler (SGS).

Contributions. Our contributions are as follows.

• We present non-asymptotic bounds on the total variation (TV) and 1-Wasserstein
distances between the original posterior distribution and the distribution targeted by
this class of MCMC schemes. This allows us to quantify the “bias” introduced by
these methods and significantly sharpens and complements previous results in Vono
et al. (2021a).

• Using Ricci curvature and coupling techniques, we establish explicit dimension-free
convergence rates for SGS. Combining our bounds on the bias and convergence rates,
we provide mixing time bounds with explicit dependencies with respect to (w.r.t.) the
dimension of the problem, its associated condition number and the prescribed preci-
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sion. In both 1-Wasserstein and TV distances, we show that our complexity results
are competitive with those recently derived for MCMC schemes based on Langevin or
Hamiltonian dynamics.

• We illustrate these theoretical results on several applications, demonstrating the ben-
efits of SGS over state-of-the-art MCMC approaches.

Notations and conventions. We denote by B(Rd) the Borel σ-field of Rd. The total
variation norm between two probability measures µ and ν on (Rd,B(Rd)) is defined by

‖µ− ν‖TV = sup
f∈M(Rd),‖f‖∞≤1

∣∣∣∣∣
∫
θ∈Rd

f(θ)dµ(θ)−
∫
θ∈Rd

f(θ)dν(θ)
∣∣∣∣∣ ,

where M(Rd) denotes the set of all Borel measurable functions f on Rd and ‖f‖∞ =
supθ∈Rd |f(θ)|. Let µ, ν be two probability measures on (Rd,B(Rd)). Define the Kullback-
Leibler (KL) divergence of µ from ν by

DKL(µ||ν) =


∫
Rd

dµ
dν (θ) log

(
dµ
dν (θ)

)
dν(θ), if µ� ν

+∞ otherwise.

For 1 ≤ p <∞, and a metric w : Rd×Rd → R, the Wasserstein distance of order p between
two probability measures µ and ν on (Rd,B(Rd)) is defined by

Ww
p (µ, ν) =

(
inf

π∈U(µ,ν)

∫
θ,θ′∈Rd

w(θ,θ′)pdπ(θ,θ′)
)1/p

,

where U(µ, ν) is the set of all probability measures which admit µ and ν as marginals. For
p =∞, the Wasserstein distance of order ∞ is defined as

Ww
∞(µ, ν) = inf

π∈U(µ,ν),(X,Y )∼π
ess supw(X,Y ) .

In the case when w is the Euclidean metric, we will denote these by Wp(µ, ν). For the sake
of simplicity, with little abuse, we shall use the same notations for a probability distribution
and its associated probability density function. For a Markov chain with transition kernel
P on Rd and invariant distribution π, we define the ε-mixing time associated to a statistical
distance D, precision ε > 0 and initial distribution ν, by

tmix(ε; ν) = min
{
t ≥ 0

∣∣∣ D(νPt, π) ≤ ε
}
,

which stands for the minimum number of steps of the Markov chain such that its distribution
is at most at an ε D-distance from the invariant distribution π. The Euclidean norm on
Rd is denoted by ‖·‖. For n ≥ 1, we refer to the set of integers between 1 and n with the
notation [n]. The d-multidimensional Gaussian probability distribution with mean µ and
covariance matrix Σ is denoted by N (·;µ,Σ). The parabolic cylinder special function is
defined, for all d > 0 and z ∈ R, by D−d(z) = exp(−z2/4)Γ(d)−1 ∫+∞

0 e−xz−x
2/2xd−1dx,

where Γ(·) denotes the Gamma function. For 0 ≤ i < j, we use the notation ui:j to refer to
the vector [u>i ,u>i+1, . . . ,u>j ]> built by stacking j − i+ 1 vectors (uk; k ∈ {i, i+ 1, . . . , j}).
For f : Rd → R and any θ ∈ Rd, we use the notations f(θ)− = −min(f(θ), 0) and
f(θ)+ = max(f(θ), 0).
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2. Background and Problem Formulation

This section sets up the simulation problem considered in this paper and briefly reviews the
approximate Bayesian approach proposed by Vono et al. (2019) and Rendell et al. (2021).

2.1 Bayesian Model

We consider the situation where one is interested in carrying out Bayesian inference about
a parameter θ ∈ Rd based on observed data D = {xj , yj}nj=1, where for any j ∈ [n], xj are
covariates (also called features) associated to observation yj . We assume that the number
of observations n is large so that the data set D is partitioned into S ∈ [n] subsets {Ds}Ss=1,
called shards, such that tSs=1Ds = D. Under this framework, the posterior distribution of
interest is assumed to admit a density w.r.t. the Lebesgue measure of the form

π(θ | D) ∝ p(θ)
S∏
s=1

πs(Ds | θ) , (1)

where {πs(Ds | θ)}Ss=1 are likelihood functions associated to {Ds}Ss=1 and p(θ) is the prior
density for θ. Contrary to the majority of divide-and-conquer MCMC approaches, we
do not assume that the prior factorizes across shards, that is p(θ) ∝ ∏S

s=1 ps(θ). In the
sequel, it will be convenient to characterize the posterior distribution via potential functions.
To this end, we assume that the posterior density defined in (1) can be re-written as
π(θ | D) ∝ exp(−U(θ)) where

U(θ) =
b∑
i=1

Ui(Aiθ) , (2)

for b ∈ N \ {0}, some matrices Ai ∈ Rdi×d and potential functions Ui : Rdi → R with
i ∈ [b]. This definition of the posterior encompasses two main scenarios that are ubiqui-
tous in Bayesian machine learning and illustrated in Examples 1 and 2. More precisely, if
p(θ) ∝ ∏S

s=1 ps(θ), then b = S and for any i ∈ [b], Ui(Aiθ) = − log pi(θ) − log πi(Di | θ).
Conversely, if p(θ) does not factorize across shards, one can set b = S + 1 by assigning, for
s ∈ [S], one potential Us to each likelihood contribution πs(Ds | θ), and one potential US+1
to the prior p(θ). In both cases, for any i ∈ [b], the potential Ui is assumed to be dependent
on the subset Di of the observations; potentially Di = {∅} if Ui refers to the prior. To
simplify notation, this dependence is notationally omitted and we will denote by π(θ) the
posterior distribution in the rest of the paper. We give hereafter two illustrative standard
statistical machine learning examples that fit into the considered Bayesian framework.
Example 1 Bayesian ridge linear regression. We consider the model defined by

yj ∼ N (x>j θ, σ2) , ∀j ∈ [n] ,
θ ∼ N (0d, τId) ,

where θ ∈ Rd are the unknown regression parameters and τ > 0 is a fixed regularization
parameter. In this case, the posterior density writes

π(θ) ∝ exp
(
− 1

2τ ‖θ‖
2
) n∏
j=1

exp
(
− 1

2σ2 (yj − x>j θ)2
)
.
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By dividing the data set D = {xj , yj}nj=1 into S shards {Ds}bs=1, the posterior density can
be re-written as in (1), that is

π(θ) ∝ exp
(
− 1

2τ ‖θ‖
2
) S∏
s=1

exp

− 1
2σ2

∑
{xj ,yj}∈Ds

(yj − x>j θ)2

 .

Under this factorization, one can characterize π(θ) via (2) by setting b = S + 1 with
the choices AS+1 = Id, US+1 = ‖θ‖2 /(2τ), and for any s ∈ [S], As = Id, Us(θ) =∑
{xj ,yj}∈Ds(yj−x>j θ)2/(2σ2). In this case, note that DS+1 = {∅}. Robust linear regression

also falls into this framework. In this case, for any j ∈ [n], yj is distributed according to
Student’s t-distribution.

Example 2 Bayesian logistic regression with Zellner prior. Consider the model defined by

yj ∼ Bernoulli
(
σ
(
x>j θ

))
, ∀j ∈ [n] , (3)

θ ∼ N (0d,Σ) , (4)

where θ ∈ Rd are the unknown regression parameters, σ(u) = 1/(1 + e−u) is the logistic
link, and Σ−1 = α

∑n
j=1 xjx>j , with α = 3d/(π2n) which corresponds to a Zellner prior

(Sabanes Bove and Held, 2011; Hanson et al., 2014). In this scenario, the posterior density
writes π ∝ e−U with

U(θ) =
n∑
j=1

yjx>j θ + log
[
1 + exp

(
−x>j θ

)]
+ α

2
∥∥∥x>j θ∥∥∥2

.

This posterior density can be re-written as in (2) by setting b = n and for i ∈ [b], di = 1,
Ai = x>i and Ui(u) = yiu + log(1 + e−u) + αu2/2. In this case, Di = {xi, yi} for any
i ∈ [b]. Similarly to the logistic regression, other Bayesian generalized linear models such
as multinomial logistic regression and Poisson regression also fall into this framework, see
McCullagh and Nelder (2019) for more examples.

Sampling from π defined in (2) is challenging because both the number of data n and the
dimension d can be large. In addition, the data set D might be distributed over a cluster,
which complicates the inference procedure.

2.2 Instrumental Hierarchical Bayesian Model

To address these issues, Vono et al. (2019) and Rendell et al. (2021) introduced an arti-
ficial/instrumental Bayesian hierarchical model to ease posterior computation. The idea
is to introduce an auxiliary variable zi ∈ Rdi for some factors i ∈ [b] such that, under
an instrumental prior distribution, these variables are conditionally independent given θ.
Depending on the structure of the initial posterior distribution, different instrumental hier-
archical models have been considered by the aforementioned authors. In this paper, we will
study the instance where zi ∼ N (Aiθ, ρ

2Idi) for some ρ > 0. Under this model, the arti-
ficial joint posterior distribution Πρ(θ, z1:b) ∝ exp(−U(θ, z1:b)) admits a potential function
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θ
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i ∈ [n]

θ
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. . .. . .

Figure 1: DAGs for (left) the original model (2) and (right) the instrumental model (5).
For any i ∈ [b], the notation yi refers to the subset {yj | yj ∈ Di}. Note that we
do not illustrate the dependencies on covariates which can be used to define the
matrices {Ai}bi=1 as in Example 2.

U defined by

U(θ, z1:b) =
b∑
i=1

Ui(zi) + ‖zi −Aiθ‖2

2ρ2 . (5)

Figure 1 shows the directed acyclic graph (DAG) associated to this instrumental Bayesian
hierarchical model. We could have considered an alternative prior for zi as in Dai Pra et al.
(2012); Rendell et al. (2021); Vono et al. (2021a) but this choice is motivated by the fact
that the corresponding quadratic potential enjoys attractive properties such as smoothness
and strong convexity. Conditions ensuring that Πρ(θ, z1:b) is a probability density function
are detailed in Propositions 3 and 5.

A key property of this artificial posterior distribution is that the resulting marginal
posterior distribution

πρ(θ) =
∫

Πρ(θ, z1:b)dz1:b (6)

converges to the posterior distribution of interest π(θ) in total variation norm as ρ → 0.
This follows directly from the fact thatN (zi; Aiθ, ρ

2Idi) weakly converges towards the Dirac
distribution δAiθ(zi) when ρ→ 0 by Scheffé’s lemma (Scheffé, 1947).

Another key property of the marginal posterior distribution πρ is that it can be expressed
in terms of convolutions in an explicit form. Suppose that mini∈[b] infzi Ui(zi) > −∞ and
let

Uρi (Aiθ) := − log
∫
Rdi

exp
(
−Ui(zi)−

‖zi −Aiθ‖2

2ρ2

)
· dzi

(2πρ2)di/2
for i ∈ [b] , and

Uρ(θ) :=
b∑
i=1

Uρi (Aiθ) . (7)

Then, Proposition 5 shows that πρ(θ) ∝ exp(−Uρ(θ)) whenever exp(−Uρ(θ)) is integrable
on Rd.

The instrumental potential (5) slightly generalizes the approach from Vono et al. (2019);
Rendell et al. (2021). In Rendell et al. (2021), only the case Ai = Id is considered so that
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zi ∈ Rdi where di = d. This can be very inefficient. In many applications, we can indeed
define auxiliary variables zi taking values in Rdi where di � d. For instance, in the logistic
regression example presented in Example 2, we have di = 1 for i ∈ [n] while d can be large.
Hence, simulation from Πρ(zi|θ) is expected to be much cheaper. Efficient sampling from
such conditionals is a key ingredient to SGS as described in the next section.

2.3 Split Gibbs Sampler

The main benefit of working with the artificial target distribution Πρ(θ, z1:b) defined by
(5) instead of π(θ) is the fact that, under Πρ, the conditional distribution of the auxiliary
variables z1:b given θ factorizes across i ∈ [b], that is Πρ(z1:b|θ) = ∏b

i=1 Πρ(zi|θ). Hence
these simulation steps can be performed in parallel. This suggests using a Gibbs sampler
to sample from Πρ(θ, z1:b). The resulting so-called split Gibbs sampler is described in
Algorithm 1. Simple conditions ensuring the ergodicity of SGS are given in Appendix A.1.
In the following paragraphs, we detail such conditional sampling problems and discuss the
applicability of SGS.

Algorithm 1: Split Gibbs Sampler (SGS)
Input: Potentials {Ui}i∈[b], penalty parameter ρ, initialization θ[0] and nb. of

iterations T .
for t← 1 to T do

for i← 1 to b do
z[t]
i ∼ Πρ(zi|θ[t−1]) (see Equation 8)

end
θ[t] ∼ Πρ(θ|z[t]

1:b) (see Equation 11)
end

2.3.1 Sampling the Auxiliary Variables

As emphasized previously, SGS is an attractive sampler since the auxiliary variables {zi}bi=1
can be sampled in parallel given θ from the conditional distributions

Πρ(zi|θ) ∝ exp
(
−Ui(zi)−

1
2ρ2 ‖zi −Aiθ‖2

)
. (8)

Additionally each conditional Πρ(zi|θ,y) only depends on y = {yj}nj=1 through the subset of
observations Di, see Figure 1. This is particularly interesting in scenarios where observations
y are distributed over a set of nodes within a cluster such that each node involves the subset
yi, see the work by Rendell et al. (2021) for more details. Not only parallel and possibly
distributed sampling from (8) is possible but this conditional distribution is far simpler than
the original target distribution (2). Indeed, while the latter involves a composite potential
function U with matrices {Ai}bi=1 acting on θ, (8) only involves a single potential Ui and
an isotropic Gaussian term without any matrix acting on zi. Hence, sampling from (8) is
expected to be easier and cheaper.

In the literature, sampling from this conditional distribution has been performed via
two main approaches: exact sampling and Metropolis-Hastings schemes. For example,
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the authors in Vono et al. (2019) considered a linear Gaussian inverse problem where (8)
was a Gaussian distribution. Apart from the Gaussian case, exact and efficient sampling
is for instance possible when considering generalized (non-)linear models and Gaussian
prior distributions for θ. Similarly to the Bayesian logistic regression example presented
in Example 2, one can indeed assign one potential per univariate observation yi leading
to univariate potentials {Ui}ni=1. Hence, in this case one can sample from Πρ(zi|θ, yi) for
i ∈ [n] by using adaptive rejection sampling (Gilks and Wild, 1992; Martino and Míguez,
2011).

When exact sampling was not possible in practice, the authors in Rendell et al. (2021)
considered a Metropolis-Hastings scheme to sample from Πρ(zi|θ). This defines a Metropolis-
within-SGS scheme which can be shown to admit Πρ as stationary distribution under mild
assumptions.

In this paper, we are interested in providing explicit and non-asymptotic theoretical
convergence guarantees for Algorithm 1. Since no explicit convergence result exists for
special instances of Algorithm 1, we choose to focus on the simplest scenario where exact
sampling from (8) is considered. One of the aim of our theoretical analysis is to show
that, under this exact sampling assumption, we are able to sample efficiently from a close
approximation of π in high-dimensional settings involving a large number of data. To this
end, we have to ensure that each conditional sampling step involved in Algorithm 1 can be
performed efficiently. This is established in Proposition 1 below which shows that, if ρ is
sufficiently small, sampling zi given θ can be performed using rejection sampling with O(1)
expected evaluations of Ui and its gradient.

Proposition 1 (Complexity of rejection sampling) For any i ∈ [b], suppose that Ui
is Mi-gradient Lipschitz for someMi > 0 and that Ui is mi-strongly convex for some mi ≥ 0
(possibly zero). Let

Vi(zi) := Ui(zi) + ‖Aiθ − zi‖2

2ρ2 ,

z∗i (θ) be the unique minimizer of Vi, and z̃i(θ) be another point (an approximation of z∗i (θ)).
We let

Ãi = 1
ρ2 +mi + ‖∇Vi(z̃i(θ))‖2

2di
−
√
‖∇Vi(z̃i(θ))‖4

4d2
i

+
(
1/ρ2 +mi

)
‖∇Vi(z̃i(θ))‖2
di

,

and set νθ(zi) := N (zi; z̃i(θ), (Ãi)−1 · Idi).
Suppose that we take samples Z1,Z2, . . . from νθ, and accept them with probability

P(Zj is accepted) = exp
(
− ‖∇Vi(z̃i(θ))‖2

2(1/ρ2 +mi − Ãi)
− [Vi(Zj)− Vi(z̃i(θ))] + Ãi‖Zj − z̃i(θ)‖2

2

)
.

Then, these accepted samples are distributed according to Πρ(zi|θ). Moreover, the expected
number of samples taken until one is accepted is equal to

Ei :=
(

1/ρ2 +Mi

Ãi

)di/2
· exp

‖∇Vi(z̃i(θ))‖2
2

(
1

1/ρ2 +mi − Ãi
− 1

1/ρ2 +Mi

) , (9)
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which is less than or equal to 2 if

ρ2(2di(Mi −mi)−mi) ≤ 1 and ‖∇Vi(z̃i(θ))‖ ≤ 2
7 ·
√

1/ρ2 +mi√
di

. (10)

Proof The proof is postponed to Appendix C.4.

Remark 2 The choice of the approximate minimizer z̃i(θ) that we are using in our imple-
mentation is built via a few steps of gradient descent started from z̃[0]

i (θ) = Aiθ, with step
size 1

1/ρ2+Mi
, that is for j ≥ 1,

z̃[j]
i (θ) = z̃[j−1]

i (θ)−∇Vi(z̃[j−1]
i (θ)) · 1

1/ρ2 +Mi
.

We stop once the condition ‖∇Vi(z̃[j]
i (θ))‖ ≤ 2

7 ·
√

1/ρ2+mi√
di

is satisfied, and set z̃i to z̃[j]
i .

Since the condition number of the function Vi equals κi = 1+ρ2Mi

1+ρ2mi
, and the gradient descent

decreases the norm of the gradient by a factor of 1− 1/κi at each iteration, it follows that
we need at most 

log ‖∇Vi(Aiθ)‖ − log
(

2
7 ·
√

1/ρ2+mi√
di

)
log(1/(1− 1/κi))


iterations before stopping.

