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Abstract

Bayesian hierarchical models are powerful tools for learning common latent features across
multiple data sources. The Hierarchical Dirichlet Process (HDP) is invoked when the
number of latent components is a priori unknown. While there is a rich literature on
finite sample properties and performance of hierarchical processes, the analysis of their
frequentist posterior asymptotic properties is still at an early stage. Here we establish
theoretical guarantees for recovering the true data generating process when the data are
modeled as mixtures over the HDP or a generalization of the HDP, which we term boosted
because of the faster growth in the number of discovered latent features. By extending
Schwartz’s theory to partially exchangeable sequences we show that posterior contraction
rates are crucially affected by the relationship between the sample sizes corresponding
to the different groups. The effect varies according to the smoothness level of the true
data distributions. In the supersmooth case, when the generating densities are Gaussian
mixtures, we recover the parametric rate up to a logarithmic factor, provided that the
sample sizes are related in a polynomial fashion. Under ordinary smoothness assumptions
more caution is needed as a polynomial deviation in the sample sizes could drastically
deteriorate the convergence to the truth.

Keywords: Bayesian asymptotics, Dirichlet process, hierarchical process, nonparametric
density estimation, partial exchangeability, Pitman-Yor process, posterior contraction rates

1. Introduction

The probabilistic modeling of data with complex forms of dependence, beyond the simplis-
tic exchangeability assumption, has been a major focus in Bayesian Statistics and Machine
Learning for the last two decades. Among the wealth of contributions to the area, the hier-
archical Dirichlet process (HDP), introduced in Teh et al. (2006), stands out as a powerful
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tool for unsupervised learning. It assumes that the generative process encodes the original
sample into meaningful latent features or categories. A typical example comes from infor-
mation retrieval (Cowans, 2004), where the content of a collection of documents is unraveled
by assigning each word of a document to one out of several topics, that is, latent features.
Topics are shared across different documents and their number is learned directly from the
data, providing an effective nonparametric version of probabilistic topic models such as the
latent Dirichlet allocation (Blei et al., 2003). These key properties have spurred numerous
applications beyond information retrieval, including statistical genetics (Xing et al., 2007;
Elliott et al., 2019), computer vision (Sudderth et al., 2008; Haines and Xiang, 2011), cog-
nitive science (Griffiths et al., 2007) and robotics (Nakamura et al., 2011; Taniguchi et al.,
2018), where it is typically not possible to fix or bound a priori the number of features.
Each element of a group or subpopulation is assigned to a latent feature with an unknown
probability which is learned from the data through a posterior distribution, thus allowing
for mixed membership and borrowing of information. This is achieved through a hierarchy
of Dirichlet processes (DPs) by modeling the feature distribution in each subpopulation as a
DP conditionally on a common parent distribution that is also a DP. The hierarchical struc-
ture impacts the rate at which new latent features are discovered among the observations,
as the overall sample size n increases: in fact, for the HDP it leads to a slowdown from the
classical log(n) rate of the DP to the iterated log(log(n)). By considering a natural general-
ization of the HDP where, in place of a DP, the parent distribution is a Pitman-Yor process
(PY) (Pitman and Yor, 1997), one gains modeling flexibility and is also able to recover the
log(n) growth. We term this class of models boosted hierarchical Dirichlet process (bHDP)
given it speeds up the growth rate of the number of features, while preserving the DP at
the subpopulation level. These growth rates follow from the general distribution theory for
hierarchical processes in Camerlenghi et al. (2019).
It is important to remark that the HDP and general hierarchical processes (Teh et al., 2006;
Teh and Jordan, 2010; Camerlenghi et al., 2017, 2019) fall within the framework of partial
exchangeability, which represents the natural probabilistic dependence structure for multi-
ple populations. In fact, a wide array of partially exchangeable models has been proposed in
the literature and we refer the reader to the reviews in, e.g., Foti and Williamson (2013) and
Quintana et al. (2022). However, these extensive studies focus on distributional properties,
while the analysis of their frequentist asymptotic behaviour is still at its early stage. This
paper provides a two-fold contribution in this direction: (1) we generalize Schwartz’s theory
(Schwartz, 1965), which is pivotal to frequentist asymptotics in the exchangeable case, to
the partially exchangeable setup; (2) we derive posterior contraction rates for multivariate
mixtures with respect to the bHDP, which includes the HDP as a special case, and estab-
lish that they crucially depend on the relation between the sample sizes corresponding to
different groups.
As far as the extension of Schwartz’s theory is concerned, it is worth to recall its key ideas
and modern use, first pioneered in Ghosal et al. (1999) for DP mixtures, in the simple ex-
changeable setup. The basic form of frequentist validation of Bayesian inference is posterior
consistency, that is, the convergence of the posterior to the true data generating distribu-
tion. Schwartz’s theory provides a general framework for dealing with consistency when the
posterior distribution is not available in closed form. It relies on two ingredients: (a) the ex-
istence of a sequence of tests that separates the true P0 from all the probability distributions
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that do not lie in any neighborhood of P0 with exponentially small errors as the number
of observations grows (i.e., an exponentially consistent test); (b) sufficient prior mass on
neighborhoods of P0 defined in terms of the Kullback-Leibler divergence. In a nutshell, one
has to find an exponentially consistent test by appointing a high-mass-low-entropy sieve
and, then, combine it with the Kullback-Leibler support condition to ensure consistency.
Suitable refinements allowed to derive also contraction rates for densities on the real line
(Ghosal and van der Vaart, 2001, 2007) and corresponding results for multivariate densities
(Tokdar, 2006; Shen et al., 2013; Canale and De Blasi, 2017). As pointed out in Wu and
Ghosal (2010), the extension to the multivariate setting is highly non–trivial and requires
the construction of a new sieve with low entropy and high mass. In Section 4 this theory
is extended to partially exchangeable models, with special focus on the case of different
sample sizes across groups.
As for the derivation of posterior contraction rates, our asymptotic analysis aims at provid-
ing theoretical guarantees for multivariate mixtures with respect to hierarchical processes
to recover the true data generating distributions, when data are recorded under different,
though related, experimental conditions. Each experimental condition identifies a popula-
tion, or a group: while the number of groups is kept fixed, asymptotics is investigated as
the number of observations in each group diverges at possibly different rates. To the best
of our knowledge, only Nguyen (2016) dealt with this topic: they focused on the recov-
ery of the parent mixing distribution of the HDP rather than on the true data-generating
processes, and under the different asymptotic regime of a divergent number of populations.
However, in many applications the number of groups is bounded by the experiment (for
example, data clustered by blood types or by logfiles) and, thus, the natural asymptotic
regime corresponds to letting the number of observations within each group diverge, as
pursued here. More precisely, we determine conditions that yield posterior convergence
rates for the bHDP mixture model according to metrics on the product space that are built
on popular distances such as the total variation and the Hellinger. We stress that, since
the bHDP includes the HDP as a special case, this also provides an asymptotic validation
of the HDP mixture model. Our extension of Schwartz’s theory to partially exchangeable
models proves crucial for these achievements, which may be summarized as follows: (i) the
simultaneous reproduction of the distributions of all subpopulations is very different from
reproducing them one at a time; (ii) if all groups have the same number of observations
(asymptotically), Schwartz’s theory for exchangeable sequences may be easily extended to
partially exchangeable sequences; (iii) if the groups have a different number of observations,
one has to develop a non-trivial extension of the classical theory. A crucial difference with
respect to the exchangeable case is that we can not directly build a frequentist test that
separates the true distributions with exponentially bounded errors with respect to the to-
tal number of observations. However, in Lemma 5 we manage to build an exponentially
consistent test with respect to the minimum of the group sizes (n). We then require the
prior to put sufficient mass on a reinforced multivariate Kullback–Leibler neighborhood, as
will be made clear in Section 4. This is of great importance in many applied settings where
the observations in each group grow at different rates. For instance, for patients grouped
according to blood type one cannot assume the same growth rate across groups as there
will be consistently more patients with type 0+ than AB−. Although in a different mod-
eling framework, different sequence lengths have been shown to play a role also in Wei and
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Nguyen (2022). When applied to the bHDP mixture model, the fulfillment of the reinforced
Kullback–Leibler condition forces a maximum discrepancy between the smallest and the
largest cardinality of the subpopulations (n and n∨, respectively). In the supersmooth case
(see Definition 2 below), when the largest increases at most polynomially with respect to
the smallest, i.e., n∨ . nk for some k > 0, we find a parametric rate of convergence

