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Abstract

The change-point detection problem seeks to identify distributional changes at an unknown
change-point k∗ in a stream of data. This problem appears in many important practical
settings involving personal data, including biosurveillance, fault detection, finance, signal
detection, and security systems. The field of differential privacy offers data analysis tools
that provide powerful worst-case privacy guarantees. We study the statistical problem of
change-point detection through the lens of differential privacy. We give private algorithms
for both online and offline change-point detection, analyze these algorithms theoretically,
and provide empirical validation of our results.

Keywords: Differential Privacy, Change-Point Detection, Learning Theory, Online
Learning, Adaptive Data Analysis

1. Introduction

The change-point detection problem seeks to identify distributional changes at an unknown
change-point k∗ in a stream of data. The estimated change-point should be consistent with
the hypothesis that the data are initially drawn from pre-change distribution P0 but from
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post-change distribution P1 starting at the change-point. This problem appears in many
important practical settings, including biosurveillance (Shmueli and Burkom, 2010), fault
detection (D’Angelo et al., 2011), finance (Chen and Gupta, 2011), signal detection (Lai
et al., 2008), and security systems (Tartakovsky et al., 2006, 2012). For example, the CDC
may wish to detect a disease outbreak based on real-time data about hospital visits, or
smart home IoT devices may want to detect changes in activity within the home. In both of
these applications, the data contain sensitive personal information.

The field of differential privacy offers data analysis tools that provide powerful worst-case
privacy guarantees. Informally, an algorithm that is ε-differentially private ensures that any
particular output of the algorithm is at most eε more likely when a single data entry is
changed. In the past decade, the theoretical computer science community has developed
a wide variety of differentially private algorithms for many statistical tasks. The private
algorithms most relevant to this work are based on the simple output perturbation principle
that to produce an ε-differentially private estimate of some statistic on the database, we
should add to the exact statistic noise proportional to ∆/ε, where ∆ indicates the sensitivity
of the statistic, or how much it can be influenced by a single data entry.

In this work we study the statistical problem of change-point detection through the lens
of differential privacy. We give private algorithms for both online and offline change-point
detection, analyze these algorithms theoretically, and then provide empirical validation of
these results.

1.1 Related Work

The change-point detection problem originally arose from industrial quality control, and
has since been applied in a wide variety of other contexts including climatology (Lund
and Reeves, 2002), econometrics (Bai and Perron, 2003), and DNA analysis (Zhang and
Siegmund, 2012). The problem is studied both in the offline setting, in which the algorithm
has access to the full dataset X = {x1, . . . , xn} up front, and in the online setting, in which
data points arrive one at a time X = {x1, . . .}. Change-point detection is a canonical
problem in statistics that has been studied for nearly a century; selected results include
Shewhart (1931); Page (1954); Shiryaev (1963); Roberts (1966); Lorden (1971); Pollak (1985,
1987); Moustakides (1986); Lai (1995, 2001); Kulldorff (2001); Mei (2006, 2008, 2010); Chan
(2017).

Our approach is inspired by the commonly used Cumulative Sum (CUSUM) procedure
(Page, 1954). It follows the generalized log-likelihood ratio principle, calculating

`(k) =

n∑
i=k

log
P1(xi)

P0(xi)

for each k ∈ [n] and declaring that a change occurs if and only if `(k̂) ≥ T for MLE
k̂ = argmaxk `(k) and appropriate threshold T > 0. The existing change-point literature
works primarily in the asymptotic setting when k∗n/n→ r for some r ∈ (0, 1) as n→∞ (see,
e.g., Hinkley (1970); Carlstein (1988)). In contrast, we consider finite databases and provide
the first accuracy guarantees for the MLE from a finite sample (n <∞).

In offering the first algorithms for private change-point detection, we primarily use two
powerful tools from the differential privacy literature. ReportMax (Bhaskar et al., 2010;
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Dwork and Roth, 2014) calculates noisy approximations of a stream of queries on the database
and reports which query produced the largest noisy value. We instantiate this with partial
log-likelihood queries to produce a private approximation of the the change-point MLE in
the offline setting. AboveThresh (Dwork et al., 2010) calculates noisy approximations on
a stream of queries on the database iteratively and aborts as soon as a noisy approximation
exceeds a specified threshold. We extend our offline results to the harder online setting, in
which a bound on k∗ is not known a priori, by using AboveThresh to identify a window
of fixed size n in which a change is likely to have occurred so that we can call our offline
algorithm on that window to estimate the true change-point.

Recently, Canonne et al. (2019) also provided a private change-point detection algorithm
based on the more general problem of private hypothesis testing. Their algorithm partitions
time series data into batches of size equal to the sample complexity of the hypothesis
testing problem, and then outputs the batch number most consistent with a change-point.
Their bound gives the minimum number of data points needed to distinguish between two
distributions with constant advantage but does not necessarily imply the closest possible
approximation of the true change-point. Their accuracy guarantees and ours alike are
quantified with respect to distance measures between modified versions of the hypothesized
distributions, and comparability of the bounds depends on the specific distributions from
which data are drawn.

1.2 Our Results

We use existing tools from differential privacy to solve the change-point detection problem
in both offline and online settings, neither of which have been studied in the private setting
before.

Private offline change-point detection. We develop an offline private change-point
detection algorithm OfflinePCPD (Algorithm 3) that is accurate under one of two
assumptions about the distributions from which data are drawn. As is standard in the privacy
literature, we give accuracy guarantees that bound the additive error of our estimate of the
true change-point with high probability. Our accuracy theorem statements (Theorems 12 and
14) also provide guarantees for the non-private estimator for comparison. Since traditional
statistics typically focuses on the the asymptotic consistency and unbiasedness of the
estimator, ours are the first finite-sample accuracy guarantees for the standard (non-private)
MLE. As expected, MLE accuracy decreases with the sensitivity of the measured quantity
but increases as the pre- and post-change distribution grow apart. Interestingly, it is constant
with respect to the size of the database. In providing MLE bounds alongside accuracy
guarantees for our private algorithms, we are able to quantify the cost of privacy as roughly
DKL(P0||P1)/ε.

We are able to prove ε-differential privacy regardless of how the data are generated
by instantiating the general-purpose ReportMax algorithm from the privacy literature
with our log-likelihood queries (Theorem 11). Noting that when the measured quantity
has unbounded sensitivity, we introduce a clamping function so that the sensitivity is still
bounded by a certain threshold. Importantly and in contrast to our accuracy results, the
distributional assumption need only apply to the hypothesized distributions from which
data are drawn; privacy holds for arbitrary input databases.
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Private online change-point detection. In OnlinePCPD (Algorithm 6), we extend
our offline results to the online setting by using the AboveThresh framework to first identify
a window in which the change is likely to have happened and then call the offline algorithm
to identify a more precise approximation of when it occurred. Standard ε-differential privacy
under our first distributional assumption follows from composition of the underlying privacy
mechanisms (Theorem 15). Accuracy of our online mechanism relies on appropriate selection
of the threshold that identifies a window in which a change-point has likely occurred, at
which point the error guarantees are inherited from the offline algorithm (Theorem 16).

Empirical validation. Finally, we run several Monte Carlo experiments to validate our
theoretical results for both the online and offline settings. We consider data drawn from
Bernoulli distributions, which satisfies our first distributional assumption, as well as Gaussian
and Gamma distributions, which satisfy our second distributional assumptions. Our offline
experiments are summarized in Figure 1, which shows that change-point detection is easier
when P0 and P1 are further apart and harder when the privacy requirement is stronger
(ε is smaller). Additionally, these experiments enhance our theoretical results, finding
that OfflinePCPD performs well even when we relax the assumptions required for our
theoretical accuracy bounds by running our algorithm on imperfect hypotheses P0 and P1

that are closer together than the true distributions from which data are drawn. Figure 3
shows that OnlinePCPD also performs well, consistent with our theoretical guarantees.

2. Preliminaries

Our work considers the statistical problem of change-point detection through the lens of
differential privacy. Section 2.1 defines the change-point detection problem, Section 2.2
describes the differentially private tools that will be brought to bear, and Section 2.3 give
several concentration inequalities which will be used in our proofs.

2.1 Change-point Background

Let X = {x1, . . . , xn} be n real-valued data points. The change-point detection problem is
parametrized by two distributions, P0 and P1. The data points in X are hypothesized to
initially be sampled i.i.d. from P0, but at some unknown change time k∗ ∈ [n], where [n]
denotes the set {1, . . . , n}, an event may occur (e.g., epidemic disease outbreak) and change
the underlying distribution to P1. The goal of a data analyst is to announce that a change
has occurred as quickly as possible after k∗. Since the xi may be sensitive information—such
as individuals’ medical information or behaviors inside their home—the analyst will wish to
announce the change-point time in a privacy-preserving manner.

In the standard non-private offline change-point literature, the analyst wants to test
the null hypothesis H0 : k∗ =∞, where x1, . . . , xn ∼iid P0, against the composite alternate
hypothesis H1 : k∗ ∈ [n], where x1, . . . , xk∗−1 ∼iid P0 and xk∗ , . . . , xn ∼iid P1. The log-
likelihood ratio of k∗ =∞ against k∗ = k is given by

`(k,X) =
n∑
i=k

log
P1(xi)

P0(xi)
. (1)
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The maximum likelihood estimator (MLE) of the change time k∗ is given by

k̂(X) = argmaxk∈[n]`(k,X). (2)

When X is clear from context, we will simply write `(k) and k̂.

We always use log to refer to the natural logarithm, and when necessary, we inter-
pret log 0

0 = 0. An important quantity in our accuracy analysis will be the Kullback-
Leibler divergence between probability distributions P0 and P1, defined as DKL(P1||P0) =∫∞
−∞ P1(x) log P1(x)

P0(x)dx = Ex∼P1 [log P1(x)
P0(x) ]. For given distributions P0, P1, our proofs will use

the following three variations of KL-divergence:

C = min {DKL(P0||P1), DKL(P1||P0)} , (3)

CM = min

{
DKL

(
P0||

P0 + P1

2

)
, DKL

(
P1||

P0 + P1

2

)}
= min

i=0,1
Ex∼Pi

[
log

2Pi(x)

P0(x) + P1(x)

]
,

(4)

CA = min

{
−Ex∼P0

[
log

P1(x)

P0(x)

]A/2
−A/2

,Ex∼P1

[
log

P1(x)

P0(x)

]A/2
−A/2

}
, (5)

where A is a pre-specified (input) truncation parameter. The truncation operation is defined
as

[x]
A/2
−A/2 =


−A/2 if x < −A/2
A/2 if x > A/2

x otherwise.