Proposition 1 shows that if ρ2 ≤ 1/(2diMi), then one can use rejection sampling to
sample efficiently from (8). We would like to emphasize that this condition on ρ2 is not
limiting if our goal is to sample from a close approximation of π using Algorithm 1. Indeed,
it follows from Propositions 7 and 8 that the bias between πρ defined in (6) and π in total
variation is of the order O(ρ2)∑b

i=1 diMi. Hence, if we want to ensure that the bias in total
variation is at most ε, for ε > 0, ρ2 has to be chosen of the order O(ε)/(∑b

i=1 diMi) which
is more restrictive than (10) in Proposition 1.

2.3.2 Sampling the Master Parameter

Regarding the master parameter θ, it follows from elementary calculations that the condi-
tional distribution of θ given z1:b is Gaussian, that is

Πρ(θ|z1:b) = N (µθ(z1:b),Σθ) , (11)

with Σθ = ρ2(∑b
i=1 A>i Ai)−1 and µθ(z1:b) = (∑b

i=1 A>i Ai)−1∑b
i=1 A>i zi. To ensure that

this normal distribution is non-degenerate, the block matrix [A>1 . . .A>b ] must have full row
rank. The matrix Σθ is constant across iterations so its Cholesky decomposition, necessary
to sample from (11), can be pre-computed in a preliminary step. In cases where the cost of
Cholesky decomposition becomes prohibitive (for instance, in high-dimensional scenarios),
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a lot of methods have been proposed to sample exactly or approximately from a given
Gaussian distribution (Vono et al., 2021b). For instance, we could use samplers inspired
from numerical linear algebra such as conjugate-gradient and Lanczos samplers (Ilic et al.,
2004; Parker and Fox, 2012; Chow and Saad, 2014).

2.4 Connections with Optimization Methods

The SGS whose main steps are described in Algorithm 1 can be related to common optimiza-
tion approaches. More precisely, it can be seen as the stochastic counterpart of alternating
minimization (AM) algorithms based on the classical quadratic penalty method (Nocedal
and Wright, 2006, Chapter 7). Instead of minimizing a given composite objective function,
these algorithms transform this unconstrained minimization problem into a constrained
one via a so-called variable splitting technique. This constraint is then relaxed by adding
a “seemingly naive” quadratic term to the initial objective function before performing al-
ternating minimization. In the sequel, we detail such an optimization approach and draw
connections between the latter and Algorithm 1.

Quadratic penalty method. We consider the maximum a posteriori estimation problem
under the posterior distribution π in (2), that is

min
θ∈Rd

b∑
i=1

Ui(Aiθ) . (12)

Similarly to direct sampling from π, solving directly this minimization problem might be
computationally demanding because the objective function is a sum of b composite terms,
the presence of linear operators acting on θ, non-differentiability or a possible distributed
architecture. To bypass these issues, some authors (Wang et al., 2008; Afonso et al., 2010;
van Leeuwen and Herrmann, 2015) proposed to build on variable splitting by introducing
a set of auxiliary variables {zi}i∈[b] to reformulate (12) into the constrained minimization
problem

min
θ∈Rd,z1∈Rd1 ,...,zb∈Rdb

b∑
i=1

Ui(zi)

subject to zi = Aiθ, i ∈ [b] .

The constraint zi = Aiθ is then relaxed by adding a quadratic penalty term in the objective
function. This yields the approximate joint minimization problem

min
θ∈Rd,z1∈Rd1 ,...,zb∈Rdb

U(θ, z1:b) :=
b∑
i=1

Ui(zi) + ‖zi −Aiθ‖2

2ρ2 .

This optimization problem can be solved by alternating minimization (Beck, 2015). For
fixed θ := θ[t−1], one first minimizes U(θ, z1:b) w.r.t. zi for each factor i ∈ [b] before
minimizing, for fixed z1:b := z[t]

1:b, U(θ, z1:b) w.r.t. θ. Similarly to SGS and at the price
of an approximation, the main benefit of this approach is that the minimization problems
w.r.t. each auxiliary variable now only involve the sum of a single potential Ui without any
operator and a quadratic term.

10
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SGS and quadratic penalty methods. Interestingly, these AM steps stand for the deter-
ministic counterpart of the conditional sampling steps in Algorithm 1. Indeed, instead of
drawing a random variable following each conditional, these minimization steps only find the
mode associated to each conditional probability distribution and can be related to iterated
conditional modes in image processing (Besag, 1986). This shows another interesting link
between optimization and simulation and complements earlier connections between these
two fields. For instance, we can mention the celebrated one-to-one equivalence between
gradient descent and discretized Langevin dynamics (Roberts and Tweedie, 1996; Pereyra,
2016; Durmus et al., 2018) and more recently the use of Hamiltonian dynamics to define
first-order descent schemes achieving linear convergence (Duane et al., 1987; Maddison et al.,
2018).

Connections and differences with ADMM. Similar to SGS and quadratic penalty ap-
proaches introduced above, the alternating direction method of multipliers (ADMM) also
builds on a variable splitting trick to ease an inference task, see Boyd et al. (2011) for a
recent comprehensive overview. However, the connection between SGS and ADMM stops
here. Indeed, contrary to SGS and quadratic penalty methods, ADMM resorts to the so-
called augmented Lagrangian and as such involves some dual variables u1:b in the quadratic
penalty terms and their iterative updates via dual ascent steps, see Algorithm 2.

Algorithm 2: Alternating Direction Method of Multipliers (ADMM)
Input: Potentials Ui for i ∈ [b], penalty parameter ρ, initialization θ[0], u[0]

1:b and
nb. of iterations T .

for t← 1 to T do
for i← 1 to b do

z[t]
i = arg min

zi
Ui(zi) + 1

2ρ2

∥∥∥∥zi −Aiθ
[t−1] + u[t−1]

i

∥∥∥∥2

end

θ[t] = arg min
θ

1
2ρ2

b∑
i=1

∥∥∥∥z[t]
i −Aiθ + u[t−1]

i

∥∥∥∥2

for i← 1 to b do
u[t]
i = u[t−1]

i + z[t]
i −Aiθ

[t]

end
end

3. Quantitative Results on the Bias of the Approximate Model

In order to establish explicit non-asymptotic mixing time bounds for SGS described in
Algorithm 1, we will first provide in this section quantitative bounds on the bias between
πρ and π in both total variation and 1-Wasserstein distances.

3.1 Results

To prove these non-asymptotic results, we shall introduce various regularity conditions listed
in Assumption 1.

11
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Assumption 1 (General assumptions)

(A0) For any i ∈ [b], Ui : Rdi → R is Borel measurable, infzi∈Rdi Ui(zi) > −∞, and
exp(−Uρ(θ)) is integrable on Rd (Uρ was defined in Equation 7).

(A1) For any i ∈ [b], Ui is Li-Lipschitz, that is there exists Li ≥ 0 such that |Ui(z′i) −
Ui(zi)| ≤ Li

∥∥z′i − zi
∥∥, ∀zi, z′i ∈ Rdi.

(A2) For any i ∈ [b], zi ∈ Rdi, Ui is twice continuously differentiable and −MiId �
∇2Ui(zi) �MiId.

(A3) For any i ∈ [b], Ui is convex, that is for any α ∈ [0, 1], zi, z′i ∈ Rdi, we have Ui(αzi +
(1− α)z′i) ≤ αUi(zi) + (1− α)Ui(z′i).

(A4) For any i ∈ [b], Ui is mi-strongly convex, that is there exists mi ≥ 0 such that
Ui(zi)− mi‖zi‖2

2 is convex.

(A5) d1 = . . . = db = d and A1 = . . . = Ab = Id.

(A6) For any i ∈ [b], Ui is centered, that is ∇Ui(Aiθ
?) = 0d, where θ? is the global

minimum of U .

If some potentials Ui do not verify (A6), one can first find the global minimum θ? using
optimization (typically it takes only a small number of iterations to do this up to machine
precision for smooth and strongly convex potentials), and perform a linear shift and define
their centered version Ũi as Ũi(Aiθ) = Ui(Aiθ) − 〈Aiθ,∇Ui(Aiθ

?)〉. (A6) is not just a
technical assumption that requires additional work in implementation, without making any
difference. It is not difficult to construct an example when b = 2, A1 = A2 = Id, and U1
and U2 are two quadratics with different covariances whose minimizers are not at the same
point, but at distance D. In such situations, one can show that the bias between πρ and
π (in Wasserstein and total variational distance) can depend strongly on D, and cannot
be bounded based only on the usual smoothness and strong convexity parameters mi, Mi.
Hence centering has a beneficial effect in reducing the bias of πρ in such situations. In Section
5, we will see that working with the centered potentials Ũi does not increase significantly the
computational complexity of SGS when rejection sampling is used to sample the auxiliary
variables zi conditionally upon θ.

Our first proposition provides a simple way to verify that (A0) holds.

Proposition 3 (Sufficient conditions for integrability) Suppose that for any i ∈ [b],
Ui is Borel measurable, and we have potentials Vi : Rdi → R satisfying that

1. infzi∈Rdi Vi(zi) > −∞,

2. Vi is Li-Lipschitz, that is |Vi(zi)− Vi(z′i)| ≤ Li‖zi − z′i‖ for any zi, z′i ∈ Rdi,

3. Vi lower bounds Ui, that is Vi(zi) ≤ Ui(zi) for any zi ∈ Rdi,

12
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4. exp
(
−
∑
i∈[b] Vi(Aiθ)

)
is integrable on Rd.

Then (A0) holds.

Remark 4 It is easy to check that the Lipschitz conditions are satisfied by the potential
terms {Ui}i∈[b] of the logistic regression, when there is no Gaussian prior. So in this case,
exp(−Uρ(θ)) is integrable whenever exp(−U(θ)) is integrable. If mini∈[b] infzi∈Rdi Ui(zi) >
−∞, and there is a positive definite Gaussian term of dimension d (typically the prior)
among the Uis, then this again can be easily lower bounded by a Lipschitz function satisfying
the conditions of Proposition 3, hence (A0) holds. An alternative sufficient condition has
been proposed in Proposition 1 of Plassier et al. (2021).

Proof The proof is postponed to Appendix A.1.

The following proposition establishes the ergodicity of SGS.

Proposition 5 (Integrability and Ergodicity of SGS) Under (A0), Πρ(θ, z1:b) defines
a joint probability density function πρ(θ) ∝ exp(−Uρ(θ)), and SGS is πρ-irreducible and
aperiodic.

Proof The proof is postponed to Appendix A.1.

We now provide results giving non-asymptotic bounds on the bias between πρ and
π. Only assuming a Lipschitz continuity property on the individual potential functions
{Ui}i∈[b], Proposition 6 shows that this bias is of the order O(ρ∑i

√
di) when ρ is sufficiently

small. This result requires neither differentiability nor convexity and covers standard loss
functions used in statistical machine learning such as Huber, pinball or logistic losses (Vono
et al., 2021a).

Proposition 6 Suppose that π satisfies (A0). Let π and πρ be as defined in (2) and (5).
For any i ∈ [b], let Ui satisfy (A1). Then, for any ρ > 0, we have

∥∥πρ − π∥∥TV ≤ 1−
b∏
i=1

∆(i)
di

(ρ) , (13)

where for any i ∈ [b],

∆(i)
di

(ρ) = D−di(Liρ)
D−di(−Liρ) .

The function D−di is the parabolic cylinder special function defined at the end of Section 1.
In addition, for ρ sufficiently small, the bound (13) satisfies

∥∥πρ − π∥∥TV ≤ 2ρ
b∑
i=1

d
1/2
i Li + o(ρ) .
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Proof The proof is a straightforward extension of Vono et al. (2021a, Corollary 3) and is
omitted.
Our next result allows us to bound the TV, KL and 2-Wasserstein biases in terms of a single
quantity.

Proposition 7 Let

I(U,Uρ) :=
∫
Rd
π(θ) · (U(θ)− Uρ(θ))−dθ +

log
(
Zπρ
Zπ

)
+

, (14)

where Zπ :=
∫
Rd exp(−U(θ))dθ and Zπρ :=

∫
Rd exp(−Uρ(θ))dθ are the normalizing con-

stants associated with π and πρ, respectively. Then, we have∥∥πρ − π∥∥TV ≤ I(U,Uρ) , and DKL(π || πρ) ≤ I(U,Uρ) ,

that is the same bound holds for total variation distance and KL-divergence. For the 2-
Wasserstein distance, assuming that U is m-strongly convex for m > 0, we have

W2(π, πρ) ≤
√

2
m
· I(U, Vρ) .

Proof The proof is postponed to Appendix B.1.
If the potentials {Ui}i∈[b] are now strongly convex and continuously differentiable with a
Lipschitz-continuous gradient, the total variation bias is of order O(ρ2∑

i di) for ρ suffi-
ciently small.

Proposition 8 Let π and πρ as defined in (2) and (5), respectively. Suppose first that π
satisfies (A0), b = 1, d1 = d, A1 is full rank and that (A2) holds (convexity is not required
in this case). Let I(U,Uρ) be as in (14). Then for any ρ > 0,

I(U,Uρ) ≤
ρ2dM1

2 .

In the general multiple splitting case, suppose that Assumptions (A0), (A2), (A4) and (A6)
hold, and det(∑b

i=1miA>i Ai) > 0. Then U is mU -strongly convex for

mU = λmin

 b∑
i=1

miA>i Ai

 .
Let A = [A>1 , . . . ,A>b ]> (A1, . . . ,Ab are stacked one upon another), and

σ2
U := ‖A>A‖(max

i≤b
Mi)2 ·m−1

U . (15)

Then, for 0 < ρ2 ≤ 1
6σ2
U
, we have

I(U,Uρ) ≤
ρ2

2

 b∑
i=1

diMi

+
(

2 + 3
2d
)
ρ4σ4

U . (16)
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Remark 9 It is possible to reduce the bias and the constraint on ρ2 in situations where some
of the Ui’s are quadratic, such as when there is a Gaussian prior (and also more generally
in situations where for some indices j ∈ [b], e−Uj(zj) can be written as the convolution of
another function and a Gaussian density). In this case, instead of applying the algorithm
on the original U , we can replace Uj by another quadratic potential U ′j such that (U ′j)ρ =
Uj, that is the convolution of e−U

′
j(zj) and 1

(2πρ2)dj/2 e
−‖zj‖2/(2ρ2) equals e−Uj(zj). Let [b]n.q.

denote the set of indices that correspond to non-quadratic potentials. By a straightforward
modification of the proof of Proposition 8 (elimination of the error terms caused by the
difference between Uj and Uρj for quadratics), one can show that the results hold with A
changed to only contain Ai for i ∈ [b]n.q., σ2

U updated to σ2
U := ‖A>A‖(maxi∈[b]n.q.Mi)2 ·

m−1
U , and the final bound changed to

I(U,Uρ) ≤
ρ2

2

 ∑
i∈[b]n.q.

diMi

+
(

2 + 3
2d
)
ρ4σ4

U .

This can improve the dimension dependence in situations when the number of data points
is smaller than the dimension d, which is often the case for latent Gaussian models.

Proof The proof is postponed to Appendix B.1.

In the single splitting case corresponding to b = 1, Proposition 10 builds on the heat
equation to derive an explicit and simple bound on the bias between πρ and π in 1-
Wasserstein distance.

Proposition 10 Suppose that (A0) and (A5) hold, b = 1, and U1 is twice continuously
differentiable, and satisfies

U1(θ) ≥ a1 + a2‖θ‖α and ‖∇U1(θ)‖ ≤ a3 + a4‖θ‖β , (17)

for some a2 > 0, α > 0, β > 0, a1, a3, a4 ∈ R. Then, we have

W1(π, πρ) ≤ min
(
ρ
√
d,

1
2ρ

2
∫
Rd
‖∇U1(θ)‖π(θ)dθ

)
.

Moreover, if U1 satisfies Assumptions (A2) and (A4) (gradient Lipschitz and strong convexity
properties), then (17) holds, and we have

W1(π, πρ) ≤ min
(
ρ
√
d,

1
2ρ

2√M1d

)
.

Proof The proof is given in Appendix B.2. Although we believe that a similar bound
also holds for multiple splitting, unfortunately we have not found a way to obtain such a
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Distance Assumptions Upper bound

∥∥πρ − π∥∥TV

(A0), (A1) ρ
b∑
i=1

2
√
diLi + o(ρ)

(A0), (A2), b = 1 1
2ρ

2M1d

(A0), (A2), (A4), (A6) 1
2ρ

2
b∑
i=1

Midi + o(ρ2)

W1(πρ, π) (A0), (A2), (A4), (A5), b = 1 min
(
ρ
√
d, 1

2ρ
2√M1d

)
Table 1: Non-asymptotic bounds given in Propositions 6, 8 and 10.

Distance Assumptions Upper bound

‖πULA − π‖TV (A2), (A3)
√

2M1d · ρ

W1(πULA, π) (A2), (A4)
√

2M1
m1
d · ρ

Table 2: Non-asymptotic bounds for ULA with step size h = ρ2, see Theorem 12 of Durmus
et al. (2019).

result (the heat equation argument used within the proof is not straightforward to adapt to
the b > 1 case). Nevertheless, Proposition 8 provides an alternative Wasserstein bound for
strongly convex U via Proposition 7 (which provides a bound not as sharp as this result in
the single splitting case).

Table 1 summarizes the non-asymptotic bounds on the bias we have obtained. In the
single splitting case with A1 = Id, we have the following two steps when moving from θ[t]

to θ[t+1].

1. Sample z[t] ∼ Πρ(z|θ[t]) ∝ exp
(
−U(z)− ‖z− θ[t]‖2/(2ρ2)

)
.

2. Sample θ[t+1] ∼ N (z[t], ρ2Id).

By Taylor’s expansion, we can see that in the ρ → 0 limit, we have Πρ(z|θ[t]) ≈ N (θ[t] −
ρ2∇U(θ[t]), ρ2Id), and hence θ[t+1] is approximately distributed asN (θ[t]−ρ2∇U(θ[t]), 2ρ2Id),
which corresponds to one ULA step with stepsize h = ρ2. One can show that the same ap-
proximation holds in the multiple splitting case as well, after appropriate preconditioning.
Thus, in the ρ→ 0 limit, SGS can be interpreted as another discretization of the Langevin
diffusion. Hence it is natural to compare the bias bounds of Table 1 with the best available
bias bounds for ULA; as far as we know, these were stated in Durmus et al. (2019). We
do this in Table 2, for ULA with step size h = ρ2. SGS has a significantly smaller bias
than ULA both in total variation, and Wasserstein distances, suggesting a higher order
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approximation. Indeed the bias is O(ρ2) for 1-Wasserstein and total variation distances for
SGS, while it is O(ρ) for both distances for ULA. This means that SGS can be seen as a
discretization of the Langevin diffusion, whose stationary distribution is significantly less
biased compared to ULA. The key reason why we have been able to provide these bounds
is that we have access to a quite explicit form of the stationary distribution for SGS (see
Equation 7 and Proposition 5), while there is no such explicit form available for ULA. An-
other valuable property of SGS in the single splitting case is that the posterior mean of πρ
is the same as the posterior mean of the target π, since πρ is formed by the convolution
of π and a Gaussian. Finally, we would like to highlight that SGS in the single splitting
case can be used to sample from π without adding any bias by considering the marginal
distribution of z under Πρ(θ, z) (which equals π) instead of πρ(θ) (Lee et al., 2021; Liang
and Chen, 2021). We do not consider this alternative since our primary focus is on the
multiple splitting scenario where this exact sampling approach is not possible.

