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Abstract
Random Fourier features is a widely used, simple, and effective technique for scaling up kernel
methods. The existing theoretical analysis of the approach, however, remains focused on specific
learning tasks and typically gives pessimistic bounds which are at odds with the empirical results.
We tackle these problems and provide the first unified risk analysis of learning with random Fourier
features using the squared error and Lipschitz continuous loss functions. In our bounds, the trade-off
between the computational cost and the learning risk convergence rate is problem specific and
expressed in terms of the regularization parameter and the number of effective degrees of freedom.
We study both the standard random Fourier features method for which we improve the existing
bounds on the number of features required to guarantee the corresponding minimax risk convergence
rate of kernel ridge regression, as well as a data-dependent modification which samples features
proportional to ridge leverage scores and further reduces the required number of features. As ridge
leverage scores are expensive to compute, we devise a simple approximation scheme which provably
reduces the computational cost without loss of statistical efficiency. Our empirical results illustrate
the effectiveness of the proposed scheme relative to the standard random Fourier features method.
Keywords: Kernel methods, random Fourier features, stationary kernels, kernel ridge regression,
Lipschitz continuous loss, support vector machines, logistic regression, ridge leverage scores.

1. Introduction

Kernel methods are one of the pillars of machine learning (Schölkopf and Smola, 2001; Schölkopf
et al., 2004), as they give us a flexible framework to model complex functional relationships in a
principled way and also come with well-established statistical properties and theoretical guarantees
(Caponnetto and De Vito, 2007; Steinwart and Christmann, 2008). The key ingredient, known as
kernel trick, allows implicit computation of an inner product between rich feature representations
of data through the kernel evaluation k(x, x′) = 〈ϕ(x), ϕ(x′)〉H, while the actual feature mapping
ϕ : X → H between a data domain X and some high and often infinite dimensional Hilbert spaceH
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is never computed. However, such convenience comes at a price: due to operating on all pairs of
observations, kernel methods inherently require computation and storage which is at least quadratic
in the number of observations, and hence often prohibitive for large datasets. In particular, the
kernel matrix has to be computed, stored, and often inverted. As a result, a flurry of research into
scalable kernel methods and the analysis of their performance emerged (Rahimi and Recht, 2007;
Mahoney and Drineas, 2009; Bach, 2013; Alaoui and Mahoney, 2015; Rudi et al., 2015; Rudi and
Rosasco, 2017; Rudi et al., 2017; Zhang et al., 2015). Among the most popular frameworks for fast
approximations to kernel methods are random Fourier features (RFF) due to Rahimi and Recht (2007).
The idea of random Fourier features is to construct an explicit feature map which is of a dimension
much lower than the number of observations, but with the resulting inner product which approximates
the desired kernel function k(x, y). In particular, random Fourier features rely on Bochner’s theorem
(Bochner, 1932; Rudin, 2017) which tells us that any bounded, continuous and shift-invariant kernel
is the Fourier transform of a bounded positive measure, called the spectral measure. The feature
map is then constructed using samples drawn from the spectral measure. Essentially, any kernel
method can then be adjusted to operate on these explicit feature maps (i.e., primal representations),
greatly reducing the computational and storage costs, while in practice mimicking performance of
the original method.

Despite their empirical success, the theoretical understanding of statistical properties of random
Fourier features is incomplete, and the question of how many features are needed, in order to obtain
a method with performance provably comparable to the original one, remains without a definitive
answer. Currently, there are two main lines of research addressing this question. The first line
considers the approximation error of the kernel matrix itself (e.g., see Rahimi and Recht, 2007;
Sriperumbudur and Szabó, 2015; Sutherland and Schneider, 2015, and references therein) and bases
performance guarantees on the accuracy of this approximation. However, all of these works require
Ω(n) features (n being the number of observations), which translates to no computational savings
at all and is at odds with empirical findings. Realizing that the approximation of kernel matrices is
just a means to an end, the second line of research aims at directly studying the risk and general-
ization properties of random Fourier features in various supervised learning scenarios. Arguably,
first such result is already in Rahimi and Recht (2009), where supervised learning with Lipschitz
continuous loss functions is studied. However, the bounds therein still require a pessimistic Ω(n)
number of features and cannot demonstrate the efficiency of random Fourier features theoretically.
In Bach (2017b), the generalization properties are studied from a function approximation perspective,
showing for the first time that fewer features could preserve the statistical properties of the original
method, but in the case where a certain data-dependent sampling distribution is used instead of
the spectral measure. These results also do not apply to kernel ridge regression and the mentioned
sampling distribution is typically itself intractable. Avron et al. (2017) study the random Fourier
features for kernel ridge regression in the fixed design setting. They show that it is possible to use
o(n) features and have the risk of the linear ridge regression estimator based on random Fourier
features close to the risk of the original kernel estimator, also relying on a modification to the
sampling distribution. However, their result restricts the data distribution to have finite support,
and a tractable method to sample from a modified distribution is proposed for the Gaussian kernel
only. A highly refined analysis of kernel ridge regression is given by Rudi and Rosasco (2017),
where it is shown that Ω(

√
n log n) features suffices for an optimal O(1/

√
n) learning rate in a

minimax sense (Caponnetto and De Vito, 2007). Moreover, the number of features can be reduced
even further if a data-dependent sampling distribution is employed. While these are groundbreaking
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results, guaranteeing computational savings without any loss of statistical efficiency, they require
some technical assumptions that are difficult to verify. Moreover, to what extent the bounds can be
improved by utilizing data-dependent distributions still remains unclear. Finally, it does not seem
straightforward to generalize the approach of Rudi and Rosasco (2017) to kernel support vector
machines (SVM) and/or kernel logistic regression (KLR). Recently, Sun et al. (2018) have provided
novel bounds for random Fourier features in the SVM setting, assuming the Massart’s low noise
condition and that the target hypothesis lies in the corresponding reproducing kernel Hilbert space.
The bounds, however, require the sample complexity and the number of features to be exponential in
the dimension of the instance space and this can be problematic for high dimensional instance spaces.
The theoretical results are also restricted to the hinge loss (without means to generalize to other loss
functions) and require optimized features.

In this paper, we address the gaps mentioned above by making the following contributions:

• We devise a simple framework for the unified analysis of generalization properties of random
Fourier features, which applies to kernel ridge regression, as well as to kernel support vector
machines and logistic regression.

• For the plain random Fourier features sampling scheme (Section 3.1.1), we provide, to the best
of our knowledge, the sharpest results on the number of features required. In particular, we
show that already with Ω(

√
n log dλK) random features one can obtain the minimax learning

rate of kernel ridge regression (Caponnetto and De Vito, 2007), where dλK corresponds to the
notion of the number of effective degrees of freedom (Bach, 2013) with dλK � n and λ := λ(n)
is the regularization parameter.

• In the case of a modified data-dependent sampling distribution (Section 3.1.2), the so called
empirical ridge leverage score distribution, we demonstrate that Ω(dλK) features suffice for the
learning risk to converge at O(λ) rate in kernel ridge regression. In addition, we show that the
excess risk convergence rate of the estimator based on random Fourier features can (depending
on the decay rate of the spectrum of the kernel function) be upper bounded by O(logn/n) or
even O(1/n), which implies much faster convergence than the standard O(1/

√
n) rate featuring

in the majority of previous bounds.

• For plain random Fourier features in the Lipschitz continuous loss setting (Section 3.2.1),
we show that Ω(1/λ) features are sufficient to ensure O(

√
λ) learning risk rate in kernel

support vector machines and kernel logistic regression. Moreover, using the empirical ridge
leverage score distribution, we show that Ω(dλK) features are sufficient to guarantee O(

√
λ)

risk convergence rate in these two learning settings.

• Similarly, under the low noise assumption (Section 3.2.2), our refined analysis for the Lips-
chitz continuous loss function demonstrates that it is possible to achieve O(1/n) excess risk
convergence rate. The required number of features can be Ω(log n log log n) when learning
using the empirical leverage score distribution, or even constant in some benign cases. To the
best of our knowledge, this is the first result offering non-trivial computational savings for
approximations in problems with Lipschitz loss functions.

• Finally, as the empirical ridge leverage scores distribution is typically costly to compute, we
give a fast algorithm to generate samples from the approximated empirical leverage distribution
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(Section 4). Utilizing these samples one can significantly reduce the computation time during
the in-sample prediction and testing stages, i.e., O(n log n log log n) and O(log n log log n),
respectively. We also include a proof that characterizes the trade-off between the computational
cost and the learning risk of the algorithm, showing that the statistical efficiency can be
preserved while provably reducing the required computational cost.

We remark that a shorter version of this paper has appeared before in Li et al. (2019). In this
extended version, we have included a refined analysis of the trade-offs between the computational
cost and statistical efficiency for the Lipschitz continuous loss (Theorem 19). Utilizing the notion of
local Rademacher complexity, we show that the random Fourier features estimator can obtain a faster
learning rate than the traditional minimax optimal rate of O(1/

√
n). We also provide a theoretical

analysis of the trade-offs between the computational cost and accuracy for the proposed approximate
leverage score sampling algorithm in the Lipschitz loss setting (Theorem 21).

2. Background

In this section, we provide some notation and preliminary results that will be used throughout the
paper. Henceforth, we denote the Euclidean norm of a vector a ∈ Rn with ‖a‖2 and the operator
norm of a matrix A ∈ Rn1×n2 with ‖A‖2. LetH be a Hilbert space with 〈·, ·〉H as its inner product
and ‖ · ‖H as its norm. We use Tr(·) to denote the trace of an operator or a matrix. Given a measure
dρ, we use L2(dρ) to denote the space of square-integrable functions with respect to dρ.

2.1 Supervised Learning with Kernels

We first briefly review the standard problem setting for supervised learning with kernel methods.
Let X be an instance space, Y a label space, and P (x, y) = PxP (y | x) a joint probability density
function on X × Y defining the relationship between an instance x ∈ X and a label y ∈ Y . A
training sample is a set of examples {(xi, yi)}ni=1 sampled independently from P (x, y). The value
Px is called the marginal distribution of an instance x ∈ X . The goal of a supervised learning task
defined with a kernel function k (and the associated reproducing kernel Hilbert spaceH) is to find a
hypothesis f : X → Y such that f ∈ H and f(x) is a good estimate of the label y ∈ Y corresponding
to a previously unseen instance x ∈ X . While in regression tasks Y ⊂ R, in classification tasks
it is typically the case that Y = {−1, 1}. As a result of the representer theorem, an empirical risk
minimization problem in this setting can be expressed as (Schölkopf and Smola, 2001)

f̂λ := arg min
f∈H

1

n

n∑
i=1

l(yi, f(xi)) + λ‖f‖2H

= arg min
α∈Rn

1

n

n∑
i=1

l(yi, (Kα)i) + λαTKα , (1)

where f =
∑n

i=1 αik(xi, ·) with α ∈ Rn, l : Y ×Y → R+ is a loss function, K is the kernel matrix,
and λ is the regularization parameter. The hypothesis f̂λ is an empirical estimator and its ability
to capture the relationship between instances and labels given by P is measured by the learning
risk (Caponnetto and De Vito, 2007)

EP [lf̂λ ] =

∫
X×Y

l(y, f̂λ(x))dP (x, y) ,

4



TOWARDS A UNIFIED ANALYSIS OF RANDOM FOURIER FEATURES

where we use lf to denote l(y, f(x)). When it is clear from the context, we will omit P from the
expectation, i.e., writing EP [lf̂λ ] as E[lf̂λ ]. The empirical distribution Pn(x, y) is given by a sample
of n examples drawn independently from P (x, y). The empirical risk is used to estimate the learning
risk E[lf̂λ ] and it is given by

En[lf̂λ ] =
1

n

n∑
i=1

l(yi, f̂
λ(xi)) .

Similar to Rudi and Rosasco (2017) and Caponnetto and De Vito (2007), we will assume 1 the
existence of fH ∈ H such that fH = arg inff∈H E[lf ]. The assumption implies that there exists
some ball of radius R > 0 containing fH in its interior. Our theoretical results do not require prior
knowledge of this constant and hold uniformly over all finite radii. Furthermore, for all the estimators
returned by the empirical risk minimization, we assume that they have bounded reproducing kernel
Hilbert space norms. As a result, to simplify our derivations and constant terms in our bounds, unless
specifically point out, we have (without loss of generality) assumed that all the estimators appearing
in the remainder of the manuscript are within the unit ball of our reproducing kernel Hilbert space.

Note that E[lfH ] is the lowest learning risk one can achieve in the reproducing kernel Hilbert
spaceH. Hence, the theoretical studies of the estimator f̂λ often concern how fast its learning risk
E[lf̂λ ] converges to E[lfH ], in other words, how fast the excess risk E[lf̂λ ] − E[lfH ] converges to
zero. In the remainder of the manuscript, we will refer to the rate at which the excess risk converges
to zero as the learning rate.

2.2 Random Fourier Features

Random Fourier features is a widely used, simple, and effective technique for scaling up kernel
methods. The underlying principle of the approach is a consequence of Bochner’s theorem (Bochner,
1932), which states that any bounded, continuous, and shift-invariant kernel is the Fourier transform
of a bounded positive measure. This measure can be transformed/normalized into a probability
measure which is typically called the spectral measure of the kernel. Assuming the spectral measure
dτ has a density function p(·), the corresponding shift-invariant kernel can be written as

k(x, y) =

∫
V
e−2πiv

T (x−y)dτ(v) =

∫
V

(
e−2πiv

T x
)(
e−2πiv

T y
)∗
p(v)dv , (2)

where c∗ denotes the complex conjugate of c ∈ C. Typically, the kernel is real valued and we can
ignore the imaginary part in this equation (e.g., see Rahimi and Recht, 2007). The principle can be
further generalized by considering the class of kernel functions which can be decomposed as

k(x, y) =

∫
V
z(v, x)z(v, y)p(v)dv , (3)

where z : V × X → R is a continuous and bounded function with respect to v and x. The main idea
behind random Fourier features is to approximate the kernel function by its Monte-Carlo estimate

k̃(x, y) =
1

s

s∑
i=1

z(vi, x)z(vi, y) , (4)

1. The existence of fH depends on the complexity ofH which is related to the data distribution P (y|x). For more details,
please see Caponnetto and De Vito (2007) and Rudi and Rosasco (2017).
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with the reproducing kernel Hilbert space H̃ (note that in general H̃ * H) and {vi}si=1 sampled
independently from the spectral measure. In Bach (2017a, Appendix A), it has been established that
a function f ∈ H can be expressed as: 2

f(x) =

∫
V
g(v)z(v, x)p(v)dv (∀x ∈ X ) (5)

where g ∈ L2(dτ) is a real-valued function such that ‖g‖2L2(dτ)
<∞ and ‖f‖H = ming ‖g‖L2(dτ),

with the minimum taken over all possible decompositions of f . Thus, one can take an independent
sample {vi}si=1 ∼ p(v) (we refer to this sampling scheme as plain RFF) and approximate a function
f ∈ H at a point xj ∈ X by

f̃(xj) =

s∑
i=1

αiz(vi, xj) := zxj (v)Tα with α ∈ Rs .

In standard estimation problems, it is typically the case that for a given set of instances {xi}ni=1 one
approximates fx = [f(x1), · · · , f(xn)]T by

f̃x = [zx1(v)Tα, · · · , zxn(v)Tα]T := Zα ,

where Z ∈ Rn×s with zxj (v)T as its j-th row.
As the latter approximation is simply a Monte Carlo estimate, one could also select an importance

weighted probability density function q(·) and sample features {vi}si=1 from q (we refer to this
sampling scheme as weighted RFF). Then, the function value f(xj) can be approximated by

f̃q(xj) =
s∑
i=1

βizq(vi, xj) := zq,xj (v)Tβ ,

with zq(vi, xj) =
√
p(vi)/q(vi)z(vi, xj) and zq,xj (v) = [zq(v1, xj), · · · , zq(vs, xj)]T . Hence, a

Monte-Carlo estimate of fx can be written in the matrix form as f̃q,x = Zqβ, where Zq ∈ Rn×s with
zq,xj (v)T as its j-th row.