We will measure the additive error of our estimations of the true change point as follows.

Definition 1 ((α, β)-accuracy) A change-point detection algorithm that produces a change-
point estimator k̃(X) where a distribution change occurred at time k∗ is (α, β)-accurate if
Pr[|k̃− k∗| < α] ≥ 1−β, where the probability is taken over the randomness of the algorithm
and sampling of X.

2.2 Differential Privacy Background

Differential privacy bounds the maximum amount that a single data entry can affect analysis
performed on the database. Two databases X,X ′ are neighboring if they differ in at most
one entry.

Definition 2 (Differential Privacy (Dwork et al., 2006)) An algorithmM : Rn → R
is ε-differentially private if for every pair of neighboring databases X,X ′ ∈ Rn, and for every
subset of possible outputs S ⊆ R,

Pr[M(X) ∈ S] ≤ exp(ε) Pr[M(X ′) ∈ S].

One common technique for achieving differential privacy is by adding Laplace noise.
The Laplace distribution with scale b is the distribution with probability density function:
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Lap(x|b) = 1
2b exp

(
− |x|b

)
. We will write Lap(b) to denote the Laplace distribution with scale

b, or (with a slight abuse of notation) to denote a random variable sampled from Lap(b).

The sensitivity of a function or query f is defined as ∆(f) = maxneighbors X,X′ |f(X)−
f(X ′)|. The Laplace Mechanism of Dwork et al. (2006) takes in a function f , database X,
and privacy parameter ε, and outputs f(X) + Lap(∆(f)/ε). Since our algorithms estimate
a change-point based on log-likelihood ratios, it will be useful to denote the sensitivity of
the log-likelihood function given distributions P0, P1 as follows:

∆(`) = max
x∈R

log
P1(x)

P0(x)
− min
x′∈R

log
P1(x′)

P0(x′)
. (6)

Our algorithms rely on two existing differentially private algorithms, ReportMax (Bhaskar
et al., 2010; Dwork and Roth, 2014) and AboveThresh (Dwork et al., 2010). The Report-
Max algorithm takes in a collection of queries, computes a noisy answer to each query, and
returns the index of the query with the largest noisy value. We use this as the framework
for our offline private change-point detector OfflinePCPD in Section 3 to privately select
the time k with the highest log-likelihood ratio `(k).

Algorithm 1 Report Noisy Max: ReportMax(X,∆, {f1, . . . , fm}, ε)
Input: database X, set of queries {f1, . . . , fm} each with sensitivity ∆, privacy parameter
ε
for i = 1, . . . ,m do

Compute fi(X)
Sample Zi ∼ Lap(∆

ε )
end for
Output i∗ = argmax

i∈[m]
(fi(X) + Zi)

Theorem 3 (Bhaskar et al. (2010); Dwork and Roth (2014)) ReportMax is
ε-differentially private.

The AboveThresh algorithm, first introduced by Dwork et al. (2010) and refined to
its current form by Dwork and Roth (2014), takes in a potentially unbounded stream of
queries, compares the answer of each query to a fixed noisy threshold, and halts when it
finds a noisy answer that exceeds the noisy threshold. We use this algorithm as a framework
for our online private change-point detector OnlinePCPD in Section 4 when new data
points arrive online in a streaming fashion.
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Algorithm 2 Above Noisy Threshold: AboveThresh(X,∆, {f1, f2, . . .}, T, ε)
Input: database X, stream of queries {f1, f2, . . .} each with sensitivity ∆, threshold T ,
privacy parameter ε
Let T̂ = T + Lap(2∆

ε )
for each query i do

Let Zi ∼ Lap(4∆
ε )

if fi(X) + Zi > T̂ then
Output ai = >
Halt

else
Output ai = ⊥

end if
end for

Theorem 4 (Dwork et al. (2010)) AboveThresh is ε-differentially private.

Theorem 5 (Dwork et al. (2010)) For any sequence of m queries f1, . . . , fm with sen-
sitivity ∆ such that |{i < m : fi(X) ≥ T − α}| = 0, AboveThresh outputs with probability
at least 1 − β a stream of a1, . . . , am ∈ {>,⊥} such that ai = ⊥ for every i ∈ [m] with
f(i) < T − α and ai = > for every i ∈ [m] with f(i) > T + α as long as

α ≥ 8∆ log(2m/β)

ε
.

2.3 Concentration Inequalities

Our proofs will use the following bounds on partial sums of independent random variables.

Lemma 6 (Ottaviani’s inequality (Van Der Vaart and Wellner, 1996)) For inde-
pendent random variables U1, . . . , Um, for Sk =

∑
i∈[k] Ui for k ∈ [m], and for λ1, λ2 > 0,

we have

Pr

[
max
k∈[m]

|Sk| > λ1 + λ2

]
≤ Pr [|Sm| > λ1]

1−maxk∈[m] Pr [|Sm − Sk| > λ2]
.

If we additionally assume the Ui above are i.i.d. with mean 0 and take values from an
interval of bounded length L, we can apply Hoeffding’s inequality for the following corollary:

Corollary 7 For independent and identically distributed random variables U1, . . . , Um with
mean zero and support strictly bounded by an interval of length L, for Sk =

∑
i∈[k] Ui for

k ∈ [m], and for λ1, λ2 > 0, we have

Pr[max
k∈[m]

|Sk| > λ1 + λ2] ≤ 2 exp(−2λ2
1/(mL

2))

1− 2 exp(−2λ2
2/(mL

2))
.

When our random variables do not come from a bounded-length interval, we will require
Bernstein’s inequality instead of Hoeffding’s to attain a similar result on their partial sums.
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Lemma 8 (Bernstein’s inequality (Van Der Vaart and Wellner, 1996)) For inde-

pendent random variables Y1, . . . , Ym with mean zero such that E
[
e|Yi|/M − 1− |Yi|M

]
M2 ≤

1
2vi for constants M and vi for all i ∈ [m], we have

Pr[|Y1 + . . .+ Yn| > x] ≤ 2 exp

(
−1

2

x2

v +Mx

)
,

for v ≥ v1 + . . .+ vm.

Corollary 9 For independent and identically distributed random variables Y1, . . . , Ym with
mean zero such that E

[
e|Yi| − 1− |Yi|

]
≤ 1

2v, for constant v for all i ∈ [m], and for
Sk =

∑
i∈[k] Yi for k ∈ [m], and for λ1, λ2 > 0, we have

Pr[max
k∈[m]

|Sk| > λ1 + λ2] ≤ 2 exp(−λ2
1/(2mv + 2λ1))

1− 2 exp(−λ2
2/(2mv + 2λ2))

.

3. Offline Private Change-point Detection

In this section, we investigate the differentially private change-point detection problem in
the setting that n data points X = {x1, . . . , xn} are known to the algorithm in advance.
Given two hypothesized distributions P0 and P1, our algorithms privately approximate the
MLE k̂ of the change time k∗. We consider accuracy of change-point estimation with and
without the assumption that the distributions have uniformly bounded likelihood ratios.

First, we provide finite-sample accuracy guarantees for the MLE in each of these cases
in Section 3.1. Second, we offer an algorithm OfflinePCPD in Section 3.2 that achieves
privacy by introducing noise proportional to the sensitivity of the log-likelihood calculation.
To detect changes in certain distributions such as Gaussians, our OfflinePCPD algorithm
requires infinite noise and therefore provides no accuracy. Therefore, we finally provide a
second private algorithm OfflinePTCPD in Section 3.3, which has no restriction on the
distributions and instead uses a truncation parameter A > 0 to control the sensitivity of the
log-likelihood calculation. In Table 1 we summarize accuracy bounds for both the MLE and
the output of our algorithms under these assumptions.

Quantity Accuracy guarantee α

MLE k̂ min
{

2∆(`)2

C2 log 32
3β ,

35
C2
M

log 32
3β

}
OfflinePCPD max

{
8∆(`)2

C2 log 64
3β ,

8∆(l)
Cε log 64∆(l)

βCε

}
OfflinePTCPD max

{
8A2

C2
A

log 64
3β ,

8A
CAε

log 64A
βCAε

}
Table 1: Summary of accuracy guarantees for non-private and private offline change-point
detection under the alternate hypothesis H1. The expressions k̂, ∆(`), C, CM and CA are
defined in (2), (6), (3), (4), (5), respectively.

Although our algorithms only guarantee accuracy if the analyst supplies the true dis-
tributions P0, P1 from which data are drawn, it is important to note that the algorithms
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are ε-differentially private for any hypothesized distributions P0, P1 and privacy parameter
ε > 0 regardless of the distributions from which X is drawn. In the change-point or sta-
tistical process control (SPC) literature, when the pre- and post- change distributions are
unknown in practical settings, researchers often choose hypotheses P0, P1 with the smallest
justifiable distance. While it is easier to detect and accurately estimate a larger change,
larger changes are often associated with a higher-sensitivity MLE, requiring more noise (and
therefore additional error) or truncation (and therefore information loss) to preserve privacy.
We propose that practitioners using our private change-point detection algorithm choose
input hypotheses accordingly. This practical setting is considered in our numerical studies,
presented in Section 5.

3.1 Finite Sample Accuracy Guarantees for the MLE

Here we provide two accuracy bounds for the standard (non-private) MLE. These are the first
finite-sample accuracy guarantees for this estimator. Such non-asymptotic properties have
not been previously studied in traditional statistics, which typically focuses on consistency
and unbiasedness of the estimator, with less attention to the convergence rate. We show
that the additive error of the MLE is constant with respect to the sample size, which means
that the convergence rate is OP (1). These results provide a baseline for quantifying the cost
of privacy, since the techniques used in the theorem below mirror those used later in the
accuracy proofs for our private algorithms.