√
n up

to a logarithmic factor. If the rate of increase is faster than polynomial, the contraction rate
progressively deteriorates and fails to converge whenever n∨ & en

γ
, where γ is a constant

that depends on the dimension of the sample space and on the tails of the true mixing dis-
tributions. In the ordinary smooth case, the asymptotic divergence of the ratio n∨/n enters
even more explicitly in determining the posterior convergence rate. The minimax rate is
achieved when the sample sizes are asymptotically of the same order and even a polynomial
deviation in the sample sizes suffices to yield drastically deteriorated rates of convergence to
the truth. This suggests to use particular care when analyzing data about populations that
differ greatly in size, such as the spread of a virus in countries where artificial immunization
may be available or not.
The paper is organized as follows. After recalling some preliminary notions in Section 2, in
Section 3 we state the main result on the contraction rates for the bHDP mixture model
(Theorem 3). The following sections develop the analytical tools for achieving Theorem 3.
In Section 4 we extend Schwartz’s theory to partially exchangeable models, with a particu-
lar focus on the case of different cardinalities between groups. This is applied to the bHDP
mixture model in Section 5, whereas future developments are discussed in Section 6. All
proofs are deferred to Section 7.

2. Background and Preliminaries

In this section we give a concise summary of the preliminary concepts and notation that
underlie the rest of the work.

Sets and real functions. Given a set A, we indicate with Ac its complement and with
|A| its cardinality. Let (an)n∈N and (bn)n∈N be two sequences on R such that an →∞ and
bn →∞ as n→ +∞. We write an � bn if they are of the same order as a function of n, i.e.,
anb
−1
n → K as n→ +∞, where K 6= 0; if K = 0, we write an � bn. Moreover, we use the

notation an . bn if an ≤ c bn holds for all n and some absolute constant c > 0; similarly for
an & bn. The negative part of the logarithm is denoted by log−(·) = max(− log(·), 0). The
ascending factorial of β ∈ R is β[n] = Γ(β + n)/Γ(β) for any integer n ≥ 0, where Γ is the
gamma function. Given (ai)

m
i=1 ∈ Rm, we write a = min(a1, . . . , am) and a+ = a1 + · · ·+am.

For x > 0, let dxe = min{n ∈ N : n ≥ x} and bxc = dx− 1e.

Measure theory. Let X denote a Polish space and let PX indicate the space of probability
distributions on X, endowed with the topology of weak convergence. In most cases we will
write P = PX. We denote by Pm =

∏m
i=1 P the Cartesian product space with product

topology. Let P ∈ P. When P is absolutely continuous with respect to a measure λ, p
denotes its density function. The n-fold product probability measure is Pn =

∏n
i=1 P ∈

Pn and pn the corresponding density. If φ : X → R is a measurable function such that∫
|φ|dP < ∞, then P (φ) denotes the expected value of φ with respect to the probability
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P ∈ P. A test is any measurable function φ : Xk → [0, 1] for some k ∈ N. The Lebesgue
measure on A ⊂ Rn is denoted by Ln(A).

Metric spaces. The Kullback–Leibler divergence between two densities p1 and p2 is
KL(p1; p2) = P1(log(p1/p2)); the Hellinger distance is dH(p1, p2) =

∫
(
√
p1 −

√
p2)2 dλ;

the total variation distance is TV(p1, p2) = 2−1
∫
|p1 − p2| dλ. The Ls–norm of a density p

is ‖p‖s = (
∫
|p|s dλ)1/s, so that TV(p1, p2) = 2−1‖p1− p2‖1. Similarly, the `s–norm in Rn is

‖(qi)ni=1‖s = (
∑n

i=1 |qi|s)1/s. For any ε > 0, a subset Tε of a metric space (T, d) is an ε-net
if for every t ∈ T there exists t∗ ∈ Tε such that d(t∗, t) < ε. We call the ε-covering of T the
minimal cardinality of ε-nets Tε and denote such number by N (ε, T, d).

Gaussian mixtures. Let φΣ be the density of the d–dimensional Gaussian distribution
centered in the origin with covariance matrix Σ, where Σ is a positive-definite matrix of
dimension d × d. We denote its eigenvalues by eig1(Σ) ≤ · · · ≤ eigd(Σ). For any mixing
distribution F ∈ PRd , the multivariate Gaussian mixture density is defined as pF,Σ(x) =∫
Rd φΣ(x− y)F (dy), where x = (x1, . . . , xd), y = (y1, . . . , yd).

Dirichlet process (mixtures). The Dirichlet process is a probability distribution on the
space of distributions P first introduced by Ferguson (1973). Among the various possible
constructions, we here present the stick–breaking representation provided by Sethuraman
(1994). Here and after we will indicate independent and identically distributed random

variables as iid. Let θ > 0 and F ∗ ∈ P. Consider Zi
iid∼ F ∗ and Vi

iid∼ Beta(1, θ), with
(Vi)i≥1 independent from (Zi)i≥1, and define Wi = Vi

∏i−1
j=1 Vj . A random probability F̃ is a

Dirichlet process of base probability F ∗ and concentration parameter θ if F̃ =
∑

i≥1Wi δZi
in distribution. We write F̃ ∼ DP(θ, F ∗).
In the context of density estimation, the Dirichlet process and other discrete priors are
most notably used within mixture models, an avenue first pioneered by Lo (1984) and
extensively reviewed in Hjort et al. (2010). Here, one models a random density function as
a (Gaussian) mixture pF,Σ, with F ∼ DP(θ, F ∗) and Σ ∼ G independently, where G is a
probability measure on the space of d× d positive–definite real matrices.

Pitman-Yor process. The Pitman–Yor process or two-parameter Poisson-Dirichlet pro-
cess (Perman et al., 1992; Pitman and Yor, 1997) is a generalization of the Dirichlet process
that accounts for slower decreasing weights. Let α ∈ [0, 1), θ > −α and F ∗ ∈ P. Con-

sider Zi
iid∼ F ∗ and Vi

ind∼ Beta(1 − α, θ + iα), with (Vi)i≥1 independent from (Zi)i≥1 and
define Wi = Vi

∏i−1
j=1 Vj . A random probability F̃ ∼ PY(α, θ, F ∗) if F̃ =

∑
i≥1Wi δZi in

distribution. In particular, when α = 0 we recover the Dirichlet process.

Partial exchangeability. Let Xi = (Xi,1, . . . , Xi,ni) be a sample of size ni on X. Then
X = (X1, . . . ,Xm) is partially exchangeable if

Xi|(P̃1, . . . , P̃m)
ind∼ P̃nii for i = 1, . . . ,m;

(P̃1, . . . , P̃m) ∼ Π,
(1)

where Π is a probability on the product space of probability distributions Pm. In particular,

each group of observations is exchangeable and such that Xi|P̃i
iid∼ P̃i with P̃i ∼ Πi, the i-th

marginal distribution of Π. This work focuses on partially exchangeable models (1) where
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the realizations of Π are dominated by a σ–finite measure almost surely. For example, when
dealing with Gaussian mixture models the dominating measure is the Lebesgue measure on
Rd. Hereafter, we denote by Π(·|X) a version of the posterior distribution of (P̃1, . . . , P̃m).

3. Posterior Contraction Rates for Boosted Hierarchical Dirichlet
Process Mixtures

In this section we define the boosted HDP mixture model and we state the main result of the
paper (Theorem 3), which provides its posterior contraction rates. The proof of Theorem 3
will then be built in Sections 4 and 5.