3.2 Illustrations on a Toy Gaussian Model

We perform a sanity check of the tightness of the upper bounds derived in Section 3.1 on
a toy Gaussian model for which a closed-form expression is available for both πρ and the
considered statistical distances. The target distribution is chosen as a scalar Gaussian

π(θ) = N
(
θ;µ, σ

2

b

)
,

where b ≥ 1 and σ > 0. In the sequel, we set µ = 0, σ = 3 and b = 10. To satisfy
the assumptions associated to each distance (see Table 1 for a summary), we consider two
splitting strategies.

Splitting strategy 1. Since the bound on
∥∥π − πρ∥∥TV is valid for any number of splitting

operations, we set Ui(θ) = (2σ2)−1(θ − µ)2 for any i ∈ [b]. The marginal of θ under the
instrumental hierarchical model in (5) has the closed-form expression

πρ(θ) = N
(
θ;µ, σ

2 + ρ2

b

)
.

Splitting strategy 2. As the bound in 1-Wasserstein distance has only been established
for a single splitting operation, we set U(θ) := U1(θ) = b(2σ2)−1(θ − µ)2. This yields

πρ(θ) = N
(
θ;µ, σ

2

b
+ ρ2

)
.

Figure 2 illustrates the bounds derived in Section 3.1 for both TV (with splitting strategy
1) and 1-Wasserstein (with splitting strategy 2) distances. The 1-Wasserstein distance has
been calculated by numerical integration using the identityW1(π, πρ) =

∫
R |F (u)−Fρ(u)|du

where F and Fρ are the cumulative distribution functions (c.d.f.) associated to π and πρ,
respectively. For this simple problem, these bounds manage to achieve the correct decay
in O(ρ2) for small values of ρ: the quantitative bound on the 1-Wasserstein distance is
particularly tight.
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Figure 2:
∥∥π − πρ∥∥TV (left) and W1(π, πρ) (right) as a function of ρ along with the bounds
established in Section 3.1 for the toy Gaussian model considered in Section 3.2.
The dashed line shows the slope associated to a decay in ρ2 in log-log scale (the
parameter C stands for a positive constant).

4. Main Results: Explicit Mixing Time Bounds

We now state our main results regarding the non-asymptotic bounds on the mixing time of
SGS.

4.1 Explicit Convergence Rates

In this section, we first prove a key result related to the Ricci curvature of SGS which allows
us to derive explicit convergence rates for this algorithm.

4.1.1 Lower Bound on the Ricci Curvature of the SGS Kernel

The SGS sampler described in Algorithm 1 generates a Markov chain (θ[t])t≥1 of transition
kernel PSGS defined by

PSGS(θ,θ′) =
∫

z1:b
Πρ(z1:b|θ)Πρ(θ′|z1:b)dz1:b ,

where the conditional distributions associated to Πρ are defined in (8) and (11). For any
θ 6= θ′ ∈ Rd, given a metric w : Rd×Rd → R+, the coarse Ricci curvature K(θ,θ′) of PSGS,
introduced by Ollivier (2009), equals

K(θ,θ′) = 1− Ww
1 (PSGS(θ, ·),PSGS(θ′, ·))

w(θ,θ′) ,
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for any θ 6= θ′ ∈ Rd. We can also define this quantity for p-Wasserstein distances for any
1 ≤ p ≤ ∞ by

Kp(θ,θ′) = 1−
Ww
p (PSGS(θ, ·),PSGS(θ′, ·))

w(θ,θ′) .

In Theorem 11, we show under Assumption (A4) that for any 1≤ p ≤ ∞ and a suitable met-
ric w, Kp(θ,θ′) is lower bounded by a simple quantity having an explicit dependence w.r.t.
the tolerance parameter ρ and the strong convexity constants of the potential functions
{Ui}i∈[b].

Theorem 11 Suppose that π satisfies (A0) and that (A4) holds. Define the metric

w(θ,θ′) =

∥∥∥∥∥∥∥
 b∑
i=1

A>i Ai

1/2

(θ − θ′)

∥∥∥∥∥∥∥ . (18)

Let

KSGS := 1−

∥∥∥∥∥∥∥
 b∑
i=1

A>i Ai

−1/2 b∑
i=1

A>i Ai

1 +miρ2

 b∑
i=1

A>i Ai

−1/2
∥∥∥∥∥∥∥ . (19)

Then for the transition kernel PSGS of SGS, Kp(θ,θ′) ≥ KSGS for any θ 6= θ′ ∈ Rd and
any 1 ≤ p ≤ ∞.

Proof The proof is postponed to Appendix C.1.

As shown in the following corollary, Theorem 11 implies that the convergence rate of
SGS towards its invariant distribution is governed by the constant KSGS defined in (19).

Corollary 12 Suppose that π satisfies (A0) and that (A4) holds. Then, for any 1 ≤ p ≤ ∞
and any initial distribution ν on Rd, we have

Ww
p (νPt

SGS, πρ) ≤Ww
p (ν, πρ) · (1−KSGS)t , (20)

‖νPt
SGS − πρ‖TV ≤ Varπρ

(
dν
dπρ

)
· (1−KSGS)t ,

where Ww
p denotes the Wasserstein distance of order p w.r.t. the metric w defined in (18).

Proof The proof is postponed to Appendix C.2.

An attractive property of the convergence rate KSGS is that it is dimension-free: it
only depends on b, ρ2 and the strong convexity parameter mi, and neither requires dif-
ferentiability nor smoothness of the potential functions {Ui}i∈[b]. This is of interest since
Corollary 12 can be applied to many problems where non-differentiable potential functions
are considered; see Li and Lin (2010); Gu et al. (2014); Xu and Ghosh (2015).

19



Vono, Paulin and Doucet

0 20 40 60 80 100

Iteration t

−12

−10

−8

−6

−4

−2

0

ρ = 1

log ‖νP t
SGS − πρ‖TV

Our bound

0 200 400 600 800 1000

Iteration t

−20

−15

−10

−5

0

ρ = 0.1

logW1(δθ0
P t

SGS, πρ)

Our bound

Figure 3: From left to right:
∥∥∥νP tSGS − πρ

∥∥∥
TV

with ν(θ) = N (θ;µ, σ2/b) and
W1(δθ0P

t
SGS, πρ) with θ0 = 0 along with the bounds shown in Theorem 11 for

the toy Gaussian model considered in Section 3.2.

4.1.2 Illustrations on the Toy Gaussian Example

Before proving our mixing time bounds for the SGS, we perform a simple sanity check on
the toy Gaussian example considered in Section 3.2 in order to assess the tightness of the
convergence bounds stated in Corollary 12. In this case, the θ-chain follows a Gaussian
auto-regressive process of order 1. We can thus compute analytically the Markov transition
kernel νP tSGS and the total variation and 1-Wasserstein distances between this kernel and
the invariant distribution πρ; see Appendix C.6. for details. For this toy Gaussian example,
the convergence rate of SGS is governed by

KSGS = ρ2

σ2 + ρ2 , for the splitting strategy 1,

KSGS = bρ2

σ2 + bρ2 , for the splitting strategy 2.

Figure 3 illustrates our convergence bounds for each splitting strategy and associated sta-
tistical distance. For the total variation case, the slope in log-scale associated to our bound,
which equals log(1−KSGS), appears to be sharp since it matches the slope associated to the
observed convergence rate. Regarding the Wasserstein scenario, the slope associated to our
bound is roughly equal to twice the real slope in log-scale, and hence is a bit conservative.

We are now ready to prove our main results, namely mixing time bounds associated
to SGS when apply to an initial target density π which is both smooth and strongly log-
concave. These assumptions will be weakened in Section 4.3.
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Reference Method Validity Evals
Durmus et al. (2019) Unadjusted Langevin 0 < ε ≤ 1 O∗

(
κ
ε2

)
Dalalyan and Karagulyan (2019) SGLD 0 < ε ≤ 1 O∗

(
κ
ε2

)
Cheng et al. (2018) Underdamped Langevin 0 < ε ≤ 1 O∗

(
κ2

ε

)
Dalalyan and Riou-Durand (2020) Underdamped Langevin 0 < ε ≤ 1√

κ
O∗
(
κ3/2

ε

)
Chen and Vempala (2019) Hamiltonian Dynamics 0 < ε ≤ 1 O∗

(
κ3/2

ε

)
this paper SGS with single splitting 0 < ε ≤ 1

d
√
κ
O∗
(
κ1/2

ε

)
Table 3: Comparison of convergence rates in Wasserstein distance with the literature, start-

ing from the minimizer θ? of the m1-strongly convex and M1-smooth potential
U1(θ), with condition number κ = M1/m1. SGS with single splitting is imple-
mented based on rejection sampling. O∗(·) denotes O(·) up to polylogarithmic
factors. In the last column, the complexity stands for the number of gradient
and function evaluations to get a W1 error of ε

√
d√
m1

. The acronym SGLD refers to
stochastic gradient Langevin dynamics.

4.2 User-Friendly Mixing Time Bounds

We consider two cases, namely the single splitting strategy where b = 1 and the multiple
one where the initial density π involves b ≥ 1 composite potential functions. In both
cases, we derived explicit expressions for the mixing time of SGS and compared them to
the ones recently obtained in the MCMC literature including results associated to common
subsampling MCMC approaches.

4.2.1 Single Splitting Strategy

We begin by considering the case b = 1 corresponding to a single splitting operation of
the potential function U := U1. Since sampling from the conditional (8) is as difficult as
sampling from the initial target π, this scheme is not particularly relevant from a practical
point of view. Nevertheless, the convergence analysis of the scheme and its comparison
with state-of-the-art MCMC approaches are still worth studying from a theoretical point of
view. Indeed, the non-asymptotic results we derive in the single splitting case are simpler
and allow practitioners to have a first theoretical understanding of the convergence behavior
of Algorithm 1 in high-dimensional settings. By combining our error bounds on W1(π, πρ)
from Proposition 10 to the convergence bound (20) in Corollary 12, we obtain the following
complexity result.

Theorem 13 (Complexity bound for Wasserstein distance) Suppose that π satisfies
(A0). Suppose that b = 1 and that Assumptions (A2), (A4) and (A5) hold. Let θ? be the
unique minimizer of U1(θ) and let ν = δθ? be the initial distribution. Suppose that ε ≤ 1.
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Then, with the choice

ρ2 = max
(

ε2

4m1
,

ε√
m1M1

)
, (21)

and number of iterations t ≥ tmix(ε
√
d/m1; ν) where

tmix(ε
√
d/m1; ν) =

log
(

3
ε

)
log

(
1 + max

(
ε2

4 , ε
√

m1
M1

)) , (22)

we have

W1(νP tSGS, π) ≤ ε
√
m1

√
d .

This implies that, using t steps of SGS, we can obtain a sample that has a Wasserstein
distance from the target π at most equal to ε

√
d√
m1

.

Proof The proof is postponed to Appendix C.3.

Several comments can be made on the result stated in Theorem 13. The expressions of
both the choice of the tolerance parameter (21) and the mixing time (22) are simple and
can be computed in practice. These nice properties along with the explicit dependencies
of the mixing time of SGS w.r.t. the condition number κ := M1/m1 of U1 and the desired
precision ε make Theorem 13 of particular interest for practitioners. In addition, under
smoothness and strong convexity of the potential U1 (see Assumption 1), one can show
that W1(δθ? , π) ≤

√
d/m1 (Durmus and Moulines, 2019, Proposition 1). This quantity

can be interpreted as the typical deviation associated to the sampling problem. Under the
assumptions of Theorem 13, it follows that W1(νP tSGS, π) is upper bounded by ε times this
typical deviation. Note that considering the relative precision ε

√
d/m1 yields a mixing time

bound (22) which is invariant to the scaling of U (that is replacing U by αU with α > 0).
For a fixed condition number κ and a sufficiently small precision ε, (22) implies that the

mixing time of SGS scales as O(
√
κε−1 log(3ε−1)). To be competitive with other MCMC

algorithms, such as those based on Langevin or Hamiltonian dynamics, we have to ensure
that the auxiliary variable z1 can be efficiently drawn at each iteration of Algorithm 1.
In Proposition 1 in Section 2.3.1, we established that this is possible by showing that if
ε ≤ 1/(d

√
κ), then sampling z1 given θ can be performed by rejection sampling with O(1)

expected evaluations of U1 and its gradient. Based on this rejection sampling scheme,
Table 3 compares our complexity result for SGS with single splitting with the ones derived
recently in the literature. It shows that SGS compares favourably to standard MCMC
methods when 0 < ε ≤ 1/(d

√
κ) including the commonly-used subsampling approach called

stochastic gradient Langevin dynamics (SGLD) (Welling and Teh, 2011). An explanation
for this improved performance in terms of precision ε and condition number κ is the fact
that SGS admits a stationary distribution with an explicit form, which we were able to
exploit to establish smaller bounds on the bias for the same step size.
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Theorem 14 (Complexity bound for TV distance, single splitting) Suppose that b =
1, d1 = d, A1 is invertible, and that Assumptions (A0), (A2) and (A4) hold, with m1 > 0.
Let θ? be the unique minimizer of θ 7→ U(θ) = U1(A1θ). Let ν(θ) := N (θ;θ?, (M1A>1 A1)−1)
be the initial distribution. Then for any 0 < ε ≤ 1, with the choice

ρ2 ≤ ε

dM1
,

and number of iterations t ≥ tmix(ε; ν) where

tmix(ε; ν) =
log

(
2
ε

)
+ C/2

KSGS
,

for KSGS = m1ρ2

1+m1ρ2 and

C = 5d
8 + d

2 log
(
M1
m1

)
,

we have
‖νP tSGS − π‖TV ≤ ε .

This means that starting from ν, after t step of SGS, we are at a TV-distance at most ε
from π.

Proof The proof is postponed to Appendix C.5.

4.2.2 Multiple Splitting Strategy

In this section, we consider the general case where b ≥ 1 potential functions have been split
as in (5). For this scenario, the following theorem states explicit mixing time bounds in
total variation distance.

Theorem 15 (Complexity bound for TV distance, multiple splitting) Assume that
(A0), (A2), (A4) and (A6) hold, and det

(∑b
i=1miA>i Ai

)
> 0. Let θ? be the unique mini-

mizer of U(θ) = ∑b
i=1 Ui(Aiθ). Let

ν(θ) := N

θ;θ?,

 b∑
i=1

MiA>i Ai

−1


be the initial distribution. Then for any 0 < ε ≤ 1, with the choice

ρ2 ≤

b∑
i=1

diMi


√√√√√1 + 8εσ4

U

(
2 + 3

2d
) b∑

i=1
diMi

−2

− 1


4σ4

U

(
2 + 3

2d
) ∧ 1

6σ2
U

(23)
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and number of iterations t ≥ tmix(ε; ν) where

tmix(ε; ν) =
log

(
2
ε

)
+ C/2

KSGS
, (24)

for KSGS defined in (19), and

C = dσ2
U + ρ4 (2 + d)σ4

U + 17
32

b∑
i=1

di + 1
2 log

det
(∑b

i=1MiA>i Ai

)
det

(∑b
i=1miA>i Ai

)
 ,

we have
‖νP tSGS − π‖TV ≤ ε .

This means that starting from ν, after t step of SGS, we are at a TV-distance at most ε
from π.

Proof The proof is postponed to Appendix C.5.

Again, note that both the tolerance parameter (23) and the ε-mixing time (24) are ex-
plicit and can be computed in practice. If we denote the condition number of the potential
U by κ := M/m, this theorem implies that tmix(ε; ν) scales as O(d2κ/ε) up to polylogarith-
mic factors. In this scenario, Table 4 compares our complexity results for SGS implemented
using rejection sampling with existing results in the literature. For the same initialization
ν, we have better dependencies than ULA w.r.t. both κ, d and ε. However, MALA seems to
have better convergence rates in total variation distance in general, except in badly condi-
tioned situations, where the rates for SGS can be better. Moreover, compared to MALA and
ULA, SGS with multiple splitting is amenable to distributed and parallel computations. In
this distributed environment, the complexity results shown in this table suggest that SGS is
an attractive approach to sample from a smooth, strongly log-concave and composite target
distribution.

4.3 Non-Strongly Log-Concave Target Density

The complexity results shown in Section 4.2 assume that each potential {Ui}i∈[b] is strongly
convex. In cases where there are b−1 convex potential functions and the b-th one stands for
an isotropic quadratic term (coming from the prior distribution for instance), this strongly-
convex assumption can be met. Indeed, one can decompose the quadratic potential into
b − 1 strongly convex terms and add each of them to each individual convex potential
{Ui}i∈[b−1]. Nevertheless, the strongly-convex assumption is still restrictive. In this section,
we extend our explicit mixing time bound in the multiple splitting scenario to densities which
are smooth (see Assumption (A2)) but such that each individual potential {Ui}i∈[b] only
satisfies the standard convexity assumption (A3) instead of satisfying the strong convexity
assumption (A4).

Similarly to Dalalyan (2017) and Dwivedi et al. (2019), we will weaken our strongly-
convex assumption (A4) by approximating each potential Ui with a strongly convex one
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Reference Method Validity Evals
Durmus and Moulines (2017) ULA, ν = δθ? 0 ≤ ε ≤ 1 O∗

(
κ2d/ε2

) Cheng and Bartlett (2018)
Durmus et al. (2019)

ULA, ν = νm 0 < ε ≤ 1 O∗
(
κ2d/ε2

)
Dalalyan (2017) ULA, ν = νM 0 ≤ ε ≤ 1 O∗

(
κ2d3/ε2

)
Durmus et al. (2019) SGLD, ν = νM 0 ≤ ε ≤ 1 O∗

(
κ2d3/ε2

)
Dwivedi et al. (2019) MALA, ν = νM 0 < ε ≤ 1 O

(
κ2d2 log1.5

(
κ
ε1/d

))
this paper SGS, ν = νM 0 < ε ≤ 1 O∗(κd2/ε)

Table 4: Comparison of convergence rates in TV distance with the literature, starting from
a Gaussian distribution centered at the minimizer θ? of the m-strongly convex and
M -smooth potential U(θ), with condition number κ = M

m . SGS is implemented
based on rejection sampling. O∗(·) denotes O(·) up to polylogarithmic factors,
νm(θ) = N (θ;θ?, Id

m ) and νM (θ) = N (θ;θ?, Id
M ). The notation ν stands for the

initialization of each method.

and then applying our previous proof techniques to this approximation. More precisely,
instead of the initial target density π in (2), we now consider the approximate density
π̃(θ) ∝ exp(−Ũ(θ)) with

Ũ(θ) =
b∑
i=1

Ui(Aiθ) + λ

2
∥∥θ − θ?∥∥2

, (25)

where λ > 0 and θ? stands for a minimizer of U . This approximation allows us to apply
Theorems 14 and 15 with the new smooth and strongly-convex constants M̃i = Mi +λ and
m̃i = λ in order to find the minimum number of SGS steps such that the TV distance from
π̃ is less than ε. To achieve an ε TV-distance from the initial target density π, we have to
consider an additional error term to bound, namely ‖π − π̃‖TV. If

∫
Rd ‖θ − θ?‖

4 π(θ)dθ ≤
d2R2 with R > 0, then with the choice λ = 4ε/(3bdR), we have ‖π − π̃‖TV ≤ ε/3 (Dalalyan,
2017, Lemma 3). Combining this result with Theorem 14, the following corollary states a
complexity result for the single splitting strategy. The one corresponding to the multiple
splitting one can be obtained using Theorem 15 in a similar manner but is omitted here for
simplicity.