A technical challenge that arises in proving accuracy of the estimator is that the xi
are not identically distributed when the true change-point k∗ ∈ (1, n], and so the partial
log-likelihood ratios `(k) are dependent across k. Hence we need to investigate a sequence of
`(k) that may be neither independent nor identically distributed. Fortunately, the differences

`(k)− `(k + 1) = log P1(xk)
P0(xk) are piecewise i.i.d.; that is, the differences are i.i.d. before the

change point k∗, and i.i.d. after the change point k∗. This property is key in our proof.
Moreover, we show that we can divide the possible outputs of the algorithm into regions of
doubling size with exponentially decreasing probability of being selected by the algorithm,
resulting in accuracy bounds that are independent of the number of data points n.

Note that our first accuracy guarantee depends on two measures ∆(`) and C of the
distances between distributions P0 and P1. Accuracy is best for distributions for which ∆(`)
is small relative to KL-divergence, which is consistent with the intuition that larger changes
are easier to detect but output sensitivity degrades the robustness of the estimator, harming
accuracy. This will be true for our first private algorithm OfflinePCPD, whose accuracy
is additionally harmed by the extra noise required to protect privacy when output sensitivity
is higher.

This dependence on ∆(`) is not inherent, however. Allowing ∆(`) to be infinite precludes
our use of the same concentration inequalities in obtaining the accuracy guarantee, but the
main idea in the proof can be salvaged by decomposing the change from P0 to P1 into a
change from P0 to the average distribution (P0 + P1)/2 and then the average distribution
to P1. Correspondingly, our second accuracy guarantee will use the alternative distance
measure

CM = min

{
DKL

(
P0||

P0 + P1

2

)
, DKL

(
P1||

P0 + P1

2

)}
,
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which will allow us to provide an MLE accuracy guarantee for arbitrary distributions.

Theorem 10 For n data points drawn from P0, P1 such that ∆(`) <∞ with true change
time k∗ ∈ (1, n], the MLE k̂ is (α, β)-accurate for any β > 0 and

α =
2∆(`)2

C2
log

32

3β
. (7)

For n data points drawn from arbitrary P0, P1 with true change time k∗ ∈ (1, n), the
MLE k̂ is (α, β)-accurate for any β > 0 and

α =
35

C2
M

log
32

3β
, (8)

where C and CM are defined in (3) and (4), respectively.

Proof Given some true change-point k∗ and error tolerance α > 0, we can partition the set
of bad possible outputs k̂ into sub-intervals of exponentially increasing size as follows. For
i ≥ 1, let

R−i = [k∗ − 2iα, k∗ − 2i−1α),

R+
i = (k∗ + 2i−1α, k∗ + 2iα], and

Ri = R−i ∪R
+
i .

Then we can bound the probability of the bad event as follows:

β = Pr
[
|k̂ − k∗| > α

]
≤
∑
i≥1

Pr

[
max
k∈Ri
{`(k)− `(k∗)} > 0

]
. (9)

This requires us to reason about the probability that the log-likelihood ratios for the
data are not too far away from their expectation. Although the `(k) are not independent
across k, their pairwise differences `(k + 1)− `(k) are. When ∆(`) <∞ we can apply our
corollary of Ottaviani’s inequality (Corollary 7) to bound the probability that `(k) exceeds
`(k∗) by appropriately defining several random variables corresponding to a data stream X
drawn according to the change-point model.

Specifically, we can decompose the empirical log-likelihood difference between the true
change-point k∗ and any candidate k into the expected value of this difference and the sum
of i.i.d. random variables with mean zero as follows:

Uj :=

{
− log

P0(xj)
P1(xj)

+DKL(P0||P1), j < k∗

− log
P1(xj)
P0(xj)

+DKL(P1||P0), j ≥ k∗

`(k)− `(k∗) =

{∑k∗−1
j=k Uj − (k∗ − k)DKL(P0||P1), k < k∗∑k−1
j=k∗ Uj − (k − k∗)DKL(P1||P0), k ≥ k∗

We can rewrite `(k) − `(k∗) as a zero-mean random variable subtracting a positive
deterministic quantity |k∗ − k|DKL(P0||P1). In other words, `(k)− `(k∗) is positive only if
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the zero-mean random variable takes a sufficiently large positive value, which we will prove
is a rare event. In this problem, we have to study the event {maxk{`(k) − `(k∗)} > 0},
where max is taken over a suitable set. To this end, we introduce a sequence of random
variables defined as:

Sm =

{∑
k∗+m≤j<k∗ Uj , m < 0∑
k∗≤j<k∗+m Uj m > 0.

With these random variables, we bound the probability that the MLE lives in any
particular bad subinterval Ri, i ≥ 1 as follows:

Pr

[
max
k∈Ri

{`(k)− `(k∗)} > 0

]

= Pr

max
k∈R−i


k∗−1∑
j=k

Uj − (k∗ − k)DKL(P0||P1)

 > 0


+ Pr

max
k∈R+

i


k−1∑
j=k∗

Uj − (k − k∗)DKL(P1||P0)

 > 0


= Pr

max
k∈R−i


k∗−1∑
j=k

Uj > (k∗ − k)DKL(P0||P1)




+ Pr

max
k∈R+

i


k−1∑
j=k∗

Uj > (k − k∗)DKL(P1||P0)




≤ Pr

[
max

k∈[2i−1α]
|S−k| > 2i−1αC

]
+ Pr

[
max

k∈[2i−1α]
|Sk| > 2i−1αC

]
≤ 4 · exp(−2i−2αC2/∆(`)2)

1− 2 · exp(−2i−2αC2/∆(`)2)
(10)

≤ 8 exp(−2i−2αC2/∆(`)2) (11)

= 8

(
exp(

−αC2

2∆(`)2
)

)2i−1

,

where the first inequality comes from the definitions of Ri and C, inequality (10) follows from
an application of Corollary 7 with λ1 = λ2 = 2i−2αC and L = ∆(`), and the denominator

can be simplified as in (11) under the assumption that α ≥ 2∆(`)2 log 4
C2 , which is satisfied by

the final bound on α in (7).

We now consider the sum of these terms over all i, which will be needed for the final
bound on Equation (9). We note that this sum is bounded above by a geometric series with
ratio exp(−αC2/(2∆(`)2)) since 2i−1 ≥ i, yielding the second and third inequalities. For the
fourth inequality, the same assumed lower bound on α is used to simplify the denominator
as in (11):

11
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∑
i≥1

Pr

[
max
k∈Ri
{`(k)− `(k∗)} > 0

]
≤ 8

∑
i≥1

(
exp(

−αC2

2∆(`)2
)

)2i−1

≤ 8
∑
i≥1

(
exp(

−αC2

2∆(`)2
)

)i
(12)

≤
8 exp( −αC

2

2∆(`)2
)

1− exp( −αC
2

2∆(`)2
)

(13)

≤ 32

3
exp

(
−αC2

2∆(`)2

)
. (14)

Equations (12)–(14) involve a standard technique in bounding geometric series. This
technique will be invoked several times throughout the remainder of this paper. When it
is used again in future proofs, we will omit the intermediate steps and only show the final
results. For α as in (7) in the theorem statement, the expression above is bounded by β as
required.

In the case that ∆(`) is infinite, we instead define i.i.d. random variables Vj with mean
zero, according to an alternative log-likelihood as follows:

Vj :=


− log

P0(xj)(
P0+P1

2

)
(xj)

+DKL

(
P0||P0+P1

2

)
, j < k∗

− log
P1(xj)(

P0+P1
2

)
(xj)

+DKL

(
P1||P0+P1

2

)
, j ≥ k∗

This new set of random variables is necessary when ∆(`) is infinite, because the Uj no longer
have bounded support, so we cannot apply Corollary 7. Instead we will apply a corollary of
Bernstein’s inequality (Corollary 9) to get similar bounds.

With these random variables, we can bound the empirical log-likelihood difference
between the true change-point k∗ and any candidate k by,

1

2
[`(k)− `(k∗)] ≤

{∑k∗−1
j=k Vj − (k∗ − k)DKL

(
P0||P0+P1

2

)
, k < k∗∑k−1

j=k∗ Vj − (k − k∗)DKL

(
P1||P0+P1

2

)
, k ≥ k∗.

The inequality follows by concavity of the log function, which gives that 1
2 log P1(x)

P0(x) ≤
log 0.5(P0+P1)(x)

P0(x) for any x. Next we bound each term in (9) for any i ≥ 1 as follows, noting

that the 1/2 multiplier has no effect when we are only concerned with the maximum being

12
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positive:

Pr

[
max
k∈Ri
{`(k)− `(k∗)} > 0

]

≤ Pr

max
k∈R−i


k∗−1∑
j=k

Vj − (k∗ − k)DKL

(
P0||

P0 + P1

2

) > 0


+ Pr

max
k∈R+

i


k−1∑
j=k∗

Vj − (k − k∗)DKL

(
P1||

P0 + P1

2

) > 0


= Pr

max
k∈R−i


k∗−1∑
j=k

Vj > (k∗ − k)DKL

(
P0||

P0 + P1

2

)


+ Pr

max
k∈R+

i


k−1∑
j=k∗

Vj > (k − k∗)DKL

(
P1||

P0 + P1

2

)


≤ Pr

[
max

k∈[2i−1α]
|
∑k∗−1

j=k∗−k Vj | > 2i−1αCM

]
+ Pr

[
max

k∈[2i−1α]
|
∑k∗+k−1

j=k∗ Vj | > 2i−1αCM

]
(15)

≤
4 exp

(
−2i−3αC2

M
CM+8

)
1− 2 exp

(
−2i−3αC2

M
CM+8

) (16)

≤ 8 exp

(
−

2i−3αC2
M

CM + 8

)
, (17)

where (15) follows from the definitions of Ri and CM , and (16) follows from an application of
Corollary 9 with λ1 = λ2 = 2i−2αCM and v = 4. The denominator is simplified in (17) using
our final bound on α in (8) and direct calculations to show that α ≥ 35

C2
M

log 32
3β > 82/C2

M

implies 2 exp
(
−2i−3αC2

M
CM+8

)
< 1/2.