Let K̃ and K̃q be Gram-matrices with entries K̃ij = k̃(xi, xj) and K̃q,ij = k̃q(xi, xj) such that

K̃ =
1

s
ZZT ∧ K̃q =

1

s
ZqZ

T
q .

If we now denote the j-th column of Z by zvj (x) and the j-th column of Zq by zq,vj (x), then the
following equalities can be derived easily from Eq. (4):

Ev∼p[K̃] = K = Ev∼q[K̃q] ∧ Ev∼p
[
zv(x)zv(x)T

]
= K = Ev∼q

[
zq,v(x)zq,v(x)T

]
.

Sampling features from the importance weighted probability density function q(·) has led to
much interest in the literature (Bach, 2017b; Alaoui and Mahoney, 2015; Avron et al., 2017; Rudi
and Rosasco, 2017) as it can lead to huge computational savings. The reason for this is that when
sampling according to p(v), the focus is typically on approximating the leading/top eigenvalues of
the corresponding kernel matrix K. In contrast, sampling according to a re-weighted distribution

2. It is not necessarily true that for any g ∈ L2(dτ), there exists a corresponding f ∈ H.

6



TOWARDS A UNIFIED ANALYSIS OF RANDOM FOURIER FEATURES

is likely to yield the Fourier features that span the whole eigenspectrum of K. To that end, an
importance weighted density function based on the notion of ridge leverage scores is introduced in
Alaoui and Mahoney (2015) for landmark selection in the Nyström method (Nyström, 1930; Smola
and Schölkopf, 2000; Williams and Seeger, 2001). For landmarks selected using that sampling
strategy, Alaoui and Mahoney (2015) established a sharp convergence rate of the low-rank estimator
based on the Nyström method. This result has motivated the pursuit of a similar notion for random
Fourier features. Indeed, Bach (2017b) proposed a leverage score function based on an integral
operator defined using the kernel function and the marginal distribution of a data-generating process.
Building on this work, Avron et al. (2017) proposed the ridge leverage score function with respect to
a fixed input dataset, i.e.,

lλ(v) = p(v)zv(x)T (K + nλI)−1zv(x) . (6)

From our assumption on the decomposition of a kernel function, it follows that there exists a constant
z0 such that |z(v, x)| ≤ z0 (for all v and x) and zv(x)T zv(x) ≤ nz20 . We can now deduce the
following inequality using a result from Avron et al. (2017, Proposition 4):

lλ(v) ≤ p(v)
z20
λ
.

An important property of function lλ(v) is its relation to the effective number of parameters:∫
V
lλ(v)dv = Tr

[
K(K + nλI)−1

]
:= dλK ,

where dλK is known for implicitly determining the number of independent parameters in a learning
problem and, thus, it is called the effective dimension of the problem (Caponnetto and De Vito, 2007)
or the number of effective degrees of freedom (Bach, 2013; Hastie, 2017).

We can now observe that q∗(v) = lλ(v)/dλK is a probability density function. In Avron et al.
(2017), it has been established that sampling according to q∗(v) requires fewer Fourier features in
the fixed design setting compared to the standard spectral measure sampling. We refer to q∗(v) as
the empirical ridge leverage score distribution and, in the remainder of the manuscript, refer to this
sampling strategy as leverage weighted RFF.

2.3 Rademacher Complexity

To characterize the performance of a learning algorithm, we need to take into account the complexity
of its hypothesis space. Below, we first introduce a particular measure of the complexity over function
spaces known as Rademacher complexity (Bartlett and Mendelson, 2002). Then, we give two lemmas
that demonstrate how Rademacher complexity of a reproducing kernel Hilbert space can be linked to
the corresponding kernel and how the excess risk can be computed via Rademacher complexity.

Definition 1 Suppose that {x1 · · · , xn} are independent samples selected according to Px. Let
H be a class of functions mapping X to R. Then, the random variable known as the empirical
Rademacher complexity is defined as

R̂n(H) = Eσ

[
sup
f∈H

∣∣∣∣∣ 2n
n∑
i=1

σif(xi)

∣∣∣∣∣ | x1, · · · , xn
]
,
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where σ1, · · · , σn are independent samples from the uniform distribution over the two element set
{±1}. The corresponding Rademacher complexity is then defined as the expectation of the empirical
Rademacher complexity

Rn(H) = E
[
R̂n(H)

]
,

where the expectation is taken with respect to n-element sets of indepedent samples from Px.

The following lemma provides an upper bound on the Rademacher complexity of a hypothesis
space that is a subspace of the reproducing kernel Hilbert space with a kernel k.

Lemma 2 (Bartlett and Mendelson, 2002) LetH0 be the unit ball that is centered at the origin of
the reproducing kernel Hilbert spaceH associated with a kernel k. Then, we have that Rn(H0) ≤
(1/n)EX [

√
Tr(K)], where K is the Gram matrix for kernel k over an independent and identically

distributed sample X = {x1, · · · , xn}.

Lemma 3 states that the expected excess risk convergence rate of a particular estimator inH not
only depends on the number of data points, but also on the complexity ofH and how it interacts with
the loss function.

Lemma 3 (Bartlett and Mendelson, 2002, Theorem 8) Let {xi, yi}ni=1 be i.i.d samples from P and
letH be the space of functions mapping from X to R. Denote a loss function with l : Y ×R→ [0, 1]
and recall that, for all f ∈ H, the expected and corresponding empirical learning risk functions are
denoted with E[lf ] and En[lf ] = (1/n)

∑n
i=1 l(yi, f(xi)), respectively. Then, for a sample of size n,

for all f ∈ H and δ ∈ (0, 1), with probability 1− δ, we have that

E[lf ] ≤ En[lf ] +Rn(l ◦ H) +

√
8 log(2/δ)

n
,

where l ◦ H = {(x, y) 7→ l(y, f(x))− l(y, 0) | f ∈ H}.

Note that the risk bound is given by the Rademacher complexity term Rn(l ◦ H) defined on the
transformed space l ◦ H, which is obtained via composition of f ∈ H and the loss function l. This
term is, in general, different from Rn(H). However, in the case when l is Lipschitz continuous with
constant Ll, then Rn(l ◦ H) ≤ 2LlRn(H) by Theorem 12 in Bartlett and Mendelson (2002).

2.4 Local Rademacher Complexity

When characterizing the finite sample behaviour of learning risk, the notion of Rademacher com-
plexity introduced in the previous section does not typically give the optimal convergence rates.
This is because Rademacher complexity considers the behaviour of the empirical learning risk
over the whole hypothesis space, while the estimator returned by the regression is typically in a
neighbourhood around the optimal estimator. Hence, in our refined analysis we rely on the so called
local Rademacher complexity. Before illustrating this concept, we first recall that given a hypothesis
f ∈ H, we denote its expectation and finite sample average with E[f ] and En[f ], respectively. The
notion of local Rademacher complexity is typically introduced via the so called sub-root function.
This sub-root function is used to obtain a fixed point of the local Rademacher complexity, which
gives a sharper convergence rate than the notion introduced in previous section. Below, we first give
the definition and a useful property of the sub-root function. We then review a theorem that relates
the notion of local Rademacher complexity and learning risk.
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Definition 4 Let ψ : [0,∞)→ [0,∞) be a function. Then, ψ(r) is called a sub-root function if, for
all r > 0, ψ(r) is non-decreasing and ψ(r)/r is non-increasing.

A sub-root function has the following property.

Lemma 5 (Bartlett et al., 2005, Lemma 3.2) If ψ(r) is a sub-root function, then ψ(r) = r has a
unique positive solution r∗. In addition, we have that r ≥ ψ(r) if and only if r ≥ r∗.

In Lemma 3, we can see that the difference between the expected and empirical learning risks,
E[lf ] and En[lf ], is upper bounded by O(1/

√
n). This rate can be further improved with local

Rademacher complexity. The reason for the slow learning rate is because the bound accounts for
the difference between E[lf ] and En[lf ] using the global Rademacher complexity. Inspecting the
definition of Rn(H) (Definition 1), we can see that Rn(H) is defined by considering the whole
hypothesis space, as the supremum operator is applied over all functions inH. However, as discussed
before, learning algorithms typically return functions that are in the neighbourhood around the
optimal estimator. Hence, using Rn(H) unnecessarily enlarges the space that we are interested in.

As empirical estimators returned by learning algorithms typically have low learning risk as well
as low variance, we could instead consider the alternative space Hr := {f ∈ H : E[f2] ≤ r} for
some given value r ∈ R. In this way, we greatly reduce the complexity of the function space at hand
and can provide a sharper convergence rate. The following results from Bartlett et al. (2005) details
how this idea can be used to describe the learning risk behaviour.

Lemma 6 (Bartlett et al., 2005, Theorem 4.1) Let H be a class of functions with bounded ranges
and assume that there is some constant B > 0 such that, for all f ∈ H, E[f2] ≤ BE[f ]. Let ψ̂n be
a sub-root function and let r̂∗ be the fixed point of ψ̂n, i.e., ψ̂n(r̂∗) = r̂∗. Fix any δ ∈ (0, 1), and
assume that for any r ≥ r̂∗,

ψ̂n(r) ≥ c1R̂n{f ∈ star(H, 0) | En[f2] ≤ r}+
c2
n

log
1

δ
,

where

star(H, f0) = {f0 + α(f − f0) | f ∈ H ∧ α ∈ [0, 1]} .

Then for all D > 1 and f ∈ H, with probability greater than 1− δ,

E[f ] ≤ D

D − 1
En[f ] +

6D

B
r̂∗ +

c3
n

log
1

δ
,

where c1, c2 and c3 are some constants.

Note that this theorem bounds the difference between E[f ] and En[f ]. We will show later (Section
6.3), with a simple transformation, that this result can be used to bound the difference between the
learning and empirical risks for estimators based on random Fourier features.

We have seen that in the above theorem, we can use the fixed point of the sub-root function to
upper bound the learning rate. It is, however, not clear how to obtain the explicit formula for the fixed
point using this result. Fortunately, in the setting of learning with kernel k and the corresponding
reproducing kernel Hilbert space, we can derive such results. The following lemma provides us with
an upper bound on local Rademacher complexity through the eigenvalues of the Gram matrix.

9
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Lemma 7 (Bartlett et al., 2005, Lemma 6.6) Let k be a positive definite kernel function with
reproducing kernel Hilbert space H and let λ̂1 ≥ · · · ≥ λ̂n be the eigenvalues of the normalized
Gram-matrix (1/n)K. Then, for all r > 0 and f ∈ H,

R̂n{f ∈ H | En[f2] ≤ r} ≤

(
2

n

n∑
i=1

min{r, λ̂i}

)1/2

.

3. Theoretical Analysis

In this section, we provide a unified analysis for the generalization properties of learning with
random Fourier features. Our analysis is split into two cases/settings: i) we start with a bound for
learning with the squared error loss function (Section 3.1) and ii) then extend these results to learning
problems with Lipschitz continuous loss functions (Section 3.2). In addition, in each of the cases,
we will present two different analyses. In the worst case analysis, we provide the conditions for the
estimator to achieve the minimax learning rate of the corresponding kernel-based estimator. After
that, we present a refined analysis and show that the estimators based on random Fourier features are
able to achieve faster learning rates if the learning problem exhibits certain benign properties. Before
proceeding with our theoretical contributions, we first enumerate the assumptions that will be used
throughout our analysis:

1. For a learning problem with kernel k (and corresponding reproducing kernel Hilbert spaceH)
defined as in Eq. (1), we assume that fH = arg inff∈H E[lf ] always exists and has a bounded
H-norm. Moreover, we (without further loss of generality) restrict our analysis to the unit ball
ofH, i.e., the hypothesis space is given by ‖f‖H ≤ 1;

2. We assume that the kernel k has the decomposition as in Eq. (3) with |z(w, x)| < z0 ∈ (0,∞);

3. For kernel k, denote with λ1 ≥ · · · ≥ λn the eigenvalues of the kernel matrix K. We assume
that the regularization parameter satisfies 0 ≤ nλ ≤ λ1.

Intuitively, Assumption 3 requires that the signal λ1 is stronger than the added regularization term nλ.
More specifically, the in-sample prediction of a kernel ridge regression problem is K(K+nλI)−1Y .
The largest eigenvalue of K(K+ nλI)−1 is λ1/(λ1+nλ). If nλ > λ1, then the in-sample prediction is
essentially dominated by nλ, which could lead to under-fitting.

Throughout our analysis, we will use the assumptions listed above and will not be restating them
unless problem-specific clarifications are required.

3.1 Learning with the Squared Error Loss

In this section, we consider learning with the squared error loss, i.e., l(y, f(x)) = (y − f(x))2.
For this particular loss function, the optimization problem from Eq. (1) is known as kernel ridge
regression (KRR). We make the following assumption specific for the KRR problem.

A.1 y = f∗(x) + ε with E[ε] = 0 and Var[ε] = σ2. Furthermore, we assume that y is a bounded
random variable, i.e., |y| ≤ y0;

For regression problem, we have the target regression function f∗ = E[y | x]. Note that f∗ may be
different from fH as it is not necessarily contained in our hypothesis spaceH.

10
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In the random Fourier feature setting, the KRR problem can be reduced to solving a linear system
(K̃+nλI)α = Y , with Y = [y1, · · · , yn]T . Typically, an approximation of the kernel function based
on random Fourier features is employed in order to effectively reduce the computational cost and
scale kernel ridge regression to problems with a large number of examples. More specifically, for a
vector of observed labels Y the goal is to find a hypothesis f̃x = Zβ that minimizes ‖Y − f̃x‖22 while
having good generalization properties. In order to achieve this, one needs to control the complexity
of hypotheses defined by random Fourier features and avoid over-fitting. Hence, we would like to
estimate the norm of a function f̃ ∈ H̃ for the purpose of regularization. The following proposition
(originally from Bach, 2017b) gives an upper bound on that norm (a proof is given in Section 6).

Proposition 8 Assume that the reproducing kernel Hilbert spaceH with kernel k admits a decompo-
sition as in Eq. (3) and denote by H̃ := {f̃ | f̃ =

∑s
i=1 αiz(vi, ·), αi ∈ R} the reproducing kernel

Hilbert space with kernel k̃ (see Eq. 4). Then, for all f̃ ∈ H̃ it holds that ‖f̃‖2H̃ ≤ s‖α‖
2
2.

According to Proposition 8, the learning problem with random Fourier features and the squared
error loss can be cast as

βλ := arg min
β∈Rs

1

n
‖Y − Zqβ‖22 + λs‖β‖22 . (7)

This is simply a linear ridge regression problem in the space of Fourier features. We denote the
optimal hypothesis function returned by Eq. (7) with f̃λβ . The function can be parameterized by βλ
and its in-sample evaluation is given by f̃λβ = Zqβλ, where βλ = (ZTq Zq + nsλI)−1ZTq Y . Since
Zq ∈ Rn×s, the computational and space complexities areO(s3 +ns2) andO(ns). Thus, significant
savings can be achieved using estimators with s� n. To assess the effectiveness of such estimators,
it is important to understand the relationship between the excess learning risk and the choice of s.

3.1.1 WORST CASE ANALYSIS

In this section, we provide a bound on the required number of random Fourier features with respect
to the worst case (in the minimax sense) of the corresponding kernel ridge regression problem, i.e.,
learning rate O(1/

√
n). The following theorem gives a general result while taking into account both

the number of features s and a sampling strategy for selecting them.