Corollary 16 (Complexity bound for TV distance, no strong convexity) Suppose
that b = 1, Assumptions (A0), (A2) and (A3) hold and∫

Rd

∥∥θ − θ?∥∥4
π(θ)dθ ≤ d2R2
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for some R > 0. Let π̃ be defined as in (25). Let ν(θ) := N (θ;θ?, (M̃1A>1 A1)−1) be
the initial distribution with M̃1 = M1 + λ. Then for any 0 < ε ≤ 1, with the choices
λ = 4ε/(3dR) and

ρ2 ≤ 2ε
3d(M1 + λ) ,

and number of iterations

t ≥
log

(
3
ε

)
+ C/2

KSGS
,

for

KSGS = λρ2

1 + λρ2 and C = 5d
8 + d

2 log
(
M1 + λ

λ

)
,

we have
‖νP tSGS − π‖TV ≤ ε .

This means that starting from ν, after t step of SGS applied to the approximate density π̃,
we are at a TV-distance at most ε from π.

Proof The proof is straightforward. It follows from the triangle inequality and Theorem
14.

Compared to our mixing time bound derived under the assumption that the potential U1
is strongly convex, Corollary 16 shows that relaxing the strongly convex assumption affects
negatively the dependence w.r.t. both the dimension d and the precision ε, as it scales as
O∗(M1d

2/ε2). Nevertheless, this complexity result improves upon that in Dalalyan (2017);
Dwivedi et al. (2019) for the unadjusted Langevin algorithm (ULA) and the Metropolized
random walk (MRW), which respectively scale as O∗(M2

1d
3/ε4) and O∗(M2

1d
3/ε2).

4.4 Comparison with Existing Divide-and-Conquer and Subsampling-Based
MCMC Schemes

So far, we have mainly compared the theoretical behavior of SGS in high-dimensional sce-
narios with common MCMC schemes such as those derived from Langevin and Hamiltonian
dynamics, see Tables 3 and 4. In this section, we discuss and compare when possible the
theoretical results associated to SGS with those associated to existing divide-and-conquer
and subsampling-based MCMC approaches. Regarding divide-and-conquer approaches, al-
though a lot of algorithms have been proposed over the past ten years (see Section 1),
very few non-asymptotic and explicit convergence results exist up to the authors’ knowl-
edge (Plassier et al., 2021). Among available results, we can cite those associated to non-
parametric approaches proposed by Wang and Dunson (2013); Neiswanger et al. (2014);
Wang et al. (2015) which showed that these methods scaled exponentially with respect to
the dimension d because of the use of kernel density estimates. For general subsampling-
based approaches which do not resort to the Bernstein-von Mises approximation, explicit
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bounds have been recently derived for (variance-reduced) stochastic gradient MCMC algo-
rithms such as SGLD (Dalalyan and Karagulyan, 2019; Durmus et al., 2019). As illustrated
in Tables 3 and 4, our non-asymptotic theoretical analysis shows that SGS is competitive
with other state-of-the-art MCMC algorithms.

5. Numerical Illustrations

This section aims at illustrating the main theoretical results of Section 4. We consider three
different examples which satisfy all the assumptions required in our main statements. The
first experiment considers the case where the target π is a multivariate Gaussian density
while the second one sets π to be a mixture of two multivariate Gaussian densities. Fi-
nally, the third experiment considers a Bayesian binary logistic regression problem with a
Gaussian prior. For all approaches and experiments, the initial distribution will be set to
ν = N (θ?, (∑b

i=1MiA>i Ai)−1) for the TV distance and to ν = δθ? for the 1-Wasserstein
one. Although SGS is amenable to a distributed implementation (Rendell et al., 2021), all
the experiments have been run on a serial computer to emphasize that it is even beneficial
in this context. The experiments have been carried out on a Dell Latitude 7390 laptop
equipped with an Intel(R) Core(TM) i5-8250U 1.60 GHz processor, with 16.0 GB of RAM,
running Windows 10.

5.1 Multivariate Gaussian Density

In this example, we want to verify empirically the dependencies of the mixing times derived
in Section 4 w.r.t. the dimension d, the desired precision ε and the condition number κ of
the potential U . We consider a target zero-mean Gaussian density on Rd

π(θ) ∝ exp
(
−1

2θ
>Qθ

)
,

where Q ∈ Rd×d is a positive definite precision matrix. In the sequel, Q will be chosen to be
diagonal and anisotropic, that is Q = diag(q1, . . . , qd), with qi 6= qj for i 6= j. The resulting
potential function U := U1 = θ>Qθ/2 is strongly convex and smooth with parameters
m = mini∈[d] qi and M = maxi∈[d] qi. Since computing the total variation distance between
continuous and multidimensional measures is challenging, we discretized the latter over a
set of bins and consider the error between the empirical marginal densities associated to the
least favorable direction, that is along the eigenvector associated to m. In the following, we
will illustrate our mixing time results for both 1-Wasserstein and total variation distances
in the strongly log-concave case.

Dimension dependence. We set here ε = 0.1, m = 1/4, M = 1 such that κ := M/m = 4
and are interested in the dimension dependence of our ε-mixing time result for SGS. We
let the dimension d vary between 101 and 103 and ran SGS for each case. We measured its
ε-mixing time by recording the smallest iteration such that the discrete total variation error
falls below the desired precision ε. The mixing time has been averaged over 10 independent
runs. Figure 4 illustrates the behavior of the mixing time of SGS w.r.t. the dimension d in
log-log scale. In order to assess the dimension dependency, we performed a linear fit and
reported the slope of the linear model. According to Table 4, the dimension dependence is
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Figure 4: Multivariate Gaussian. (left and middle) ε-mixing times for the total variation
distance and (right) ε

√
d/m-mixing times for the 1-Wasserstein distance.

of order O(d2). Interestingly, we found in this example that the dimension dependence of
the mixing time of SGS is linear w.r.t. d.

Precision dependence. We set here d = 2 and κ = 3 while the prescribed precision ε
varies between 6×10−3 and 1.6×10−1, and ran SGS for each case. As before, we measured
its ε-mixing time by recording the smallest iteration such that the discrete total variation
error falls below the desired precision ε. Figure 4 shows the behavior of the mixing time of
SGS w.r.t. log(2/ε)ε−1 in log-log scale. For sufficiently small precisions, this figure confirms
our theoretical result which states that the mixing time of SGS scales as O(log(2/ε)ε−1).

Condition number dependence. Regarding the 1-Wasserstein distance and the complex-
ity results depicted in Table 3, the main difference between existing MCMC approaches is
the dependence w.r.t. the condition number κ of the potential function U . Here, we aim
at verifying the latter numerically. To this purpose, we set d = 10, ε = 0.1 and let κ vary
between 101 and 106. From (22), it appears that the dependence of the mixing time of SGS
depends on max{ε2/4, ε/

√
κ}. This quantity equals ε/

√
κ for κ ≤ 1600 and ε2/4 otherwise.

Hence, we are expecting to retrieve a dependence in κ1/2 for small and moderate κ and a
mixing time only depending on ε for larger values of the condition number. We performed
50 independent runs of SGS and stopped them when their empirical Wasserstein error fell
below ε

√
d/m. The results are depicted on Figure 4 in log-log scale. As before, we did a

linear fit to assess the dependency of the mixing time w.r.t. the condition number κ. The
slope of the linear model for SGS equals 0.53 for κ ≤ 1600 (depicted with a black dotted
vertical line) which confirms the theoretical dependence of the order O(κ1/2). As expected,
the mixing time of SGS becomes independent of κ for larger values.

5.2 Gaussian Mixture

In this second experiment, also considered by Dalalyan (2017) and Dwivedi et al. (2019),
we show that the values of the tolerance parameter ρ and the mixing time tmix(ε; ν) recom-
mended by Theorem 14 indeed yield approximate samples having a distribution close to π.
We also verify that the running time required to generate such samples is reasonable, and

28



Efficient MCMC Sampling with Dimension-Free Convergence Rate

−4 −2 0 2 4

u = aTθ
‖a‖

0.00

0.05

0.10

0.15

0.20

0.25

0.30

πρ(u) for d = 60

ρ = 0.1

ρ = 0.5

ρ = 1

ρ = 2

ρ = 3

π(u)

−4 −2 0 2 4
aTθ
‖a‖

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Exact - d = 60

−4 −2 0 2 4
aTθ
‖a‖

0.00

0.05

0.10

0.15

0.20

0.25

0.30

SGS - d = 60

Figure 5: Gaussian mixture with d = 60. From left to right: behavior of πρ(u) w.r.t. ρ with
u = a>θ/ ‖a‖; empirical distribution obtained by exact sampling from π; empir-
ical distribution obtained by sampling from πρ with the guidelines recommended
in Theorem 15. The histograms have been computed using 2500 independent
samples and the precision has been set to ε = 0.1. In all figures, the red curve
stands for π(u).

compare it to the running time of ULA to achieve the same prescribed precision ε. To this
purpose, let us consider the simple problem of generating samples from a mixture of two
Gaussian densities with density π defined, for all θ ∈ R, by

π(θ) = 1
2(2π)d/2

exp
(
−‖θ − a‖2

2

)
+ exp

(
−‖θ + a‖2

2

)
∝ exp

(
−U(θ)

)
,

where
U(θ) = 1

2 ‖θ − a‖2 − log
(

1 + e−2θ>a
)
,

and a ∈ Rd is a fixed vector involved in the mean of each Gaussian density. If ‖a‖ < 1, one
can show that U is M -smooth and m-strongly convex with m = 1 − ‖a‖2 and M = 1. In
the sequel, we choose a such that ‖a‖ = 1/

√
2, which also implies that the global minimizer

of U is θ? = 0d. Since π admits a finite second order moment, all the assumptions required
in Theorem 14 are verified. We now consider a single splitting strategy on U leading to
the joint approximate density Πρ(θ, z) defined in (5) with b = 1 and A1 = Id. Under this
distribution, the marginal density πρ(θ) writes

πρ(θ) = 1
2(2π(1 + ρ2))d/2

exp
(
−‖θ − a‖2

2(1 + ρ2)

)
+ exp

(
−‖θ + a‖2

2(1 + ρ2)

) ,
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Dimension d 4 8 12 16 20 30 40 60
tmix(ε; ν) (×103) for SGS 3 10 23 40 62 138 244 548
tmix(ε; ν) (×103) for ULA 29 87 184 330 532 1,350 2,729 7,742

Efficiency of SGS w.r.t. ULA 10.8 8.6 8.2 8.3 8.6 9.8 11.1 14.1
CPU time [s] for SGS 1 7 29 62 114 335 749 2,416
CPU time [s] for ULA 6 31 135 302 589 1,974 4,766 15,096

Efficiency of SGS w.r.t. ULA 5.6 4.6 4.7 4.9 5.2 5.9 6.4 6.2

Table 5: Gaussian mixture. Comparison between SGS and ULA for a prescribed precision
ε = 0.1. For SGS, tmix(ε; ν) has been computed by using Theorem 14 while for
ULA, the mixing time bound derived in Dalalyan (2017, Corollary 1) has been
used. CPU time information corresponds to the running time necessary to draw
103 independent samples having a distribution at most ε total variation distance
from π.

and simply corresponds to a mixture of the two initial Gaussian densities but with respective
variance now inflated by a factor ρ2. The one-dimensional approximate density πρ(u) of
u = a>θ/ ‖a‖ is depicted in Figure 5 for d = 60 and compared to the true target π(u).

Illustrations of Theorem 14. We now illustrate the guidelines for ρ and the number
of iterations t, stated in Theorem 14, to achieve an ε-error in total variation distance.
To this purpose, we set ε = 0.1, d = 60 and launched 2500 independent runs of SGS.
The conditional distribution of z given θ is a mixture of two Gaussians with common
covariance matrix Σ = ρ2/(1 + ρ2)Id, respective mean vectors µ1 = (θ+ aρ2)/(1 + ρ2) and
µ2 = (θ − aρ2)/(1 + ρ2) and respective weights w1 = 1 and w2 = exp(−4θ>a/(2(1 + ρ2)).
We can sample exactly from this mixture by first drawing a Bernoulli random variable B
with probability p = w1/(w1 + w2) and then setting z = B(ξ + µ1) + (1 − B)(ξ + µ2)
where ξ ∼ N (0d,Σ). In order to assess the relevance of the samples generated with SGS,
we generated 2500 independent samples directly from π by an exact sampler similar to the
one used to sample z. To provide an illustration of the quality of the samples drawn with
SGS, we computed the one-dimensional projection u = a>θ/ ‖a‖ and showed its empirical
distribution in Figure 5. The empirical distribution of the samples drawn using SGS is
indeed close to π and is visually indistinguishable from the one of the exact samples.

Computational complexity of SGS. We now verify empirically the computational com-
plexity of SGS, that is the number of iterations and the overall running time for generating
samples with some prescribed precision ε. We compare this complexity to that of ULA
(Dalalyan, 2017). Starting from the same initial distribution ν = N (θ?,M−1Id) and with
ε = 0.1, Table 5 reports the number of iterations tmix(ε; ν) required, in theory, to obtain a
sample whose distribution is at most ε in total variation from π and the CPU time needed
to generate 103 such samples. For ULA, tmix(ε; ν) has been computed by using the mixing
time bound derived in Dalalyan (2017, Corollary 1). We observe that for d ∈ [4, 60], both
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the number of iterations and the running time for generating 103 independent samples with
SGS are much smaller than that of ULA.

This second experiment confirms our theoretical statement that SGS is able to generate
accurate samples for a reasonable computational budget compared to popular alternatives
such as ULA.

5.3 Bayesian Binary Logistic Regression

The previous two sections illustrated our theoretical results for a single splitting strategy
and A1 = Id. In this section, we consider a more challenging problem, namely Bayesian
binary logistic regression. This model involves b > 1 potential functions, matrices {Ai}i∈[b]
not equal to the identity, and is such that the observations might be distributed over a set
of b nodes within a cluster. As introduced in Section 2, SGS is of interest for this scenario
since it allows to sample from the posterior distribution of interest in such distributed
environments. In the sequel, we will also show the benefits of splitting Aiθ instead of only
splitting the variable of interest θ as in Vono et al. (2019); Rendell et al. (2021). This
goal will be conducted by illustrating numerically our mixing time bounds and assessing
the efficiency of the rejection sampling procedure (see Proposition 1) used to sample the
auxiliary variables z1:b, in both cases.

5.3.1 Problem Formulation

As introduced in Example 2, the logistic regression problem considers a set of observed
data {xi, yi}i∈[n] where the binary labels yi ∈ {0, 1} are related to the unknown regression
parameter θ via the model (3). In a Bayesian framework, a standard approach consists
of assigning a zero-mean Gaussian prior to θ with diagonal precision matrix Σ−1 = τId
as in (4); see Albert and Chib (1993); Holmes and Held (2006). Instead, we set here
Σ−1 = α

∑n
i=1 xix>i , with α = 3d/(π2n) which corresponds to a Zellner prior (Sabanes Bove

and Held, 2011; Hanson et al., 2014). Such a choice leads to a posterior density π(θ) ∝
exp(−U(θ)) with

U(θ) =
n∑
i=1

yix>i θ + log
[
1 + exp

(
−x>i θ

)]
+ α

2
∥∥∥x>i θ∥∥∥2

.

Sampling from this posterior density can be conducted by exploiting the mixture represen-
tation of the binomial likelihood which involves the Polya-Gamma distribution, and then
performing Gibbs sampling (Polson et al., 2013). Nevertheless, although this algorithm has
been shown to be uniformly ergodic w.r.t. the TV distance, the best known explicit result
for its ergodicity constant degrades exponentially quickly with n and d, see Choi and Hobert
(2013). We propose here to sample approximately from the posterior using SGS. We will
consider and compare two splitting strategies.

Splitting strategy 1. The first strategy sets b = n, Ai = x>i for i ∈ [b] and leads to the
approximate posterior density (5) with

Ui(zi) = yizi + log
[
1 + exp (−zi)

]
+ α

2 z
2
i , ∀i ∈ [b] .
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In this case, Ui is mi-strongly convex and Mi-smooth with mi = α and Mi = α + 1/4,
respectively, and hence verifies (A2) and (A4). As detailed after Proposition 8, we can
verify (A6) by centering Ui with a simple linear shift. In the sequel, we will assume that
such a shifting has been performed which implies that all the assumptions in Theorem 15
are verified. The interest of this first splitting strategy is that the conditional posterior
probability densities of zi given θ are univariate and easy to sample.

Splitting strategy 2. The second strategy mimics the one used by Rendell et al. (2021)
and considers that the data {xi, yi}i∈[n] is divided into b shards {Di}i∈[b]. For simplicity,
we will assume that n is a multiple of b such that card(Di) = n/b for all i ∈ [b]. In contrast
to the first splitting strategy, we use here Ai = Id for i ∈ [b]. This yields

Ui(zi) =
∑
j∈Di

yjx>j zi + log
[
1 + exp

(
−x>j zi

)]
+ α

2
∥∥∥x>j zi

∥∥∥2
, ∀i ∈ [b] .

Here Ui is mi-strongly convex and Mi-smooth with mi = αλmin(∑j∈Di xjx
>
j ) and Mi =

(α+1/4)λmax(∑j∈Di xjx
>
j ), where λmin(M) and λmax(M) stand for the smallest and largest

eigenvalues of a matrix M, respectively. As before, we assume that an appropriate centering
of Ui has been performed to satisfy (A6). In some scenarios, such a splitting strategy is
expected to be less efficient than the first one for two main reasons. First, the conditional
density of zi given θ is d-dimensional and sampling from it is as difficult as sampling from
π. Second, the condition number κ = ∑

iMi/
∑
imi associated with this strategy (denoted

κ2) might be very large compared to the one associated to the splitting strategy 1 (denoted
κ1). Indeed, the ratio of these two condition numbers is

κ2
κ1

=

b∑
i=1

λmax

∑
j∈Di

xjx>j


b∑
i=1

λmin

∑
j∈Di

xjx>j

 . (26)

This ratio is expected to be large when d is large and the correlation between the covariates
within each group is high. The splitting strategy 1 can be thought of as a preconditioning
technique whose efficiency is measured by the ratio (26).