To verify the application of Corollary 9 used in Equation (16), we need to show that for
all j,

E [exp(|Vj |)− 1− |Vj |] ≤ 2. (18)

To show this, let Yj be the biased i.i.d. alternative log-likelihood ratio as follows:

Yj =


(
P0+P1

2

)
(xj)

P0(xj)
, j < k∗(

P0+P1
2

)
(xj)

P1(xj)
, j ≥ k∗

Because Pi(x)/
(
P0+P1

2

)
(x) ≤ 2 for i = 0, 1, we have

0 ≤ DKL(Pi||(P0 + P1)/2) ≤ log 2, (19)

13
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and thus eDKL(Pi||(P0+P1)/2) ∈ [1, 2]. It suffices to note that E [exp(|Vj |)] ≤ 3, because
E [exp(|Vj |)− 1− |Vj |] ≤ E [exp(|Vj |)− 1]. We present the analysis when j < k∗, and the
following expectation is taken under P0. Note that the other side j ≥ k∗ is similar with the
expectation taken under P1.

E [exp(|Vj |)] = E [exp(| log Yj − E [log Yj ] |)]
≤ E [exp(log Yj − E [log Yj ])] + E [exp(E [log Yj ]− log Yj)]

= E [Yj ] e
DKL(P0||(P0+P1)/2) +

E [1/Yj ]

eDKL(P0||(P0+P1)/2)

≤ eDKL(P0||(P0+P1)/2) +
2

eDKL(P0||(P0+P1)/2)
(20)

≤ 2
√

2 ≤ 3, (21)

where (20) follows from E [Yj ] = 1, and E [1/Yj ] = E
[
P0(x)/(P0+P1

2 )(x)
]
≤ 2, and (21)

follows from the optimization that x+ 2/x ≤ 2
√

2 for x ∈ [1, 3].

Finally, we consider the sum of the terms (17) over all i:

∑
i≥1

Pr

[
max
k∈Ri
{`(k)− `(k∗)} > 0

]
≤
∑
i≥1

8

(
exp

(
−

αC2
M

4(CM + 8)

))2i−1

≤
8 exp

(
− αC2

M
4(CM+8)

)
1− exp

(
− αC2

M
4(CM+8)

) (22)

≤ 32

3
exp

(
−
αC2

M

35

)
, (23)

where inequality (22) uses the standard technique as in Equations (12)–(13). The denomina-

tor is simplified in (23) using the condition that exp
(
− αC2

M
4(CM+8)

)
< 1/4; we also use the fact

that CM ≤ log 2 according to (19). For α as in (8) in the theorem statement, the expression
above is bounded by β, completing the proof.

3.2 Offline Algorithm under the Uniform Bound Assumption

Our first private offline algorithm OfflinePCPD applies the ReportMax algorithm (Dwork
and Roth, 2014) to the change-point problem by adding Laplace noise with parameter ∆(`)/ε
to each finite-sensitivity partial log-likelihood ratio `(k) in order to estimate the private
change-point. We note that our algorithm can be easily modified to additionally output an
approximation of `(k̃) and incur 2ε privacy cost by composition.

14
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Algorithm 3 Offline private change-point detector: OfflinePCPD(X,P0, P1, ε, n)

Input: database X, distributions P0, P1, privacy parameters ε, database size n

Let ∆(`) = maxx log P1(x)
P0(x) −minx′ log P1(x′)

P0(x′)
for k = 1, . . . , n do

Compute `(k) =
∑n

i=k log P1(xi)
P0(xi)

Sample Zk ∼ Lap(∆(`)
ε )

end for
Output k̃ = argmax

1≤k≤n
{`(k) + Zk}

Privacy of OfflinePCPD follows by instantiation of ReportMax (Dwork and Roth,
2014) with queries `(k) for k ∈ [n], which have sensitivity ∆(`); this proof is included for
completeness.

Theorem 11 For arbitrary data X and ε > 0, OfflinePCPD(X,P0, P1, ε) is ε-differentially
private.

Proof Fix any two neighboring databases X,X ′ that differ on index j. For any k ∈ [n],
denote the respective partial log-likelihood ratios as `(k) and `′(k). By (1), we have

`′(k) = `(k) + ∆I{j ≥ k} with ∆ = log
P1(x′j)

P0(x′j)
− log

P1(xj)

P0(xj)
. (24)

Next, for a given 1 ≤ i ≤ n, fix Z−i, a draw from [Lap(∆(`)/ε)]n−1 used for all the noisy
log likelihood ratio values except the ith one. We will bound from above and below the
ratio of the probabilities that the algorithm outputs k̃ = i on inputs X and X ′. Define the
minimum noisy value in order for i to be select with X:

Z∗i = min{Zi : `(i) + Zi > `(k) + Zk ∀k 6= i}

If ∆ < 0, then for all k 6= i we have

`′(i) + ∆(`) + Z∗i ≥ `(i) + Z∗i > `(k) + Zk ≥ `′(k) + Zk.

If ∆ ≥ 0, then for all k 6= i we have

`′(i) + Z∗i ≥ `(i) + Z∗i > `(k) + Zk ≥ `′(k)−∆(`) + Zk.

Hence, Z ′i ≥ Z∗i + ∆(`) ensures that the algorithm outputs i on input X ′, and the theorem
follows from the following inequalities for any fixed Z−i, with probabilities over the choice of
Zi ∼ Lap(∆(`)/ε).

Pr[k̃ = i | X ′, Z−i] ≥ Pr[Z ′i ≥ Z∗i +A | Z−i] ≥ e−ε Pr[Zi ≥ Z∗i | Z−i] = e−ε Pr[k̃ = i | X,Z−i].
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Next we provide an accuracy guarantee for the output k̃ of our private algorithm
OfflinePCPD when the data are drawn from P0, P1 with true change point k∗ ∈ (1, n).
By providing this bound using a technique mirroring that of Theorem 10 to bound the error
of the non-private MLE, Theorem 12 quantifies the marginal cost of requiring privacy in
change-point detection. This additional cost comes from the fact that not only may the
randomness of the n data points X result in an incorrect MLE, but the randomness of the
Laplace noise added for privacy may also result in an incorrect noisy estimate of the MLE.

Theorem 12 For hypotheses P0, P1 such that ∆(`) <∞ and n data points X drawn from
P0, P1 with true change time k∗ ∈ (1, n], and for privacy parameter ε > 0, the algorithm
OfflinePCPD(X,P0, P1, ε, n) is (α, β)-accurate for any β > 0 and

α = max

{
8∆(`)2

C2
log

64

3β
,

8∆(l)

Cε
log

64∆(l)

βCε

}
. (25)

Proof Our proof is structured around the observation that the algorithm only outputs a
particular incorrect k̃ 6= k∗ if there exists some k in which `(k) + Zk > `(k∗) + Zk∗ for a set
of random noise values {Zk}k∈[n] selected by the algorithm. For the algorithm to output
an incorrect value, there must either be a k that nearly beats the true change point on the
noiseless data or there must be a k that receives much more noise than k∗. Intuitively, this
captures the respective scenarios that unusual data causes non-private ERM to perform
poorly and that unusual noise draws causes our private algorithm to perform poorly.

As in the proof of Theorem 10, given some true change-point k∗ and error tolerance
α > 0, we partition the set of bad possible outputs k into sub-intervals of exponentially
increasing size. For i ≥ 1, let:

R−i = [k∗ − 2iα, k∗ − 2i−1α),

R+
i = (k∗ + 2i−1α, k∗ + 2iα], and

Ri = R−i ∪R
+
i .

Then for any range-specific thresholds ti for i ≥ 1, our previous observations allow us to
bound the probability of the bad event as follows:

β = Pr[|k̃ − k∗| > α] ≤
∑
i≥1

Pr

[
max
k∈Ri
{`(k)− `(k∗)} > −ti

]
+
∑
i≥1

Pr

[
max
k∈Ri
{Zk − Zk∗} ≥ ti

]
(26)

We bound each term in the above expression separately for ti = 2i−2αC, and we will set
α to ensure that each term is at most β/2. As in Theorem 10, we can bound the first set of
terms using Corollary 7 to bound the probability that `(k) significantly exceeds `(k∗) by
appropriately defining several random variables corresponding to a data stream X drawn
according to the change-point model:
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Uj =

{
− log

P0(xj)
P1(xj)

+DKL(P0||P1), j < k∗

− log
P1(xj)
P0(xj)

+DKL(P1||P0), j ≥ k∗

`(k)− `(k∗) =

{∑k∗−1
j=k Uj − (k∗ − k)DKL(P0||P1), k < k∗∑k−1
j=k∗ Uj − (k − k∗)DKL(P1||P0), k ≥ k∗

We also define random variable Sm to denote the sum of m i.i.d. random variables as
follows, noting that Sm is distributed like

∑k∗−1
j=k∗+m Uj for m < 0 and like

∑k∗+m−1
j=k∗ Uj for

m > 0.

Sm =

{∑
k∗+m≤j<k∗ Uj , m < 0∑
k∗≤j<k∗+m Uj m > 0

With these random variables, we bound each term in the first set of terms in (26) for
any i ≥ 1 and threshold ti = 2i−2αC as follows:

Pr

[
max
k∈Ri
{`(k)− `(k∗)} > −2i−2αC

]

≤ Pr

max
k∈R−i


k∗−1∑
j=k

Uj − (k∗ − k)DKL(P0||P1)

 > −2i−2αC


+ Pr

max
k∈R+

i


k−1∑
j=k∗

Uj − (k − k∗)DKL(P1||P0)

 > −2i−2αC


≤ Pr

[
max

k∈[2i−1α]
|S−k| > 2i−2αC

]
+ Pr

[
max

k∈[2i−1α]
|Sk| > 2i−2αC

]
≤ 4 · exp(−2i−4αC2/∆(`)2)

1− 2 · exp(−2i−4αC2/∆(`)2)
(27)

≤ 8 exp(−2i−4αC2/∆(`)2) (28)

= 8

(
exp(

−αC2

8∆(`)2
)

)2i−1

,

where (27) follows from an application of Corollary 7 with λ1 = λ2 = 2i−3αC and L = ∆(`),

and the denominator can be simplified as in (28) under the assumption that α ≥ 8∆(`)2 log 4
C2 ,

which is satisfied by our final bounds.