3.1 Boosted HDP Mixtures

We introduce the boosted hierarchical Dirichlet process (bHDP) as a model for dependent
random probabilities that naturally extends the hierarchical Dirichlet process (HDP; Teh
et al. (2006)), by introducing a Pitman–Yor process as common parent distribution. Let
θ, θ∗ > 0, α∗ ∈ [0, 1) and F ∗ ∈ P. Then F = (Fi)

m
i=1 ∼ bHDP(θ, α∗, θ∗, F ∗) if

Fi|F̃
iid∼ DP(θ, F̃ ) for i = 1, . . . ,m;

F̃ ∼ PY(α∗, θ∗, F ∗).
(2)

When α∗ = 0 we recover the HDP. Here we consider the bHDP as latent nonparametric
prior within a multivariate Gaussian mixture model. Let Xi = (Xi,1, . . . , Xi,ni) be a sample
of size ni on X, i = 1, . . . ,m. We define the boosted HDP (Gaussian) mixture model for
X = (X1, . . . ,Xm) as

Xi|F ,Σ
ind∼ pniFi,Σi for i = 1, . . . ,m;

(F ,Σ) ∼ bHDP(θ, α∗, θ∗, F ∗)×Gm,
(3)

where F = (Fi)
m
i=1 are probability measures on Rd, Σ = (Σi)

m
i=1 are covariance matrices

and G is a probability measure on the space of d× d positive-definite real matrices.

3.2 Posterior Contraction Rates

The boosted HDP mixture model induces partially exchangeable observations (1) and thus
to study its contraction rates we consider this general setup.
As it is customary in posterior asymptotic analysis, we assume that the data are generated

from a fixed distribution. Specifically, we consider Xi
ind∼ Pni0,i for i = 1, . . . ,m, where

P0,i ∈ P denotes the true data generating distribution in group i. It follows that X is made
of m independent groups of observations and within each group the data are iid. It is also
assumed that each P0,i is dominated by the same measure as the realizations of P̃i and we
denote by p0,i its density. For a fixed number of groups m, we analyze the properties of
Π(·|X) for recovering (P0,i)

m
i=1 as the number of observations ni in each group diverges to

+∞ with possibly different speed. Hence, we define n = min(n1, . . . , nm) and we examine
the behavior of Π( · |X) as n→ +∞.
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To this end, we recall that every topology on the space of distributions P is inherited by
the product space Pm through the product topology. If d is a baseline metric P defined
on densities, one of the most notable classes of product metrics are the `s–metrics for
1 ≤ s < +∞, that is

ds((pi)
m
i=1, (qi)

m
i=1) =

( m∑
i=1

d(pi, qi)
s

) 1
s

. (4)

Definition 1 A sequence εn is a posterior contraction rate at (p0,i)
m
i=1 with respect to ds if

Π(ds((pi)
m
i=1, (p0,i)

m
i=1) ≥Mnεn|X)→ 0

in (
∏m
i=1 P

∞
0,i)–probability for every Mn → +∞, as n→ +∞.

We determine contraction rates for true densities p0,i that satisfy one of the two alter-
native smoothness regimes detailed below. To this aim, for a multi-index k = (k1, . . . , kd)
of nonnegative integers ki define k+ =

∑d
j=1 kj and let Dk = ∂k+/∂xk11 · · · ∂x

kd
d denote the

mixed partial derivative operator. Also denote by [−z, z]d =
∏d
i=1[−z, z] the d-dimensional

cube of side [−z, z].

Definition 2 A density function p0 on Rd is said to be

• supersmooth if there exist (F0,Σ0) such that p0 = pF0,Σ0 and 1−F0([−z, z]d) . e−c0z
r0

for every z > 0, with c0 > 0 and r0 ≥ 2.

• β-smooth if

1. The mixed partial derivatives Dkp0 of order up to k+ ≤ bβc satisfy

|(Dkp0)(x+ y)− (Dkp0)(x)| ≤ L(x)ec1‖y‖
2‖y‖β−bβc, k+ = bβc, x, y ∈ Rd;

P0

(
L+ |Dkp0|

p0

)(2β+ε)/β

<∞, k+ ≤ bβc;

for some function L : Rd → [0,∞) and positive constants c1, ε.

2. For every ‖x‖ > a, p0(x) ≤ ce−b‖x‖τ , for some positive constants a, b, c, τ .

These two smoothness regimes are standard in the analysis of contraction rates for
Bayesian nonparametric models. In particular, a density is supersmooth when it is a Gaus-
sian mixture with light tailed mixture distribution, whereas it is β-smooth when the deriva-
tives are sufficiently regular and the tails are sufficiently light (Fan, 1991).

3.3 Main result

Our main result concerns the posterior contraction rates of the boosted HDP mixture model
in the two smoothness regimes above by using the Hellinger distance as baseline metric. It
is worth mentioning that the same rates hold for the total variation distance as well. We
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make some standard assumptions on the parameters F ∗ and G of the bHDP mixture model
in (3) and ask for the existence of positive constants ak, Ck, bk and κ such that

1− F ∗([−z, z]d) ≤ b1e−C1za1 for sufficiently large z > 0,

G(Σ : eigd(Σ
−1) ≥ s) ≤ b2e−C2sa2 for sufficiently large s > 0,

G(Σ : eig1(Σ−1) ≤ s) ≤ b3sa3 for sufficiently small s > 0,

G
( ⋂

1≤j≤d

{
Σ : sj < eigj(Σ

−1) < sj(1 + t)
})
≥ b4sa41 t

a5e−C3s
κ/2
d ,

(5)

where the last claim holds for any 0 < s1 ≤ · · · ≤ sd and 0 < t < 1. For example, these
conditions hold with κ = 2 when G is equal to an inverse Wishart distribution with positive-
definite scale matrix or when G is supported on the diagonal matrices with iid eigenvalues
from a distribution with polynomial tail at 0 and an exponential tail at infinity.

Theorem 3 Let Π(·|X) be the posterior of the bHDP mixture model such that (5) hold
and the true density p0,i is supersmooth with tail parameter r0,i for i = 1, . . . ,m. Let r0 =

min(r0,1, . . . , r0,m) and assume that there exists 0 < δ < (d+d/r0 +2)−1 such that n∨ . en
δ

for n large enough. Then the posterior convergence rate is εn = n−1/2(log n∨)(d+d/r0+2)/2.

A first thing to note is that, when m = 1, Theorem 3 provides the same rate of con-
vergence of Dirichlet process mixtures, as stated for example in Ghosal and van der Vaart
(2017, Theorem 9.9). We thus get the same rate of the Dirichlet process mixture for a new
class of models for exchangeable observations, which correspond to the marginal sequences
of the bHDP mixture model. This represents an interesting by-product since the marginal
densities are not convoluted with a Dirichlet process, but rather with a mixture of Dirichlet
processes, whose base probability is distributed according to a Pitman–Yor process.
More importantly, Theorem 3 provides contraction rates as the sample sizes ni are allowed
to grow at different speed. In particular, if the size of the largest group grows at a polyno-
mial speed with respect to the smallest, i.e., n∨ . nk for some k > 0, the contraction rate is
parametric up to a logarithmic factor with respect to the cardinality of the smallest group,
namely, n−1/2 log(n)(d+d/r0+2)/2 is a contraction rate. However, when the growth becomes
exponentially fast the contraction rate deteriorates progressively, becoming non–informative
whenever n∨ & en

1/(d+d/r0+2)
. The twofold role of the tail parameter is remarkable: as r0

increases, it makes both the contraction rate faster and the range of growth rates of n∨
wider. For the sake of illustration, consider two groups of observations having cardinality
n1 and n2, respectively. Assume that (X1,X2) ∼ Norm(a1,Σ1)(n1) × Norm(a2,Σ2)(n2),
where Norm(a,Σ) is a bivariate Gaussian distribution with mean vector a and covariance
matrix Σ, so that d = 2 and r0 = +∞. If, with no loss of generality, we take n1 and n2

diverging such that n1 . n2, the posterior distribution of the densities corresponding to
the bHDP mixture model contracts towards the vector of true Gaussian distributions with
rate

√
log(n2)4/n1 whenever n2 . en1

1/4
. On the contrary, when n2 & en1

1/4
, convergence

to the truth is not ensured.
The following theorem presents the contraction rates in the ordinary smooth case.

Theorem 4 Let Π(·|X) be the posterior of the bHDP mixture model such that (5) holds
and the true density p0,i is βi-smooth with tail parameter τ for i = 1, . . . ,m. Let β =
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min(β1, . . . , βm) and assume that there exists 0 < a < 2β/d∗ such that n∨ . n1+a for n

large enough. Then the posterior convergence rate is εn = (n∨/n)1/2 n
−β/(2β+d∗)
∨ log(n∨)t,

where d∗ = d ∨ κ and t > β(d∗/τ + d∗ + 1 + d∗/β)/(2β + d∗).