Theorem 9 Suppose that Assumption A.1 holds and let l̃ : V → R be a measurable function such
that l̃(v) ≥ lλ(v) (∀v ∈ V) with dl̃ =

∫
V l̃(v)dv < ∞. Suppose also that {vi}si=1 are sampled

independently from the probability density function q(v) = l̃(v)/dl̃. If

s ≥ 5dl̃ log
16dλK
δ

,

then for all δ ∈ (0, 1), with probability 1− δ, the excess risk of f̃λβ can be upper bounded by

E[lf̃λβ
]− E[lfH ] ≤ 4λ+O

(
1√
n

)
+ E[lf̂λ ]− E[lfH ] . (8)

Theorem 9 expresses the trade-off between the computational and statistical efficiency through
the regularization parameter λ, the effective dimension of the problem dλK, and the normalization

11
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constant dl̃ of the sampling distribution. The decay rate of the regularization parameter is used as a
key quantity (Caponnetto and De Vito, 2007; Rudi and Rosasco, 2017) and its choice can be linked
to the complexity of the target regression function f∗(x) =

∫
ydρ(y | x). In particular, Caponnetto

and De Vito (2007) have shown that the minimax risk convergence rate for kernel ridge regression is
O(1/

√
n). Setting λ ∝ 1/

√
n, we observe that the estimator f̃λβ attains the worst case minimax rate of

kernel ridge regression.
As a consequence of Theorem 9, we have the following bounds on the number of required

features for the two strategies: leverage weighted RFF (Corollary 1) and plain RFF (Corollary 2).

Corollary 10 If the probability density function from Theorem 9 is the empirical ridge leverage score

distribution q∗(v), then the upper bound on the risk from Eq. (8) holds for all s ≥ 5dλK log
16dλK
δ .

Proof For this corollary, we set l̃(v) = lλ(v) and deduce dl̃ =
∫
V lλ(v)dv = dλK.

Theorem 9 and Corollary 10 have several implications on the choice of λ and s. First, we could
pick λ ∈ O(n−1/2) that implies the worst case minimax rate for kernel ridge regression (Caponnetto
and De Vito, 2007; Rudi and Rosasco, 2017; Bartlett et al., 2005) and observe that in this case
s is proportional to dλK log dλK. As dλK is determined by the learning problem (i.e., the marginal
distribution Px), we can consider several different cases. In the best case, where the number of
positive eigenvalues is finite, implying that dλK does not grow with n, we then have that even
with a constant number of features, we are able to achieve the O(1/

√
n) learning rate. Next,

if the eigenvalues of K exhibit a geometric/exponential decay, i.e., λi ∝ R0r
i with a constant

R0 > 0 (this can happen in scenario where we have a Gaussian kernel and a sub-Gaussian marginal
distribution Px), we then know that dλK ≤ log(R0/λ) (Bach, 2017b), implying s ≥ log n log log n.
Hence, significant savings can be obtained withO(n log4 n+log6 n) computational andO(n log2 n)
storage complexities of linear ridge regression over random Fourier features, as opposed to O(n3)
and O(n2) costs (respectively) in the kernel ridge regression setting.

In the case of a slower decay (e.g.,H is a Sobolev space of order t ≥ 1) with λi ∝ R0i
−2t, we

have dλK ≤ (R0/λ)1/(2t) and s ≥ n1/(4t) log n. Hence, substantial computational savings can be
achieved even in this case. Furthermore, in the worst case with λi close to R0i

−1, our bound implies
that s ≥

√
n log n features are sufficient, recovering the result from Rudi and Rosasco (2017).

Corollary 11 If the probability density function from Theorem 9 is the spectral measure p(v) from

Eq. (3), then the upper bound on the learning risk from Eq. (8) holds for all s ≥ 5
z20
λ log

16dλK
δ .

Proof We set l̃(v) = p(v)
z20
λ and obtain dl̃ =

∫
V p(v)

z20
λ dv =

z20
λ .

Corollary 11 addresses plain random Fourier features and states that if s is chosen to be greater
than

√
n log dλK and λ ∝ 1/

√
n then the minimax risk convergence rate is guaranteed. In the case

of finitely many positive eigenvalues, s ≥
√
n features are needed to obtain O(1/

√
n) convergence

rate. When the eigenvalues have an exponential decay, we obtain the same convergence rate with
only s ≥

√
n log logn features, which is an improvement compared to a result by Rudi and Rosasco

(2017) where s ≥
√
n log n is needed. For the other two cases, we derive s ≥

√
n log n and recover

the results from Rudi and Rosasco (2017). Table 1 provides a summary of the trade-offs between
computational complexity and statistical efficiency for the worst case scenario.
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SAMPLING SCHEME SPECTRUM NUMBER OF FEATURES LEARNING RATE

WEIGHTED RFF

finite rank s ∈ Ω(1)

O(1/
√
n)

λi ∝ Ai s ∈ Ω(log n · log log n)

λi ∝ i−2t (t ≥ 1) s ∈ Ω(n1/2t · log n)

λi ∝ i−1 s ∈ Ω(
√
n · log n)

PLAIN RFF

finite rank s ∈ Ω(
√
n)

O(1/
√
n)

λi ∝ Ai s ∈ Ω(
√
n · log log n)

λi ∝ i−2t (t ≥ 1) s ∈ Ω(
√
n · log n)

λi ∝ i−1 s ∈ Ω(
√
n · log n)

Table 1: The worst case trade-offs between computational complexity and statistical efficiency for the squared error loss.

3.1.2 REFINED ANALYSIS

In this section, we provide a more refined analysis with risk convergence rates faster than O(1/
√
n),

depending on the spectrum decay of the kernel and/or the complexity of the target regression function.
The main reason for obtaining a faster rate compared to the previous section is the reliance on local
Rademacher complexity, instead of the global one (detailed proofs can be found in Section 6.3).

Theorem 12 Suppose that Assumption A.1 holds and that the conditions on sampling measure l̃
from Theorem 9 apply to this setting. If

s ≥ 5dl̃ log
16dλK
δ

then for all D > 1 and δ ∈ (0, 1), with probability 1− δ, the excess risk of f̃λβ can be bounded by

E[lf̃λβ
]− E[lfH ] ≤ 12D

B
r̂∗H + 4

D

D − 1
λ+O

(
1

n

)
+ E[lf̂λ ]− E[lfH ] . (9)

Furthermore, denoting the eigenvalues of the normalized kernel matrix (1/n)K with {λ̂i}ni=1, we
have that

r̂∗H ≤ min
0≤h≤n

e0h
n

+

√
1

n

∑
i>h

λ̂i

 , (10)

where B, e0 > 0 are some constant and λ̂1 ≥ · · · ≥ λ̂n.

Theorem 12 covers a wide range of cases and can provide tight/sharp risk convergence rates.
In particular, note that r̂∗H has an upper bound of O(1/

√
n) in all cases, which happens when we

let h = 0 and the spectrum decays polynomially as O(1/nt) with t > 1. On the other hand, if
the eigenvalues decay exponentially, then setting h = dlog ne implies that r̂∗H ≤ O(log n/n). In
the best case, when the kernel function has only finitely many positive eigenvalues, we have that
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SAMPLING SCHEME SPECTRUM NUMBER OF FEATURES LEARNING RATE

WEIGHTED RFF

finite rank s ∈ Ω(1) O(1/n)

λi ∝ Ai s ∈ Ω(log n · log log n) O(log n/n)

λi ∝ i−t (t > 1) s ∈ Ω(n1/2t · log n) O(1/
√
n)

PLAIN RFF

finite rank s ∈ Ω(n) O(1/n)

λi ∝ Ai s ∈ Ω(n) O(log n/n)

λi ∝ i−t (t > 1) s ∈ Ω(
√
n · log n) O(1/

√
n)

Table 2: The refined case trade-offs between computational complexity and statistical efficiency for the squared error loss.

r̂∗H ≤ O(1/n) by letting h be any fixed value larger than the number of positive eigenvalues. These
different upper bounds provide insights into various trade-offs between computational complexity
and statistical efficiency. We now split the discussion into two cases: weighted sampling with
empirical leverage score and plain sampling.

Under the weighted sampling scheme, if the eigenvalues decay polynomially, i.e., λi ∝ i−t

with t > 1, then the learning rate is upper bounded by O(1/
√
n). In this case, we have dλK ≤

(R0/λ)1/t ≤ n1/2t and consequently s ≥ n1/2t log n. On the other hand, if the eigenvalues decay
exponentially, we have dλK ≤ log(R0/λ)1/t ≤ log n. Hence, if s ≥ log n log logn we achieve
O(log n/n) learning rate. In the best case, where we have finitely many positive eigenvalues, then
with a constant number of features we achieve O(1/n) learning rate.

As for the plain sampling strategy, the learning rates and required numbers of features for the
three above cases are: i) O(1/

√
n) and s ≥

√
n log n (polynomial decay), ii) O(log n/n) and

s ≥ n (exponential decay), and iii) O(1/n) and s ≥ n (finite many positive eigenvalues). Table 2
summarizes our results for the refined case.

Remark 13 In Caponnetto and De Vito (2007), the convergence rate of the excess risk has been
linked to two constants (b, c), where b ∈ (1,∞) represents the eigenvalue decay and c ∈ [1, 2]
measures the complexity of the target function fH. Essentially, c determines how fast the coefficients
αi of fH decay, where αi represents the coefficient of the expansion of fH along the eigenfunctions
of the integral operator defined by the kernel k and the data generating distribution P (x, y). While
c = 1 is equivalent to assuming fH exists, in literature, it is typical that we have to assume benign
cases (i.e., c > 1) to obtain fast learning rates.

Our analysis is different from that in Caponnetto and De Vito (2007) in the sense that we only
consider the worst case c = 1. Under this assumption, we compute excess learning risk of the
random Fourier features estimator under various eigenvalue decays (the values of constant b). Our
results demonstrate that even if we only consider case c = 1, we are still able to obtain the rate
O(1/

√
n) in Theorem 1. This is aligned with the worst case rate in Caponnetto and De Vito (2007).

In the refined analysis, the local Rademacher complexity technique allows us to obtain sharper/better
convergence rates without further assumptions on the constant such as c > 1, i.e., resulting in an
improvement from O(1/

√
n) to O(1/n) learning rate. Moreover, our fast rate range matches that in

Caponnetto and De Vito (2007).
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RESULTS SPECTRUM NUMBER OF FEATURES LEARNING RATE

THIS WORK

finite rank s ∈ Ω(
√
n)

O(1/
√
n)

λi ∝ Ai s ∈ Ω(
√
n · log log n)

λi ∝ i−2t (t ≥ 1)
s ∈ Ω(

√
n · log n)

λi ∝ i−1

RUDI & ROSASCO

(2017)

finite rank

s ∈ Ω(
√
n · log n) O(1/

√
n)

λi ∝ Ai

λi ∝ i−2t (t ≥ 1)

λi ∝ i−1

Table 3: The comparison of our results to the sharpest learning rates from prior work (Rudi and Rosasco, 2017) in the
worst case setting for plain random Fourier features and the squared error loss.

3.1.3 COMPARISON WITH THE SHARPEST BOUNDS FROM PRIOR WORK

The trade-offs between the computational cost and prediction accuracy for random Fourier features
in the squared error loss setting have been thoroughly studied in the literature (see, e.g., Sutherland
and Schneider, 2015; Sriperumbudur and Szabó, 2015; Avron et al., 2017; Rudi and Rosasco, 2017).
In the remainder of this section, we discuss our results relative to Rudi and Rosasco (2017), which
provide the sharpest learning rates so far and demonstrate that it is possible to achieve computational
savings without sacrificing the prediction accuracy when learning with random Fourier features.

Worst Case Analysis. We start with the worst case setting where the learning rate is minimax
optimal O(n−1/2). Table 3 provides a summary of our bounds for the plain random Fourier features
sampling scheme relative to the results from Rudi and Rosasco (2017). Note that we omit the
weighted sampling because Rudi and Rosasco (2017) do not consider the worst case setting for
weighted random Fourier features. When the eigenspectrum has a finite rank or geometric decay,
we can see that our results achieve sharper bound on the number of features, s ∈ Ω(

√
n) versus

s ∈ Ω(
√
n · log n) and s ∈ Ω(

√
n · log log n) versus s ∈ Ω(

√
n · log n), respectively. When the

eigenspectrum has a polynomial decay, we can see that the number of required features is the same.

Refined Analysis. We discuss here our results for the refined analysis, where learning algorithms
with random Fourier features can achieve rates faster than O(1/

√
n). We split the comparison into

two cases: plain and weighted random Fourier features. Note that to obtain sharp learning rates, Rudi
and Rosasco (2017) adopt the source condition assumption discussed in Remark 13. In particular,
they assume that c ∈ [1, 2]. The assumption is convenient in that it allows one to derive a fast learning
rate while at the same time providing a more flexible trade-off between the computational cost and
prediction accuracy (please refer to Theorem 2 in Rudi and Rosasco, 2017, for more details). To
facilitate the comparison between our results and Rudi and Rosasco (2017), we set c = 1 in both
cases (plain and weighted random features). Table 4 provides a detailed comparison between the two
works. One can see that when the eigenspectrum has a finite rank or exponential decay our results
are the same as those in Rudi and Rosasco (2017). On the other hand, when eigenvalues have a fast
polynomial decay i−t with t > 1, it can be seen that the learning rates are different, i.e., O(n−1/2)
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RESULTS SPECTRUM NUMBER OF FEATURES LEARNING RATE

THIS WORK

finite rank s ∈ Ω(n) O(1/n)

λi ∝ Ai s ∈ Ω(n) O(log n/n)

λi ∝ i−t (t > 1) s ∈ Ω(n1/2t · log n) O(1/
√
n)

RUDI & ROSASCO

(2017)

finite rank s ∈ Ω(n) O(1/n)

λi ∝ Ai s ∈ Ω(n) O(log n/n)

λi ∝ i−t (t > 1) s ∈ Ω(n
2t

1+2t · log n) O(n−
2t

2t+1 )

Table 4: The comparison of our results to the sharpest learning rates from prior work (Rudi and Rosasco, 2017) in the
refined case for plain random Fourier features and the squared error loss.

RESULTS SPECTRUM NUMBER OF FEATURES LEARNING RATE

THIS WORK

finite rank s ∈ Ω(1) O(1/n)

λi ∝ Ai s ∈ Ω(log n · log log n) O(log n/n)

λi ∝ i−t (t > 1) s ∈ Ω(n1/2t · log n) O(1/
√
n)

RUDI & ROSASCO

(2017)

finite rank s ∈ Ω(1) O(1/n)

λi ∝ Ai s ∈ Ω(( n
logn )α · log n), α ∈ (0, 1) O(log n/n)

λi ∝ i−t (t > 1) s ∈ Ω(n
α

2t+1 · log n), α ∈ (0, 1) O(n−
2t

2t+1 )

Table 5: The comparison of our results to the sharpest learning rates from prior work (Rudi and Rosasco, 2017) in the
refined case for weighted random Fourier features and the squared error loss.

versusO(n−2t/(2t+1)) obtained by Rudi and Rosasco (2017). However, the latter comes at the cost of
requiring more features, i.e., s ∈ Ω(n2t/(2t+1) log n), whereas we only require s ∈ Ω(n1/2t log n).

We conclude this discussion with a comparison for the weighted sampling scheme. To obtain fast
learning rates in this setting, Rudi and Rosasco (2017) introduce a further compatibility condition
which relates random features to the data generating distribution P (x, y) through a parameter α.
Table 5 below illustrates the trade-offs between the computational cost and the statistical learning
accuracy in this case. We can see that when the eigenspectrum has a finite rank, our results are the
same as those in Rudi and Rosasco (2017). However, when the eigenspectrum displays a slower decay
the results are quite different. In particular, the computational cost and prediction accuracy trade-offs
from Rudi and Rosasco (2017) depend heavily on the compatibility parameter α. Specifically, when
the eigenspectrum exhibits an exponential decay, our results show that s ∈ Ω(log n log logn) features
is guaranteed to achieve the fast learning rate O(log n/n). In contrast to this, Rudi and Rosasco
(2017) require s ∈ Ω((n/ log n)α · log n) features to achieve the same learning rate. When α is close
to zero, the number of features required can be Ω(log n), which is better than our results. However,
when α is close to one, then the required number of features is s ∈ Ω(n), which is significantly
worse than our results. Additionally, when the eigenspectrum has a polynomial decay i−t with
t > 1, our results show that s ∈ Ω(n1/2t) features can guarantee the minimax optimal learning rate
O(1/

√
n). For the same eigenspectrum decay, Rudi and Rosasco (2017) provide a more flexible
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trade-off that depends on α. For example, when α = 0, then constant number of features is sufficient
to obtain a fast learning rate O(n−2t/(1+2t)). However, when α = 1 then learning algorithms require
s ∈ Ω(n1/(2t+1)) features to guarantee the same learning rate.