5.3.2 Efficient Sampling with the SGS

For this experiment, also considered in Dalalyan (2017), we generated a synthetic data set
{xi, yi}ni=1 by drawing the covariates xi from a Rademacher distribution before normalizing
the latter such that ‖xi‖ = 1. Each binary label yi was then drawn from a Bernoulli distri-
bution with probability of success equal to σ(x>i θtrue), where σ(·) is the sigmoid function
and θtrue = 1d.

Mixing times. In this first sub-experiment, we compare our mixing time bounds in
Theorem 15 for the two splitting strategies detailed previously. We set ε = 0.01, n = 1, 000
and let b vary from b = 5 to b = 10 for the splitting strategy 2. The theoretical ε-mixing
times for the TV distance associated to the two splitting strategies are reported in Figure
6. To give an idea of the order of magnitude of these mixing times, the ones associated to
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Figure 6: Logistic regression. (left and middle) Behavior of the mixing times of the two
splitting strategies w.r.t. the ratio κ1/κ2. For strategy 2, b = 5 (left) and b = 10
(middle), while for strategy 1, b = n = 1000 on both figures. (right) Behavior of
the splitting strategy 1 in higher dimensions.

ULA and its preconditioned version (Dalalyan, 2017) using the same starting distribution
ν are also displayed. As expected, the splitting strategy 1 needs, in theory, less iterations
than the splitting strategy 2 to achieve a prescribed precision ε when the ratio κ2/κ1 is
large. Finally, it is clear that the mixing times of SGS are again competitive compared to
the ones derived in the recent literature for other MCMC algorithms.

Efficiency of the rejection sampling scheme. In this second sub-experiment, we comple-
ment the previous analysis by showing that drawing the auxiliary variables zi given θ can
indeed be conducted efficiently with rejection sampling. For each instance of SGS (with
either splitting strategy 1 or 2), we used the rejection sampling scheme detailed in Propo-
sition 1 in Section 2.3.1 to sample the auxiliary variables. To this purpose, we considered
different scenarios where d ∈ {2, 10, 50} and n ∈ {200, 103, 104}. We ran SGS over T = 100
iterations and averaged the number of rejection steps over these iterations for each aux-
iliary variable zi. In Table 6, we reported the largest average number of rejection steps
per iteration obtained among the b auxiliary variables for each splitting strategy. For the
nine different scenarios, the average number of rejection steps per iteration is near 1 which
confirms the theoretical results of Proposition 1. Overall, SGS appears to be a promising
and efficient approach to sample from smooth and strongly log-concave distributions.

6. Conclusion

In this paper, we have provided a detailed theoretical study of a recent and promising
MCMC algorithm, namely SGS, which is amenable to a distributed implementation and
shares strong similarities with quadratic penalty approaches in optimization. Under a strong
log-concavity assumption, we have obtained explicit dimension-free convergence rates for
this sampler under both Wasserstein and total variation distances. Combined with quan-
titative bounds on the bias induced by this algorithm, we have derived explicit bounds on
its mixing time under reasonable assumptions which can be easily verified in practice. In
addition to be amenable to distributed and parallel computations, these results showed that
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d 2 10 50
n 200 1,000 10,000 200 1,000 10,000 200 1,000 10,000

SGS 1 (b = n) 1.04 1.04 1.03 1.03 1.05 1.03 1.06 1.05 1.03
SGS 2 (b = 2) 1.13 1.16 1.34 1.26 1.08 1.16 1.06 1.27 1.03
SGS 2 (b = 5) 1.22 1.14 1.26 1.08 1.14 1.08 1.00 1.10 1.34
SGS 2 (b = 10) 1.12 1.07 1.05 1.31 1.17 1.16 1.41 1.07 1.13

Table 6: Logistic regression. Average number of samples proposed until one is accepted per
iteration for SGS 1 (associated to splitting strategy 1) and SGS 2 (associated to
splitting strategy 2).

SGS can compete and even improve upon standard MCMC schemes in terms of computa-
tional complexity. Our theoretical results have been supported with numerical illustrations
which confirmed the efficiency of SGS even on a serial computer.

There are a few additional interesting questions to address. All our theoretical results
assume that the auxiliary variables zi are drawn from the exact conditional probability
density at each iteration of SGS. Although this is possible for interesting models such as
logistic regression, one might have to sample approximately these variables using Metropolis-
Hastings or proximal MCMC scheme (Pereyra, 2016; Durmus et al., 2018; Vargas et al.,
2020) in more complex scenarios and it would be interesting to extend our results to such
settings. Another interesting extension would be to consider whether using a sequence
{ρt}t∈N instead of a fixed parameter ρ could be beneficial by determining convergence rates
in this scenario.
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Appendix Appendix A. Additional Details and Proofs for Section 2

This section aims at proving the results claimed in Section 2.
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Appendix A.1. Integrability of πρ and Ergodicity of SGS

Proof [Proof of Proposition 5] Let U(θ, z1:b) be defined as in (5), then by repeated appli-
cation of Tonelli’s theorem (Tonelli, 1909) to integrate out z1, . . . zb, we have

∫
θ,z1:b

exp(−U(θ, z1:b))dθdz1:b =
∫
θ,z1:b

exp

− b∑
i=1

Ui(zi) + ‖zi −Aiθ‖2

2ρ2

 dθdz1:b

=
∫
θ

exp

− b∑
i=1

Uρi (Aiθ)

 dθ =
∫
θ

exp(−Uρ(θ))dθ.

By Assumption (A0), exp(−Uρ(θ)) is integrable, hence exp(−U(θ, z1:b) is also integrable,
and Πρ(θ, z1:b) is a probability density. The π-irreducibility and aperiodicity of SGS fol-
lows because SGS defined on the extended state space including z1:b is a Gibbs sampler
with systematic scan, and it satisfies the positivity condition of Gibbs sampling (since the
densities are always positive); see for instance Roberts and Smith (1994).

Proof [Proof of Proposition 3] Note that we have

exp(−Uρi (wi)) =
∫

zi∈Rd
exp

(
−Ui(zi)−

‖zi −wi‖2

2ρ2

)
· dzi

(2πρ2)di/2

≤
∫

zi∈Rd
exp

(
−Vi(zi)−

‖zi −wi‖2

2ρ2

)
· dzi

(2πρ2)di/2

≤ exp
(
−Vi(wi)

)
·
∫

zi∈Rd
exp

(
Li‖zi −wi‖ −

‖zi −wi‖2

2ρ2

)
· dzi

(2πρ2)di/2
.

It is easy to show that Li‖zi − wi‖ − ‖zi−wi‖2

2ρ2 ≤ −‖zi−wi‖2

4ρ2 whenever ‖zi − wi‖ ≥ 2ρ2Li,
hence this integral is finite, and exp(−Uρi (wi)) ≤ exp

(
−Vi(wi)

)
Ci for some Ci < ∞.

Hence, we have that exp(−Uρ(θ)) ≤ exp
(
−
∑
j∈[b] Vj(Ajθ)

)
·
∏
j∈[b]Cj . The integrability

of exp(−Uρ(θ)) now follows from our assumption that exp
(
−
∑
j∈[b] Vj(Ajθ)

)
is integrable.

Appendix Appendix B. Proofs for the Results of Section 3

This section gives the proofs and technical details associated to the results presented in
Section 3.

Appendix B.1. Non-Asymptotic Bound for I(U,Uρ)

In this section, we are going to bound the bias of the stationary distribution of SGS (πρ)
from π. We start by the proof of Propostion 7, which shows that we can bound the total
variation, KL and Wasserstein-2 distances between πρ and π in terms of I(U,Uρ).
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Proof [Proof of Proposition 7] By using the notations f(θ)− = −min(f(θ), 0) and f(θ)+ =
max(f(θ), 0), note that∥∥πρ − π∥∥TV = 1

2

∫
θ∈Rd

|π(θ)− πρ(θ)|dθ

=
∫
θ∈Rd

(
π(θ)− πρ(θ)

)
− dθ =

∫
θ∈Rd

(
π(θ)− πρ(θ)

)
+ dθ

=
∫
θ∈Rd

π(θ)
(

1− πρ(θ)
π(θ)

)
+

dθ, (27)

since∫
θ∈Rd

(
π(θ)− πρ(θ)

)
+ dθ −

∫
θ∈Rd

(
π(θ)− πρ(θ)

)
− dθ =

∫
θ∈Rd

(
π(θ)− πρ(θ)

)
dθ = 0,

|π(θ)− πρ(θ)| = (π(θ)− πρ(θ))+ + (π(θ)− πρ(θ))−.

Using the definitions of π and πρ, we have

∥∥πρ − π∥∥TV =
∫
θ∈Rd

π(θ)
(

1− exp
(
U(θ)− Uρ(θ)

)
· Zπ
Zπρ

)
+

dθ

using the fact that (1− exp(x))+ ≤ x− for any x ∈ R,

≤
∫
θ∈Rd

π(θ)

log
(
Zπ
Zπρ

)
+ U(θ)− Uρ(θ)


−

dθ (28)

≤

log
(
Zπρ
Zπ

)
+

+
∫
θ∈Rd

π(θ)
(
Uρ(θ)− U(θ)

)
+ dθ = I(U,Uρ), (29)

hence the TV bound follows. For KL-divergence, note that (28) satisfies that

DKL(π || πρ) =
∫
Rd
π(θ) log

(
π(θ)
πρ(θ)

)
dθ ≤

∫
Rd
π(θ)

log
(
Zπ
Zπρ

)
+ Uρ(θ)− U(θ)


+

dθ,

hence this is also bounded by I(U,Uρ). Finally, the Wasserstein bound follows from the KL
bound and Lemma 9 of Cheng and Bartlett (2018).

Now we will state a few definitions and prove some auxiliary lemmas, and then prove
Proposition 8. We have U(θ) = ∑b

i=1 Ui(Aiθ), and

π(θ) = exp(−U(θ))
Zπ

, for a normalising constant Zπ =
∫
θ

exp(−U(θ))dθ.

Similarly, by Proposition 5, we have

πρ(θ) = exp(−Uρ(θ))
Zπρ

.

The following lemma states some bounds on U(θ)− Uρ(θ).
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Lemma 17 Let

B(θ) := ρ2

2

b∑
i=1

∥∥∇Ui(Aiθ)
∥∥2
,

B(θ) :=
b∑
i=1

(
ρ2

2(1 + ρ2Mi)
∥∥∇Ui(Aiθ)

∥∥2 − di
2 log(1 + ρ2Mi)

)
.

Then assuming (A0) and (A2), we have B(θ) ≤ U(θ) − Uρ(θ). Assuming (A0), (A2) and
(A4), we have U(θ)− Uρ(θ) ≤ B(θ).

Proof First, note that

exp(U(θ)− Uρ(θ)) = exp

 b∑
i=1

(
Ui(Aiθ)− Uρi (Aiθ)

) .
From (7), it is clear that

exp(Ui(Aiθ)− Uρi (Aiθ)) =
∫

zi∈Rd
exp

(
Ui(Aiθ)− Ui(zi)−

‖zi −Aiθ‖2

2ρ2

)
· dzi

(2πρ2)di/2
.

(30)
Using (A2), and second order Taylor expansion, for each i ∈ [b], we have

Ui(Aiθ)− Ui(zi) ≥ ∇Ui(Aiθ)>(Aiθ − zi)−
Mi

2 ‖Aiθ − zi‖2.

Hence, using (30), we have

exp

 b∑
i=1

(
Ui(Aiθ)− Uρi (Aiθ)

)
≥

b∏
i=1

(2πρ2)−di/2
∫

zi∈Rdi
exp

∇Ui(Aiθ)>(Aiθ − zi)−
(

1 + ρ2Mi

2ρ2

)
‖Aiθ − zi‖2

dzi

=
b∏
i=1

exp
(

ρ2

2(1 + ρ2Mi)
∥∥∇Ui(Aiθ)

∥∥2
)(

1
1 + ρ2Mi

)di/2 (31)

= exp

 b∑
i=1

(
ρ2

2(1 + ρ2Mi)
∥∥∇Ui(Aiθ)

∥∥2 − di
2 log(1 + ρ2Mi)

) = exp(B(θ)), (32)

hence the lower bound follows.
For the upper bound, we now use (A4) (convexity of the individual potential functions

Ui for i ∈ [b]), which by Taylor expansion yields that for every i ∈ [b],

Ui(Aiθ)− Ui(zi) ≤ ∇Ui(Aiθ)>(Aiθ − zi)−
mi

2 ‖Aiθ − zi‖2.
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Then, it follows that

exp(U(θ)− Uρ(θ)) = exp

 b∑
i=1

(
Ui(Aiθ)− Uρi (Aiθ)

)
≤

b∏
i=1

(2πρ2)−di/2
∫

zi∈Rdi
exp

(
∇Ui(Aiθ)>(Aiθ − zi)−

1 + ρ2mi

2ρ2 ‖Aiθ − zi‖2
)

dzi

=
b∏
i=1

1(
1 + ρ2mi

)di/2 · exp

 b∑
i=1

ρ2 ∥∥∇Ui(Aiθ)
∥∥2

2(1 + ρ2mi)

 (33)

≤ exp

ρ2

2

b∑
i=1

∥∥∇Ui(Aiθ)
∥∥2

 = exp(B(θ)), (34)

hence the upper bound follows.

Lemma 18 Suppose that Assumptions (A2) and (A4) hold. Let

β(θ) :=

 b∑
i=1

∥∥∇Ui(Aiθ)
∥∥2

1/2

,

and A be the (d1 + . . . db) × d matrix created by stacking A1, . . . ,Ab one upon another,
starting with A1 on the top and ending with Ab. Then β is a Lipschitz function with
respect to the Euclidean distance, with Lipschitz constant

Lβ = ‖A>A‖1/2 max
i≤b

Mi.

Proof Assuming that θ 6= θ?, we have β(θ) > 0, and thus ∇β(θ) exists, and it has the
form

∇β(θ) =
∑b
i=1 A>i ∇2Ui(Aiθ)∇Ui(Aiθ)(∑b

i=1 ‖∇Ui(Aiθ)‖2
)1/2 .

Let w := (∇U1(A1θ), . . . ,∇Ub(Abθ)) ∈ Rd1+...+db , and D := diag(∇2U1(A1θ), . . . ,∇2Ub(Abθ))
(a block matrix with diagonal blocks corresponding ∇2U1(A1θ), . . . ,∇2Ub(Abθ)). Then we
have

∇β(θ) =A>Dw
‖w‖ , hence

‖∇β(θ)‖2 = w>DAA>Dw
‖w‖2

≤ ‖D‖2‖AA>‖
≤ ‖A>A‖(max

i≤b
Mi)2,
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so ‖∇β(θ)‖ ≤ Lβ. Since this bound holds everywhere except possibly at θ?, the Lipschitz
property is easy to show by a limiting argument.

The next result is a technical lemma that will be used in the proof.

Lemma 19 Suppose that µ(θ) ∝ exp(−U(θ)) is a density on Rd satisfying that U is twice
continuously differentiable, and ∇2U(θ) � mId for every θ ∈ Rd for some m > 0. Let
f : Rd → R be an L-Lipschitz function with Eµ(f) = 0. Then for 0 ≤ λ ≤ m

6L2 , we have

Eµ
[
eλ(f2−Eµ(f2))2] ≤ e

4λ2L4
m2 . (35)

Proof First, we are going to assume that f is continuously differentiable. Then by the
Lipschitz property, we have ‖∇f(θ)‖ ≤ L for every θ ∈ Rd, and using Corollary 3.4 of
Huang and Tropp (2021), we can bound the moments of f2(θ) − Eµ(f2) as follows. For
integers p ≥ 2, by using this Corollary 3.4 twice (first on the function f2−Eµ(f2), and then
on f in the third line), we have

Eµ
[
(f2 − Eµ(f2))p

]
≤ Eµ

[∣∣∣f2 − Eµ(f2)
∣∣∣p]

≤ 1
mp/2 (p− 1)p/2Eµ

[
(2‖∇f‖2f2)p/2

]
≤ 1
mp/2 2p/2(p− 1)p/2LpEµ

[
|f |p

]
≤ 1
mp

2p/2(p− 1)pL2p.

Therefore, using the power series representation of the exponential function, we have

Eµ
[
eλ(f2−Eµ(f2))2] ≤ 1 +

∞∑
p=2

(√
2λL2

m

)p (p− 1)p
p!

≤ 1 + 1
2

(√
2λL2

m

)2

+
∞∑
p=3

(√
2λL2

m

)p (p− 1)p
(p/e)p

√
2πp

≤ 1 + 1
2

(√
2λL2

m

)2

+
∞∑
p=3

(√
2λL2

m

)p ep−1
√

2π · 3
,

where we have used the facts that p! ≥ (p/e)p
√

2πp by Robbins (1955), and ((p− 1)/p)p ≤
1/e for every p ≥ 1. By summing up the geometric series, we have that for 0 ≤ e

√
2λL2

m < 1,

Eµ
[
eλ(f2−Eµ(f2))2] ≤ 1 + 1

2

(√
2λL2

m

)2

+

(√
2λL2

m

)3
e2

√
6π

· 1
1− e

√
2λL2

m

.

It is easy to show that for 0 ≤ λL2

m ≤ 1
6 , the above sum is bounded by e

4λ2L4
m2 , implying

(35). Finally, the proof without assuming differentiability of f follows by using Theorem 6
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of Azagra et al. (2007), and a limiting argument using the dominated convergence theorem.

The next result presents some bounds on certain moment generating functions.

Lemma 20 Suppose that Assumptions (A0), (A2), (A4), and (A6) hold. Let

σ2
U := L2

β ·m−1
U = ‖A>A‖(max

i≤b
Mi)2 ·m−1

U .

Then for 0 ≤ s ≤ 1
12σ2

U
, we have

∫
θ
π(θ)es·β2(θ)dθ ≤ esEπ(β2) · es2(8σ4

U+4(Eπ(β))2σ2
U ).

Moreover, we have (Eπ(β))2 ≤ Eπ(β2) ≤ dσ2
U .

Proof From Assumption (A4), we have

∇2U(θ) =
b∑
i=1

A>i ∇2Ui(Aiθ)Ai �
b∑
i=1

miA>i Ai � λmin

 b∑
i=1

miA>i Ai

 Id = mUId. (36)

By Theorem 5.2 of Ledoux (2001), π satisfies a log-Sobolev inequality with constant C :=
m−1
U . Therefore, by Herbst’s argument (see equation (5.8) on page 95 of Ledoux (2001)),

and the Lβ-Lipschitz property of the function β shown in Lemma 18, for every λ ∈ R, we
have

Eπ(eλ(β−Eπ(β))) ≤ eCλ
2L2

β/2. (37)

By the decomposition β2(θ) = Eπ(β)2 + (β(θ)− Eπ(β))2 + 2Eπ(β)(β(θ)− Eπ(β)), we have

Eπ(esβ2) = esEπ(β)2 · Eπ
(
es(β−Eπ(β))2 · e2sEπ(β)(β−Eπ(β))

)
by the Cauchy-Schwarz inequality

≤ esEπ(β)2 ·
[
Eπ
(
e2s(β−Eπ(β))2)]1/2

·
[
Eπ
(
e4sEπ(β)(β−Eπ(β))

)]1/2
.