In this case the posterior rate of Dirichlet process mixtures in Ghosal and van der Vaart
(2017, Theorem 9.9) is recovered when m = 1 and n∨ � n. As soon as the sample sizes
diverges at different speed, the contraction rates deteriorates by a factor proportional to the
square root of n∨/n. This implies that, in contrast to the supersmooth case, a polynomial
deviation in the sample sizes suffices to slow down the convergence, which is not guaranteed

whenever n∨ ≥ n
2β+d∗
d∗ . Note that the rate in Theorem 3 is recovered when the smoothness

level β diverges to infinity.

4. Posterior Asymptotics for Partially Exchangeable Models

In this section we extend Schwartz’s theory to general partially exchangeable models (1),
which is pivotal for obtaining the posterior convergence results on bHDP mixtures in Sec-
tion 5. More specifically, in the following Theorem 7 we establish general conditions under
which the convergence rate of the joint posterior Π( · |X) of (P̃1, . . . , P̃m) can be deduced
from the marginal rates of pi|Xi for i = 1, . . . ,m. We stress that, whenever the cardinalities
of the groups do not all grow at the same rate, this represents quite a delicate issue. In
fact, the connection between marginal and joint convergence rates is far from trivial since,
in general, posterior consistency for the marginal exchangeable sequences does not imply
the one for the partially exchangeable ones. This is evident from the next example.

Example 1 We consider consistency with respect to the weak topology and set m = 2.
Let U0 = {KL(p0,1, p1) < ε̃} × {KL(p0,2, p2) < ε̃} for some ε̃ > 0. Let Π be a prior whose
support is Uc0 and that satisfies∫

{KL(p0,1,p1)<ε}×P
Π(dp1, dp2) > 0,

∫
P×{KL(p0,2,p2)<ε}

Π(dp1, dp2) > 0, (6)

for every ε > 0. Since Π(U0) = 0, the posterior according to the partially exchangeable
model (1) satisfies Π(U0|X) = 0, L(X)–almost surely, for every n1, n2 ∈ N \ {0}. Then
Π(U0|X) = 0 almost surely with respect to Pn1

0,1 × P
n2
0,2 and, thus, also in probability. As

U0 is a neighborhood of (P0,1, P0,2) according to the weak topology, Π is not consistent
at (P0,1, P0,2). However, (6) guarantees that the marginal random measures Π1 and Π2

satisfy the KL–property of Schwartz theorem for exchangeable sequences, ensuring marginal
consistency (see, e.g., Ghosal and van der Vaart (2017, Example 6.20)).

We assume that the product metric ds in (4) is defined in terms of a metric d that
satisfies the following basic testing assumption: given p0 ∈ P, for every n ∈ N, ε > 0 and
p1 ∈ P such that d(p0, p1) > ε, there exists a test φn : Xn → [0, 1] and some universal
constants K > 0 and ξ ∈ (0, 1) such that

Pn0 (φn) ≤ e−Knε2 ; sup
d(p,p1)<ξε

Pn(1− φn) ≤ e−Knε2 . (7)

This standard requirement holds for the Hellinger distance with K = 1/8 and ξ = 1/2
(Le Cam, 1986). More generally, it holds for any metric d ≤ dH that generates convex balls

9
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(cfr. Proposition D.8 in Ghosal and van der Vaart (2017)), including the total variation
distance. It plays an important role in building marginal frequentist tests φini : Xni → {0, 1}
that separate the true distribution P0,i from the complement of any neighborhood with
exponentially small error probabilities with respect to the number of observations. A crucial
difference with respect to the exchangeable case is that we can not directly build a frequentist
test φ : Xn+ → {0, 1} that separates the true distributions (P0,i)

m
i=1 with exponentially

bounded errors with respect to the total number of observations n+, unless ni � ni′ for
every i, i′. However, in Lemma 5 we manage to build an exponentially consistent sequence
of tests with respect to the minimum group size n. Given tests {φi}mi=1, we define the
union–intersection test as

φ(x1, . . . , xm) :=

m∑
k=1

(−1)k−1
∑

I∈Im,k

∏
i∈I

φi(xi), (8)

where Im,k = {I ⊂ {1, . . . ,m} : |I| = k}. Indeed, if we restrict to φi = 1Aci
, then the

rejection region of φ is the union set A =
⋃m
i=1Ai, where with a small abuse of notation

Ai also denotes its natural injection in the product space. Hence the null hypothesis of φ
corresponds to the intersection of the null hypotheses of the tests φi, once injected in the
product space.

Lemma 5 Let X1, . . .Xm be Polish spaces and let P0,i ∈ PXi for i = 1, . . . ,m. Given
a neighborhood U0,i of P0,i and a measurable subset Pi ⊂ PXi, assume that there exists
αi, βi > 0 and a test φi : Xi → [0, 1] such that

P0,i(φ
i) < αi, sup

p∈Pi∩Uc0,i
P (1− φi) < βi,

for i = 1, . . . ,m. Then φ :
∏m
i=1 Xi → [0, 1] in (8) is a test that satisfies

1.
(∏m

i=1 P0,i

)
(φ) < m max(α1, . . . , αm);

2. sup(Pi)mi=1∈Pm∩Uc0

(∏m
i=1 Pi

)
(1− φ) < max(β1, . . . , βm);

where Pm = P1 × · · · × Pm and U0 = U0,1 × · · · × U0,m.

We apply Lemma 5 to marginal frequentist tests φini : Xni → {0, 1} with exponen-
tially small error probabilities with respect to the number of observations ni. The fact
that φ is exponentially consistent with respect to n instead of n+ leads to the need for a
reinforced Kullback–Leibler condition. We define the reinforced Kullback–Leibler variation
neighborhood as

V0,ε,n =

{
KL(p0,i; pi), V (p0,i; pi) .

n

ni
ε2 for i = 1, . . .m

}
, (9)

where V (p; q) = P | log(p/q) − KL(p; q)|2 is the Kullback–Leibler variation. Note that
(9) differs from the standard definition of Kullback–Leibler variation neighborhood V0,ε =
{KL(p0,i; pi), V (p0,i; pi) . ε2 for i = 1, . . .m} ⊃ V0,ε,n, as it introduces an explicit depen-
dence on the cardinality of the samples so to shrink each component {KL(p0,i; pi), V (p0,i; pi) .
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ε2} of the neighborhood proportionally to the ratio between n = min(n1, . . . , nm) and ni.
We added a subscript n in the notation V0,ε,n, though technically it also depends on the
whole vector (n1, . . . , nm). We observe that when ni � ni′ for every i 6= i′, V0,ε,n and V0,ε

coincide, otherwise V0,ε,n ⊃ V0,ε. The need of a reinforced Kullback–Leibler neighborhood
is strictly linked with the test φ being exponentially consistent with respect to n instead
of n+. Indeed, one can show that in such case Lemma 6 holds, whereas with the standard
Kullback–Leibler variation one would only retain a lower bound in n+; see Ghosal and
van der Vaart (2017, Lemma 8.10).

Lemma 6 Consider the general partially exchangeable model (1) with Π supported on dom-
inated distributions. Then for any ε,D > 0 and n sufficiently large, we have

∫ m∏
i=1

ni∏
j=1

pi
p0,i

(Xi,j) dΠ(p1, . . . , pm) ≥ Π(V0,ε,n)e−m(D+1)ε2n, (10)

with
(∏m

i=1 P
∞
0,i

)
–probability at least 1− (mD2ε2n)−1.

Theorem 7 Given a distance d that satisfies the basic testing assumption (7), suppose that
there exist Pn ⊂ P and a constant C > 0, such that for ε̄n ≤ εn sequences of real numbers
such that nε̄2n → +∞, the following hold for sufficiently large n:

(7.a) Π(V0,εn,n) ≥ e−Cnε2n;

(7.b) log(N (ξεn,Pn, d)) ≤ nε2n;

(7.c) Πi(Pcn) ≤ e−(C+2m+1)nε2n for i = 1, . . . ,m.

Then εn is a posterior rate of contraction at (p0,i)
m
i=1 with respect to ds, for every s ≥ 1.