3.2 Learning with a Lipschitz Continuous Loss

We next consider kernel methods with Lipschitz continuous loss functions, examples of which include
kernel support vector machines and kernel logistic regression. Similar to the squared error loss case,
we approximate yi with gβ(xi) = zq,xi(v)Tβ and formulate the following learning problem

βλ := arg min
β∈Rs

1

n

n∑
i=1

l(yi, zq,xi(v)Tβ) + λs‖β‖22 .

We let gλβ to be the prediction function defined based on βλ and state an additional assumption that is
specific to the Lipschitz continuous loss:

B.1 We assume that l is Lipschitz continuous with constant L:

(∀g, g′ ∈ H)(∀x ∈ X ) : |lg − lg′ | ≤ L|g(x)− g′(x)| .

Remark 14 While the focus of our analysis in this section is on classification problems with a
Lipschitz continuous loss function (e.g., hinge or logistic loss), the upper bounds on the excess risk
and the resulting learning rates apply to the setting with 0-1 loss. The latter holds because the excess
risk under 0-1 loss can be upper bounded by the excess risk under the hinge loss (e.g., see Sun et al.,
2018; Steinwart and Christmann, 2008, for more details).

3.2.1 WORST CASE ANALYSIS

The following theorem describes the trade-off between the selected number of features s and the
learning risk of the estimator, providing an insight into the choice of s for Lipschitz continuous loss.

Theorem 15 Suppose that Assumption B.1 holds and that the conditions on sampling measure l̃
from Theorem 9 apply to the setting with a Lipschitz continuous loss. If

s ≥ 5dl̃ log
16dλK
δ

then for all δ ∈ (0, 1), with probability 1− δ, the learning risk of gλβ can be upper bounded by

E[lgλβ
] ≤ E[lgH ] +

√
2λ+O

(
1√
n

)
. (11)

Remark 16 Just as Theorem 9 captures the trade-offs between computational complexity and
statistical efficiency for the squared error loss, this theorem describes the relationship between s and
E[lgλβ

] for the Lipschitz continuous setting. There is, however, an important difference between the
two settings. More specifically, a property of the squared error loss function allows us to relate the
random Fourier feature estimator f̃λβ to the kernel ridge regression estimator f̂λ by first computing

the excess risk between f̃ββ and f̂λ and then computing the same quantity for f̂λ and fH. In contrast
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SAMPLING SCHEME SPECTRUM NUMBER OF FEATURES LEARNING RATE

WEIGHTED RFF

finite rank s ∈ Ω(1)

O(1/
√
n)

λi ∝ Ai s ∈ Ω(log n · log log n)

λi ∝ i−2t, t ≥ 1 s ∈ Ω(n1/2t · log n)

λi ∝ i−1 s ∈ Ω(n · log n)

PLAIN RFF

finite rank s ∈ Ω(n)

O(1/
√
n)

λi ∝ Ai s ∈ Ω(n · log log n)

λi ∝ i−2t, t ≥ 1
s ∈ Ω(n · log n)

λi ∝ i−1

Table 6: The worst case trade-offs between computational and statistical efficiency for Lipschitz continuous loss.

to this, the Lipschitz continuity property characteristic to the latter setting allows us to compute
the excess learning risk directly by computing the risk difference between gλβ and gH. While the
derivation in Lipschitz continuous loss is greatly simplified, the upper bound for the learning risk
drops from O(λ) in the regression case to O(

√
λ) in the classification case.

Corollaries 17 and 18 provide bounds for the cases of leverage weighted and plain RFF, respec-
tively. The proofs are similar to the proofs of Corollaries 10 and 11.

Corollary 17 If the probability density function from Theorem 15 is the empirical ridge lever-
age score distribution q∗(v), then the upper bound on the risk from Eq. (11) holds for all s ≥
5dλK log

16dλK
δ .

Similar to Theorem 9, we consider four different cases for the effective dimension of the problem
dλK. Corollary 17 states that the statistical efficiency is preserved if the leverage weighted RFF
strategy is used with s = Ω(1), s ≥ log n log log n, s ≥ n1/(2t) log n, and s ≥ n log n, respectively.
Again, significant computational savings can be achieved if the kernel matrix K has a finite rank, as
well as geometrically/exponentially or polynomially decaying eigenvalues.

Corollary 18 If the probability density function from Theorem 15 is the spectral measure p(v) from

Eq. (3), then the upper bound on the risk from Eq. (11) holds for all s ≥ 5
z20
λ log

(16dλK)
δ .

Corollary 18 states that n log n features are required to attain O(n−1/2) convergence rate of the
learning risk with plain RFF, recovering results from Rahimi and Recht (2009). Similar to the analysis
in the squared error loss case, Theorem 15 together with Corollaries 17 and 18 allows theoretically
motivated trade-offs between the statistical and computational efficiency of the estimator gλβ . Table 6
summarizes the worst case trade-offs between the computational and statistical efficiency.

3.2.2 REFINED ANALYSIS

In general, it is hard for classification problems to achieve learning rates sharper/faster thanO (1/
√
n).

However, as pointed out by Bartlett et al. (2006) and Steinwart and Christmann (2008), under some
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SAMPLING SCHEME SPECTRUM NUMBER OF FEATURES LEARNING RATE

WEIGHTED RFF

finite rank s ∈ Ω(1) O(1/n)

λi ∝ Ai s ∈ Ω(log n · log log n) O(log n/n)

λi ∝ i−t, t > 1 s ∈ Ω(n1/2t · log n) O(1/
√
n)

PLAIN RFF

finite rank s ∈ Ω(n2) O(1/n)

λi ∝ Ai s ∈ Ω(n2) O(log n/n)

λi ∝ i−t, t > 1 s ∈ Ω(n · log n) O(1/
√
n)

Table 7: The refined case trade-offs between computational and statistical efficiency for Lipschitz continuous loss.

benign conditions, it is possible to obtainO(1/n) convergence rate. Hence, in this section, by adding
an extra assumption, we derive a sharp learning rate for classification problems under random Fourier
features setting. Similar to the squared error loss case, we rely on the notion of local Rademacher
complexity to derive such a learning rate (details of the proof are presented in Section 6.5). Before
we formally specify our result, we state the required additional assumption:

B.2 Recall that gH is the estimator such that gH = arg infg∈H E[lg], where P is a probability
distribution over X × Y . We assume that there exists a constant B such that for all g ∈ H

E[(g − gH)2] ≤ BE[lg − lgH ] .

Assumption B.2 is a condition for classification problems to obtain faster learning rates. It typically
requires that the function spaceH is convex and uniformly bounded, as well as an additional uniform
convexity condition on the loss function l. It can be shown that many loss functions satisfy this
assumption, including squared loss (Bartlett et al., 2005) and hinge loss (Steinwart and Christmann,
2008, Chapter 8.5). Additional examples of such loss functions are discussed in Bartlett et al. (2006)
and Mendelson (2002). As l is Lipschitz continuous, we have

E[(lg − lgH)2] ≤ L2E[(g − gH)2] ≤ BL2E[lg − lgH ] .

This is the variance condition described in Steinwart and Christmann (2008, Chapter 7.3), required
to achieve faster convergence rates. The variance condition is also linked to the Massart’s low noise
condition or more generally to the Tsybakov condition (Sun et al., 2018), which intuitively speaking,
requires that P (Y = 1 | X = x) is not close to 1/2. For more details, please refer to Tsybakov et al.
(2004) and Koltchinskii (2011).

Theorem 19 Suppose that Assumptions B.1-2 hold and that the conditions on sampling measure l̃
from Theorem 9 apply to the setting with a Lipschitz continuous loss. If

s ≥ 5dl̃ log
16dλK
δ

then for all D > 1 and δ ∈ (0, 1) with probability greater than 1− δ, we have

E[lgλβ
] ≤ 12D

B
r̂∗H +

D

D − 1

√
2λ+O(1/n) + E[lgH ] . (12)
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Furthermore, denoting the eigenvalues of the normalized kernel matrix (1/n)K with {λ̂i}ni=1, we
have that r̂∗H can be upper bounded by

r̂∗H ≤ min
0≤h≤n

b0h
n

+

√
1

n

∑
i>h

λ̂i

 , (13)

where B and b0 are some constants.

Theorem 19 provides a sharper learning rate compared to Theorem 15. Similar to Theorem 12,
r̂∗H can be upper bounded byO(1/n) (Gram-matrix is of finite rank),O(log n/n) (eigenvalues decay
exponentially), andO(1/

√
n) (eigenvalues decay proportional to 1/n). This has various implications

on the trade-offs between computational cost and statistical efficiency. Just as in previous sections,
we split the discussion into two parts according to the two sampling strategies.

We first discuss the scenario with empirical leverage score sampling. In a finite rank setting, if
we choose λ ∈ O(1/n2), we can see that the learning rate is of the order O(1/n). In addition, since
we use the weighted sampling strategy and the Gram-matrix has finitely many eigenvalues, random
Fourier features learning only requires a constant number of features to achieve O(1/n) learning
rate. To the best of our knowledge, this is the first result that achieves this. In the case of exponential
spectrum decay, the learning rate can be bounded with r̂∗H ≤ logn/n by setting λ ∈ O(log2 n/n2).
The number of required features is s ≥ log n log log n because dλK ≤ log(R2/λ) ≤ log n. If the
eigenvalues decay at the rate λi ∝ O(i−t) with t > 1, then the learning rate is O(1/

√
n) by setting

λ ∈ O(1/n), with the requirement on the number of features given by dλK ≤ (R2/λ)1/t ≤ n1/t.
Since t > 1, one can see that with fewer than n features, we could obtain fast O(1/n) learning rate.

On the other hand, in the plain sampling scheme, if we would like to achieve the fast O(1/n)
learning rate, we need to set λ ∈ O(1/n2), implying that the required number of features has to be
s ≥ n2. This is undesirable as it does not provide any computation savings. The bottleneck here is
that in the Lipschitz continuous case, learning rate is upper bounded by O(

√
λ).

3.2.3 COMPARISON WITH THE SHARPEST BOUNDS FROM PRIOR WORK

In the setting with Lipshcitz continuous loss, several previous results provide similar trade-offs
between the computational cost and prediction accuracy (see, e.g., Rahimi and Recht, 2009; Bach,
2017b; Sun et al., 2018). We cover below the sharpest bounds from prior work and discuss how our
results advance the understanding of learning with random features in this setting.

Worst Case Analysis. Rahimi and Recht (2009) were the first to consider the trade-offs between
the computational cost and prediction accuracy for the plain random Fourier features sampling
scheme. Building on that work, Bach (2017b) has provided a characterization for the setting with
weighted random Fourier features. We start with a comparison to Rahimi and Recht (2009) in the
setting with plain random Fourier features. The first block of rows in Table 8 illustrates the difference
between our results and that work. We can see that under plain sampling, when the eigenspetrum
has a finite rank or exhibits an exponential decay, the required number of features in our bounds
is smaller than that required by Rahimi and Recht (2009), i.e., s ∈ Ω(n) versus s ∈ Ω(n · log n)
and s ∈ Ω(n · log log n) versus s ∈ Ω(n · log n), respectively. When the eigenspectum follows a
polynomial decay, our results match those provided by Rahimi and Recht (2009).

For the worst case setting under the weighted sampling scheme, Bach (2017b) provides a detailed
theoretical analysis of learning with random features by establishing the equivalence between random
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SAMPLING SCHEME RESULTS SPECTRUM NUMBER OF FEATURES LEARNING RATE

PLAIN RFF

THIS WORK

finite rank s ∈ Ω(n)

O(1/
√
n)

λi ∝ Ai s ∈ Ω(n · log log n)

λi ∝ i−2t, t ≥ 1
s ∈ Ω(n · log n)

λi ∝ i−1

RAHIMI &

RECHT (2009)

finite rank

s ∈ Ω(n · log n)
λi ∝ Ai

λi ∝ i−2t, t ≥ 1

λi ∝ i−1

WEIGHTED RFF

THIS WORK

finite rank s ∈ Ω(1)

O(1/
√
n)

λi ∝ Ai s ∈ Ω(log n · log log n)

λi ∝ i−2t, t ≥ 1 s ∈ Ω(n1/2t · log n)

λi ∝ i−1 s ∈ Ω(n · log n)

BACH

(2017B)

finite rank −

λi ∝ Ai s ∈ Ω(log n · log log n)

λi ∝ i−2t, t ≥ 1 s ∈ Ω(n1/2t · log n)

λi ∝ i−1 s ∈ Ω(n · log n)

Table 8: The comparison of our results to the sharpest learning rates from prior work in the worst case setting with a
Lipschitz continuous loss and plain/weighted random Fourier features.

features and the kernel quadrature rules. That work was also the first to demonstrate that it is possible
to achieve computational savings while preserving the prediction accuracy. The second block of rows
in Table 8 illustrates the difference between our results and Bach (2017b). We can see that apart from
the finite rank case that was not covered by Bach (2017b), our results match the worst case bounds.

Refined Case Analysis. Having covered the worst case setting for Lipschitz continuous loss, we
now proceed to the refined case where learning rates can be sharper than O(1/

√
n). We remark that

while Rahimi and Recht (2009) and Bach (2017b) do not cover the refined case with fast learning
rates, Sun et al. (2018) provide a refined analysis for the hinge loss. Similar to our work (i.e.,
Assumption B.2), Sun et al. (2018) assume a low noise condition and demonstrate that learning
algorithms operating on features selected via an optimized sampling distribution can obtain sharper
learning rates in classification problems (0-1 loss function) than the standard O(1/

√
n) rate.

Table 9 illustrates the differences between our results and bounds from Sun et al. (2018). From
the table, we can see that the guarantees match when the eigenspectrum has a finite rank. When the
eigenspectrum exhibits a slower decay, however, the results differ significantly. More specifically,
the results from Sun et al. (2018) suffer from the curse of dimension when the decay is exponential.
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SAMPLING SCHEME SPECTRUM NUMBER OF FEATURES LEARNING RATE

THIS WORK

finite rank s ∈ Ω(1) O(1/n)

λi ∝ Ai s ∈ Ω(log n · log log n) O(log n/n)

λi ∝ i−t, t > 1 s ∈ Ω(n1/2t · log n) O(1/
√
n)

SUN ET AL. (2018)

finite rank s ∈ Ω(1) O(1/n)

λi ∝ Ai s ∈ Ω(logd n · log logd n) O(logd+2 n/n)

λi ∝ i−t, t > 1 s ∈ Ω(n
2

2+t · log n) O(n
t

2+t )

Table 9: The refined case trade-offs between computational and statistical efficiency relative to Sun et al. (2018).

This is because both the number of features required and the learning rate obtained depend on the
data dimension d, whereas our results do not have this dependency.

When the eigenspectrum exhibits a polynomial decay, we can see that our results achieve the
minimax learning rate of O(1/

√
n) while Sun et al. (2018) obtain a more flexible rate that depends

on the magnitude of the decay given by parameter t. When t < 2, our results have a better trade-off
as both the number of features and learning rate are sharper than those from Sun et al. (2018). When
t > 2, the learning rate obtained by Sun et al. (2018) is faster than ours. However, that comes at the
cost of increasing the required number of features, i.e., s ∈ Ω(n

2
2+t · log n) versus s ∈ Ω(n

1
2t · log n).