We now consider the sum of these terms over all i, which will be needed for the final
bound on Equation (26). The same technique that was used to bound geometric series in
Equations (12)–(14) is applied here. For the fourth inequality, the same assumed lower
bound on α is used to simplify the denominator as in (28):
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∑
i≥1

Pr

[
max
k∈Ri
{`(k)− `(k∗)} > −2i−2αC

]
≤ 8

∑
i≥1

(
exp(

−αC2

8∆(`)2
)

)2i−1

≤
8 exp( −αC

2

8∆(`)2
)

1− exp( −αC
2

8∆(`)2
)

≤ 32

3
exp

(
−αC2

8∆(`)2

)
. (29)

The first term in (25) in the theorem statement ensures that the expression above is
bounded by β/2. It remains to show that the second term in (25) is enough to guarantee
that the Laplace noise added for privacy will not harm accuracy except with probability
β/2.

Next we bound the second set of terms of (26). We can easily bound one term in this set
for any i ≥ 1 since each Zk and Zk∗ are independent draws from a Laplace distribution with
parameter ∆(`)/ε, allowing us to apply a union bound over all indices in Ri:

Pr

[
max
k∈Ri
{Zk − Zk∗} ≥ 2i−2αC

]
≤ Pr

[
2 max
k∈Ri

|Zk| ≥ 2i−2αC

]
≤ 2iαPr[|Lap(∆(`)/ε)| ≥ 2i−3αC]

≤ 2iα · exp

(
−2i−3αCε

∆(`)

)
= 2iα

(
exp

(
−αCε
4∆(`)

))2i−1

.

Then by summing over all ranges and assuming in (30) that α ≥ 4∆(`) log 2
Cε to simplify

the denominator, which will be satisfied by our final bound on α, we obtain a bound on the
probability of large noise applied to any possible k far from k∗.

∑
i≥1

Pr

[
max
k∈Ri
{Zk − Zk∗} > 2i−2αC

]
≤ α

∑
i≥1

2i
(

exp(
−αCε
4∆(`)

)

)2i−1

≤ 2α
∑
i≥1

i

(
exp(

−αCε
4∆(`)

)

)i

= 2α
exp(−αCε4∆(`) )

(1− exp(−αCε4∆(`) ))2

≤ 8α exp

(
−αCε
4∆(`)

)
. (30)

To ensure that (30) is at most β/2, we require that logα − αCε
4∆(l) ≤ log β

16 . Adding

log Cε
4∆(l) to both sides, we have log αCε

4∆(l) −
αCε

4∆(l) ≤ log βCε
64∆(l) . Since αCε

8∆(l) ≥ log αCε
4∆(l) ,
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requiring − αCε
8∆(l) ≤ log βCε

64∆(l) , or equivalently α ≥ 8∆(l)
Cε log 64∆(l)

βCε suffices to bound (30)

above by β/2.

3.3 Offline Algorithm for Arbitrary Distributions

In this subsection, we give an offline private change-point detector OfflinePTCPD that
offers guarantees even when ∆(`) is infinite. Relaxing the uniform bound assumption means
that we may have a single data point xj that dramatically increases `(k) for k ≥ j, so we
cannot add noise proportional to ∆(`). Instead we truncate the log-likelihood ratio and add
noise proportional to the post-truncation range. We compute the A-truncated log-likelihood
ratio of k as

`A(k) =

n∑
i=k

[
log

P1(xi)

P0(xi)

]A/2
−A/2

,

where [x]ba denotes the projection of x onto the interval [a, b]. This truncation scheme yields
privacy immediately by instantiation of ReportMax Dwork and Roth (2014) with queries
`A(k) for k ∈ [n], which have sensitivity ∆(`A) = A.

Algorithm 4 Offline private change-point detector: OfflinePTCPD(X,P0, P1, ε, n,A)

Input: database X, distributions P0, P1, privacy parameter ε, database size n, truncation
parameter A
for k = 1, . . . , n do

Compute `A(k) =
∑n

i=k

[
log P1(xi)

P0(xi)

]A/2
−A/2

Sample Zk ∼ Lap(Aε )
end for
Output k̃ = argmax

1≤k≤n
{`A(k) + Zk} . Report noisy argmax

Theorem 13 For arbitrary data X and ε > 0, OfflinePTCPD(X,P0, P1, ε, A) is ε-
differentially private.

Since we are no longer able to uniformly bound P1(x)/P0(x), our accuracy results include
a truncation parameter A in place of ∆(`) since A is the sensitivity of `A. Rather than C,
the distributional difference measure parametrizing our results correspondingly depends on
the truncation parameter A, which must be chosen to ensure CA is positive:

CA = min

{
−Ex∼P0

[
log

P1(x)

P0(x)

]A/2
−A/2

,Ex∼P1

[
log

P1(x)

P0(x)

]A/2
−A/2

}
.

We note that for Gaussian and Gamma distributions, any A > 0 ensures CA > 0. In
Section 5 we illustrate that for these distributions, it is best to choose small A to avoid
excess noise and effectively rely on the sign of the log-likelihood ratio for accuracy. For
general P0 6= P1, A > 2 is a sufficient condition by the following argument. When A > 2,
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we have [log x]
A/2
−A/2 ≤ x − 1, and thus EP0

[
log P1(x)

P0(x)

]A/2
−A/2

< EP0

[
P1(x)
P0(x) − 1

]
= 0 and

EP1

[
log P1(x)

P0(x)

]A/2
−A/2

= −EP0

[
log P1(x)

P0(x)

]A/2
−A/2

> 0.

With these definitions, we are ready to present the accuracy of OfflinePTCPD, in

which the quantities A and E
[
log P1(x)

P0(x)

]A/2
−A/2

play roles analogous to `(k) and DKL in

Theorem 12.

Theorem 14 For arbitrary hypotheses P0, P1 and n data points X drawn from P0, P1 with
true change time k∗ ∈ (1, n), for privacy parameter ε > 0, and for truncation parameter A
that satisfies CA > 0, OfflinePTCPD(X,P0, P1, ε, n,A) is (α, β)-accurate for any β > 0
and

α = max

{
8A2

C2
A

log
64

3β
,

8A

CAε
log

64A

βCAε

}
, (31)

where CA is defined in (5).

Proof Given some true change-point k∗ and error tolerance α > 0, we can partition the
set of bad possible outputs k into sub-intervals of exponentially increasing size as follows.
Following the notation of Theorem 12, for i ≥ 1 we let

R−i = [k∗ − 2iα, k∗ − 2i−1α),

R+
i = (k∗ + 2i−1α, k∗ + 2iα], and

Ri = R−i ∪R
+
i ,

and for range-specific thresholds ti for i ≥ 1, we will bound the probability of a bad output
as follows:

Pr[|k̃ − k∗| > α] ≤
∑
i≥1

Pr[max
k∈Ri
{`A(k)− `A(k∗)} > ti] +

∑
i≥1

Pr[max
k∈Ri
{Zk − Zk∗} ≥ ti]. (32)

In order to do this, we decompose the truncated log-likelihood difference between the
true change-point k∗ and any candidate k into the sum of i.i.d. random variables with mean
zero and the expected value of this difference as follows:

Uj =


[
log

P1(xj)
P0(xj)

]A/2
−A/2

− Ex∼P0

[
log P1(x)

P0(x)

]A/2
−A/2

, j < k∗

−
[
log

P1(xj)
P0(xj)

]A/2
−A/2

+ Ex∼P1

[
log P1(x)

P0(x)

]A/2
−A/2

, j ≥ k∗

`A(k)− `A(k∗) =


∑k∗−1

j=k Uj + (k∗ − k)Ex∼P0

[
log P1(x)

P0(xi)

]A/2
−A/2

, k < k∗∑k−1
j=k∗ Uj − (k − k∗)Ex∼P1

[
log P1(x)

P0(xi)

]A/2
−A/2

, k ≥ k∗

The rest of the proof follows exactly as the proof of the accuracy of OfflinePCPD from
Theorem 12 with ` replaced with `A, with ∆(`) replaced with A, and with C replaced with
CA. As before, we set ti = 2i−2αCA, and the constants are inherited exactly as is because

20



Single and Multiple Change-Point Detection with Differential Privacy

the truncated log-likelihood is applicable to the concentration inequalities in the same way
that the non-truncated but uniformly bounded log-likelihood was in Theorem 12.

4. Online Private Change-point Detection

In this section, we give new differentially private algorithms for change-point detection in
the online setting. In this setting, the algorithm initially receives n data points x1, . . . , xn
and then continues to receive data points one at a time. As before, the goal is to privately
identify an approximation of the time k∗ when the data change from distribution P0 to P1,
and now we additionally want to identify this change shortly after it occurs. We first give
an algorithm OnlinePCPD for detecting a single change-point, and then we show how
it can be extended to OnlinePMCPD to detect multiple change-points. Our algorithms
use OfflinePCPD as a subroutine, but can be modified in a straightforward way to use
log-likelihood truncation and OfflinePTCPD if distributions do not satisfy the assumption
of uniform boundedness.

4.1 Single Change-point

Even in the single change-point setting, our offline algorithm is not directly applicable
because we do not know a priori how many points must arrive before a true change-point
occurs. To resolve this, OnlinePCPD works like AboveThresh (presented in Section 2.2),
determining after each new data entry arrives whether it is likely that a change occurred in
the most recent n entries. When OnlinePCPD at time j detects a sufficiently large (noisy)

partial log-likelihood ratio `(k, j) =
∑j

i=k log P1(xi)
P0(xi)

for some k within n data points of j, it

calls OfflinePCPD to privately determine the most likely change point k̃ in the window
{xj−n+1, . . . , xj}.

Privacy of OnlinePCPD is immediate from composition of AboveThresh and Of-
flinePCPD, each with privacy loss ε/2. As before, accuracy requires X to be drawn from
P0, P1 with some true change point k∗. This algorithm also requires a suitable choice of
log-likelihood threshold T to guarantee that OfflinePCPD is called for a window of data
that actually contains k∗. Specifically, T should be large enough that the algorithm is
unlikely to call OfflinePCPD when j < k∗ but small enough so that it is likely to call
OfflinePCPD by time j = k∗ + n/2. When both of these conditions hold, we inherit the
accuracy of OfflinePCPD.