The proof of Theorem 7 is postponed to Section 7.3. Here we provide some intuition on
the role of the conditions and their relation with the exchangeable case. The basic testing
assumption (7) and conditions (7.b)–(7.c) are standard when building marginal frequentist
tests φini : Xni → {0, 1} that separate the true distribution P0,i from the complement of any
neighborhood with exponentially small errors with respect to the number of observations.
In the statement of Theorem 7 we considered the same sieve (Pn)n≥1 for every marginal
distribution Πi for simplicity, since in most common frameworks, including the bHDP in (2),
Πi = Πi′ for every i, i′. However, we point out that the result may be generalized to account
for different subsets Pn,i ⊂ P, as showed in Section 7.3, which is of particular interest when
the marginal exchangeable models with respect to Πi require different sieves. Condition
(7.a) on the reinforced Kullback–Leibler variation neighborhood is needed because one can
not directly build a frequentist test φ : Xn+ → {0, 1} that separates the true distributions
(P0,i)

m
i=1 with exponentially bounded small error probabilities with respect to the total

number of observations n+, unless ni � ni′ for every i, i′.

11
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5. Derivation of Posterior Contraction Rates

Leveraging on Theorem 7, in this section we derive the contraction rates of Section 3.3 for
multivariate bHDP Gaussian mixtures towards the true vector of densities (p0,i)

m
i=1. The

conditions of Theorem 7 are divided into two separate blocks: (i) estimate of the prior mass
of Kullback–Leibler variation neighborhood (4.a); (ii) high mass and low entropy sieves for
the marginal exchangeable models (4.b; 4.c). Proposition 8 deals with (i), whereas Propo-
sition 9 deals with (ii).

Proposition 8 Let (F ,Σ) ∼ bHDP(θ, α∗, θ∗, F ∗)×Gm as in (3) and V0,ε,n be the Kullback–
Leibler variation neighborhood defined in (9). Then there exists C > 0 such that, provided
that εn → 0, Π(V0,εn,n) ≥ e−Cnε2n for sufficiently large n, where εn is given by

(i) n−1/2 log(n∨)(d+d/r0+1)/2 if p0,i = pF0,i,Σ0,i is supersmooth with Σ0,i in the support of
G for each i = 1, . . . ,m,

(ii) (n∨/n)1/2 n
−β/(2β+d∗)
∨ log(n∨)t0 , if p0,i is β0,i-smooth for each i = 1, . . . ,m and G

satisfies (5), where d∗ = d ∨ κ and t0 = β(d∗/τ + d∗ + 1 + d∗/β)/(2β + d∗).

The next proposition provides a sieve that satisfies the desired conditions, in the same
spirit of Shen et al. (2013). We point out that this holds for hierarchical models with
conditionally Dirichlet marginals and mean measure F ∗(A) = E(F̃ (A)) in general, regardless
of the prior on F̃ . First of all we define some relevant quantities:

FN,a =
{ +∞∑
j=1

ωjδzj :
+∞∑

j=N+1

ωj < ε2n, z1, . . . , zN ∈ [−a, a]d
}

;

Sσ,M = {Σ : σ2
n ≤ eig1(Σ) ≤ eigd(Σ) < σ2

n(1 + ε2n)M};

Nn =
Knε2n

log(nε2n)
; nε2n = KNn log n; aa1n = nε2n; σ−2a2

n = nε2n; Mn = n,

for K > 0 and a1 and a2 defined in (5).

Proposition 9 Let (F ,Σ) ∼ bHDP(θ, α∗, θ∗)×Gm as in (3) such that conditions (5) hold.
Define Pn = {pFn,Σn : F ∈ FNn,an ,Σ ∈ Sσn,Mn} and εn as in (i) or (ii) of Proposition 8.
If εn → 0, then log(N (εn,Pn, d)) ≤ nε2n and for every C > 0 there exists K > 0 such that
Πi(Pcn) ≤ e−Cnε2n for every i = 1, . . . ,m.

Putting together Proposition 8 and Proposition 9, we obtain the following proof of Theo-
rem 3 in the supersmooth case. Let ε2n = n−1 log(n∨)d+d/r0+1 and ε2n = n−1 log(n∨)d+d/r0+2.

In order for εn, εn → 0 as n→ +∞, we ask that n∨ . en
δ

for some 0 < δ < (d+d/r0 +2)−1.
Condition 1 on the reinforced Kullback–Leibler variation holds by Proposition 8 (i). Con-
sider now Pn as in Proposition 9 and denote with ε̃n the value of εn therein. For n large
enough, ε̃n . εn, so that (7.b) holds by Proposition 9. Finally, Πi(Pcn) ≤ e−Cnε

2
n for every

i = 1, . . . ,m and C > 0. In particular, (7.c) holds as well. The proof of Theorem 4 in the
ordinary smooth case follows similar arguments.
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6. Future Developments

In this paper we have laid the groundwork for the analysis of the frequentist properties of
models involving dependent random probability measures, such as the popular HDP and the
more general class of bHDP. In principle the same techniques can be used for the entire class
of hierarchical PY mixture models, where both the child and the parent distribution are PYs
instead than DPs. However, in order to treat this class we first need an exhaustive asymp-
totic theory for the exchangeable Pitman–Yor mixture model, which is currently missing
in the multivariate scenario. The sieve proposed in Shen et al. (2013) for the multivariate
Dirichlet process mixtures is inherently dependent on fast decreasing weights, leaving the
Pitman–Yor case currently unresolved. Still, we may use Theorem 7 to derive contraction
rates in this class of models by adding more restrictive assumptions, such as real-valued
observations (Scricciolo, 2014) or multivariate distributions with compact support.

7. Proofs

7.1 Proof of Lemma 5

First we prove that φ is a test, that is, a measurable function between 0 and 1. Sum and
product of measurable functions are indeed measurable. For every xi ∈ Xi, φi(xi) ∈ [0, 1].
We may assume that there exist independent events {Ai}mi=1 and a probability measure
P such that P(Ai) = φi(xi) for i = 1, . . . ,m. Then φ(x1, . . . , xm) = P(∪mi=1Ai), which
is clearly between 0 and 1. To prove 1. we reason in a similar way. We observe that
P0,i(φ

i) ∈ [0, 1] and consider independent events {Ai}mi=1 such that P(Ai) = P0,i(φ
i).

Then P(∪mi=1Ai) ≤
∑m

i=1 P(Ai) ≤ mmax(P(A1), . . . ,P(Am)) < mmax(α1, . . . , αm). Fi-
nally, to prove 2. we consider independent events {Ai}mi=1 such that P(Ai) = Pi(φ

i).
Then (

∏m
i=1 Pi)(1 − φ) = P((∪mi=1Ai)

c) = P(∩mi=1A
c
i ). Since (pi)

m
i=1 ∈ Uc0 , there exists

i′ ∈ {1, . . . ,m} such that pi′ ∈ U0,i′ . Hence P(∩mi=1A
c
i ) ≤ P(Aci′) < βi′ . We conclude by

observing that βi′ ≤ max(β1, . . . , βm).

7.2 Proof of Lemma 6

Define dΠ0,ε(p1, . . . , pm) ∝ 1V0,ε,n(p1, . . . , pm) dΠ(p1, . . . , pm) the restriction of Π to V0,ε,n.
The logarithm of the left hand side of (10) is bounded from below by

log(Π(V0,ε,n)) + log

(∫ m∏
i=1

ni∏
j=1

pi
p0,i

(Xi,j) Π0,ε(p1, . . . , pm)

)
.

Thus by Jensen’s inequality the probability of the complement of the event in (10) is smaller
or equal to the probability of∫

log

( m∏
i=1

ni∏
j=1

pi
p0,i

(Xi,j)

)
dΠ0,ε(p1, . . . , pm) ≤ −m(D + 1)ε2n.