In particular, setting t = 4 we can see that Sun et al. (2018) obtain a fastO(n2/3) learning rate, but at
the cost of requiring s ∈ Ω(n1/3 · log n) random features. For the same setting, on the other hand, we
obtain the minimax optimal O(1/

√
n) learning rate with only s ∈ Ω(n1/8 · log n) random features.

4. A Fast Approximation of Leverage Weighted RFF

As discussed in Sections 3, sampling according to the empirical ridge leverage score distribution (i.e.,
leverage weighted RFF) could speed up kernel methods. However, computing ridge leverage scores
is as costly as inverting the Gram matrix. To address this computational shortcoming, we propose
a simple algorithm to approximate the empirical ridge leverage score distribution and the leverage
weights. In particular, we propose to first sample a pool of s features from the spectral measure p(·)
and form the feature matrix Zs ∈ Rn×s (Algorithm 1, lines 1-2). Then, the algorithm associates an
approximate empirical ridge leverage score to each feature (Algorithm 1, lines 3-4) and samples a
set of m� s features from the pool proportional to the computed scores (Algorithm 1, line 5). The
output of the algorithm can be compactly represented via the feature matrix Zm ∈ Rn×m such that
the i-th row of Zm is given by zxi(v) = [

√
m/p1z(v1, xi), · · · ,

√
m/pmz(vm, xi)]

T .
The computational cost of Algorithm 1 is dominated by the operations in step 3. As Zs ∈ Rn×s,

the multiplication of matrices ZTs Zs costs O(ns2) and inverting ZTs Zs + nλI costs only O(s3).
Hence, for s� n, the overall runtime is onlyO(ns2+s3). Moreover, ZTs Zs =

∑n
i=1 zxi(v)zxi(v)T

and it is possible to store only the rank-one matrix zxi(v)zxi(v)T into the memory. Thus, the
algorithm only requires to store an s × s matrix and can avoid storing Zs, which would incur a
storage cost of O(n× s).

The following theorem gives the convergence rate for the learning risk of Algorithm 1 in the
kernel ridge regression setting.
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Algorithm 1 APPROXIMATE LEVERAGE WEIGHTED RFF

Input: sample of examples {(xi, yi)}ni=1, shift-invariant kernel function k, and regularization parameter λ
Output: set of features {(v1, p1), · · · , (vm, pm)} with m and each pi computed as in lines 3–4

1: sample a pool of s random Fourier features {v1, . . . , vs} from p(v)

2: create a feature matrix Zs such that the i-th row of Zs is

[z(v1, xi), · · · , z(vs, xi)]T

3: associate with each feature vi a positive real number pi such that pi is equal to the i-th diagonal element
of matrix

ZTs Zs((1/s)Z
T
s Zs + nλI)−1

4: m←
∑s
i=1 pi and M ← {(vi, pi/m)}si=1

5: sample dme features from set M using the multinomial distribution given by vector (p1/m, · · · , ps/m)

Theorem 20 Suppose that Assumption A.1 holds and consider the regression problem defined with
a shift-invariant kernel k, a sample of examples {(xi, yi)}ni=1, and a regularization parameter λ.
Let s be the number of random Fourier features in the pool of features from Algorithm 1, sampled
using the spectral measure p(·) from Eq. (3) and the regularization parameter λ. Denote with f̃λ

∗
m

the ridge regression estimator obtained using a regularization parameter λ∗ and a set of random
Fourier features {vi}mi=1 returned by Algorithm 1. If

s ≥ 7z20
λ

log
(16dλK)

δ
and m ≥ 5dλ

∗
K log

(16dλ
∗

K )

δ
,

then for all δ ∈ (0, 1), with probability 1− δ, the learning risk of f̃λ
∗

m can be upper bounded by

E[lf̃λ∗m
] ≤ E[lfH ] + 4λ+ 4λ∗ +O

(
1√
n

)
.

Moreover, this upper bound holds for m ∈ Ω( s
nλ).

Theorem 20 bounds the learning risk of the ridge regression estimator over random features
generated by Algorithm 1. We can now observe that using the minimax choice of the regularization
parameter for kernel ridge regression λ, λ∗ ∝ n−1/2, the number of features that Algorithm 1 needs
to sample from the spectral measure of the kernel k is s ∈ Ω(

√
n log n). Then, the ridge regression

estimator f̃λ
∗

m converges with the minimax rate to the hypothesis fH ∈ H form ∈ Ω(log n·log log n).
This is a significant improvement compared to the spectral measure sampling (plain RFF), which

requires Ω(n3/2) features for in-sample training and Ω(
√
n log n) for out-of-sample test predictions.

Theorem 21 provides a convergence bound for kernel support vector machines and logistic
regression. Compared to the previous result, the convergence rate of the learning risk, however, is at a
slower O(

√
λ+
√
λ∗) rate due to the difference in the employed loss function (see also Section 3.2).

Theorem 21 Suppose that Assumption B.1 holds and consider the learning problem with a Lipschitz
continuous loss function, a shift-invariant kernel k, a sample of examples {(xi, yi)}ni=1, and a
regularization parameter λ. Let s be the number of random Fourier features in the pool of features
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from Algorithm 1, sampled using the spectral measure p(·) from Eq. (3) and the regularization
parameter λ. Denote with g̃λ

∗
m the estimator obtained using a regularization parameter λ∗ and a set

of random Fourier features {vi}mi=1 returned by Algorithm 1. If

s ≥ 5z20
λ

log
(16dλK)

δ
and m ≥ 5dλ

∗
K log

(16dλ
∗

K )

δ
,

then for all δ ∈ (0, 1), with probability 1− δ, the learning risk of g̃λ
∗
m can be upper bounded by

E[lg̃λ∗m ] ≤ E[lgH ] +
√

2λ+
√

2λ∗ +O
(

1√
n

)
.

We conclude by pointing out that the proposed algorithm provides an interesting new trade-off
between the computational cost and prediction accuracy. In particular, one can pay an upfront cost
(same as plain RFF) to compute the leverage scores, re-sample significantly fewer features and employ
them in the training, cross-validation, and prediction stages. This can reduce the computational cost
for predictions at test points from Ω(

√
n log n) to Ω(log n · log logn). Moreover, in the case where

the amount of features with approximated leverage scores utilized is the same as in plain RFF, the
prediction accuracy would be significantly improved, as demonstrated in our experiments.

Figure 1: The log-log plot of the theoretical and simulated risk convergence rates, averaged over 100 repetitions.

5. Numerical Experiments

In this section, we report the results of our numerical experiments (on both simulated and real-world
datasets) aimed at validating the theoretical results and demonstrating the utility of Algorithm 1. In
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# OF FEATURES PLAIN RFF LEVERAGE WEIGHTED RFF

1, 000 0.13± 0.06 0.04± 0.01

50, 000 0.04± 0.02 −

Table 10: The table summarizes our experiment on the synthetic dataset and illustrates the effectiveness of the proposed
algorithm (i.e., leverage weighted RFF) relative to plain RFF sampling. The reported numbers are the root mean squared
error (RMSE) along with a corresponding confidence interval.

the first experiment, the goal is to show that our bounds for the ridge regression setting are tight
by demonstrating empirically that the observed error rates follow closely the provided learning risk
bounds. The second experiment deals with the effectiveness of the proposed algorithm relative to
the plain random Fourier features sampling scheme, evaluated on four benchmark datasets typically
used for this type of problems. The third and final experiment aims at demonstrating the utility of the
leverage weighted features in a simulated experiment designed such that an effective approximation
of the target hypothesis requires a small number of random features which are located in the tails of
the spectral measure corresponding to the selected shift-invariant kernel.

We use a simulated experiment to verify the sharpness of our theoretical results. More specifically,
we consider a spline kernel of order r where k2r(x, y) = 1 +

∑
m>0

1
m2r cos 2πm(x − y) (also

considered by Bach, 2017b; Rudi and Rosasco, 2017). If the marginal distribution of X is uniform on
[0, 1], one can show that k2r(x, y) =

∫ 1
0 z(v, x)z(v, y)p(v)dv, where z(v, x) = kr(v, x) and p(v) is

uniform on [0, 1]. Moreover, one can show that the optimal weighted sampling distribution q∗(v) is
the same as p(v), which allows us to use weighted RFF sampling strategy. We let y be a Gaussian
random variable with mean f(x) = kt(x, x0) (for some x0 ∈ [0, 1]) and variance σ2. We sample
features according to q∗(v) to estimate f and compute the excess risk. By Theorem 9 and Corollary
10, if the number of features is proportional to dλK and λ ∝ n−1/2, we should expect the excess risk
converging at O(n−1/2), or at O(n−1/3) if λ ∝ n−1/3. Figure 1 demonstrates that this is indeed the
case for different values of r and t.

Next, we make a comparison between the performances of leverage weighted (computed accord-
ing to Algorithm 1) and plain RFF on real-world datasets. In particular, we use four datasets from
Chang and Lin (2011) and Dheeru and Karra Taniskidou (2017) for this purpose, including two for
regression and two for classification: CPU, KINEMATICS, COD-RNA and COVTYPE. Apart from
KINEMATICS, the other three datasets were used in Yang et al. (2012) to investigate the difference
between the Nyström method and plain RFF. We use the ridge regression and SVM package from
Pedregosa et al. (2011) as a solver to perform our experiments. We evaluate the regression tasks using
the root mean squared error and the classification ones using the average percentage of misclassified
examples. The Gaussian/RBF kernel is used for all the datasets with hyper-parameter tuning via
5-fold inner cross validation. We have repeated all the experiments 10 times and reported the average
test error for each dataset. Figure 2 compares the performances of leverage weighted and plain RFF.
In regression tasks, we observe that the upper bound of the confidence interval for the root mean
squared error corresponding to leverage weighted RFF is below the lower bound of the confidence
interval for the error corresponding to plain RFF. Similarly, the lower bound of the confidence interval
for the classification accuracy of leverage weighted RFF is (most of the time) higher than the upper
bound on the confidence interval for plain RFF. This indicates that leverage weighted RFFs perform
statistically significantly better than plain RFFs in terms of the learning accuracy and prediction error.
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Figure 2: Comparison of leverage weighted and plain RFFs, with weights computed according to Algorithm 1.

In the final experiment, we would like to show that the proposed algorithm can significantly
reduce the number of required features without loss of statistical efficiency. As it is challenging to
find an appropriate real-world dataset for this illustration, we design a synthetic regression problem
on our own. The main idea is to define a target regression function as a linear model directly in
the space of random Fourier features. We select the target features such that they are in the tail of
the spectral measure of the kernel that defines our hypothesis space. This ensures that plain RFF
strategy will require a large number of features to describe the target hypothesis. We evaluate the
effectiveness of our algorithm relative to plain RFFs and construct the described synthetic dataset as
follows: we first generate samples w∗ from a multimodal Gaussian distribution where the modes are
at (−2,−2), (−2, 2), (2,−2), and (2, 2). Moreover, each of the modes has a diagonal covariance
matrix of 0.5. These samples are going to be our frequencies for a RFF mapping. Next, we sample
our covariates x fromN (0, 5 ∗ I). In order to generate our response variables, we map the covariates
x through a RFF map where the frequencies are given by samples w∗. We then randomly sample
regression weights αr from N (0, 1). Hence, the data generating process can be specified by:

y = αTr φw∗(x) + ε ,

where ε ∼ N (0, σ) and φw∗ is a RFF map with w∗ as the frequencies. By setting up our data
generating process in this way, we are able to systematically investigate how well the proposed
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algorithm works. In particular, we consider learning the above described hypothesis using RFFs that
correspond to a Gaussian kernel. Such a kernel corresponds to a uni-modal Gaussian distribution
in the frequency domain and we will show that leverage weighted sampling is capable of selecting
a sub-set of plain RFF sampled from that distribution, which covers the modes of the multimodal
distribution that characterizes the data generating process.

In our simulations, we have opted for the following setting: 50, 000 data points denoted with
x in the data-generating process, 400 features/frequencies w∗ that define the target hypothesis y,
and the additive noise variance parameter σ = 0.1. We then run plain RFF as well as our leverage
weighted RFF on this dataset. For plain RFF, we run the experiments with 1, 000 and 50, 000
frequencies/features, while with our leverage weighted RFF we only use 1, 000 features which have
been selected from a pool consisting of 10, 000 plain random RFFs (i.e., a sub-sample from the
original 50, 000 features). We carefully cross-validate both methods across a grid of hyper-parameters
and report the results in Table 10. The results confirm our theoretical findings and illustrate that
learning with 1, 000 leverage weighted RFFs is as effective as learning with a complete pool of
50, 000 plain RFFs.

6. Proofs

6.1 Proof of Proposition 8

Proposition 8 Assume that the reproducing kernel Hilbert spaceH with kernel k admits a decompo-
sition as in Eq. (3) and denote by H̃ := {f̃ | f̃ =

∑s
i=1 αiz(vi, ·), αi ∈ R} the reproducing kernel

Hilbert space with kernel k̃ (see Eq. 4). Then, for all f̃ ∈ H̃ it holds that ‖f̃‖2H̃ ≤ s‖α‖
2
2.

Proof Let us define a space of functions as

H1 := {f | f(x) = αz(v, x), α ∈ R} .

We now show that H1 is a reproducing kernel Hilbert space with kernel defined as k1(x, y) =
(1/s)z(v, x)z(v, y), where s is a constant. Define a map M : R → H1 such that Mα =
αz(v, ·),∀α ∈ R. The map M is a bijection, i.e. for any f ∈ H1 there exists a unique αf ∈ R such
that M−1f = αf . Now, we define an inner product onH1 as

〈f, g〉H1 = 〈
√
sM−1f,

√
sM−1g〉R = sαfαg .

It is easy to show that this is a well defined inner product and, thus,H1 is a Hilbert space.

For any instance y, k1(·, y) = (1/s)z(v, ·)z(v, y) ∈ H1, since (1/s)z(v, y) ∈ R by definition.
Take any f ∈ H1 and observe that

〈f, k1(·, y)〉H1 = 〈
√
sM−1f,

√
sM−1k1(·, y)〉R

= s〈αf , 1/sz(v, y)〉R
= αfz(v, y) = f(y) .

Hence, we have demonstrated the reproducing property forH1 and ‖f‖2H1
= sα2

f .
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Now, suppose we have a sample of features {vi}si=1. For each vi, we define the reproducing
kernel Hilbert space

Hi := {f | f(x) = αz(vi, x), α ∈ R}

with the kernel ki(x, y) = (1/s)z(vi, x)z(vi, y). Denoting with

H̃ = ⊕si=1Hi = {f̃ : f̃ =
s∑
i=1

fi, fi ∈ Hi}

and using the fact that the direct sum of reproducing kernel Hilbert spaces is another reproducing
kernel Hilbert space (Berlinet and Thomas-Agnan, 2011), we have that k̃(x, y) =

∑s
i=1 ki(x, y) =

(1/s)
∑s

i=1 z(vi, x)z(vi, y) is the kernel of H̃ and that the squared norm of f̃ ∈ H̃ is defined as

min
fi∈Hi | f̃=

∑s
i=1 fi

s∑
i=1

‖fi‖2Hi =

min
αi∈R | f̃=

∑s
i=1 αiz(vi,·)

s∑
i=1

sα2
i = min

αi∈R | f̃=
∑s
i=1 αiz(vi,·)

s‖α‖22 .

Hence, we have that ‖f̃‖2H̃ ≤ s‖α‖
2
2.