Lemma 19 implies that for 0 ≤ s ≤ 1
12σ2

U
, we have

Eπ
(
e2s(β(θ)−Eπ(β))2) ≤ e2sEπ [(β(θ)−Eπ(β))2] · e16s2σ4

U . (38)

By (37) for λ = 4sEπ(β), we have

Eπ
(
e4sEπ(β)(β−Eπ(β))

)
≤ e8s2C(Eπ(β))2L2

β .
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The first claim of the lemma now follows by rearrangement. Additionally we have (Eπ(β))2 ≤
Eπ(β2), which can be further bounded as

Eπ(β2) = Eπ(
b∑
i=1
‖∇Ui(Aiθ)‖2)

using Assumptions (A2) and (A6)

≤ Eπ(
b∑
i=1

M2
i ‖Ai(θ − θ?)‖2)

≤ ( max
1≤i≤b

Mi)2‖A>A‖Eπ(‖θ − θ?‖2)

≤ ( max
1≤i≤b

Mi)2‖A>A‖dm−1
U = dσ2

U ,

where we have used the fact that Eπ(‖θ−θ?‖2) ≤ d
mU

by Proposition 1 part (ii) of Durmus
and Moulines (2019).

Lemma 21 If we assume that b = 1, d1 = d, and A1 is of full rank, then we have Zπ = Zπρ

for any ρ. More generally, assume that (A0), (A2), (A4)and (A6) hold. Then for ρ2 ≤ 1
6σ2
U
,

log
(
Zπ
Zπρ

)
≥ −Eπ(B(θ))− ρ4(2 + d)σ4

U . (39)

Proof Firstly, we that b = 1, d1 = d, and A1 is of full rank. Then one can show that∫
θ∈Rd

exp(−Uρ1 (A1θ))dθ

=
∫
θ∈Rd

∫
z1∈Rd

exp
(
−U1(z1)− ‖z1 −A1θ‖2

2ρ2

)
· dz1

(2πρ2)d/2
dθ

=
∫
θ∈Rd

exp(−U1(A1θ))dθ.

Hence, in this case Zπ = Zπρ .
Now we look at the general multiple splitting case. Note that using the fact that∫

θ∈Rd π(θ)
(
1− πρ(θ)

π(θ)

)
dθ = 0, it follows that

Zπ
Zπρ

=

∫
θ∈Rd

π(θ) exp

 b∑
i=1

(
Ui(Aiθ)− Uρi (Aiθ)

) dθ


−1

. (40)

By (34) and (40), we have

Zπ
Zπρ
≥
(∫

θ∈Rd
π(θ) exp(B(θ))dθ

)−1

.
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Note that B(θ) = ρ2

2 β(θ)2, hence by Lemma 20, we have that for ρ2 ≤ 1
6σ2
U
,

∫
θ∈Rd

π(θ) exp(B(θ))dθ ≤ eEπ(B(θ)) · e2ρ4σ4
U+ρ4Eπ(θ)2σ2

U ≤ eEπ(B(θ)) · e(2+d)ρ4σ4
U .

The claim now follows by rearrangement.

Now we are ready to prove our bias bound.
Proof [Proof of Proposition 8] In the single splitting case, assuming (A0), b = 1, d1 = d,
and that A1 is invertible, by Lemma 21, we have Zπ

Zπρ
= 1. Combining this and (32) with

our bound (28), we obtain that

I(U,Uρ) ≤
∫
θ∈Rd

π(θ)
(
B(θ)

)
− dθ

=
∫
θ∈Rd

π(θ)

ρ2 ∥∥∇U1(A1θ)
∥∥2

2(1 + ρ2M1) − d

2 log(1 + ρ2M1)


−

dθ

≤
∫
θ∈Rd

π(θ)
(
−d2 log(1 + ρ2M1)

)
−

dθ

≤ d

2M1ρ
2.

In the general case, note that the mU -strong convexity follows by (36). We have the lower
bound (39) on log

(
Zπ
Zπρ

)
. By combining this and (32) with our bound (28), we obtain that

for ρ2 ≤ 1
6σ2
U
, we have

I(U,Uρ)

≤
b∑
i=1

di
2 log(1 + ρ2Mi) +

b∑
i=1

ρ4Mi

2(1 + ρ2Mi)
Eπ(‖∇Ui(Aiθ)‖2) + (2 + d)ρ4σ4

U

≤ ρ2

2 (
b∑
i=1

diMi) + ρ4

2 ( max
1≤i≤b

Mi)Eπ(β2) + (2 + d)ρ4σ4
U

≤ ρ2

2 (
b∑
i=1

diMi) +
(

2 + 3
2d
)
ρ4σ4

U ,

where in the last step we have used the facts that Eπ(β2) ≤ σ2
Ud (by Lemma 20) and that

max1≤i≤bMi ≤ σ2
U (by the definition of σ2

U ).

Appendix B.2. Non-Asymptotic Bounds for the 1-Wasserstein Distance

The result shown in Proposition 10 shows a Wasserstein error rate bound in the single
splitting case (b = 1). Its proof is given below.
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Proof [Proof of Proposition 10] The integrability of U1 follows from assumption (17).
Assume without loss of generality that U1(θ) is normalised, i.e.

∫
θ∈Rd exp(−U1(θ))dθ = 1

(if it is not, we can add to the potential an appropriate constant). Then the distribution

πρ(θ) = 1
(2πρ2)d/2

∫
z∈Rd

exp
(
−U1(z)− ‖θ − z‖2

2ρ2

)
dz

is the convolution of π(θ) = exp(−U1(θ)) and a d-dimensional Gaussian random variable
with mean zero and covariance ρ2Id. In particular, it is clear that∫

θ∈Rd
πρ(θ)dθ =

∫
z∈Rd

1
(2πρ2)d/2

∫
θ∈Rd

exp
(
−U1(z)− ‖θ − z‖2

2ρ2

)
dθdz

=
∫

z∈Rd
exp(−U1(z)) = 1.

The first part of the bound follows from the fact that the expectation of the norm of this
Gaussian random variable is bounded by ρ

√
d (since the expectation of the square of the

norm is ρ2d, this follows by Jensen’s inequality).
In order to obtain the second part, we are going to use the dual formulation of the

1-Wasserstein distance (see e.g. Remark 6.5 of Villani (2008)),

W1(π, πρ) = sup
g:‖g‖Lip≤1

∫
θ
g(θ)π(θ)dθ −

∫
θ
g(θ)πρ(θ)dθ

= sup
g∈C1(Rd):‖∇g‖∞≤1

∫
θ
g(θ)π(θ)dθ −

∫
θ
g(θ)πρ(θ)dθ, (41)

where the second equality follows from the fact that differentiable functions g with ‖∇g‖∞ ≤
1 are dense among 1-Lipschitz functions on Rd.

The evolution of a density πρ as we increase the variance ρ2 is known to follow the heat
equation, see Section 2.4 of Lawler (2010),

d
d(ρ2)πρ(θ) = 1

2∆πρ(θ),

where ∆πρ(θ) = ∑d
i=1

∂2

∂θ2
i
πρ(θ) denotes the Laplacian of πρ. By integration, we obtain that

sup
g∈C1(Rd):‖∇g‖∞<1

d
d(ρ2)

∫
θ
g(θ)πρ(θ)dθ = sup

g∈C1(Rd):‖∇g‖∞≤1

1
2

∫
θ∈Rd

g(θ)∆πρ(θ)dθ.

Now if we define the functional

F(µ) := sup
g∈C1(Rd):‖∇g‖∞≤1

1
2

∫
θ∈Rd

g(θ)∆µ(θ)dθ.

Then it is easy to see that this is convex (F(αµ + (1 − α)ν) ≤ αF(µ) + (1 − α)F(ν) for
α ∈ [0, 1]) and shift-invariant (if ν(x) = µ(x−a) some constant a ∈ Rd, then F(ν) = F(µ)).
Therefore it follows by the argument on pages 1-2 of Bennett and Bez (2015) (monotonicity
property of the heat semigroup for convex functionals) that F(πρ) ≤ F(π) for every ρ ≥ 0.
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Initially, we have

F(π) = sup
g∈C1(Rd):‖∇g‖∞≤1

1
2

d∑
i=1

∫
θ∈Rd

g(θ) ∂
2

∂θ2
i

π(θ)dθ.

After separating θ to θi ∈ R and θ−i ∈ Rd−1 (denoting the rest of the coordinates), we have∫
θ∈Rd

g(θ) ∂
2

∂θ2
i

π(θ)dθ

=
∫
θ−i∈Rd−1

[∫
θi∈R

g(θ) ∂
2

∂θ2
i

π(θ)dθi
]

dθ−i,

and now integration by parts and using condition (17) and the Lipschitz continuity of g
leads to ∫

θi∈R
g(θ) ∂

2

∂θ2
i

π(θ)dθi

=
[
−g(θ) ∂

∂θi
U1(θ) · exp(−U1(θ))

]θi=∞
θi=−∞

+
∫
θi∈R

∂

∂θi
g(θ) ∂

∂θi
U1(θ) exp(−U1(θ))dθi

=
∫
θi∈R

∂

∂θi
g(θ) ∂

∂θi
U1(θ)π(θ)dθi.

By summing up in i, we obtain that

F(π) ≤ 1
2 sup
g∈C1(Rd):‖∇g‖∞≤1

d∑
i=1

∫
θ∈Rd

∂

∂θi
U1(θ) ∂

∂θi
g(θ)π(θ)dθ

≤ 1
2

∫
θ∈Rd

‖∇U1(θ)‖π(θ)dθ.

Using the monotonicity property of F (πρ), now the second bound of the theorem follows
based on formula (41). The finiteness of this integral follows from assumption 17.

Now we are going to consider the m-strongly convex and M -smooth U1 case. In such
situations, it is straightforward to see that condition (17) holds with a1 = m ‖θ?‖2 /2,
a2 = m/2, a3 = 0, a4 = M , α = 2 and β = 1; where θ? is the minimum of U1. For the
integral of the norm of the gradient, we have by Jensen’s inequality

∫
θ∈Rd

‖∇U1(θ)‖π(θ)dθ ≤
(∫

θ∈Rd
‖∇U1(θ)‖2π(θ)dθ

)1/2

.

For some index 1 ≤ i ≤ d, we have

∫
θ∈Rd

(
∂

∂θi
U1(θ)

)2

π(θ)dθ =
∫
θ−i∈Rd−1

∫
θi∈R

(
∂

∂θi
U1(θ)

)2

exp
(
−U1(θ)

)
dθi

dθ−i,
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and using integration by parts, and the conditions of strong convexity and smoothness, we
have ∫

θi∈R

(
∂

∂θi
U1(θ)

)2

exp
(
−U1(θ)

)
dθi

=
[
− exp

(
−U1(θ)

) ∂

∂θi
U1(θ)

]θi=∞
θi=−∞

+
∫
θi∈R

exp
(
−U1(θ)

) ∂2

∂θ2
i

U1(θ)dθi

≤
∫
θi∈R

exp
(
−U1(θ)

)
M1dθi.

By integrating this expression w.r.t. θ−i and summing up in i, we obtain that∫
θ∈Rd

‖∇U1(θ)‖2π(θ)dθ ≤M1d,

so the last claim of the theorem follows.

Appendix Appendix C. Proofs of the Results of Section 4

This section aims at proving the results claimed in Section 4.

Appendix C.1. Proof of Theorem 11

The following two propositions are going to be used for the proof of Theorem 11. The first
one will allow us to bound the Wasserstein distance of two log-concave distributions based
on the differences between their gradients. This is achieved by coupling processes evolving
according to the Langevin dynamics with common Brownian noise.

Proposition 22 Let µ and µ′ be two distributions on Rd that are absolutely continuous
with respect to the Lebesgue measure, and whose negative log-likelihoods are continuously
differentiable, strongly convex and smooth (gradient-Lipschitz). Denote the strong convexity
constants m(µ),m(µ′) and smoothness constants M(µ) and M(µ′). Then the Wasserstein
distance of order 1 ≤ p ≤ ∞ of these two distributions can be upper bounded as

Wp(µ, µ′) ≤
‖Dµ,µ′‖Lp(µ)

m(µ′) for Dµ,µ′(z) = ∇ logµ(z)−∇ logµ′(z).

Proof Let µ(z) = exp(−U(z)) and µ′(z) = exp(−U ′(z)).
First, we are going to consider the case 1 ≤ p < ∞. Note that it is easy to show that

under the strong convexity and smoothness assumptions of this proposition, the Wasserstein
distance of order p between µ and µ′ is finite for such p. Assume that (X1(0),X3(0)) is an
optimal coupling in Wasserstein distance of order p between µ and µ′, so that X1(0) ∼ µ,
X3(0) ∼ µ′, and [

E
(
‖X1(0)−X3(0)‖p

)]1/p
= Wp(µ, µ′).
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The existence of such a coupling follows from Theorem 4.1 of Villani (2008). Let X2(0) =
X1(0). We now define three Langevin diffusions (X1(t),X2(t),X3(t))t≥0 with a common
noise (synchronous coupling)

dX1(t) = −∇U(X1(t))dt+
√

2dBt,

dX2(t) = −∇U ′(X2(t))dt+
√

2dBt,

dX3(t) = −∇U ′(X3(t))dt+
√

2dBt.

Under the strong convexity and smoothness assumptions on the log-densities, these SDEs
admit unique strong solutions (see Theorem 3.1 of Pavliotis (2014) and Arnold (1974)).
Since X1(0) ∼ µ and X3 ∼ µ′, we can see that X1(t) ∼ µ and X3(t) ∼ µ′ for every t ≥ 0.
X2(t) is initialized at µ since X2(0) = X1(0) and converges towards µ′. The proof of this
proposition is based on a coupling argument based on these three diffusions. Let

D12(t) = X1(t)−X2(t)− t(∇U ′(X1(0))−∇U(X1(0))).

Then we can decompose X1(t)−X3(t) as

X1(t)−X3(t) = t(∇U ′(X1(0))−∇U(X1(0))) +D12(t) + (X2(t)−X3(t)). (42)

In the next two paragraphs of the proof, we are going to establish the following auxiliary
inequalities

‖X2(t)−X3(t)‖ ≤ exp(−m(µ′)t) · ‖X1(0)−X3(0)‖, (43)
‖D12(t)‖ ≤ C0t

3 + C1t
2(‖∇U(X1(0))‖+ ‖∇U ′(X1(0))‖) + C2t sup

0≤s≤t
‖Bs‖ for 0 ≤ t ≤ C3,

(44)

for positive constants C0, C1, C2, C3 that only depend on the dimension d and the convexity
parameters m(µ),m(µ′),M(µ),M(µ′). Let ‖X‖Lp = (E(‖X‖p))1/p denote the Lp norm of
a random variable. By taking the Lp norms of both sides of (42), and using Minkowski’s
inequality, we can see that

‖X1(t)−X3(t)‖Lp ≤ t‖∇U ′(X2(0))−∇U(X1(0))‖Lp + ‖D12(t)‖Lp + ‖X2(t)−X3(t)‖Lp .

By the definition of the Wasserstein distance, we know that Wp(µ, µ′) ≤ ‖X1(t)−X3(t)‖Lp ,
and by assuming inequalities (43) and (44) are true, we obtain that for 0 ≤ t ≤ C3,

Wp(µ, µ′) ≤ t‖∇U ′(X1(0))−∇U(X1(0))‖Lp +Wp(µ, µ′) exp(−m(µ′)t) (45)

+ C0t
3 + C1t

2(‖∇U(X1(0))‖Lp + ‖∇U ′(X2(0))‖Lp) + C2t

∥∥∥∥∥ sup
0≤s≤t

‖Bs‖
∥∥∥∥∥
Lp

.

It is easy to show that under the strong convexity and smoothness assumptions of this
proposition, the terms ‖∇U(X1(0))‖Lp and ‖∇U ′(X1(0))‖Lp are finite. By the reflection
principle for the Brownian motion (see Lévy (1940)), in one dimension, the distribution of
sup0≤s≤tBs is the same as the distribution of |Bt|. Using the triangle inequality, and the
fact that ‖Y ‖Lp ≤

√
p for a standard Gaussian random variable Y , it follows that∥∥∥∥∥ sup

0≤s≤t
‖Bs‖

∥∥∥∥∥
Lp

≤ 2d
√
t
√
p.
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Hence all of the terms bounding ‖D12(t)‖Lp in (45) are of order o(t), and the claim of the
proposition follows by rearrangement and letting t↘ 0.

Now we are going to prove the two auxiliary inequalities. We start with (43). From
Itô’s formula (see Lemma 3.2 of Pavliotis (2014)), ‖X2(t)−X3(t)‖2 is differentiable in t and
satisfies

d
dt‖X2(t)−X3(t)‖2 = −2

〈
X2(t)−X3(t),∇U ′(X2(t)−∇U ′(X3(t))

〉
≤ −2m(µ′)‖X2(t)−X3(t)‖2,

where the last step follows from the strong convexity of U ′. We obtain (43) by Grönwall’s
inequality and rearrangement.

We continue with the proof of (44). By Itô’s formula, we can see that

D12(t) = X1(t)−X2(t)− t(∇U ′(X1(0))−∇U(X1(0)))

=
∫ t

s=0
(∇U ′(X2(t))−∇U(X1(t)))ds− t(∇U ′(X1(0))−∇U(X1(0)))

=
∫ t

s=0
[∇U ′(X2(t))−∇U ′(X1(0))]ds+

∫ t

s=0
[∇U(X1(0))−∇U(X1(t))]ds.

Using the smoothness assumption for U and U ′, and the fact that X1(0) = X2(0), we have

‖D12(t)‖ ≤M(µ′)
∫ t

s=0
‖X2(t)−X2(0)‖ds+M(µ)

∫ t

s=0
‖X1(t)−X1(0)‖ds. (46)

Let

Y′1(t) = −∇U(Y1(t)),
Y′2(t) = −∇U ′(Y2(t)),

and assume that Y1(0) = Y2(0) = X1(0) = X2(0). Then these ODEs have a unique
solution (see page 74 of Perko (2013)). Now by the triangle inequality, and the fact that
Y1(0) = X1(0), we have

‖X1(s)−X1(0)‖ ≤ ‖Y1(s)−Y1(0)‖+ ‖Y1(s)−X1(s)‖.

For the first part, by Taylor’s expansion, and the smoothness assumption on U , we have

‖Y1(t)−Y1(0)‖ ≤ s‖∇U(Y1(0))‖+ 1
2M(µ)s2.