Define Zi =
∫

log(
∏ni
j=1 pi(Xi,j)p0,i(Xi,j)

−1) dΠ0,ε(p1, . . . , pm). Then the expected value

E(Zi) = −niKL(pi; p0,i) > −ε2n because of the definition of V0,ε,n. Thus the probability of
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the complement of the event in (10) is smaller or equal to the one of{ m∑
i=1

Zi − E
( m∑
i=1

Zi

)
≤ −mDε2n

}
,

which, by the triangular inequality and Markov’s inequality, admits (mDε2n)−2
∑m

i=1 E(|Zi−
E(Zi)|2) as an upper bound. The Marcinkiewicz–Zygmund inequality guarantees that
E(|Zi − E(Zi)|2) ≤ niV (p0,i; pi), which is smaller or equal to ε2n by definition of V0,ε,n.

7.3 Proof of Theorem 7

We prove a more general version of Theorem 7, which accounts for potentially different
sieves for each marginal distribution.

Theorem 10 Given a distance d that satisfies the basic testing assumption (7), suppose
that there exist Pi = Pn,i ⊂ P and a constant C > 0, such that for εn ≤ εn sequences of real
numbers such that nε2n → +∞, the following hold for sufficiently large n:

1. Π(V0,εn,n) ≥ e−Cnε2n;

2. log(N (ξεn,Pi, d)) ≤ niε2n for i = 1, . . . ,m;

3. Πi(Pci ) ≤ e−(C+2m+1)nε2n for i = 1, . . . ,m.

Then εn is a posterior rate of contraction at (p0,i)
m
i=1 with respect to ds, for every s ≥ 1.

Proof Let Bn = {(pi)mi=1 ∈ Pm : ds((pi)
m
i=1, (p0,i)

m
i=1) > Mεn}. Since L1-convergence

implies convergence in probability, we shall prove that E(Π(Bn|X)) → 0 as n → +∞. We
observe that Bn ⊆ Uc0 , where U0 = U0,1×· · ·×U0,m and U0,i = {p : d(p, p0,i) ≤ m−1/sMεn}).
Moreover, by applying Theorem D.5 in Ghosal and van der Vaart (2017) with ε = m−1/sMεn
and j = 1, and by condition 2, the basic testing assumption (7) entails that there existK > 0
and a test φni with error probabilities

Pni0,i(φni) ≤ e
ε2nni

e−Knim
−2/sM2ε2n

1− e−Knim−2/sM2ε2n
;

sup
p∈Pi∩Uc0,i

Pni(1− φni) ≤ e−Knim
−2/sM2ε2n .

For M2 > K−1m2/s, both error probabilities tend to zero. We observe that any constant
larger than 1 would suffice. By Lemma 5 there exists a test φ that satisfies( m∏

i=1

Pni0,i

)
(φ) ≤ meε2nn e−Knm

−2/sM2ε2n/2

1− e−Knm−2/sM2ε2n
;

sup
(pi)mi=1∈(P1×···×Pm)∩Uc0

( m∏
i=1

Pnii

)
(1− φ) ≤ e−Knm−2/sM2ε2n .
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Let An = {
∫ ∏m

i=1

∏ni
j=1 pi(Xi,j)p0,i(Xi,j)

−1dΠ(p1, . . . , pm) ≥ e(C+2m)ε2nn}. By Bayes’ for-
mula, the posterior probability of Bn is bounded above by

φ+ 1Acn + e(C+2m)ε2nn

∫
Bn

m∏
i=1

ni∏
j=1

pi(Xi,j)

p0,i(Xi,j)
dΠ(p1, . . . , pm)(1− φ).

The expected value of the first term goes to zero by the previous argument. The one of the
second term goes to zero by Lemma 6 with D = 1 and condition 1. By leveraging Bn ⊂ Uc0 ,
the expected value of the third term is bounded above by

e(C+2m)ε2nn
(
Π((P1 × · · · × Pm)c) + e−m

−2/sKM2ε2nn
)
.

Since Π((P1 × · · · × Pm)c) ≤
∑m

i=1 Πi(Pci ), e(C+2m)ε̄2nnΠ((P1 × · · · × Pm)c) ≤ me−nε̄
2
n by

condition 3. We conclude by taking M large enough such that m−2/sKM2 > C + 2m.

7.4 Proof of Proposition 8

We first recall a known property of the Dirichlet distribution (Lemma 11) and prove an
upper bound for the mixed moments of the Pitman–Yor process (Lemma 12). Lemma 11
can be easily deduced from the proof of Lemma 6.1 in Ghosal et al. (2000). It relies on the
density of the Dirichlet distribution being bounded from below whenever the parameters
are smaller than one. Let us consider a random vector (X1, . . . , Xk−1) taking values in the
simplex Sk−1 and, for any (u1, . . . , uk−1) ∈ Sk−1, we set uk = 1 −

∑k−1
i=1 ui. Then for any

ε ≤ k−1, one has

P
( k∑
i=1

|Xi − ui| ≤ 2ε, min
1≤i≤k

Xi >
ε2

2

)
≥ P

(
max

1≤i≤k−1
|Xi − ui| ≤ ε2

)
,

where, without loss of generality, we further assumed uk = maxi=1,...,k ui. This can be used
to prove the following result. Let 1k denote the k–dimensional vector of all ones.

Lemma 11 Let (Y1,1, . . . , Y1,k, . . . , YN,1, . . . , YN,k) ∼ Dir(γ11k, . . . , γN1k) with γi ≤ 1. Then

for every ε ≤ (kN)−1 and {ui,j} s.t.
∑N

i=1

∑k
j=1 ui,j = 1,

P
( N∑
i=1

k∑
j=1

|Yi,j − ui,j | ≤ 2ε,min
i,j

Yi,j >
ε2

2

)
≥ Γ

(
k

N∑
i=1

γi

)
ε2(kN−1)

N∏
i=1

γki ,

where Γ indicates the gamma function.

Lemma 12 yields an upper bound on the mixed moments of the Pitman–Yor process. The
proof relies on the relationship between the Pitman–Yor process and the stable completely
random measure, together with some convenient tools for evaluating the mixed moments
of normalized random measures with independent increments, as first developed in James
et al. (2006). For this reason in model (2) we focused on θ∗ > 0.
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Lemma 12 Let P̃ ∼ PY(α, θ,F) with α, θ > 0 and F ∈ P, where X is a Polish space.
Then for any A1, . . . , Ak pairwise disjoint Borel sets on X, and n1, . . . , nk ∈ N,

E(P̃ (A1)n1 · · · · · P̃ (Ak)
nk) ≥ Γ(θ + 1)

αΓ(θ/α+ 1)

Γ(k + θ/α)

Γ(n+ + θ)

k∏
i=1

αF (Ai),

where n+ = n1 + · · ·+ nk and Γ is the gamma function.

Proof Let Pα,F be the law of an α–stable completely random measure with base mea-
sure F on the space of boundedly finite measures MX on X. We let Pα,θ,F be another
probability measure on MX that is absolutely continuous with respect to Pα,F and with
Radon–Nikodym derivative

dPα,θ,F
dPα,F

(µ) =
Γ(θ + 1)

Γ(θ/α+ 1)
µ−θ(X).

As shown in Pitman and Yor (1997), the Pitman–Yor process PY(α, θ, F ) may be obtained
by normalizing a random measure µ̃ ∼ Pα,θ,F , that is,

P̃ =
µ̃(·)
µ̃(X)

∼ PY(α, θ, F ).

This relationship between the Pitman–Yor process and the stable completely random mea-
sure may be conveniently used to derive the mixed moments, as shown in Canale et al.
(2017). In particular, E(P̃ (A1)n1 · · · · · P̃ (Ak)

nk) is equal to

Γ(θ + 1)

Γ(θ/α+ 1)

1

Γ(n+ + θ)

∫ +∞

0
un++θ−1e−u

α
k∏
i=1

ni∑
`=1

F (Ai)
`ξni,`(u) du, (11)

where ξn,` is defined as

ξn,`(u) =
α`

un−`α`!

∑
q

(
n

q1 · · · q`

) ∏̀
r=1

(1− σ)qr−1,

where (·)q indicates the Pochammer function and the sum is over all vectors q = (q1, . . . , q`)
of positive integers such that q1 + · · · + q` = n. We observe that

∑ni
`=1 F (Ai)

`ξni,`(u) ≥
F (Ai)ξni,1(u) = F (Ai)αu

α−ni . Thus a lower bound to (11) is given by

Γ(θ + 1)

Γ(θ/α+ 1)

1

Γ(n+ θ)

( k∏
i=1

αF (Ai)

)∫ +∞

0
uθ+kα−1e−u

α
du.