6.2 Proof of Theorem 9

To prove Theorem 9, we need two auxiliary results formulated in Lemmas 22 and 24 (the proofs
are provided in Appendices B and C, respectively). More specifically, Lemma 22 is a general result
that gives an upper bound on the approximation error between any function f ∈ H and its estimator
based on random Fourier features. As discussed in Section 2, we would like to approximate a
function f ∈ H at observation points using f̃ ∈ H̃, with preferably as small function norm ‖f̃‖H̃ as
possible. As such, the estimation of fx = [f(x1), . . . , f(xn)]T with f̃x = [f̃(x1), . . . , f̃(xn)]T can
be formulated via the following optimization problem:

min
β

1

n
‖fx − Zqβ‖22 + λs‖β‖22 .

Lemma 22 Suppose that Assumption A.1 holds and that the conditions on sampling measure l̃ from
Theorem 9 apply as well. If

s ≥ 5dl̃ log
16dλK
δ

,

then for all δ ∈ (0, 1) and any f ∈ H with ‖f‖H ≤ 1, with probability greater than 1 − δ, the
following holds

min
β

{
1

n
‖fx − Zqβ‖22 + λs‖β‖22

}
≤ 2λ .

For the sake of brevity, we will henceforth use H̃ to denote the hypothesis space corresponding to
this optimization problem. Then, the latter bound can be written as:

sup‖f‖H≤1 inf‖f̃‖H̃≤
√
2

1

n
‖fx − f̃x‖22 ≤ 2λ .
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Remark 23 We note here that in the strict sense the hypothesis space H̃ is contained in the interior
of the ball of radius

√
2, centered at the origin (see also Proposition 8). To simplify our presentation

and avoid carrying the cumbersome optimization problem for learning with random Fourier features
(e.g., formally given in Lemma 22), we make a minor adjustment/violation in notation and refer to
the whole ball of radius

√
2 as the hypothesis space of random Fourier features.

The following lemma is important for demonstrating the risk convergence rate and its proof is
given in Appendix C. Recall that we have defined f̂λ as the empirical estimator for the kernel ridge
regression problem in Eq. (1).

Lemma 24 Denote the in-sample prediction of f̂λ with

f̂λx = [f̂λ(x1), . . . , f̂
λ(xn)]T (14)

and let {vi}si=1 be independent samples selected according to a probability density function q(v),
which define the feature matrix Zq and the corresponding reproducing kernel Hilbert space H̃. Let
β̃λ be the solution to the following optimization problem

β̃λ := min
β

1

n
‖f̂λx − Zqβ‖22 + λs‖β‖22

and denote the in-sample prediction of the resulting hypothesis with f̃λx = Zqβ̃
λ. Then, we have

1

n
〈Y − f̂λx , f̂

λ
x − f̃λx 〉 ≤ λ .

Equipped with Lemma 22 and Lemma 24, we are now ready to prove Theorem 9.

Theorem 9 Suppose that Assumption A.1 holds and let l̃ : V → R be a measurable function such
that l̃(v) ≥ lλ(v) (∀v ∈ V) with dl̃ =

∫
V l̃(v)dv < ∞. Suppose also that {vi}si=1 are sampled

independently from the probability density function q(v) = l̃(v)/dl̃. If

s ≥ 5dl̃ log
16dλK
δ

,

then for all δ ∈ (0, 1), with probability 1− δ, the excess risk of f̃λβ can be upper bounded by

E[lf̃λβ
]− E[lfH ] ≤ 4λ+O

(
1√
n

)
+ E[lf̂λ ]− E[lfH ] . (8)

Proof The proof relies on the decomposition of the learning risk of E[lf̃λβ
] as follows

E[lf̃λβ
] = E[lf̃λβ

]− En[lf̃λβ
] (15)

+ En[lf̃λβ
]− En[lf̂λ ] (16)

+ En[lf̂λ ]− E[lf̂λ ] (17)

+ E[lf̂λ ]− E[lfH ] (18)

+ E[lfH ] .
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For (15), the bound is based on the Rademacher complexity of the reproducing kernel Hilbert
space H̃, where H̃ corresponds to the approximated kernel k̃. We can upper bound the Rademacher
complexity of this hypothesis space using Lemma 2. More specifically, as l(y, f(x)) is the squared
error loss function with y and f(x) both bounded, we have that l is a Lipschitz continuous function
with some constant L > 0. Hence,

(15) ≤ Rn(l ◦ H̃) +

√
8 log(2/δ)

n

≤
√

2L
1

n
EX [

√
Tr(K̃)] +

√
8 log(2/δ)

n

≤
√

2L
1

n

√
EX [Tr(K̃)] +

√
8 log(2/δ)

n

≤
√

2L
1

n

√
nz20 +

√
8 log(2/δ)

n

=

√
2Lz0√
n

+

√
8 log(2/δ)

n
∈ O

(
1√
n

)
, (19)

where in the first inequality we applied Lemma 3 to H̃, which is a reproducing kernel Hilbert space
contained in the ball of radius

√
2 centered at the origin. Moreover, the bound on Rn(l ◦ H̃) relies on

the Lipschitz composition property of Rademacher complexity (Bartlett and Mendelson, 2002). For
(17), a similar reasoning can be applied to the unit ball in the reproducing kernel Hilbert spaceH.

For (16), we recall that f̃λβ = Zβλ where βλ is the solution of the following optimization problem

βλ := min
β

1

n
‖Y − Zβ‖22 + λs‖β‖22 .

We now observe that

En[lf̃λβ
]− En[lf̂λ ] =

1

n
‖Y − f̃λβ ‖22 −

1

n
‖Y − f̂λx ‖22

=
1

n
‖Y − Zβλ‖22 −

1

n
‖Y − f̂λx ‖22

≤ min
β

{
1

n
‖Y − Zβ‖22 + λs‖β‖22

}
− 1

n
‖Y − f̂λx ‖22

= min
β

{
1

n
‖Y − f̂λx ‖22 +

1

n
‖f̂λx − Zβ‖22 +

2

n
〈Y − f̂λx , f̂

λ
x − Zβ〉+ λs‖β‖22

}
− 1

n
‖Y − f̂λx ‖22

=
1

n
min
β

{
‖f̂λx − Zβ‖22 + 2〈Y − f̂λx , f̂

λ
x − Zβ〉+ λsn‖β‖22

}
≤ 1

n

{
‖f̂λx − Zβ̃λ‖22 + λsn‖β̃λ‖22 + 2〈Y − f̂λx , f̂

λ
x − Zβ̃λ〉

}
≤ 1

n
‖f̂λx − Zβ̃λ‖22 + λs‖β̃λ‖22 + 2λ (by Lemma 24)

≤ 4λ . (by Lemma 22)

For the last inequality, we observe that β̃λ is the solution of the following optimization problem

β̃λ = min
β

1

n
‖f̂λx − Zβ‖22 + λs‖β‖22 .
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Recall also that we have defined f̂λ and f̂λx in Eq. (1) and Eq. (14), respectively. Now, observe that
f̂λ ∈ H and in combination with Lemma 22 one obtains the upper bound on Eq. (16).

Finally, we combine the three results and derive

E[lf̃λβ
]− E[lfH ] ≤ 4λ+O

(
1√
n

)
+ E[lf̂λ ]− E[lfH ] . (20)

6.3 Proof of Theorem 12

To prove Theorem 12, we rely on the notion of local Rademacher complexity instead of the global
one. More specifically, the bound in Theorem 9 is not sharp because when analysing Eqs. (15) and
(17), we used the global Rademacher complexity that accounts for the whole reproducing kernel
Hilbert space. As empirically optimal hypotheses are typically concentrated around fH, we could
just analyse the local space around it. In particular, we can apply Lemma 6 to Eqs. (15) and (17).

To this end, we define the transformed function class as lH := {(x, y) 7→ l(f(x), y) | f ∈ H},
for any reproducing kernel Hilbert spaceH and a loss function l. We now would like to apply Lemma
6 to the function class lH. First, it is easy to see that E[l2f ] ≤ BE[lf ] for some constant B since lf is
bounded. Now if we assume that there exists a sub-root function ψ̂n(r) such that it satisfies:

ψ̂n(r) ≥ c1R̂n{lf ∈ star(lH, 0) | En[l2f ] ≤ r}+
c2
n

log
1

δ
,

then with high probability, we have

E[lf ] ≤ D

D − 1
En[lf ] +

6D

B
r̂∗ +

c3
n

log
1

δ
,

where r∗ is the fixed point of ψ̂n(r).
Hence, our job now is to find a proper ψ̂n(r) such that we can compute its fixed point r∗. To

this end, we define f̂ = inff∈H En[lf ] = inff∈H
1
n

∑n
i=1(f(xi)− yi)2 for a given training sample

{(xi, yi)}ni=1. We observe that for all lf ∈ lH it holds that

En[l2f ] ≥ (En[lf ])2 (x2 is convex)

≥ (En[lf ])2 − (En[lf̂ ])2

≥ 2En[lf̂ ] En[lf − lf̂ ] (since a2 − b2 ≥ 2b(a− b),∀a, b ≥ 0)

≥ 2

B
En[lf̂ ] En[(f − f̂)2] . (Lemma 30 in Appendix D) (21)

Hence, to obtain a lower bound on En[l2f ] expressed solely in terms of En[(f− f̂)2], we need to find a

lower bound of En[lf̂ ]. Since En[lf̂ ] = 1
n

∑n
i=1(f̂(xi)− yi)2, we have EP

[
En[lf̂ ]

]
≥ E[lfH ] ≥ σ2,

where we recall σ2 is the variance of ε defined in Assumption A.1. In addition, for each labeled
example (xi, yi), l(f̂(xi), yi) is bounded and i.i.d. Applying Hoeffding lemma, we can see that for
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all δ ∈ (0, 1), with probability greater than 1 − δ, En[lf̂ ] is lower bounded. Denote such a lower
bound with some constant e0. Hence, with probability greater than 1− δ, Eq. (21) becomes

En[l2f ] ≥ e1
B
En[(f − f̂)2] =: e2En[(f − f̂)2] .

As a result of this, we have the following inequality for the two function classes

{lf ∈ star(lH, 0) | En[l2f ] ≤ r} ⊆ {lf ∈ star(lH, 0) | En[(f − f̂)2] ≤ r

e2
} .

Recall that for a function classH, we denote its empirical Rademacher complexity by R̂n(H).
Then, we have the following inequality

R̂n{lf ∈ star(lH, 0) | En[l2f ] ≤ r} ≤

R̂n{lf ∈ star(lH, 0) | En[(f − f̂)2] ≤ r

e2
} =

R̂n{lf − lf̂ | En[(f − f̂)2] ≤ r

e2
∧ lf ∈ star(lH, 0)} ≤

LR̂n{f − f̂ | En[(f − f̂)2] ≤ r

e2
∧ f ∈ H} ≤

LR̂n{f − g | En[(f − g)2] ≤ r

e2
∧ f, g ∈ H} ≤

2LR̂n{f ∈ H | En[f2] ≤ 1

4

r

e2
} =

2LR̂n{f ∈ H | En[f2] ≤ e3r} ,

(22)

where the last inequality was proved 3 in Bartlett et al. (2005, Corollary 6.7). Now, since H is a
reproducing kernel Hilbert space with kernel k, applying Lemma 7 gives an upper bound of Eq. (22).
We can then derive the following lemma which gives us the proper sub-root function ψ̂n. The lemma
is proved in Appendix E.

Lemma 25 Assume {xi, yi}ni=1 is an independent sample from a probability measure P defined on
X ×Y , where Y has a bounded range. Let k be a positive definite kernel with the reproducing kernel
Hilbert spaceH and let λ̂1 ≥ · · · ,≥ λ̂n be the eigenvalues of the normalized kernel Gram-matrix.
Denote the squared error loss function by l(f(x), y) = (f(x)− y)2 and fix δ ∈ (0, 1). If

ψ̂n(r) = 2Lc1

(
2

n

n∑
i=1

min{r, λ̂i}

)1/2

+
c2
n

log(
1

δ
) ,

then for all lf ∈ lH and D > 1, with probability 1− δ,

E[lf ] ≤ D

D − 1
En[lf ] +

6D

B
r̂∗ +

c3
n

log(
1

δ
) .

Moreover, the fixed point r̂∗ defined with r̂∗ = ψ̂n(r̂∗) can be upper bounded by

r̂∗ ≤ min
0≤h≤n

(
e0
h

n
+

√
1

n

∑
i>h

λ̂i

)
,

where e0 is a constant.

3. The results follows from the first three lines in the proof of Corollary 6.7.
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We are now ready to deliver the proof of Theorem 12.

Theorem 12 Suppose that Assumption A.1 holds and that the conditions on sampling measure l̃
from Theorem 9 apply to this setting. If

s ≥ 5dl̃ log
16dλK
δ

then for all D > 1 and δ ∈ (0, 1), with probability 1− δ, the excess risk of f̃λβ can be bounded by

E[lf̃λβ
]− E[lfH ] ≤ 12D

B
r̂∗H + 4

D

D − 1
λ+O

(
1

n

)
+ E[lf̂λ ]− E[lfH ] . (9)

Furthermore, denoting the eigenvalues of the normalized kernel matrix (1/n)K with {λ̂i}ni=1, we
have that

r̂∗H ≤ min
0≤h≤n

e0h
n

+

√
1

n

∑
i>h

λ̂i

 , (10)

where B, e0 > 0 are some constant and λ̂1 ≥ · · · ≥ λ̂n.

Proof We decompose E[lf̃λβ
] with D > 1 as follows:

E[lf̃λβ
]− E[lfH ] ≤ E[lf̃λβ

]− D

D − 1
En[lf̃λβ

] (23)

+
D

D − 1
(En[lf̃λβ

]− En[lf̂λ ]) (24)

+
D

D − 1
En[lf̂λ ]− E[lf̂λ ] (25)

+E[lf̂λ ]− E[lfH ] . (26)

We have already demonstrated that

Eq. (24) ≤ 4
D

D − 1
λ .

For Eq. (23), we can derive an upper bound using Lemma 25. Similarly, we can upper bound Eq. (25)
by interchaning the positions of empirical and expected risk functions in Lemma 25. The proof of the
latter result resembles that of Lemma 25 and is a direct consequence of the second part of Theorem
4.1 in Bartlett et al. (2005). However, note that f̃λβ and f̂λ belong to different reproducing kernel
Hilbert spaces. As a result, we have

Eq. (23) ≤ 6D

B
r̂∗H̃ +O(1/n) ,

Eq. (25) ≤ 6D

B
r̂∗H +O(1/n) .
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Now, combining these inequalities together we deduce

E[lf̃λβ
]− E[lfH ] ≤ 6D

B
r̂∗H̃ +

6D

B
r̂∗H + 4

D

D − 1
λ+O(1/n)

+E[lf̂λ ]− E[lfH ]

≤ 12D

B
r̂∗H + 4

D

D − 1
λ+O(1/n)

+E[lf̂λ ]− E[lfH ] .

The last inequality holds because the eigenvalues of the Gram-matrix for the reproducing kernel
Hilbert space H̃ decay faster than the eigenvalues ofH. Consequently, we have that r̂∗H̃ ≤ r̂

∗
H.

Now, Lemma 25 implies that

r̂∗H ≤ min0≤h≤n
(
e0
h

n
+

√
1

n

∑
i>h

λ̂i

)
. (27)

There are two cases that merit a discussion here. First, if the eigenvalues of K decay exponentially
then setting h = dlog ne implies that

r̂∗H ≤ O

(
log n

n

)
.

Now, according to Caponnetto and De Vito (2007)

E[lf̂λ ]− E[lfH ] ∈ O

(
log n

n

)
,

and, thus, if we set λ ∝ logn
n then the learning risk rate can be upper bounded by

E[lf̃λβ
]− E[lfH ] ∈ O

(
log n

n

)
.

On the other hand, if K has finitely many non-zero eigenvalues (t), then setting h ≥ t implies that

r̂∗H ∈ O

(
1

n

)
.