With our final bounds, we note that n� ∆(`)
C log(k∗/β) suffices for existence of a suitable

threshold, and an analyst must have a reasonable approximation of k∗ in order to choose such
a threshold. Otherwise, the accuracy bound itself has no dependence on the change-point
k∗.
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Algorithm 5 Online private change-point detector: OnlinePCPD(X,P0, P1, ε, n, T )

Input: database X, distributions P0, P1, privacy parameter ε, starting size n, threshold
T
Let ∆(`) = maxx log P1(x)

P0(x) −minx′ log P1(x′)
P0(x′)

Let T̂ = T + Lap(4∆(`)/ε)
for each new data point xj , j ≥ n do

Compute `j = maxj−n+1≤k≤j{`(k, j)} = maxj−n+1≤k≤j{
∑j

i=k log P1(xi)
P0(xi)

}
Sample Zj ∼ Lap(8∆(`)

ε )

if `j + Zj > T̂ then
Output (j − n) + OfflinePCPD({xj−n+1, . . . , xj}, P0, P1, ε/2, n)
Halt

end if
end for

Theorem 15 For arbitrary data X and ε > 0, OnlinePCPD(X,P0, P1, ε, n, T ) is ε-
differentially private.

Theorem 16 For hypotheses P0, P1 such that ∆(`) <∞, a stream of data points X with
starting size n drawn from P0, P1 with true change time k∗ ≥ n/2, privacy parameter ε > 0,
and threshold T ∈ [TL, TU ] with

TL := 2∆(`)

√
2 log

64k∗

β
− C +

16∆(`)

ε
log

8k∗

β
,

TU :=
nC

2
− ∆(`)

2

√
n log(8/β)− 16∆(`)

ε
log

8k∗

β
,

we have that OnlinePCPD(X,P0, P1, ε, n, T ) is (α, β)-accurate for any β > 0 and

α = max

{
8∆(`)2

C2
log

128

3β
,
8∆(l)

Cε
log

128∆(l)

βCε

}
.

In the above expressions, C = min{DKL(P0||P1), DKL(P1||P0)}.

Proof We first give a range [TL, TU ] of thresholds that ensure that except with probability
β/4, the randomly sampled data stream satisfies the following two conditions for some
α′. These conditions are inherited from the requirements for AboveThresh accuracy,
respectively capturing the requirements that the threshold is not reached too early and that
it is reached at least by the time the window is centered around k∗:

1. For T ≥ TL, maxk∈[j−n+1,j] `(k, j) < T − α′ for every j < k∗.

2. For T ≤ TU , maxk∈[k∗−n/2,k∗+n/2−1] `(k, k + n/2) > T + α′.
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When these conditions are satisfied, the AboveThresh guarantee ensures that except
with probability β/4, the randomness of the online algorithm ensures that it calls the offline
algorithm on a window of data containing the true change-point. Then we will argue that
our overall accuracy follows from the offline guarantee, where we will allow failure probability
β/2.

We will get the first condition by taking a union bound over all windows tested before the
change-point, of the probability that the maximum log-likelihood maxk `(k) for n elements
X = {x1, . . . , xn} sampled from P0 exceeds a given threshold. To bound this probability, we
first define the following random variables.

Uj = − log
P0(xj)

P1(xj)
+DKL(P0||P1) Sm =

∑
1≤j≤m

Uj

We note that each `(k) is the sum of i.i.d. random variables, and that the maximum log-
likelihood over m consecutive elements is equal in distribution to maxk∈[m] Sk−kDKL(P0||P1).
This yields the first inequality below. Inequality (33) comes from applying Corollary 7 with
λ1 = λ2 = 2i−2C + t/2 and interval length L = ∆(`).

Pr

[
max

1≤k≤n
{`(k)} > t

]
≤
∑
i≥1

Pr

[
max

k∈[2i−1,2i)
{Sk − kDKL(P0||P1)} > t

]
≤
∑
i≥1

Pr

[
max

k∈[2i−1]
Sk > 2i−1C + t

]

≤
∑
i≥1

2 exp(−(2i−2C + t/2)2/(2i−2∆(`)2))

1− 2 exp(−(2i−2C + t/2)2/(2i−2∆(`)2))
(33)

≤4
∑
i≥1

exp(−(2i−2C + t/2)2/(2i−2∆(`)2)) (34)

≤8 exp(−(2−1C + t/2)2/(2−1∆(`)2)) (35)

≤ β

8k∗
(36)

Inequalities (34), (35), and (36) follow by plugging in t = 2∆(`)
√

2 log 64k∗

β − C. This

ensures that 1− 2 exp(−(2i−2C + t/2)2/(2i−2∆(`)2)) ≥ 1/2, giving Inequality (34), and that
the series is increasing exponentially in i, so we can collapse the sum with another factor of 2
by considering only i = 1 as in Inequality (35). Plugging in this same value of t to Inequality
(35) also immediately gives Inequality (36). Taking a union bound over all the windows prior

to the change-point, this shows that Condition 1 holds for TL = 2∆(`)
√

2 log 64k∗

β − C + α′

except with probability β/8.
To show that the second condition holds except with additional probability β/8, we

consider the window of data with the first half of data drawn from P0 and the second half
drawn from P1 and bound the probability that `(k∗) in this window is less than a given
threshold as follows. We note that `(k∗, k∗ + n/2 − 1) is the sum of n/2 i.i.d. random

variables log P1(xi)
P0(xi)

, although these variables are not mean-zero. Instead, we define mean-zero

random variables Vj = − log
P1(xj)
P0(xj)

+DKL(P1||P0), and write `(k∗, k∗ + n/2− 1) in terms
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of these new variables, analogously to above. We can then bound the sum of the Vj using
Hoeffding’s inequality to get Equation (37):

Pr

[
max

k∗−n/2≤k<k∗+n/2
{`(k, k∗ + n/2− 1)} < t

]
≤ Pr[`(k∗, k∗ + n/2− 1) < t]

≤ Pr

 ∑
j=k∗,...,k∗+n/2−1

Vj >
nC

2
− t


≤ exp(−4(nC/2− t)2/(n∆(`)2)) (37)

Plugging in t = nC
2 −

∆(`)
2

√
n log(8/β) in this final expression ensures that (37) ≤ β/8.

This ensures that Condition 2 is satisfied except with probability β/8 for TU = nC/2 −
∆(`)

√
n log(8/β)− α′.

Then we can instantiate the AboveThresh accuracy guarantee with privacy parameter
ε/2 and accuracy parameter β/4 to ensure that for α′ = 16∆(`) log(8k∗/β)

ε when Conditions 1
and 2 are satisfied, AboveThresh will identify a window containing the true change-point
except with probability β/4. Combining this with the β/4 probability that Conditions 1
and 2 fail to hold when T ∈ [TL, TU ], we get that OnlinePCPD calls OfflinePCPD in a
window containing the change-point except with probability β/2 over the randomness of the
data and of the online portion of the algorithm.

We next instantiate OfflinePCPD with appropriate parameters to ensure that condi-
tioned on being called in the correct window, it will output a k̃ that is within α of the true
change-point k∗ with probability at most β/2. We can then complete the proof by taking a
union bound over all the failure probabilities.

Our offline accuracy guarantee requires data points are sampled i.i.d. from P0 before the
change point and from P1 thereafter. However, it remains to be shown that conditioning on
the event that we call the offline algorithm in a correct window does not harm the accuracy
guarantee too much. For a window size n, change-point k∗, stream X of at least k∗+n/2 data
points, set of random coins required by OnlinePCPD and its call to OfflinePCPD, and a
stopping index ν > n/2, let N(ν) denote the event that OnlinePCPD calls OfflinePCPD
on a window centered at ν, i.e., {xν−n/2, . . . , xν+n/2−1}, and let F (ν) denote the event that
OfflinePCPD on the window centered at ν fails to output an approximation within α of
k∗. Our previous arguments bound the probability of all N(ν) for ν outside of a good range
G = (k∗ − n/2, k∗], and our offline guarantee bounds the probability of F (ν) for any ν ∈ G
as long as the data are truly distributed according to the change-point model.

Failure of the online algorithm can be due to either failure to halt on a correct window
or failure of the offline algorithm on a window containing the true change. Thus we can then
bound the probability of failure of the online algorithm as:

Pr[|k̃ − k∗| > α] ≤
∑
ν 6∈G

Pr[N(ν)] + Pr[
⋃
ν∈G

F (ν)]

The first summation is at most β/2 by our previous arguments on the accuracy of the
online portion of the algorithm. It remains to calculate the second term. We can still
partition the set of bad possible output into sub-intervals of exponentially increasing size as
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follows. For i ≥ 1, let

R−i = [k∗ − 2iα, k∗ − 2i−1α),

R+
i = (k∗ + 2i−1α, k∗ + 2iα], and

Ri = R−i ∪R
+
i .

Then we can bound the probability that the offline algorithm fails on any correct window as:

Pr

[⋃
ν∈G

F (ν)

]
≤ Pr

max
ν∈G

 max
ν−n/2≤k≤ν+n/2−1

s.t. |k−k∗|>α

{`(k, ν + n/2− 1)

+Zk − `(k∗, ν + n/2− 1)− Zk∗}} > 0]

= Pr

max
ν∈G

 max
ν−n/2≤k≤ν+n/2−1

s.t. |k−k∗|>α

ν+n/2−1∑
j=k

log
P1(xj)

P0(xj)

+Zk −
ν+n/2−1∑
j=k∗

log
P1(xj)

P0(xj)
− Zk∗

 > 0


= Pr

 max
k∗−n+1≤k≤k∗+n/2−1

s.t. |k−k∗|>α


k∗∑
j=k

log
P1(xj)

P0(xj)
+ Zk − Zk∗

 > 0


≤
∑
i≥1

Pr[max
k∈Ri
{
k∗∑
j=k

log
P1(xj)

P0(xj)
} > −ti] +

∑
i≥1

Pr[max
k∈Ri
{Zk − Zk∗} > ti]

Notice that the final line above is identical to Equation (26) in the proof of Theorem 12
for the accuracy of OfflinePCPD: the first term is the empirical log-likelihood difference be-
tween the true change-point k∗ and any candidate k, and the second term is difference between
two independent draws of Laplace noise. Thus the remainder of the analysis follows that of
Theorem 12 instantiated with parameters β/2 and ε/2. This instantiation of Theorem 12 gives

that Pr[
⋃
ν∈G F (ν)] is also bounded by β/2 when α = max

{
8∆(`)2

C2 log 128
3β ,

8∆(l)
Cε log 128∆(l)

βCε

}
.