We conclude by observing that the integral in the last expression is equal to α−1Γ(k+θ/α).

We proceed now to the proof of assertion (i) of Proposition 8. Following Proposition
9.14 of Ghosal and van der Vaart (2017) for sufficiently small ε > 0 and each i = 1, . . . ,m
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there exist Ni . log−(ε)d+d/r0,i , disjoint subsets {Ui,j}Nij=1 ⊆ Rd of diameter of the order ε2

and weights {ωi,j}Nij=1 ∈ SNi−1 such that,

{(F,Σ) : dH(p0,i, pF,Σ) . ε} ⊃ Bi,ε :=
{

(F,Σ) :
∑Ni

j=1
|F (Ui,j)−ωi,j | ≤ ε2, ‖Σ−Σ0,i‖ ≤ ε

}
Note that Ni . log−(ε)d+d/r0 for r0 = min(r0,1, . . . , r0,m). Moreover, without loss of gen-
erality, we can force the sets Uij pertaining to different groups to be either disjoint or
equal. This is needed later so to leverage on the aggregation properties of the Dirichlet
process in the application of Lemma 11 and Lemma 12. With a slight abuse of notation,
let Bε =

⋂m
i=1Bi,ε be the subset of

(
(Fi)

m
i=1, (Σi)

m
i=1

)
such that each (Fi,Σi) belong to Bi,ε

defined in the display above. Conditionally on F̃ , F1, · · · , Fm are independent. Thus,

P(Bε) = E
( m∏
i=1

P
( Ni∑
j=1

|Fi(Ui,j)− ωi,j | ≤ ε2
∣∣∣F̃)) m∏

i=1

P(‖Σi − Σ0,i‖ ≤ ε).

Since G has continuous and positive density on its support and Σ0,i belongs to the support
of G, P(‖Σi−Σ0,i‖ ≤ ε) & εq, where q depends on the dimension of the support of G. Next,

let U0,i = Rd \ (∪Nij=1Ui,j), so that Fi(U0,i), . . . , Fi(UNi,i)|F̃ ∼ Dir(θF̃ (U0,i), . . . , θF̃ (UNi,i)).

Let θ := dθe and let η = θθ−1 ≤ 1. The aggregation properties of the Dirichlet distribution

guarantee that, conditionally on F̃ , Fi(Ui,j) =
∑θ

h=1 Yi,j,h, where

((Yi,1,h)
θ
h=1, . . . , (Yi,Ni,h)

θ
h=1) ∼ Dir(ηF̃ (Ui,1)1θ, . . . , ηF̃ (Ui,Ni)1θ),

with 1θ denoting the θ–dimensional vector of all ones. Define ωi,0 = 0. Then
∑Ni

j=1 |Fi(Ui,j)−
ωi,j | ≤

∑Ni
j=0

∑θ
h=1 |Yi,j,h − ωi,jθ

−1|. Lemma 11 thus guarantees that

Π
( Ni∑
j=1

|Fi(Ui,j)− ωi,j | ≤ ε2
∣∣∣F̃) ≥ Γ(θ)(ε/

√
2)2(θ(Ni+1)−1)ηNi+1

Ni∏
j=0

F̃ (Ui,j)
θ.

We observe that
∏m
i=1 Γ(θ)(ε/

√
2)2(θ(Ni+1)−1)ηNi+1 & e−c1 log−(ε)d+d/r0+1

for some c1 > 0. In
order to conclude that

P(Bε) & e−c log−(ε)d+d/r0+1
εmq (12)

for some constant c > 0, we show next that

E(
m∏
i=1

Ni∏
j=0

F̃ (Ui,j)
θ) & ec2 log−(ε)d+d/r0+1

for some c2 > 0. We indicate by {Uh : h = 1, . . . , N} the set of pairwise disjoint neighbor-
hoods and by kh = |{i : Uh = Ui,j for some j}| the number of groups containing a copy of

Uh, so that k1 + · · ·+ kh = N1 + · · ·+Nm =: N+. Define U0 = Rd \ (∪mi=1 ∪
Ni
j=1 Ui,j), so that

(Uh)Nh=0 forms a partition of Rd and set k0 = m. Since U0 ⊆ U0,i for i = 1, . . . ,m,

E
( m∏
i=1

Ni∏
j=0

F̃ (Ui,j)
θ

)
≥ E

( N∏
h=0

F̃ (Uh)khθ
)
.
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In order to compute the expected value on the right, we distinguish two ranges for the
parameters. We first deal with the case α∗ = 0, so that (F̃ (Uh))Nh=1 has Dirichlet distribution
on Rd. Thus, by known properties of the Dirichlet distribution,

E
( N∏
h=0

F̃ (Uh)khθ
)

=

∏N
h=0(θ∗F ∗(Uh))[khθ]

(θ∗)[(m+N+)θ]
, (13)

where β[n] = Γ(β+n)/Γ(β) is the ascending factorial for β > 0 and n ∈ N. Let N0 := θ(m+
N+) and note that N0 . log−(ε)d+d/r0 . Since F ∗ is continuous and positive, θ∗F ∗(Ui) & ε2

for i = 1, . . . , N . Moreover, since bk ≤ b[k] ≤ (b + k − 1)k, for ε sufficiently small the right
side of (13) is greater than or equal to a constant multiplied by(

ε2

θ∗ +N0 − 1

)N0

≥ ε3N0 ≥ e−3 log−(ε)d+d/r0+1
.

When α∗ > 0, the expression of the mixed moments is available thanks to the relationship
between the Pitman–Yor process and the stable completely random measure. By Lemma 12,

E
(
F̃ (U0)mθ

N∏
h=1

F̃ (Uh)khθ
)

&
Γ(N + θ∗/α∗)

Γ(N0 + θ∗)

N∏
h=0

α∗F ∗(Uh).

As ε → 0, N � N0. Thus, since α∗F ∗(Ui) & ε2 for i = 1, . . . , N , an upper bound for the

right side of the previous expression is given by ε2N = e−2 log−(ε)d+d/r0+1
.

We proceed next to use the prior mass bound (12) for the reinforced Kullback–Leibler
variation neighborhood V0,ε,n in (9). First note that {dH(p0,i, pFi,Σi) . ε for i = 1, . . . ,m} ⊇
Bε. Moreover, reasoning as in Proposition 9.14 in Ghosal and van der Vaart (2017), for
each i = 1, . . . ,m, KL(p0,i; pFi,Σi) and V(p0,i; pFi,Σi) are bounded above by a multiple of
d2
H(p0,i, pF,Σ)(log−(dH(p0,i, pF,Σ))2. Hence

V0,ε,n ⊇
{
dH(p0,i, pFi,Σi) log−(dH(p0,i, pFi,Σi) .

√
n/n∨ ε for i = 1, . . .m

}
,

where we used ni ≤ n∨ for each i. Consider now a sequence ε̄n → 0, to be determined
later, that depends on n and n∨ such that

√
n/n∨ ε̄n → 0. The function f(x) = x log−(x)

is strictly monotonic near zero with inverse f−1 satisfying f−1(x) � x/ log−(x) as x ↓ 0. In
fact

f
(
x/ log−(x)

)
=

x

log−(x)
(log−(x) + log(log−(x))) = x+ o(x).

It follows that a lower bound on the prior mass of V0,ε̄n,n is obtained from the lower bound

e−c log−(ε)d+d/r0+1
εmq in (12) on the prior mass of Bε upon replacing ε in the definition of

Bε with
√
n/n∨ ε̄n

/
log−(

√
n/n∨ ε̄n). Since

√
n/n∨ ε̄n → 0, the lower bound simplifies to

P(V0,ε̄n,n) & e−C log−(
√
n/n∨ ε̄n)d+d/r0+1

. Hence assertion (i) boils down to find ε̄n such that√
n/n∨ ε̄n → 0 and

e−c log−(
√
n/n∨ ε̄n)d+d/r0+1

= e−Cnε
2
n ,

for some C > 0. It is easy to show that ε̄n = n−1/2 log(n∨)(d+d/r0+1)/2 satisfies these

requirements whenever n∨ . en
δ

for n large enough and δ < (d+ d/r0 + 2)−1.
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As for assertion (ii), following Proposition 9.14 of Ghosal and van der Vaart (2017) for
sufficiently small σ, ε > 0 and each i = 1, . . . ,m, there exist Ni . log−(σ)d/τσ−d(log− ε)

d,

disjoint subsets {Ui,j}Nij=1 ⊆ Rd of diameter of the order σε2 and weights {ωi,j}Nij=1 ∈ SNi−1

such that, {(F,Σ) : dH(p0,i, pF,Σ) . σβi + ε} ⊃ Bi,ε,σ, where Bi,ε,σ is defined as{∑Ni

j=1
|F (Ui,j) − ωi,j | ≤ ε2, min

1≤j≤Ni
F (Ui,j) ≥ ε4, 1 ≤ σ2eig(Σ−1) ≤ 1 + σβi

}
.