For the second part, by Itô’s formula, we have

Y1(s)−X1(s) =
∫ s

r=0
[∇U(X1(r))−∇U(Y1(r))]dr +

√
2Bs,

‖Y1(s)−X1(s)‖ ≤M(µ)
∫ s

r=0
‖X1(r)−Y1(r)‖dr +

√
2‖Bs‖,

sup
0≤r≤s

‖Y1(s)−X1(s)‖ ≤M(µ)s sup
0≤r≤s

‖Y1(s)−X1(s)‖+
√

2 sup
0≤r≤s

‖Br‖.
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Hence for s ≤ 1/(2M(µ)), we have sup0≤r≤s ‖Y1(s) − X1(s)‖ ≤ 2
√

2 sup0≤r≤s ‖Br‖. By
combining the above two bounds, for 0 ≤ s ≤ 1/(2M(µ)), we have

‖X1(s)−X1(0)‖ ≤ s‖∇U(Y1(0))‖+ 1
2M(µ)s2 + 2

√
2 sup

0≤r≤s
‖Br‖,

and by the same argument, for 0 ≤ s ≤ 1/(2M(µ′)),

‖X2(s)−X2(0)‖ ≤ s‖∇U ′(W2(0))‖+ 1
2M(µ′)s2 + 2

√
2 sup

0≤r≤s
‖Br‖.

Inequality now (44) follows by substituting these into (46) and doing some rearrangement.
Finally, the result for p = ∞ follows from a limiting argument. By Proposition 3 of

Givens and Shortt (1984), we have

W∞(µ, µ′) = lim
p→∞

Wp(µ, µ′) ≤ sup
1≤p<∞

‖Dµ,µ′‖Lp(µ)
m(µ′) ≤

‖Dµ,µ′‖L∞(µ)
m(µ′) .

Proposition 23 Let θ,θ′ ∈ Rd be two parameter values, and µi, resp. µ′i, denotes the
conditional distributions of zi given θ under Πρ, resp. θ′. Then under Assumption (A4),
for every 1 ≤ p ≤ ∞, we have

Wp(µi, µ′i) ≤
1

1 + ρ2mi
‖Ai(θ − θ′)‖. (47)

Proof We have µi(z) ∝ exp
(
−Ui(z)− ‖Aiθ−z‖2

2ρ2

)
and µ′i(z) ∝ exp

(
−Ui(z)− ‖Aiθ

′−z‖2

2ρ2

)
.

Proposition 22 requires the smoothness (gradient Lipschitz) property, so it cannot be
applied directly to these potentials under our assumptions. To overcome this difficulty, we
are going to use the Moreau-Yosida envelope of Ui (Durmus et al., 2018) defined for any
regularisation parameter λ > 0 as

Uλi (z) := min
y∈Rd

{
Ui(y) + (2λ)−1‖y− z‖2

}
.

By Theorem 1.25 of Rockafellar and Wets (1998), Uλi converges pointwise to Ui, that is for
any z ∈ Rd,

lim
λ→0

Uλi (z) = Ui(z). (48)

Moreover, from Proposition 12.19 of Rockafellar and Wets (1998) and Theorem 2.2 of
Lemaréchal and Sagastizábal (1997) it follows that Uλi is λ−1 gradient Lipschitz and mi

1+λmi -
strongly convex.

Let µλi (z) ∝ exp
(
−Uλi (z)− ‖Aiθ−z‖2

2ρ2

)
and µ′i

λ(z) ∝ exp
(
−Uλi (z)− ‖Aiθ

′−z‖2

2ρ2

)
, then

we have
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‖∇ log(µλi (z))−∇ log(µ′i
λ(z))‖ = ‖Aiθ −Aiθ

′‖
ρ2 .

Since − logµλi (z) and − logµ′λi (z) are mi
1+λmi + 1

ρ2 -strongly convex and 1
λ + 1

ρ2 -smooth, it
follows from Proposition 22 that we have for every 1 ≤ p ≤ ∞

Wp(µλi , µ′i
λ) ≤ ‖Aiθ −Aiθ

′‖
1 + ρ2mi/(1 +miλ) . (49)

Now we are going to consider the case 1 ≤ p <∞ first. To complete the proof, we still need
to bound Wp(µλi , µi). By Theorem 6.15 of Villani (2008), we have

Wp(µλi , µi) ≤
[∫

z∈Rd
‖z− θ‖p|µi(z)− µλi (z)|dz

]1/p

. (50)

Note that |µi(z) − µλi (z)| ≤ µi(z) + µλi (z). Moreover, from the definition of the Moreau-
Yosida envelope Uλi , it follows that Uλi (z) ≤ Uλ

′
i (z) for λ′ < λ, hence it is monotone

increasing towards Ui(z) as λ→ 0. This implies that the normalising constant

Zλi =
∫

z
exp

(
−Uλi (z)− ‖z−Aiθ‖2

2ρ2

)
dz

is monotone decreasing towards Zi =
∫

z exp
(
−Ui(z)− ‖z−Aiθ‖2

2ρ2

)
dz as λ → 0 by the

monotone convergence theorem. Therefore we have for any fixed Λ > 0 and 0 < λ < Λ

µλi (z) =
exp

(
−Uλi (z)− ‖z−Aiθ‖2

2ρ2

)
Zλi

≤
exp

(
−UΛ

i (z)− ‖z−Aiθ‖2

2ρ2

)
Zi

.

This means that for λ < Λ, we have

‖z− θ‖p|µi(z)− µλi (z)| ≤ ‖z− θ‖p

µi(z) +
exp

(
−UΛ

i (z)− ‖z−Aiθ‖2

2ρ2

)
Zi

 .
Using the strong-convexity of − logµi, it follows that it has a unique minimizer which

we denote by z∗i . In particular, we have∫
z∈Rd

‖z− θ‖pµi(z)dz ≤ µi(z∗i )
∫
z∈Rd

‖z− θ‖p exp
(
−(mi + 1/ρ2)‖z− z∗i ‖2/2

)
dz <∞,

and with the same argument we can also show that

∫
z∈Rd

‖z− θ‖p
exp

(
−UΛ

i (z)− ‖z−Aiθ‖2

2ρ2

)
Zi

<∞.
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Hence using the pointwise convergence (48) it follows from the dominated convergence
theorem and the bound (50) that Wp(µλi , µi) → 0 as λ → 0. The same also holds for
Wp(µ′i

λ, µ′i), so we can conclude using (49) and the triangle inequality

Wp(µi, µ′i) ≤Wp(µi, µλi ) +Wp(µiλ, µ′i
λ) +Wp(µ′i

λ
, µ′i).

Finally, since we have shown the inequality (47) for 1 ≤ p < ∞, the bound for p = ∞
follows by Proposition 3 of Givens and Shortt (1984).

The following result is an elementary fact from linear algebra (proof is included for
completeness).

Lemma 24 Suppose that u,v ∈ Rd, and ‖v‖ ≤ ‖u‖. Then there exists a symmetric matrix
W ∈ Rd×d such that Wu = v, and −I �W � I (� denotes the partial Loewner ordering).

Proof First we assume that ‖u‖ = ‖v‖. If u = v, then W = I works, otherwise it is easy
to check that

W = (u + v)(u + v)>/‖u + v‖2 − (u− v)(u− v)>/‖u− v‖2

satisfies the requirements. The general case follows by rescaling.
Now we are ready to prove our contraction bound.
Proof [Proof of Theorem 11] Let (Z1:b,Z′1:b) be a coupling of the two distributions Πρ(Z1:b|θ)
and Πρ(Z′1:b|θ) such that

‖Zi − Z′i‖ ≤
1

1 + ρ2mi
‖Ai(θ − θ′)‖ almost surely. (51)

The existence of such a coupling follows from Proposition 23. Given this coupling (Z1:b,Z′1:b),
our next step is to couple the two conditional distributions

Πρ(θ|Z1:b) ∼ N (µθ(Z1:b),Σθ),
Πρ(θ|Z′1:b) ∼ N (µθ(Z′1:b),Σθ),

where Σθ = ρ2(∑b
i=1 A>i Ai)−1 and µbθ(z1:b) = (∑b

i=1 A>i Ai)−1∑b
i=1 A>i zi. Since these two

Gaussian distributions have the same covariance matrix, coupling them can be done in a
straightforward way, and we can see that for the metric w introduced in the statement of
Theorem 11, for every 1 ≤ p ≤ ∞, we have

Ww
p (PSGS(θ, ·),PSGS(θ′, ·)) ≤

[
E(w(µθ(Z1:b), µθ(Z′1:b))p)

]1/p
, (52)

where Ww
p denotes Wasserstein distance of order p with respect to the metric w. Note that

µθ(Z1:b)− µθ(Z′1:b) = (
b∑
i=1

A>i Ai)−1
b∑
i=1

A>i (Zi − Z′i).
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For each i ∈ [b], we now apply Lemma 24 with v = Zi−Z′i and u = Ai(θ− θ′)/(1 + ρ2mi).
Using (51), the assumption ‖v‖ ≤ ‖u‖ of Lemma 24 is satisfied and there exist some
symmetric matrices W1, . . . ,Wb ∈ Rd×d such that −I �Wi � I, and

Zi − Z′i = Wi
Ai(θ − θ′)
1 + ρ2mi

, ∀i ∈ [b].

This yields

µθ(Z1:b)− µθ(Z′1:b) =

 b∑
i=1

A>i Ai

−1
b∑
i=1

A>i WiAi

1 + ρ2mi
(θ − θ′) almost surely.

From the definition of w, we can now write

w(µθ(Z1:b), µθ(Z′1:b)) =

∥∥∥∥∥∥∥
 b∑
i=1

A>i Ai

1/2

(µθ(Z1:b)− µθ(Z′1:b))

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
 b∑
i=1

A>i Ai

−1/2
b∑
i=1

A>i WiAi

1 + ρ2mi
(θ − θ′)

∥∥∥∥∥∥∥
=

∥∥∥∥∥∥∥
 b∑
i=1

A>i Ai

−1/2
b∑
i=1

A>i WiAi

1 + ρ2mi

 b∑
i=1

A>i Ai

−1/2

·

 b∑
i=1

A>i Ai

1/2

(θ − θ′)

∥∥∥∥∥∥∥
≤

∥∥∥∥∥∥∥
 b∑
i=1

A>i Ai

−1/2 b∑
i=1

A>i Ai

1 + ρ2mi

 b∑
i=1

A>i Ai

−1/2
∥∥∥∥∥∥∥w(θ,θ′) almost surely.

Hence the result follows from (52).

Appendix C.2. Proof of Corollary 12

First, we will show the convergence results in Wasserstein distance of order p for 1 ≤ p <
∞. Let (θ0,θ

′
0) be the optimal coupling of the initial distribution ν and the stationary

distribution πρ that achieves the Wasserstein distance of order p for the metric w (see
Theorem 4.1 of Villani (2008) for proof of existence), i.e.

Ww
p (ν, πρ) = ‖w(θ0,θ

′
0)‖Lp .

For i ≥ 1, assuming that (θ0:i−1,θ
′
0:i−1) has been defined, add two more elements (θi,θ′i) by

defining their conditional distribution based on the past elements as the optimal coupling
between PSGS(θi−1, ·) and PSGS(θ′i−1, ·) achieving the Wasserstein distance of order p for
the metric w. Using that Kp(θ,θ′) ≥ KSGS by Theorem 11, we have

E(w(θ1,θ
′
1)p|θ0,θ

′
0) ≤ (1−KSGS)pw(θ0,θ

′
0)p,
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and so by the tower property, we have

‖w(θ1,θ
′
1)‖Lp ≤ (1−KSGS)Ww

p (ν, πρ).

Similarly, by induction, it follows that

‖w(θi,θ′i)‖Lp ≤ (1−KSGS)iWw
p (ν, πρ).

Now (20) for 1 ≤ p <∞ follows by noticing that θ′i ∼ πρ since the Markov chain (θ′j)j≥0 was
initialized in its stationary distribution. Finally, the p = ∞ case follows from Proposition
3 of Givens and Shortt (1984).

Regarding the convergence rate in total variation distance stated in Theorem 11, we will
use Corollary 25 and Proposition 26 detailed below.

Corollary 25 (Lower bound on the spectral gap of SGS) SGS defines a reversible
Markov chain. Under Assumptions (A4)and (A5), its absolute spectral gap γ∗SGS is lower
bounded by KSGS, see (19).

Proof The reversibility follows by a standard argument for data augmentation schemes
given in Lemma 3.1 of Liu et al. (1994). The lower bound on the absolute spectral gap
follows by Proposition 30 of Ollivier (2009).

The following proposition is well known in the MCMC literature but we have only found
a proof for Markov chains on finite state spaces. Hence for completeness, we include a short
proof here.

Proposition 26 Suppose that P(z, ·) is a reversible Markov kernel on a Polish state space
Ω with absolute spectral gap γ∗ > 0, and unique stationary distribution π. Then for any
initial distribution ν that is absolutely continuous with respect to π, and any number of steps
t ∈ Z+, we have

∥∥∥νPt − π
∥∥∥

TV
≤ 1

2

Eπ
(dν

dπ

)2
− 1


1/2

· (1− γ∗)t.

Our proof is based on the following lemma.

Lemma 27 Suppose that Q(x,dy) is a reversible Markov kernel on a Polish state space
Ω with stationary distribution π. Then for any distribution ν that is absolutely continuous
with respect to π, νQ is also absolutely continuous with respect to π, and for π-almost every
x ∈ Ω, we have

d(νQ)
dπ (x) =

Q
(

dν
dπ

) (x).
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Proof The claim of the lemma is equivalent to showing that for every bounded measurable
function f : Ω→ R, we have

∫
x∈Ω

d(νQ)
dπ (x)f(x)π(dx) =

∫
x∈Ω

Q
(

dν
dπ

) (x)f(x)π(dx). (53)

Since if we add a constant to f , both sides increase by this constant, we can assume without
loss of generality that f is non-negative. Under this assumption, we have∫

x∈Ω

d(νQ)
dπ (x)f(x)π(dx) =

∫
x∈Ω

f(x)(νQ)(dx)

=
∫
x,y∈Ω

f(x)ν(dy)Q(y,dx) =
∫
x,y∈Ω

f(y)ν(dx)Q(x,dy)

=
∫
x,y∈Ω

f(y)dν
dπ (x)π(dx)Q(x,dy)

by the monotone convergence theorem (using the non-negativity of f)

= lim
M→∞

∫
x,y∈Ω

f(y) min
(

dν
dπ (x),M

)
π(dx)Q(x,dy)

using the reversibility of Q (in the equivalent bounded measurable test function formulation)

= lim
M→∞

∫
x,y∈Ω

f(y) min
(

dν
dπ (x),M

)
π(dy)Q(y,dx)

by the monotone convergence theorem (using the non-negativity of f)

=
∫
x,y∈Ω

f(y)dν
dπ (x)π(dy)Q(y,dx)

=
∫
y∈Ω

f(y)

Q
(

dν
dπ

) (y)π(dy),

hence (53) and the claim of our lemma holds.

Proof [Proof of Proposition 26] We define the Hilbert space L2(π) as measurable functions f
on Ω satisfying Eπ(f2) <∞, endowed with the scalar product 〈f, g〉π =

∫
z∈Ω f(z)g(z)π(dz).

Let us define the linear operator Π(f)(z) := Eπ(f) for any f ∈ L2(π), z ∈ Ω.
Using Lemma 27 with Q = Pt, it follows that

‖νPt − π‖TV = 1
2

∫
x∈Ω

∣∣∣∣∣dνPt

dπ (x)− 1
∣∣∣∣∣π(dx)

using Jensen’s inequality, we have

≤ 1
2

√√√√∫
x∈Ω

(
dνPt

dπ (x)− 1
)2

π(dx). (54)
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Using Lemma 27 again, the integral inside the square root can be further bounded as

∫
x∈Ω

(
dνPt

dπ (x)− 1
)2

π(dx) =
∫
x∈Ω


Pt

(
dν
dπ

) (x)− 1


2

π(dx)

=
∫
x∈Ω


(Pt −Π)

(
dν
dπ

) (x)


2

π(dx) =
∫
x∈Ω


(P−Π)t

(
dν
dπ

) (x)


2

π(dx)

=
∫
x∈Ω


(P−Π)t

(
dν
dπ − 1

) (x)


2

π(dx) =
〈

dν
dπ − 1, (P−Π)2t

(
dν
dπ − 1

)〉
π

≤ ‖P−Π‖2tπ

∥∥∥∥∥dν
dπ − 1

∥∥∥∥∥
2

π

= (1− γ∗)2t
∥∥∥∥∥dν

dπ − 1
∥∥∥∥∥

2

π

,

and the claim of the proposition follows by substituting this into (54).

Now we are ready to prove our convergence bound in total variation distance.
Proof [Proof of Theorem 15] From Corollary 25, we know that the absolute spectral gap
of SGS satisfies that γ∗ ≥ KSGS (defined in (19)), and Proposition 26 implies that

∥∥∥νPt
SGS − πρ

∥∥∥
TV
≤

√√√√√Eπρ

( dν
dπρ

)2
− 1 · (1− γ∗)t

≤

√√√√√Eπρ

( dν
dπρ

)2
− 1 · (1−KSGS)t.

Appendix C.3. Proof of Theorem 13

Proof [Proof of Theorem 13] From Theorem 10, it follows that if ρ is chosen as in (21),
then

W1(πρ, π) ≤ ε

2 ·
√
d

√
m1

. (55)

From Proposition 1 part (ii) in Durmus and Moulines (2019) it follows that for the initial
distribution δθ? (Dirac measure at θ?), we have

W1(δθ? , π) ≤W2(δθ? , π) ≤
√
d

√
m1

,

and hence by combining this with (55) using the triangle inequality and the assumption
ε ≤ 1, it follows that

W1(δθ? , πρ) ≤
3
2

√
d

√
m1

.
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Now from Theorem 11, it follows that the coarse Ricci curvature of SGS is lower bounded
by

KSGS := ρ2m1
1 + ρ2m1

,

and therefore by Corollary 21 of Ollivier (2009), we have

W1(P tSGS(θ?, ·), πρ) ≤W1(δθ? , πρ) · (1−KSGS)t ≤ ε

2 ·
√
d

√
m1

.

The claim of the theorem now follows by the triangle inequality.

Appendix C.4. Complexity Bounds for Implementing SGS by Rejection
Sampling

The following bound is a standard result in rejection sampling; see for instance Section 2.3
of Robert and Casella (2013).

Lemma 28 Suppose that µ(z) = µ̃(z)/Z̃ is the target density on Rd, and ν(z) is the pro-
posal density (both absolutely continuous w.r.t. the Lebesgue measure). Here µ̃(z) is the
unnormalized target and Z̃ is the normalising constant (which is typically unknown). Sup-
pose that the condition

µ̃(z) ≤Mν(z) (56)

holds for some constant M < ∞ for every z ∈ Rd . Under this assumption, if we take
samples Z1,Z2, . . . from ν and accept Zi with probability µ̃(Zi)

Mν(Zi) , then the accepted samples
will be distributed according to µ. Moreover, the expected number of samples taken until the
first acceptance is equal to M/Z̃.

The following lemma gives a complexity bound for rejection sampling for log-concave dis-
tributions. We assume that we have access to an approximation of the minimum of the
strongly convex and smooth potential U , which will be denoted by z̃. The quality of this
approximation is taken into account in the proposal distribution using the norm of ∇U(z̃).