Combining this with our previous bound on the N(ν) terms, we get that Pr[|k̃ − k∗| >
α] ≤ β for the desired α value in the theorem statement.

4.2 Multiple Changes

We now show how to extend our OnlinePCPD algorithm to detect multiple change-points.
In this setting, the data change from distribution P0 to P1, from P1 to P2, . . ., and from
Pm−1 to Pm at times k∗1, k∗2, . . . , k∗m, respectively. As data arrive, OnlinePMCPD makes
online determinations about when the current window is sufficiently likely to contain a
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change-point and calls OfflinePCPD when so. After each private report of a change-point
k̃i the algorithm simply restarts the remaining stream of data points after the next n data
points arrive and resumes scanning for subsequent change-points.

The idea of this algorithm is similar to the extension from AboveThresh to Sparse, but
by assuming that the m change-points are separated pairwise by at least the starting database
size n and by setting the thresholds to ensure that with high probability a changepoint
k∗i is detected by time k∗i + n/2, we can update our sliding window between change-point
detections to ensure that each entry only participates in one call to OnlinePCPD and we
never miss a change-point. This means that privacy of OnlinePMCPD is immediate from
privacy of OnlinePCPD and Sparse, and the accuracy cost is only logm rather than

√
m.

Algorithm 6 Online private multiple change-point detector:
OnlinePMCPD(X,P0, . . . , Pm, ε, n, T1, . . . , Tm)

Input: database X, distributions P0, . . . , Pm, privacy parameter ε, starting size n, thresh-
olds T1, . . . , Tm
Let ∆1 = maxx log P1(x)

P0(x) −minx′ log P1(x′)
P0(x′)

Let T̂1 = T1 + Lap(4∆1/ε)
Let i = 1
for each new data point xj , j ≥ n do

Compute `j = maxj−n+1≤k≤j{`i(k, j)} = maxj−n+1≤k≤j{
∑j

ι=k log Pi(xι)
Pi−1(xι)

}
Sample Zj ∼ Lap(8∆i

ε )

if `j + Zj > T̂i then
Output k̃i = (j − n) + OfflinePCPD({xj−n+1, . . . , xj}, Pi−1, Pi, ε/2, n)
if i = m then

Halt
else

Let i = i+ 1
Let ∆i = maxx log Pi(x)

Pi−1(x) −minx′ log Pi(x
′)

Pi−1(x′)

Let T̂i = Ti + Lap(4∆i/ε)
Wait for n new data points, i.e., let j advance by n

end if
end if

end for

Theorem 17 For arbitrary data X and ε > 0, OnlinePMCPD(X,P0, . . . , Pm, ε, n, T1, . . . , Tm)
is ε-differentially private.

We do not incur privacy composition across the multiple runs of OnlinePCPD because
each subroutine runs on a disjoint database. After OfflinePCPD is called in the above
algorithm, the algorithm waits for n new data points to arrive before beginning the for loop
again (which corresponds to starting the next instantiation of OnlinePCPD). This means
that none of the data points used in the algorithmic steps corresponding to the previous
instantiation of OnlinePCPD will be used in the next instantiation. Thus each instantiation
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of the OnlinePCPD subroutine will operate on a disjoint subset of the database, so they
together satisfy ε-differential privacy, and composition is not needed (McSherry, 2009).

One might be concerned that the starting point of (and hence the database that is input
to) the next instantiation of OnlinePCPD inside OnlinePMCPD depends on the halting
time of the previous instantiation. In particular, it will be exactly n data points after the
halting time of the previous instantiation. However, the halting time of OnlinePCPD
is computed in a differentially private manner, so any function of it—such as the halting
time plus n—will be automatically differentially private by the post-processing guarantees
of differential privacy.

It remains to prove accuracy for OnlinePMCPD. As before, accuracy requires X to
be drawn from P0, P1, . . . , Pm with some true change-points k∗1, k∗2, . . . , k∗m. To detect
each change-point k∗i , the choice of log-likelihood threshold Ti may need to be modified
according to the hypothesized distributions and possibly to the expected time until the next
change-point, which depends on the accuracy of the previous output.

Theorem 18 For hypotheses P0, P1, . . . , Pm such that ∆i = maxx log Pi(x)
Pi−1(x)−minx′ log Pi(x

′)
Pi−1(x′) <

∞ for i = 1, . . . ,m, a stream of data points X with starting size n drawn from P0, P1, . . . , Pm
with true change times k∗0, k

∗
1, . . . , k

∗
m with k∗0 = 0, k∗1 ≥ n/2, k∗i−k∗i−1 ≥ 3n/2 for i = 2, . . . ,m,

privacy parameter ε > 0, and thresholds Ti ∈ [TL,i, TU,i] with

TL,i := 2∆i

√
2 log

64m(k∗i − k∗i−1)

β
− Ci +

16∆i

ε
log

8m(k∗i − k∗i−1)

β
,

TU,i :=
nCi

2
− ∆i

2

√
n log(8m/β)− 16∆i

ε
log

8m(k∗i − k∗i−1)

β

for i = 1, . . . ,m, we have that OnlinePMCPD(X,P0, . . . , Pm, ε, n, T1, . . . , Tm) is (α, β)-
accurate for any β > 0 and

α = max

{
8∆2

C2
log

128m

3β
,
8∆(l)

Cε
log

128m∆(l)

βCε

}
.

In the above expressions, ∆ = max{∆1, . . . ,∆m}, Ci = min{DKL(Pi−1||Pi), DKL(Pi||Pi−1)}
and C = min{C1, . . . , Cm}.

Proof For α as in the theorem statement, we will decompose the probability that the
algorithm fails to output α-approximations for every k∗i into the sum of m conditional
probabilities, each of which can be bounded by β/m by an instantiation of our accuracy
theorem for OnlinePCPD. In the proof below, we let Si for i ∈ [m] denote the event that
OnlinePMCPD calls OnlinePCPD for the ith time with k∗i in the latter half of the
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window and OnlinePCPD outputs an α-approximation of k∗i . Then we have that

Pr[OnlinePMCPD(X,P0, . . . , Pm, ε, n, T1, . . . , Tm) fails]

≤ Pr[S̄1] +
m∑
i=2

Pr[S̄i ∩ S1 ∩ · · · ∩ Si−1]

≤ Pr[S̄1] +
m∑
i=2

Pr[S̄i ∩ Si−1]

≤
∑
i∈[m]

Pr[OnlinePCPD(X ′i, Pi−1, Pi, ε, n, Ti) fails], (38)

for X ′i drawn according to the single change-point model with initial distribution Pi−1 and
post-change distribution Pi with change-point k∗i − k∗i−1. The third inequality is because the
event S̄i conditioned on S1 ∩ · · · ∩ Si−1 is equivalent to the failure of OnlinePCPD on a
data stream consistent with the single change-point model, and in particular, failure is most
likely when there are as many data points drawn from Pi−1 as possible. Then bounding
each term follows from instantiation of the theorem for OnlinePCPD because we can treat
the ending point of the previous detection window as the starting point of a new detection
procedure.

To be more mathematically rigorous, for i = 2, . . . ,m, we have

Pr[S̄i ∩ Si−1] ≤ Pr[S̄i|Si−1] = E[Pr(S̄i|Si−1, ji−1)|Si−1] = E[Pr(S̄i|ji−1)|Si−1], (39)

where the last equality follows from the fact that Si−1 and S̄i are independent conditional
on ji−1. This conditional independence is an immediate consequence of the fact that Si−1

depends only on the data x1, . . . , xji−1 and S̄i depends only on the data xji−1+1, xji−1+2, . . .,
which are mutually independent conditional on ji−1, as ji−1 is a stopping time.

Our final goal is to bound Pr(S̄i|ji−1), which can be done by invoking Theorem 16. The
only difference here is that the index of the first sample is ji−1 + 1, instead of 1. Thus we
have to modify the upper and lower thresholds in Theorem 16. Define

TL,i(j) := 2∆i

√
2 log

64m(k∗i − j)
β

− Ci +
16∆i

ε
log

8m(k∗i − j)
β

,

and

TU,i(j) =:
nCi

2
− ∆i

2

√
n log(8m/β)− 16∆i

ε
log

8m(k∗i − j)
β

.

For Ti ∈ [TL,i, TU,i] where

TL,i = 2∆i

√
2 log

64m(k∗i − k∗i−1)

β
− Ci +

16∆i

ε
log

8m(k∗i − k∗i−1)

β

and

TU,i =
nCi

2
− ∆i

2

√
n log(8m/β)− 16∆i

ε
log

8m(k∗i − k∗i−1)

β
,
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we have TL,i ≤ TL,i(j) ≤ Ti ≤ TU,i(j) ≤ TU,i(j) for any j ∈ [k∗i−1, k
∗
i−1 + n/2]. Then

by instantiation of Theorem 16, we have that Pr(S̄i|ji−1 = j) ≤ β/m provided that
j ∈ [k∗i−1, k

∗
i−1 + n/2]. Note that the event Si−1 implies ji−1 ∈ [k∗i−1, k

∗
i−1 + n/2]. Thus,

Pr[S̄i ∩ Si−1] is bounded above by β/m, and (38) is bounded above by β.

5. Numerical Studies

In this section, we present results from Monte Carlo experiments designed to validate the
theoretical results of previous sections. The theoretical privacy guarantees hold in the
worst-case over all databases and over all outputs of the algorithm, so it is only necessary
to empirically validate the accuracy of our algorithms. Our simulations consider both
offline (Section 5.1) and online settings (Section 5.2) for the canonical problems of detecting
a change in the mean of Bernoulli or Gaussian distributions. In the offline setting, we
additionally show that our algorithms can accurately detect changes in the variance of
Gaussian distribution and detect changes in the shape parameter of a Gamma distribution.