Similarly to before, we can force the sets Uij pertaining to different groups to be either
disjoint or equal and use Lemma 11 and Lemma 12 to establish, under prior condition (5),
that

P(Bε,σ) & e−c1 log−(σ)d/τσ−d(log− ε)
d+1

m∏
i=1

σ−2a4σ2βia5e−C3σ−κ

& e−c1 log−(σ)d/τσ−d(log− ε)
d+1−c2σ−κ , (14)

for some c1, c2 > 0, where Bε,σ =
⋂m
i=1Bi,ε,σ. We omit details. Following arguments used

in the proof of Proposition 9.14 of Ghosal and van der Vaart (2017), we can establish that
for (F,Σ) ∈ Bi,ε,σ,

KL(p0,i; pFi,Σi),V(p0,i; pFi,Σi) ≤ c d2
H(p0,i; pFi,Σi)(log−(ε4/σd))2 + o(σ2βi)

for some c > 0, provided that ε4/σd is sufficiently small. Hence the prior mass of the
neighborhood V0,ε̄n,n is bounded below by the prior mass of the set Bε,σ if ε and σ in the
definition of Bε,σ are chosen so that

(σβ + ε)2(log−(ε4/σd))2 .
n

n∨
ε̄2n, ε4/σd = O(1), (15)

where we used β = min(β1, . . . , βm). As before ε̄n is a sequence to be determined later that
depends on n and n∨ such that

√
n/n∨ ε̄n → 0 as n → ∞. The prior mass of V0,ε̄n,n is

bounded below by e−Cnε̄
2
n for some C > 0 if

log−(σ)d/τσ−d(log− ε)
d+1 + σκ ≤ nε̄2n. (16)

Take ε4 � σd ∧ σ2β so that (15) reduces to σ2β(log− σ)2 . n
n∨
ε̄2n, and (16) reduces to

log−(σ)d/τ+d+1σ−d + σκ . nε̄2n. (17)

Inequality (15) is satisfied by taking σ = σn depending on n and n∨ such that

σβn =

√
n

n∨
ε̄n

/
log−

(√
n

n∨
ε̄n

)
.

Before substituting σ with σn in (17), let restrict the search for ε̄n to

ε̄n =

√
n∨
n
n−γ∨ (log n∨)t0 ,
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by analogy to the supersmooth case. Here γ ∈ (0, 1/2) and t0 > 0 are constants to be
determined later. Note that log−(

√
n/n∨ ε̄n) � log n∨, while the right hand side of (17)

becomes
nε̄2n = n1−2γ

∨ (log n∨)2t0 .

Let d ≥ κ. Substituting σβn =
√
n/n∨ε̄n/ log n∨ = n−γ∨ (log n∨)t0−1 into the left hand

side of (17) we get that, up to a constant, the leading term is

(log n∨)d/τ+d+1n
γ d
β
∨ (log n∨)

(1−t0) d
β .

Equating the last two displays we get
1− 2γ = γ

d

β
=⇒ γ =

β

2β + d

2t0 =
d

τ
+ d+ 1 + (1− t0)

d

β
=⇒ t0 =

β

2β + d

(d
τ

+ d+ 1 +
d

β

)
,

as desired. The case d < κ can be treated similarly. It is easy to show that ε̄n → 0 whenever
n∨ . n1+a for some 0 < a < 2β/d. The case d < κ can be treated similarly. The proof is
then complete.

7.5 Proof of Proposition 9

In order to prove that log N (εn,Pn, dH) ≤ nε2n, we show that there exist constants C1, C2

not depending on n such that log N (C1εn,Pn, dH) ≤ C2nε
2
n. The constants C1, C2 can be

included in the rate by defining εn as εn max(
√
C1, C2). By Lemma 9.15 in Ghosal and

van der Vaart (2017), there exists a large constant A such that log N (Aεn,Pn, dH) is less
than or equal to a constant multiplied by

Nn log

(
5

ε2n

)
+ dNn log

(
3an
σnε2n

)
+ d2 log

(
5

ε2n

)
+Mnd

2 log(1 + ε2n) + d log(Mn).

Here εn = K2ε̄2n log n/ log(nε̄2n) for ε̄n as in (i) or (ii) of Proposition 8, so that εn � ε̄n log n
in the supersmooth case and εn ≥

√
Kε̄n in the ordinary smooth case. We show next that

all summands are bounded from above by nε2n up to a constant. First of all we observe that
nε2n > log n∨ > log n for sufficiently large n. Thus the last term is less than or equal to dnε2n.
The fourth one is easily bounded by d2nε2n. Moreover, ε−2

n < n implies log(ε−2
n ) < log n for

n large enough. Thus, the third term is bounded by d2ε2nn. As for the first term, we observe
that Nn/nε

2
n = (K log n)−1. Since log(ε−2

n ) < log n, we have that Nn log(ε−2
n )/nε2n = O(1)

for large n. As for the second term, it remains to show that Nn log(an/σn)/nε2n = O(1).

This follows from an/σn = (nε2n)
1
a1

+ 1
2a2 ≤ n

1
a1

+ 1
2a2 .

We now prove that for every C > 0 there exists K > 0 such that Πi(Pcn) ≥ e−Cnε2n . We
observe that Πi(Pcn) ≤ Π(Fi ∈ FcNn,an) + Π(Σi ∈ Scσn,Mn

) and Π(Fi ∈ FcNn,an) = E(Π(Fi ∈
FcNn,an |F̃ )). Since Fi|F̃ is distributed as a Dirichlet process, by Proposition 2 in Shen et al.
(2013), this is bounded from above by

E
((

2eθ log− εn
Nn

)Nn
+Nn(1− F̃ ([−an, an]d)

)
,
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which is equal to (2eθ log−(εn)N−1
n )Nn + Nn(1 − F ∗([−an, an]d). On the other hand,

G(Scσn,Mn
) ≤ G(eig1 ≥ σ2

n(1 + ε2n)) + G(eigd ≤ σ2
n). Putting these together, Πi(Pcn) is

bounded from above by(
2eθ log− εn

Nn

)Nn
+Nne

−C1a
a1
n + b2e

−C2/σ
2a2
n + b3σ

−2a3
n (1 + ε2n)−a3Mn .

The second and third summand are easily bounded by e−C
′nε2n ≤ e−KC

′nε2n , for some con-
stant C ′. In the last summand (1 + ε2n)−a3Mn ≤ e−a3nε

2
n/2 by using 1 + x ≤ ex. As for the

first summand, we first observe that log− εn/Nn = log− εn log(nε̄2n)/nε̄2n. In the supersmooth
case log− εn log(nε̄2n) ≤ (log n)2 = (nε̄2n)δ for some 0 < δ < 1, so log− εn/Nn ≤ (nε̄2n)−(1−δ).
Thus for n sufficiently large,

(log− εn/Nn)Nn ≤ e−Knε
2
n

(1−δ) log(nε2n)

log(nε2n) = e−K(1−δ)nε2n .

In the ordinary smooth case, we use log− εn/Nn = K log− εn log n/nε2n. The latter is

bounded above by K(log n)2/nε2n which in turn is bounded above by n−δ∨ for some con-
stant δ > 0. Hence, for some δ1 > 0,

(log− εn/Nn)Nn ≤ e−Nnδ logn∨ ≤ e−Nnδ logn ≤ e−Kδ1nε̄2n .

In both cases, by taking K large enough, we thus derive the desired upper bound.
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