Lemma 29 (Rejection sampling upper bound for log-concave densities) Suppose
that µ(z) ∝ exp(−U(z)) is a distribution on Rd such that U is twice differentiable and

AId � ∇2U(z) � BId (57)

for some 0 < A ≤ B (strongly convex and smooth). Let z∗ be the unique minimizer of U , z̃
another point (an approximation of z∗), and ν(z) = N (z; z̃, Ã−1Id), where

Ã = A+ ‖∇U(z̃)‖2
2d −

√
‖∇U(z̃)‖4

4d2 + A‖∇U(z̃)‖2
d

. (58)
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Suppose that we take samples Z1,Z2, . . . from ν, and accept them with probability

P(Zj is accepted) = exp
(
−‖∇U(z̃)‖2

2(A− Ã)
− [U(z)− U(z̃))] + Ã‖z− z̃‖2

2

)
.

Then these accepted samples are distributed according to µ. Moreover, the expected number
of samples taken until one is accepted is less than or equal to

(
B/Ã

)d/2
·exp

[
‖∇U(z̃)‖2

2

(
1

A−Ã −
1
B

)]
.

Proof The proposal density equals

ν(z) = N (z; z̃, Ã−1Id)

= exp
(
−Ã‖z− z̃‖2

2

)
·
(
Ã

2π

)d/2
.

We define the unnormalized version of µ as

µ̃(z) = exp(−[U(z)− U(z̃)]) ·
(
Ã

2π

)d/2
.

Notice that

U(z)− U(z̃) =
〈∫ 1

t=0
∇U(z̃ + t(z− z̃))dt, z− z̃

〉
.

By the intermediate value theorem, there is some z(t) such that

=
〈
∇U(z̃), z− z̃

〉
+
〈

z− z̃,
(∫ 1

t=0
t∇2U(z(t))dt

)>
(z− z̃)

〉
,

so using the assumption (57) it follows that

≥ −‖∇U(z̃)‖‖z− z̃‖+ A

2 ‖z− z̃‖2.

Based on this, one gets

µ̃(z)
ν(z) ≤ exp

(
‖∇U(z̃)‖ · ‖z− z̃‖ − A− Ã

2 ‖z− z̃‖2
)
≤ exp

(
‖∇U(z̃)‖2

2(A− Ã)

)
.

Hence we have µ̃(z) ≤Mν(z) for M = exp
(
‖∇U(z̃)‖2

2(A−Ã)

)
.

For the normalising constant, we have

Z̃ =
∫

z∈Rd
µ̃(z)dz = exp(U(z̃)− U(z∗)) ·

(
Ã

2π

)d/2
·
∫

z∈Rd
exp(−(U(z)− U(z∗)))dz

using Taylor’s expansion with second order remainder term, and assumption (57) yields

≥ exp(U(z̃)− U(z∗)) ·
(
Ã

2π

)d/2
·
∫

z∈Rd
exp

(
−B2 ‖z− z∗‖2

)
dz
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=
(
Ã

B

)d/2
· exp

(
U(z̃)− U(z∗)

)
≥
(
Ã

B

)d/2
exp

(
‖∇U(z̃)‖2

2B

)
,

where in the last step we have used the fact that for z′ = z̃− ‖∇U(z̃)‖
B , we have

U(z̃)− U(z∗)

≥ U(z̃)− U(z′) =
〈∫ 1

t=0
∇U(z̃ + t(z′ − z̃))dt, z̃− z′

〉

using the fact that z∗ is the minimum of U .

By the intermediate value theorem, there is some z̃(t) ∈ Rd such that

=
〈
∇U(z̃), z̃− z′

〉
+
〈

z̃− z′,
(∫ 1

t=0
t∇2U(z̃(t))dt

)
· (z̃− z′)

〉

≥
〈
∇U(z̃), z̃− z′

〉
− B

2 ‖z̃− z′‖2 = ‖∇U(z̃)‖2
2B .

Now it follows by Lemma 28 and the above bound on Z̃ that the expected number of samples
until the first acceptance is less than or equal to

E(Ã) := exp

‖∇U(z̃)‖2
(

1
2(A− Ã)

− 1
2B

)(B
Ã

)d/2
.

The parameter Ã in (58) is chosen such that E(Ã) is minimized. Note that the minimizer
of E(Ã) is the same as the minimizer of

log(E(Ã)) = d

2 log(B)− ‖∇U(z̃)‖2
2B + ‖∇U(z̃)‖2

2(A− Ã)
− d

2 log(Ã).

It is easy to check that this is a strictly convex function of Ã on the interval (0, A), and
hence the unique minimum is taken at a point where the derivative is zero. This point,
denoted by Ãmin, thus satisfies

∂ log(E(Ã))
∂Ã

∣∣∣∣∣
Ã=Ãmin

= ‖∇U(z̃)‖2

2(A− Ã)2 −
d

2 ·
1
Ã

= 0.

Hence by rearrangement

(Ã−A)2 − (‖∇U(z̃)‖2/d)Ã = 0
Ã2 − (2A+ ‖∇U(z̃)‖2/d)Ã+A2 = 0

Ã = (2A+ ‖∇U(z̃)‖2/d)±
√

(2A+ ‖∇U(z̃)‖2/d)2 − 4A2

2
= A+ ‖∇U(z̃)‖2/(2d)±

√
‖∇U(z̃)‖4/(4d2) +A‖∇U(z̃)‖2/d.
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Only the solution with the − sign falls in the interval (0, A), hence it is the minimizer of
M/Z̃.

Proof [Proof of Proposition 1] The fact that the accepted samples are distributed according
to Πρ(zi|θ) and the formula (9) about the expected number of samples until acceptance
follows from Lemma 29.

LetG := ‖∇Vi(z̃i(θ))‖, then Ãi = 1/ρ2+mi+G2/(2di)−
√
G4/(4d2

i ) +G2 (1/ρ2 +mi
)
/di,

and we have

log(Ei) = di
2 log

 1/ρ2 +Mi

1/ρ2 +mi +G2/(2di)−
√
G4/(4d2

i ) +G2 (1/ρ2 +mi
)
/di


+ G2

2

 1√
G4/(4d2

i ) +G2 (1/ρ2 +mi
)
/di −G2/(2di)

− 1
1/ρ2 +Mi

 . (59)

For the first part, notice that

log

 1/ρ2 +Mi

1/ρ2 +mi +G2/(2di)−
√
G4/(4d2

i ) +G2 (1/ρ2 +mi
)
/di


= log

(
1/ρ2 +Mi

1/ρ2 +mi

)
+ log

 1/ρ2 +mi

1/ρ2 +mi +G2/(2di)−
√
G4/(4d2

i ) +G2 (1/ρ2 +mi
)
/di


= log

(
1 + ρ2(Mi −mi)

1 + ρ2mi

)
+ log

(
1

1 + c−
√
c2 + 2c

)
,

where c = G2/(2di)
1/ρ2+mi . Now using the fact that log(1+x) ≤ x for x > 0, and that log

(
1

1+c−
√
c2+2c

)
≤

√
2c for c ≥ 0, it follows that we have

di
2 log

 1/ρ2 +Mi

1/ρ2 +mi +G2/(2di)−
√
G4/(4d2

i ) +G2 (1/ρ2 +mi
)
/di


≤ di

2

(
ρ2(Mi −mi)

1 + ρ2mi
+ G√

di(1/ρ2 +mi)

)
.

For the second part (59),

G2

2

 1√
G4/(4d2

i ) +G2 (1/ρ2 +mi
)
/di −G2/(2di)

− 1
1/ρ2 +Mi


= di√

1 + 4
(
1/ρ2 +mi

)
di/G2 − 1

− G2

2 ·
1

1/ρ2 +Mi
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using the fact that 1√
1+x−1 ≤

2√
x
for x ≥ 2, for G ≤

√
2di(1/ρ2 +mi), we have

≤ G ·
√
di√

1/ρ2 +mi
− G2

2 ·
1

1/ρ2 +Mi
.

Hence by combining these terms, we obtain that for G ≤
√

2di(1/ρ2 +mi),

log(Ei) ≤
di
2
ρ2(Mi −mi)

1 + ρ2mi
+G · 3

2 ·
√
di√

(1/ρ2 +mi)
− G2

2 ·
1

1/ρ2 +Mi

Under the first part of assumption (10), ρ2(2di(Mi − mi) − mi) ≤ 1, one can check that
di
2
ρ2(Mi−mi)

1+ρ2mi
≤ 1

4 . Using the second part of (10), G ≤ 2
7 ·
√

1/ρ2+mi√
di

, it follows that
G · 3

2 ·
√
di√

(1/ρ2+mi)
− G2

2 ·
1

1/ρ2+Mi
≤ log(2)− 1

4 , so log(Ei) ≤ log(2) and our claim holds.

Appendix C.5. Proof of Theorems 14 and 15

The next two lemmas will be used for obtaining our total variation distance convergence
rates.

Lemma 30 Suppose that U : Rd → R is continuously differentiable and M -gradient-
Lipschitz. Then for every x ∈ Rd, we have

‖∇U(x)‖2 ≤ 2M(U(x)− inf
x∈Rd

U(x)).

Proof Let x′ = x−∇U(x)/M , then we have

U(x)− U(x′) =
∫ 1

t=0

〈
∇U(x + t(x′ − x)),x− x′

〉
dt

=
〈
∇U(x),x− x′

〉
+
∫ 1

t=0

〈
∇U(x + t(x′ − x))−∇U(x),x− x′

〉
dt

using the M -gradient Lipschitz property

≥
〈
∇U(x),x− x′

〉
−
∫ 1

t=0
Mt‖x− x′‖2dt

≥ ‖∇U(x)‖2
2M ,

hence the result.

Lemma 31 Suppose that Assumptions (A0), (A2), (A4), (A6) and det
(∑b

i=1miA>i Ai

)
>

0 hold. Let θ? be the unique minimizer of U(θ) = ∑b
i=1 Ui(Aiθ), and

ν(θ) = N

θ;θ?,

 b∑
i=1

MiA>i Ai

−1
 .
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If b = 1, d = d1, and A1 is of full rank, then for any ρ > 0, we have ν(θ)
πρ(θ) ≤ Cρ for every

θ ∈ Rd, where

Cρ := (1 + ρ2M1)d/2 ·
(
M1
m1

) d
2

. (60)

More generally, for multiple splitting, for ρ2 ≤ 1
6σ2
U
, we have ν(θ)

πρ(θ) ≤ Cρ for every θ ∈ Rd,
where

Cρ := exp
(
dσ2

U + ρ4(2 + d)σ4
U

)
·
b∏
i=1

(1 + ρ2Mi)di/2 ·
det

(∑b
i=1MiA>i Ai

)1/2

det
(∑b

i=1miA>i Ai

)1/2 , (61)

with σ2
U defined as in (15).

Proof Let Uρ be defined as in (7). By (33) and (31), we have

exp(−Uρ(θ)) ≤ exp
(
−U(θ)

)
·
b∏
i=1

1(
1 + ρ2mi

)di/2 · exp

 b∑
i=1

ρ2 ∥∥∇Ui(Aiθ)
∥∥2

2(1 + ρ2mi)

 ,
exp(−Uρ(θ)) ≥ exp

(
−U(θ)

)
·
b∏
i=1

1(
1 + ρ2Mi

)di/2 · exp

 b∑
i=1

ρ2 ∥∥∇Ui(Aiθ)
∥∥2

2(1 + ρ2Mi)

 . (62)

Using (62), we have

πρ(θ) = exp(−Uρ(θ))
Zρ

≥ exp(−U(θ))
Zρ

· 1∏b
i=1(1 + ρ2Mi)di/2

≥
exp

(
−U(θ?)− 1

2(θ − θ?)>(∑b
i=1MiA>i Ai)(θ − θ?)

)
Zρ

· 1∏b
i=1(1 + ρ2Mi)di/2

. (63)

To lower bound πρ(θ), we need to upper bound Zρ. Using Lemma 21, we can do this based
on an upper bound on Z. Using (A4), we have

Z =
∫
Rd

exp

− b∑
i=1

Ui(Aiθ)

 dθ

≤ exp

− b∑
i=1

Ui(Aiθ
?)

∫
Rd

exp

− b∑
i=1

mi

2
∥∥Aiθ −Aiθ

?
∥∥2

dθ

= exp
(
−U(θ?)

)
(2π)d/2det

 b∑
i=1

miA>i Ai

−1/2

. (64)
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Note that the proposal density is of the form

ν(θ) = N

θ;θ?,

 b∑
i=1

MiA>i Ai

−1


= exp

−1
2(θ − θ?)>(

b∑
i=1

MiA>i Ai)(θ − θ?)

 det
(∑b

i=1MiA>i Ai

)1/2

(2π)d/2
. (65)

Under the assumption that b = 1, d1 = d and A1 is of full rank, we have Zρ = Z by
Lemma 21. The claim of the lemma in this single splitting case follows by comparing (65),
(63) and using (64).

More generally, from Lemma 21, it follows for ρ2 ≤ 1
6σ2
U

that

Zρ ≤ Z exp
(
Eπ(B̄(θ)) + ρ4(2 + d)σ4

U

)
≤ exp

(
−U(θ?)

)
(2π)d/2det

 b∑
i=1

miA>i Ai

−1/2

exp
(
dσ2

U + ρ4(2 + d)σ4
U

)
,

where, in the last line, we used the fact that Eπ(B̄(θ)) ≤ dσ2
U , see Lemma 20. The claim

of the lemma in this multiple splitting case now follows by comparing (65) and (63), and
using the above upper bound on Zρ.

Now we are ready to prove our convergence bound in total variation distance.
Proof [Proof of Theorem 14] From Propositions 8 and 7, a sufficient condition to satisfy
‖πρ − π‖TV ≤ ε/2 is to have

ρ2 ≤ ε

dM1
.

From Corollary 25, we know that the absolute spectral gap of SGS satisfies that γ∗ ≥ KSGS
(defined in (19)), and Proposition 26 implies that

∥∥∥νPt
SGS − πρ

∥∥∥
TV
≤

√√√√√Eπρ

( dν
dπρ

)2
− 1 · (1− γ∗)t

≤

√√√√Eν

(
dν
dπρ

)
· (1−KSGS)t

≤
√
Cρ(1−KSGS)t,

where in the last step we have used Lemma 31 (Cρ is defined as in Equation 60). By some
algebra, using the definition of tmix(ε; ν), and the fact that 1

log(1/(1−x)) ≤
1
x for 0 < x < 1,

the above bound implies that ∥∥∥∥νPt(ε)
SGS − πρ

∥∥∥∥
TV
≤ ε

2 ,
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with the choice

t ≥
log

(
2
ε

)
+ C/2

KSGS
. (66)

Here

C = 5d
8 + d

2 log
(
M1
m1

)
.

With the above choice for ρ2 and the condition (66), the claim of Theorem 14 then follows
by the triangle inequality.

Proof [Proof of Theorem 15] From (16), we have for ρ2 ≤ 1
6σ2
U
,

‖πρ − π‖TV ≤ ρ2 1
2

b∑
i=1

diMi + ρ4σ4
U

(
2 + 3

2d
)
.

Then, a sufficient condition to satisfy ‖πρ − π‖TV ≤ ε/2 is to have

ρ2 1
2

b∑
i=1

diMi + ρ4σ4
U

(
2 + 3

2d
)
≤ ε

2

ρ4σ4
U

(
2 + 3

2d
)

+ 1
2ρ

2
b∑
i=1

diMi −
ε

2 ≤ 0

R2σ4
U

(
2 + 3

2d
)

+R
1
2

b∑
i=1

diMi −
ε

2 ≤ 0, with R = ρ2.

This inequality is satisfied under the condition

ρ2 ≤

b∑
i=1

diMi


√√√√√1 + 8εσ4

U

(
2 + 3

2d
) b∑

i=1
diMi

−2

− 1


4σ4

U

(
2 + 3

2d
) ∧ 1

6σ2
U

.

From Corollary 25, we know that the absolute spectral gap of SGS satisfies that γ∗ ≥ KSGS
(defined in (19)), and Proposition 26 implies that

∥∥∥νPt
SGS − πρ

∥∥∥
TV
≤

√√√√√Eπρ

( dν
dπρ

)2
− 1 · (1− γ∗)t

≤

√√√√Eν

(
dν
dπρ

)
· (1−KSGS)t

≤
√
Cρ(1−KSGS)t,
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where in the last step we have used Lemma 31 (Cρ is defined as in (61)). Again, by some
algebra, using the definition of tmix(ε; ν), and the fact that 1

log(1/(1−x)) ≤
1
x for 0 < x < 1,

the above bound implies that ∥∥∥∥νPt(ε)
SGS − πρ

∥∥∥∥
TV
≤ ε

2 ,

with the choice

t ≥
log

(
2
ε

)
+ C/2

KSGS
. (67)

Here

C = dσ2
U + ρ4(2 + d)σ4

U + 17
32

b∑
i=1

di + 1
2 log

det
(∑b

i=1MiA>i Ai

)
det

(∑b
i=1miA>i Ai

)
 .

With the above choice for ρ2 and the condition (67), the claim of Theorem 15 then follows
by the triangle inequality.

Appendix C.6. Additional Details for the Toy Gaussian Example

This section gives additional details concerning the results depicted on Figure 2. For each
splitting strategy introduced in Section 3.2, we give explicit formulas for the bounds on
both TV and 1-Wasserstein distances.

Appendix C.6.1. Splitting Strategy 1

Starting from an initial value θ[0] ∼ ν, we now show the explicit form of the Markov tran-
sition kernel νP tSGS after t iterations. To this purpose, we take advantage that the θ-chain
corresponds in this case to an auto-regressive process of order 1. Indeed, the conditional
distributions of θ and z1:b writing

Πρ(zi|θ) = N
(

zi;
µρ2 + θσ2

σ2 + ρ2 ,
ρ2σ2

ρ2 + σ2

)
,∀i ∈ [b]

Πρ(θ|z1:b) = N
(
θ; z̄, ρ

2

b

)
, where z̄ := 1

b

b∑
i=1

zi,

we have

PSGS := Pr
(
θ[t]|θ[t−1]

)
= N

(
θ[t]; σ2

σ2 + ρ2 θ
[t−1] + ρ2

σ2 + ρ2µ,
2ρ2σ2 + ρ4

b(ρ2 + σ2)

)
.

By a straightforward induction, it follows that the Markov transition kernel νP t after t
iterations and with initial distribution ν has the form

νP tSGS := Pr
(
θ[t]|θ[0] ∼ ν

)
= N

θ[t];
(

σ2

σ2 + ρ2

)t
θ[0] + ρ2µ

σ2 + ρ2

t−1∑
i=0

(
σ2

σ2 + ρ2

)i
,
2ρ2σ2 + ρ4

b(ρ2 + σ2)

t−1∑
i=0

(
σ4

(σ2 + ρ2)2

)i .
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Appendix C.6.2. Splitting Strategy 2

Similar calculus as in the above section can be undertaken by simply replacing ρ2 by ρ2b.
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