For completeness, we state the PMF of a Bernoulli distribution, and the PDF of Gaussian
and Gamma distributions below.

• Bernoulli distribution: Pr(x = 1) = p and Pr(x = 0) = 1− p.

• Gaussian distribution: f(x;µ, σ) = (2πσ2)1/2 exp(−(x − µ)2/(2σ2)), where µ is the
mean and σ is the standard deviation.

• Gamma distribution: f(x; k, θ) = (Γ(k)θk)−1xk−1 exp(−x/θ), where θ is the scale
parameter and k is the shape parameter.

5.1 Evaluating the Offline Algorithms

Each simulation is characterized by a probability distribution family (Bernoulli, Gaussian,
or Gamma), a distribution parameter that changes (mean, standard deviation, or shape),
and a change magnitude (large, small, or underspecified). The large and small change
regimes correspond respectively to large and small changes in the distribution parameter
of interest. The underspecified regime corresponds to the setting where the true change is
large, but the input parameters correspond to a small change. This setting goes beyond
our theoretical results to suggest that our algorithm still performs well, even when the
distributional parameters are misspecified. All parameters are stated in the caption.

For Bernoulli distributions, the log-likelihood ratio is uniformly bounded and so we
use OfflinePCPD; for Gaussian and Gamma distributions, we set A = 0.1 (for reasons
discussed later in this section) and use OfflinePTCPD. We vary privacy parameter
ε = 0.1, 0.5, 1 and ∞, representing the non-private case. For each of our simulations, we
use n = 200 observations where the true change occurs at time k∗ = 100. This process is
repeated 104 times. The results of these simulations are presented in Figure 1, which plots
the empirical probabilities β = Pr[|k̃ − k∗| > α] as a function of α. All the parameters of
each simulation are stated in the caption.
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(a) Bernoulli: p0 = 0.2; p1 = 0.8
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(b) Bernoulli: p0 = 0.2; p1 = 0.4
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(c) Bernoulli: underspecified p
change

0 20 40 60 80 100

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

α

β

ε=0.1
ε=0.5
ε=1
MLE(ε=∞)

(d) Gaussian σ = 1: µ0 = 0;µ1 = 1
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(e) Gaussian σ = 1: µ0 = 0;µ1 = 0.5
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(f) Gaussian: underspecified µ
change
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(g) Gaussian µ = 0: σ0 = 1;σ1 = 5
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(h) Gaussian µ = 0: σ0 = 1;σ1 = 3
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(i) Gaussian: underspecified σ
change
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(j) Gamma θ = 2: k0 = 3; k1 = 1
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(k) Gamma θ = 2: k0 = 3; k1 = 2
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(l) Gamma: underspecified k change

Figure 1: Measured accuracy of offline algorithms on simulated change-point data. For large
and small changes (Columns 1 and 2, resp.), parameters specify distributions from which data are
drawn and hypothesized distributions given as inputs to the algorithm; for underspecified changes
(Column 3), data are drawn according to large change values but algorithm is provided hypothesized
distributions consistent with small change values.
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Figure 1 illustrates three important results for our offline algorithms when data are
drawn from Bernoulli, Gaussian, or Gamma distributions: accuracy deteriorates as privacy
improves but performs quite well even for strong privacy guarantees (ε < 1), accuracy is
best when the true change in distribution is large (Columns 1 vs 2), and the algorithm
performs well even when the true change is larger than that hypothesized (Column 3).
The performance in the underspecified change experiments bolster our theoretical results
substantially, indicating that our hypotheses can be quite far from the distributions of the
true data and our algorithms will still identify a change-point relatively accurately.

Choice of truncation parameter A. The OfflinePCPD algorithm does not provide
meaningful results when the sensitivity of the log-likelihood ratio is infinite, as in the case of
Gaussian and Gamma distributions, so we must instead use OfflinePTCPD with some
truncation parameter A. Theorem 14 shows that accuracy guarantees are strongest when
A/CA is smallest. Since CA is a function of the hypothesized distributions as well as A, the
value of A should be chosen on a case-by-case basis.
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(d) Gaussian large mean change
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(e) Gaussian large variance
change
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(f) Gamma large shape change

Figure 2: First row plots A/CA as a function of A varying from 0 to 4 for different types
of changes; theoretical accuracy bounds are strongest when A/CA is smallest. Second row
shows simulated accuracy under different choices of A for different types of change. Each
simulation involves 104 runs of OfflinePTCPD on data generated by 200 i.i.d. samples
from appropriate distributions with change-point k∗ = 100.

The first row of Figure 2 numerically plots A against A/CA for the large change cases
we simulated. The plots suggest that a small A also leads to a small A/CA, and A/CA
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converges to a constant as A goes to 0. The second row verifies optimality of small A by
simulation, plotting the empirical probabilities β as a function of accuracy α under different
choices of A.

Intuitively, since the mechanism outputs argmaxk∈[n]

{∑n
i=k

[
log P1(xi)

P0(xi)

]A/2
−A/2

+ Lap(A/ε)

}
,

there is a trade-off between how much information is lost from truncation in the first term
and how much noise is added in the second term. As A→ 0+, each data point contributes
±A/2. For natural distributions, it appears that giving some data points more weight than
others does not provide enough additional information to offset the additional required noise.

5.2 Evaluating the Online Algorithm

We also run Monte Carlo simulations of our online change-point detection algorithm On-
linePCPD when the data points arrive sequentially and the true change occurs at time
k∗ = 5000. We consider only large mean changes in Bernoulli and Gaussian distributions.
For the Gaussian distributions, we truncate the log-likelihoods in the main algorithm and
call OfflinePTCPD with A = 0.1. The new challenge is to choose an appropriate sliding
window size n and corresponding threshold T in order to achieve good overall accuracy.
The window size of n = 200 used in the offline simulations does not permit any threshold
that reasonably controls both false positive and false negative rates, so we choose a larger
window size of n = 700 and restrict our online simulations to ε = 0.5, 1,∞. We choose the
appropriate threshold T by setting a constraint that an algorithm must have positive and
negative false alarm rates both at most 0.1.

For the online simulations, we chose the lower and upper bounds of T via numerical
methods in both Bernoulli and Gaussian models instead of using the theoretical bounds, as
these bounds are overly conservative for the Bernoulli model and do not immediately apply
for truncation method that is necessary in Gaussian model. We use several key ideas from
Section 4 to speed up the numerical search of the threshold T . To limit the false positive
rate to 0.10 with up to k∗ = 5000 sliding windows, a conservative lower bound for threshold
T is the 1− 0.10/5000 = 0.99998 quantile of the noisy versions of Wn = max1≤k≤n `(k) or
Wn = max1≤k≤n `A(k) with n = 700 under the pre-change distribution. To limit the false
negative rate, an upper bound for threshold T is the 10% quantile of the noisy versions
of CUSUM statistics Wn with n = 700 when the change occurs at time 350. This will
guarantee that the online algorithms raise an alarm with probability at least 0.9 during the
time interval [4650, 5350].

To determine these lower and upper bounds for T , we simulate 106 realizations of
the CUSUM statistics W700 in both the pre-change and post-change cases. In each case,
we speed up the computation of Wi by using the recursive form Wi = max{Wi−1, 0} +

log(P1(Xi)/P0(Xi)) or Wi = max{Wi−1, 0} + [log(P1(Xi)/P0(Xi))]
A/2
A/2 for i ≥ 1. The

empirical quantiles of the noisy versions of W700 under the pre- and post- change cases
will yield the lower and upper bounds of the threshold T . When the range of acceptable
thresholds T was non-empty, we chose the upper bound. For the Bernoulli model, this
resulted in a choice of T = 220 for all values of ε = 0.5, 1,∞. In the Gaussian model, we
chose T = 8, 4.5, 100 for ε = 0.5, 1,∞, respectively. Figure 3 (a and c) indeed show that
with these parameters, the algorithm works well except with probability about 0.2, and
comparison with plots b and d, we can see that almost all of the error for reasonable values
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of α is due to failure to abort on a window containing the true change-point. This indicates
that the primary challenge in the online setting is determining when to raise an alarm in a
sequence of sliding windows of observations. Once such window is identified correctly, the
offline estimation algorithm can be used to accurately estimate the change-point.
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(a) Bernoulli: Online accuracy
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(b) Bernoulli: Accuracy when online
halts on correct window
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(c) Gaussian: Online accuracy
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(d) Gaussian: Accuracy when online
halts on correct window

Figure 3: Probability that the online algorithm produces an inaccurate estimate (left)
and probability that the online algorithm produces an inaccurate estimate conditioned on
halting in a window containing k∗ (right) for Bernoulli and Gaussian large mean changes.
Each simulation involves 106 runs of OnlinePCPD or its 0.1-truncated variant with
window size n = 700 and varying ε on data generated by i.i.d. samples from appropriate
distributions with change point k∗ = 5000. See text for description of choices of threshold
T .

6. Conclusion

This paper gives private algorithms for both online and offline change-point detection,
including the problem of detecting multiple change-points. Our analysis involves providing
new finite-sample accuracy guarantees for the standard (non-private) MLE task, and we
incorporate tools from differential privacy to add noise to ensure that no individual’s data is
compromised in the estimation process while maintaining statistical accuracy at a modest
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privacy cost that depends on the difference between the pre- and post-change distributions.
We extend these results to the online setting by carefully analyzing a range of thresholds for
which we can accurately detect a range in a sliding window in which a change-point has
likely occurred.

Our empirical results show that change-points in data drawn from well-behaved distri-
butions can be detected relatively accurately even if the hypothesized distributions differ
from the real ones. The choice of hypothesized pre- and post-change distributions remains
a domain-specific problem, and so rather than provide concrete guidance about how a
practitioner should choose these distributions to use our algorithms in a particular setting,
this work offers worst-case error bounds on the tradeoff between privacy and accuracy
assuming these distributions are chosen correctly, and our algorithms ensure privacy even
when they are not. More extensive, domain-specific empirical studies on hypothesis classes
of interest is important future work to establish appropriate rules of thumb for practitioners
who wish to apply our private change-point tools.
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