Moreover, in this case, E[lf̂λ ]− E[lfH ] ∈ O( 1
n) and setting λ ∝ 1

n , we deduce that

E[lf̃λβ
]− E[lfH ] ≤ O

(
1

n

)
.
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6.4 Proof of Theorem 15

Theorem 15 Suppose that Assumption B.1 holds and that the conditions on sampling measure l̃
from Theorem 9 apply to the setting with a Lipschitz continuous loss. If

s ≥ 5dl̃ log
16dλK
δ

then for all δ ∈ (0, 1), with probability 1− δ, the learning risk of gλβ can be upper bounded by

E[lgλβ
] ≤ E[lgH ] +

√
2λ+O

(
1√
n

)
. (11)

Proof The proof is similar to Theorem 9. In particular, we decompose the expected learning risk as

E[lgλβ
] = E[lgλβ

]− En[lgλβ
] (28)

+En[lgλβ
]− En[lgH ] (29)

+En[lgH ]− E[lgH ] (30)

+E[lgH ] .

Now, (28) and (30) can be upper bounded similar to Theorem 9, through the Rademacher complexity
bound from Lemma 3. For (29), we have

En[lgλβ
]− En[lgH ] =

1

n

n∑
i=1

l(yi, g
λ
β(xi))−

1

n

n∑
i=1

l(yi, gH(xi)) =

1

n
inf‖gβ‖

n∑
i=1

l(yi, gβ(xi))−
1

n

n∑
i=1

l(yi, gH(xi))

≤ inf‖gβ‖
1

n

n∑
i=1

|gβ(xi)− gH(xi)|

≤ inf‖gβ‖

√√√√ 1

n

n∑
i=1

|gβ(xi)− gH(xi)|2

≤ sup‖g‖ inf‖gβ‖

√
1

n
‖g − gβ‖22

≤
√

2λ .

6.5 Proof of Theorem 19

To prove Theorem 19, we adopt a similar strategy to the proof of Theorem 12. In particular, we
utilize the properties of the local Rademacher complexity by applying Lemma 6 to the decomposition
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of the learning risk in the Lipschitiz continuous loss case, namely Eqs. (28) and (30). In order to
do that, we need two steps. The first step is to find a proper sub-root function ψ̂n(r). The second
step is to find the fixed point of ψ̂n(r). Hence, the following is devoted to solving these two problems.

Theorem 19 Suppose that Assumptions B.1-2 hold and that the conditions on sampling measure l̃
from Theorem 9 apply to the setting with a Lipschitz continuous loss. If

s ≥ 5dl̃ log
16dλK
δ

then for all D > 1 and δ ∈ (0, 1) with probability greater than 1− δ, we have

E[lgλβ
] ≤ 12D

B
r̂∗H +

D

D − 1

√
2λ+O(1/n) + E[lgH ] . (12)

Furthermore, denoting the eigenvalues of the normalized kernel matrix (1/n)K with {λ̂i}ni=1, we
have that r̂∗H can be upper bounded by

r̂∗H ≤ min
0≤h≤n

b0h
n

+

√
1

n

∑
i>h

λ̂i

 , (13)

where B and b0 are some constants.

Proof First, recall that we have defined the transformed function class as gH := {(x, y) 7→
g(f(x), y) | g ∈ H} for a Lipschitz continuous loss function l and ĝ = infg∈H

1
n

∑n
i=1 l(g(xi), yi).

We observe that for any lg ∈ lH, we have

En[l2g ] ≥ (En[lg])
2 (x2 is convex)

≥ (En[lg])
2 − (En[lĝ])

2

≥ 2En[lĝ] En[lg − lĝ] (since a2 − b2 ≥ 2b(a− b), ∀a, b ≥ 0)

≥ 2

B
En[lĝ]En[(g − ĝ)2] . (Assumption B.4) (31)

Following the reasoning for Eq. (21) in Section 6.3, we can see that for all δ ∈ (0, 1), with probability
greater than 1 − δ, the term En[lĝ] can be lower bounded by a constant, denoted with b0. Hence,
Eq. (31) becomes

En[l2g ] ≥ b1En[(g − ĝ)2] .

Similar to Section 6.3, we have

{lg ∈ lH | En[l2g ] ≤ r} ⊆ {lg ∈ lH | En[(g − ĝ)2] ≤ r

b1
} .

This further implies that

R̂n{lg ∈ lH | En[l2g ] ≤ r} ≤ 2LR̂n{g ∈ H | En[g2] ≤ b2r} ,
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where we recall L is the Lipschitz constant of the loss function l. By appealing to Lemma 7, we
obtain an upper bound on R̂n{g ∈ H | En[g2] ≤ b2r}. Applying Lemma 25 to the function class lH,
we have that for all lg ∈ lH and D > 1, with probability greater than 1− δ,

E[lg] ≤
D

D − 1
En[lg] +

12D

B
r̂∗ +

c1
n

log(
1

δ
) . (32)

Moreover, the fixed point r̂∗ can be upper bounded by

r̂∗ ≤ min
0≤h≤n

(
b0
h

n
+

√
1

n

∑
i>h

λ̂i

)
,

where b0 is a constant.
Having this in mind, we turn to the risk decomposition:

E[lgλβ
] = E[lgλβ

]− D

D − 1
En[lgλβ

] (33)

+
D

D − 1
En[lgλβ

]− D

D − 1
En[lgH ] (34)

+
D

D − 1
En[lgH ]− E[lgH ] (35)

+E[lgH ] .

The term in Eq. (34) can be upper bounded by D
D−1
√

2λ using the results from Section 6.4. As
gλβ ∈ H̃, we can upper bound Eq. (33) using the result from Eq. (32) adjusted to the reproducing
kernel Hilbert space H̃. We repeat the same procedure for Eq. (35) using Eq. (32) applied toH. Now,
combing these three auxiliary results, we obtain that with probability greater than 1− δ,

E[lgλβ
] ≤ 12D

B0
r̂∗H +

D

D − 1

√
2λ+O(1/n) + E[lgH ] , (36)

where r̂∗H can be upper bounded by

r̂∗H ≤ min0≤h≤n

b0h
n

+

√
1

n

∑
i>h

λ̂i

 . (37)

6.6 Proof of Theorem 20

Theorem 20 Suppose that Assumption A.1 holds and consider the regression problem defined with
a shift-invariant kernel k, a sample of examples {(xi, yi)}ni=1, and a regularization parameter λ.
Let s be the number of random Fourier features in the pool of features from Algorithm 1, sampled
using the spectral measure p(·) from Eq. (3) and the regularization parameter λ. Denote with f̃λ

∗
m

the ridge regression estimator obtained using a regularization parameter λ∗ and a set of random
Fourier features {vi}mi=1 returned by Algorithm 1. If

s ≥ 7z20
λ

log
(16dλK)

δ
and m ≥ 5dλ

∗
K log

(16dλ
∗

K )

δ
,
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then for all δ ∈ (0, 1), with probability 1− δ, the learning risk of f̃λ
∗

m can be upper bounded by

E[lf̃λ∗m
] ≤ E[lfH ] + 4λ+ 4λ∗ +O

(
1√
n

)
.

Moreover, this upper bound holds for m ∈ Ω( s
nλ).

Proof Suppose the examples {xi, yi}ni=1 are independent and identically distributed and that the
kernel k can be decomposed as in Eq. (3). Let {vi}si=1 be an independent sample selected according
to p(v). Then, using these s features we can approximate the kernel as

k̃(x, y) =
1

s

s∑
i=1

z(vi, x)z(vi, y)

=

∫
V
z(v, x)z(v, y)dP̂ (v) , (38)

where P̂ is the empirical measure on {vi}si=1. Denote the reproducing kernel Hilbert space associated
with kernel k̃ by H̃ and suppose that kernel ridge regression was performed with the approximate
kernel k̃. From Theorem 9 and Corollary 11, it follows that if

s ≥ 7z20
λ

log
16dλK
δ

,

then for all δ ∈ (0, 1), with probability 1− δ, the risk convergence rate of the kernel ridge regression
estimator based on random Fourier features can be upper bounded by

E[lfλα ] ≤ 4λ+O

(
1√
n

)
+ E[lfH ] . (39)

Note that in Eq. (39) we have used the fact that E[lfH ] differs with E[lf̂λ ] by at most O(1/
√
n).

Let fH̃ be the function in the reproducing kernel Hilbert space H̃ achieving the minimal risk,
i.e., E[lfH̃ ] = inff∈H̃ E[lf ]. We now treat k̃ as the actual kernel that can be decomposed via the
expectation with respect to the empirical measure in Eq. (38) and re-sample features from the set
{vi}si=1, but this time the sampling is performed using the optimal ridge leverage scores. As k̃ is the
actual kernel, it follows from Eq. (6) that the leverage function in this case can be defined by

lλ(v) = p(v)zv(x)T (K̃ + nλI)−1zv(x) .

Now, observe that

lλ(vi) = p(vi)[Z
T
s (K̃ + nλI)−1Zs]ii

where [A]ii denotes the i-th diagonal element of matrix A. As K̃ = (1/s)ZsZ
T
s , then the Woodbury

inversion lemma implies that

lλ(vi) = p(vi)[Z
T
s Zs(

1

s
ZTs Zs + nλI)−1]ii .

If we let lλ(vi) = pi, then the optimal distribution for {vi}si=1 is multinomial with individual
probabilities q(vi) = pi/(

∑s
j=1 pj). Hence, we can re-sample m features according to q(v) and
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perform linear ridge regression using the sampled leverage weighted features. Denoting this estimator
with f̃λ

∗
m and the corresponding number of degrees of freedom with dλ

K̃
= TrK̃(K̃ + nλ)−1, we

deduce (using Theorem 9 and Corollary 10)

E[lf̃λ∗m
] ≤ 4λ∗ +O

(
1√
n

)
+ E[lfH̃ ] , (40)

with the number of features l ∝ dλ
K̃

, and we again used the fact that E[lfH̃ ] differs from E[lf̃λ∗m
] by at

most O(1/
√
n).

As fH̃ is the function achieving the minimal risk over H̃, we can conclude that E[lfH̃ ] ≤ E[lfλα ].
Now, combining Eqs. (39) and (40), we obtain the final bound on E[lf̃λ∗m

].

Conclusion

We have investigated the generalization properties of learning with random Fourier features in the
context of different kernel methods: kernel ridge regression, support vector machines, and kernel
logistic regression. In particular, we have given generic bounds on the number of features required for
consistency of learning with two sampling strategies: leverage weighted and plain random Fourier
features. The derived convergence rates account for the complexity of the target hypothesis and the
structure of the reproducing kernel Hilbert space with respect to the marginal distribution of a data-
generating process. In addition to this, we have also proposed an algorithm for fast approximation of
empirical leverage scores and demonstrated its superiority in both theoretical and empirical analyses.

For kernel ridge regression, Avron et al. (2017) and Rudi and Rosasco (2017) have extensively
analyzed the performance of learning with random Fourier features. In particular, Avron et al. (2017)
have shown that o(n) features are enough to guarantee a good estimator in terms of its empirical
risk. The authors of that work have also proposed a modified data-dependent sampling distribution
and demonstrated that a further reduction in the number of random Fourier features is possible
for leverage weighted sampling. However, their results do not provide a convergence rate for the
learning risk of the estimator which could still potentially imply that computational savings come at
the expense of statistical efficiency. Furthermore, the modified sampling distribution can only be
used in the 1D Gaussian kernel case. While Avron et al. (2017) focus on bounding the empirical risk
of an estimator, Rudi and Rosasco (2017) give a comprehensive study of the generalization properties
of random Fourier features for kernel ridge regression by bounding the learning risk of an estimator.
The latter work for the first time shows that Ω(

√
n log n) features are sufficient to guarantee the

(kernel ridge regression) minimax rate and observes that further improvements to this result are
possible by relying on a data-dependent sampling strategy. However, such a distribution is defined in
a complicated way and it is not clear how one could devise a practical algorithm by sampling from it.
While in our analysis of learning with random Fourier features we also bound the learning risk of an
estimator, the analysis is not restricted to kernel ridge regression and covers other kernel methods
such as support vector machines and kernel logistic regression. In addition to this, our derivations
are much simpler compared to Rudi and Rosasco (2017) and provide sharper bounds in some cases.
More specifically, we have demonstrated that Ω(

√
n log log n) features are sufficient to attain the

minimax rate in the case where eigenvalues of the Gram matrix have a geometric/exponential decay.
In other cases, we have recovered the results from Rudi and Rosasco (2017). Another important
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difference with respect to this work is that we consider a data-dependent sampling distribution based
on empirical ridge leverage scores, showing that it can further reduce the number of features and in
this way provide a more effective estimator.

In addition to the squared error loss, we also investigate the properties of learning with random
Fourier features using the Lipschitz continuous loss functions. Both Rahimi and Recht (2009) and
Bach (2017b) have studied this problem setting and obtained that Ω(n) features are needed to ensure
O(1/

√
n) learning risk convergence rate. Moreover, Bach (2017b) has defined an optimal sampling

distribution by referring to the leverage score function based on the integral operator and shown
that the number of features can be significantly reduced when the eigenvalues of a Gram matrix
exhibit a fast decay. The Ω(n) requirement on the number of features is too restrictive and precludes
any computational savings. Also, the optimal sampling distribution is typically intractable. In
our analysis, through assuming the realizable case, we have demonstrated that for the first time,
O(
√
n) features are possible to guarantee O( 1√

n
) risk convergence rate. In extreme cases, where the

complexity of target function is small, constant features is enough to guarantee fast risk convergence.
Moreover, we also provide a much simpler form of the empirical leverage score distribution and
demonstrate that the number of features can be significantly smaller than n, without incurring any
loss of statistical efficiency.

Having given risk convergence rates for learning with random Fourier features, we provide a
fast and practical algorithm for sampling them in a data-dependent way, such that they approximate
the ridge leverage score distribution. In the kernel ridge regression setting, our theoretical analysis
demonstrates that, compared to spectral measure sampling, significant computational savings can
be achieved while preserving the statistical properties of the estimators. Furthermore, we verify
our findings empirically on simulated and real-world datasets. An interesting extension of our
empirical analysis would be a thorough and comprehensive comparison of the proposed leverage
weighted sampling scheme to other recently proposed data-dependent strategies for selecting good
features (e.g., Rudi et al., 2018), as well as a comparison to the Nyström method.
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Appendix A. Bernstein Inequality

The next lemma is the matrix Bernstein inequality, cited from (Avron et al., 2017, Lemma 27) which
is a restatement of Corollary 7.3.3 in Tropp (2015) with some fix in the typos.

Lemma 26 (Bernstein inequality, Tropp, 2015, Corollary 7.3.3) Let R be a fixed d1 × d2 matrix
over the set of complex/real numbers. Suppose that {R1, · · · ,Rn} is an independent and identically
distributed sample of d1 × d2 matrices such that

E[Ri] = R and ‖Ri‖2 ≤ L ,

where L > 0 is a constant independent of the sample. Furthermore, let M1,M2 be semidefinite
upper bounds for the matrix-valued variances

Var1[Ri] � E[RiR
T
i ] �M1

Var2[Ri] � E[RT
i Ri] �M2 .

Let m = max(‖M1‖2, ‖M2‖2) and d = Tr(M1)+Tr(M2)
m . Then, for ε ≥

√
m/n + 2L/3n, we can

bound

R̄n =
1

n

n∑
i=1

Ri

around its mean using the concentration inequality

P (‖R̄n −R‖2 ≥ ε) ≤ 4d exp

(
−nε2/2

m+ 2Lε/3

)
.

Appendix B. Proof of Lemma 22

The following two lemmas are required for our proof of Lemma 22, presented subsequently.

Lemma 27 Suppose that the assumptions from Lemma 22 hold and let ε ≥
√

m
s + 2L

3s with constants
m and L (see the proof for explicit definition). If the number of features

s ≥ dl̃(
1

ε2
+

2

3ε
) log

16dλK
δ

,

then for all δ ∈ (0, 1), with probability greater than 1− δ,

−εI � (K + nλI)−
1
2 (K̃−K)(K + nλI)−

1
2 � εI .

Proof Following the derivations in Avron et al. (2017), we utilize the matrix Bernstein concentration
inequality to prove the result. More specifically, we observe that

(K + nλI)−
1
2 K̃(K + nλI)−

1
2 =

1

s

s∑
i=1

(K + nλI)−
1
2 zq,vi(x)zq,vi(x)T (K + nλI)−

1
2 =

1

s

s∑
i=1

Ri =: R̄s ,

44



TOWARDS A UNIFIED ANALYSIS OF RANDOM FOURIER FEATURES

with

Ri = (K + nλI)−
1
2 zq,vi(x)zq,vi(x)T (K + nλI)−

1
2 .

Now, observe that
R = E[Ri] = (K + nλI)−

1
2K(K + nλI)−

1
2 .

The operator norm of Ri is equal to

‖(K + nλI)−
1
2 zq,vi(x)zq,vi(x)T (K + nλI)−

1
2 ‖2 .

As zq,vi(x)zq,vi(x)T is a rank one matrix, we have that the operator norm of this matrix is equal to
its trace, i.e.,

‖Ri‖2 =

Tr((K + nλI)−
1
2 zq,vi(x)zq,vi(x)T (K + nλI)−

1
2 ) =

p(vi)

q(vi)
Tr((K + nλI)−

1
2 zvi(x)zvi(x)T (K + nλI)−

1
2 ) =

p(vi)

q(vi)
Tr(zvi(x)T (K + nλI)−1zvi(x)) =

lλ(vi)

q(vi)
=: Li and Lq := sup

i
Li .

Observe that Lq = supi Li = supi
lλ(vi)
q(vi)

≤ supi
l̃(vi)
q(vi)

= dl̃. On the other hand,

RiR
T
i =

(K + nλI)−
1
2 zq,vi(x)zq,vi(x)T (K + nλI)−1zq,vi(x)

· zq,vi(x)T (K + nλI)−
1
2 =

p(vi)lλ(vi)

q2(vi)
(K + nλI)−

1
2 zvi(x)zvi(x)T (K + nλI)−

1
2 �

l̃(vi)

q(vi)

p(vi)

q(vi)
(K + nλI)−

1
2 zvi(x)zvi(x)T (K + nλI)−

1
2 =

dl̃
p(vi)

q(vi)
(K + nλI)−

1
2 zvi(x)zvi(x)T (K + nλI)−

1
2 .

From the latter inequality, we obtain that

E[RiR
T
i ] � dl̃(K + nλI)−

1
2K(K + nλI)−

1
2 =: M1 .

We also have the following two equalities

m = ‖M1‖2 = dl̃
λ1

λ1 + nλ
=: dl̃d1

d =
2 Tr(M1)

m
= 2

λ1 + nλ

λ1
dλK = 2d−11 dλK .
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We are now ready to apply the matrix Bernstein concentration inequality (Tropp, 2015, Corollary
7.3.3). More specifically, for ε ≥

√
m/s+ 2L/3s and for all δ ∈ (0, 1), with probability 1− δ, we

have that

P(‖R̄s −R‖2 ≥ ε) ≤ 4d exp

(
−sε2/2

m+ 2Lε/3

)
≤ 8d−11 dλK exp

(
−sε2/2

dl̃d1 + dl̃2ε/3

)
≤ 16dλK exp

(
−sε2

dl̃(1 + 2ε/3)

)
≤ δ .

In the third line, we have used the assumption that nλ ≤ λ1 and, consequently, d1 ∈ [1/2, 1).

Remark 28 We note here that the two considered sampling strategies lead to two different results.
In particular, if we let l̃(v) = lλ(v) then q(v) = lλ(v)/dλK, i.e., we are sampling proportional to the
ridge leverage scores. Thus, the leverage weighted random Fourier features sampler requires

s ≥ dλK(
1

ε2
+

2

3ε
) log

16dλK
δ

. (41)

Alternatively, we can opt for the plain random Fourier feature sampling strategy by taking l̃(v) =
z20p(v)/λ, with lλ(v) ≤ z20p(v)/λ. Then, plain random Fourier features sampling requires

s ≥ z20
λ

(
1

ε2
+

2

3ε
) log

16dλK
δ

. (42)

Thus, the leverage weighted random Fourier features sampling scheme can dramatically change
the number of features required to achieve a predefined approximation error in the operator norm.

Lemma 29 Let f ∈ H, whereH is the reproducing kernel Hilbert space associated with a kernel
k. Recall we have assumed that ‖f‖H ≤ 1,∀f and fx = [f(x1), · · · , f(xn)]T . Let K be the
Gram-matrix of the kernel k given by the provided set of instances. Then,

fTx K
−1fx ≤ 1 .

Proof Recall that a function f ∈ H can be expressed as:

f(x) =

∫
V
g(v)z(v, x)p(v)dv (∀x ∈ X ) , (43)
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where g ∈ L2(dτ) is a real-valued function with ‖f‖H equal to the minimum of ‖g‖L2(dτ), over all
possible decompositions of f . For a vector a ∈ Rn, we have that

aT fxf
T
x a =

(
fTx a

)2
=
( n∑
i=1

aif(xi)
)2

=
( n∑
i=1

ai

∫
V
g(v)z(v, xi)dτ(v)

)2
=
(∫
V
g(v)zv(x)Ta dτ(v)

)2
≤
∫
V
g(v)2dτ(v)

∫
V

(zv(x)Ta)2 dτ(v)

=

∫
V
aT zv(x)zv(x)Ta dτ(v)

= aT
∫
V
zv(x)zv(x)T dτ(v) a

= aTKa .

The third equality is due to the fact that, for all f ∈ H, we have that f(x) =
∫
V g(v)z(v, x)p(v)dv

(∀x ∈ X ) and
‖f‖H = min{

g | f(x)=
∫
V g(v)z(v,x)p(v)dv

} ‖g‖L2(dτ) .

The first inequality, on the other hand, follows from the Cauchy-Schwarz inequality. The bound
implies that fxfTx � K and, consequently, we derive fTx K

−1fx ≤ 1.

Now we are ready to prove Lemma 22.

Lemma 22 Suppose that Assumption A.1 holds and that the conditions on sampling measure l̃ from
Theorem 9 apply as well. If

s ≥ 5dl̃ log
16dλK
δ

,

then for all δ ∈ (0, 1) and any f ∈ H with ‖f‖H ≤ 1, with probability greater than 1 − δ, the
following holds

min
β

{
1

n
‖fx − Zqβ‖22 + λs‖β‖22

}
≤ 2λ .

For the sake of brevity, we will henceforth use H̃ to denote the hypothesis space corresponding to
this optimization problem. Then, the latter bound can be written as:

sup‖f‖H≤1 inf‖f̃‖H̃≤
√
2

1

n
‖fx − f̃x‖22 ≤ 2λ .

Proof For any f ∈ H with ‖f‖H ≤ 1, we write the following optimization problem:

1

n
‖fx − Zqβ‖22 + sλ‖β‖22 . (44)
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The minimizer can be computed as:

β =
1

s
(
1

s
ZTq Zq + nλI)−1ZTq fx

=
1

s
ZTq (

1

s
ZqZ

T
q + nλI)−1fx

=
1

s
ZTq (K̃ + nλI)−1fx ,

where the second equality follows from the Woodbury inversion lemma.
Substituting β into Eq. (44), we transform the first part as

1

n
‖fx − Zqβ‖22 =

1

n
‖fx −

1

s
ZqZ

T
q (K̃ + nλI)−1fx‖22

=
1

n
‖fx − K̃(K̃ + nλI)−1fx‖22

=
1

n
‖nλ(K̃ + nλI)−1fx‖22

= nλ2fTx (K̃ + nλI)−2fx .

On the other hand, the second part can be transformed as

sλ‖β‖22 = sλ
1

s2
fTx (K̃ + nλI)−1ZqZ

T
q (K̃ + nλI)−1fx

= λfTx (K̃ + nλI)−1K̃(K̃ + nλI)−1fx

= λfTx (K̃ + nλI)−1(K̃ + nλI)(K̃ + nλI)−1fx − nλ2fTx (K̃ + nλI)−2fx

= λfTx (K̃ + nλI)−1fx − nλ2fTx (K̃ + nλI)−2fx .

Now, summing up the first and the second part, we deduce

1

n
‖fx − Zqβ‖22 + sλ‖β‖22 = λfTx (K̃ + nλI)−1fx

= λfTx (K + nλI + K̃−K)−1fx

= λfTx (K + nλI)−
1
2

(
I + (K + nλI)−

1
2 (K̃−K)(K + nλI)−

1
2

)−1
(K + nλI)−

1
2 fx .

From Lemma 27, it follows that when

s ≥ dl̃(
1

ε2
+

2

3ε
) log

16dλK
δ

then (K + nλI)−
1
2 (K̃−K)(K + nλI)−

1
2 � −εI.

We can now upper bound the objective function as follows (with ε = 1/2):

λfTx (K̃ + nλI)−1fx ≤ λfTx (K + nλI)−
1
2 (1− ε)−1(K + nλI)−

1
2 fx

= (1− ε)−1λfTx (K + nλI)−1fx ≤ (1− ε)−1λfTx K−1fx ≤ 2λ ,

where in the last inequality we have used Lemma 29. Therefore, we prove the first inequality.
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For the second claim, we have that

s‖β‖22 = fTx (K̃ + nλI)−1fx − nλfTx (K̃ + nλI)−2fx

≤ fTx (K̃ + nλI)−1fx ≤ (1− ε)−1fTx K−1fx ≤ 2 .

Hence, the squared norm of our approximated function is bounded by ‖f̃‖2H̃ ≤ s‖β‖
2
2 ≤ 2. As such,

problem (44) can now be written as minβ(1/n)‖fx − f̃x‖22 subject to ‖f̃‖2H̃ ≤ s‖β‖
2
2 ≤ 2, which is

equivalent to

inf‖f̃‖H̃≤
√
2

1

n
‖fx − f̃x‖22 ,

and we have shown that this can be upper bounded by 2λ. Since we are approximating any f ∈ H
with ‖f‖H ≤ 1, this can further be written as

sup‖f‖H≤1 inf‖f̃‖H̃≤
√
2

1

n
‖fx − f̃x‖22 ≤ 2λ .

Appendix C. Proof of Lemma 24

Lemma 24 Denote the in-sample prediction of f̂λ with

f̂λx = [f̂λ(x1), . . . , f̂
λ(xn)]T (14)

and let {vi}si=1 be independent samples selected according to a probability density function q(v),
which define the feature matrix Zq and the corresponding reproducing kernel Hilbert space H̃. Let
β̃λ be the solution to the following optimization problem

β̃λ := min
β

1

n
‖f̂λx − Zqβ‖22 + λs‖β‖22

and denote the in-sample prediction of the resulting hypothesis with f̃λx = Zqβ̃
λ. Then, we have

1

n
〈Y − f̂λx , f̂

λ
x − f̃λx 〉 ≤ λ .

Proof By definition, f̃λx has the format as f̃λx = Zqβ̃
λ, where β̃λ ∈ Rs. In addition, definition of f̃λ

can be reparametrized by the following optimization problem:

β̃λ := minβ̃
1

n
‖f̂λx − Zqβ̃‖22 + sλ‖β̃‖ . (45)

This gives the closed-form solution of β̃λ = 1
sZ

T
q (1sZqZ

T
q + nλI)−1f̂λx . As a result, we have

f̃λx =
1

s
ZqZ

T
q (

1

s
ZqZ

T
q + nλI)−1f̂λx = K̃(K̃ + nλI)−1f̂λx .
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Now recall f̂λx is the in-sample prediction of the KRR estimator f̂λ, so it can be written as f̂λx =
K(K + nλI)−1Y . As a result, we have the following:

1

n
〈Y − f̂λx , f̂

λ
x − f̃λx 〉 =

1

n
〈Y − f̂λx , f̂

λ
x − K̃(K̃ + nλI)−1f̂λx 〉

=
1

n
〈Y −K(K + nλI)−1Y, (I − K̃(K̃ + nλI)−1)f̂λx 〉

=
1

n
Y T (I −K(K + nλI)−1)(I − K̃(K̃ + nλI)−1)f̂λx

≤ 1

n
Y T (I −K(K + nλI)−1)f̂λx (46)

= λY T (K + nλI)−1f̂λx

= λY T (K + nλI)−1KK−1f̂λx

= λf̂λTx K−1f̂λx ≤ λ .

Note that in Eq. (46), we have used the fact that

‖I − K̃(K̃ + nλI)−1‖2 ≤ 1 .

For the last inequality, since f̂λ ∈ H, we employ Lemma 29.

Appendix D. Property of Squared Error Loss

In this section, we state the property of square loss function.

Lemma 30 (Bartlett et al., 2005, Section 5.2) Let l be the squared error loss function and H a
convex and uniformly bounded hypothesis space. Assume that for every probability distribution P in
a class of data-generating distributions, there is an fH ∈ H such that E[lfH ] = inff∈H E[lf ]. Then,
there exists a constant B ≥ 1 such that for all f ∈ H and for every probability distribution P

E[(f − fH)2] ≤ BE[lf − lfH ] . (47)

Appendix E. Proof of Lemma 25

Lemma 25 Assume {xi, yi}ni=1 is an independent sample from a probability measure P defined on
X ×Y , where Y has a bounded range. Let k be a positive definite kernel with the reproducing kernel
Hilbert spaceH and let λ̂1 ≥ · · · ,≥ λ̂n be the eigenvalues of the normalized kernel Gram-matrix.
Denote the squared error loss function by l(f(x), y) = (f(x)− y)2 and fix δ ∈ (0, 1). If

ψ̂n(r) = 2Lc1

(
2

n

n∑
i=1

min{r, λ̂i}

)1/2

+
c2
n

log(
1

δ
) ,

then for all lf ∈ lH and D > 1, with probability 1− δ,

E[lf ] ≤ D

D − 1
En[lf ] +

6D

B
r̂∗ +

c3
n

log(
1

δ
) .
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Moreover, the fixed point r̂∗ defined with r̂∗ = ψ̂n(r̂∗) can be upper bounded by

r̂∗ ≤ min
0≤h≤n

(
e0
h

n
+

√
1

n

∑
i>h

λ̂i

)
,

where e0 is a constant.

Proof It is easy to see that E[l2f ] ≤ E[lf ]. Hence, we can apply Lemma 6 to function class lH and
obtain that for all lf ∈ lH

E[lf ] ≤ D

D − 1
En[lf ] +

6D

B
r̂∗ +

c3
n

log(
1

δ
) ,

as long as there is a sub-root function ψ̂n(r) such that

ψ̂n(r) ≥ c1R̂n{lf ∈ star(lH, 0) | En[l2f ] ≤ r}+
c2
n

log(
1

δ
) . (48)

We have previously demonstrated that

c1R̂n{lf ∈ star(lH, 0) | En[l2f ] ≤ r}+
c2
n

log(
1

δ
)

≤ 2c1LR̂n

{
f ∈ H | En[f2] ≤ e1r

}
+
c2
n

log(
1

δ
)

≤ 2c1L

(
2

n

n∑
i=1

min

{
e1r, λ̂i

})1/2

+
c2
n

log(
1

δ
) . (by Lemma 7)

(49)

Hence, if we choose ψ̂n(r) to be equal to the right hand side of Eq. (49), then ψ̂n(r) is a sub-root
function that satisfies Eq. (48). Now, the upper bound on the fixed point r̂∗ follows from Corollary
6.7 in Bartlett et al. (2005).

Appendix F. Additional Experiments with more features

We have also added extra experiments where we use more features for the experiments that have not
yet converged i.e. KINEMATICS and COD-RNA. In the below we see that only when we increase
the number of features up to 1000 we are able to attain comparable performance.
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