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Abstract
We consider the problem of clustering and completing a set of tensors with missing data that are
drawn from a union of low-rank tensor spaces. In the clustering problem, given a partially sampled
tensor data that is composed of a number of subtensors, each chosen from one of a certain number
of unknown tensor spaces, we need to group the subtensors that belong to the same tensor space.
We provide a geometrical analysis on the sampling pattern and subsequently derive the sampling
rate that guarantees the correct clustering under some assumptions with high probability. More-
over, we investigate the fundamental conditions for finite/unique completability for the union of
tensor spaces completion problem. Both deterministic and probabilistic conditions on the sampling
pattern to ensure finite/unique completability are obtained. For both the clustering and comple-
tion problems, our tensor analysis provides significantly better bound than the bound given by the
matrix analysis applied to any unfolding of the tensor data.
Keywords: Low-rank tensor completion, canonical polyadic (CP) decomposition, union of tensor
spaces, clustering tensor spaces, finite completability, unique completability.

1. Introduction

Identifying the geometrical properties and relationships of datasets is essential for many data pro-
cessing tasks, such as completion and denoising. In many applications, we need to analyze a collec-
tion of datasets like images, text documents, etc. Assuming that these are two-dimensional (i.e., two
dimensions are enough to represent all features and relationships captured in the data), then to model
such data structures, we can simply consider a matrix U ∈ Rn1×n2 whose columns are chosen from
one of K unknown two-dimensional subspaces. The problem of subspace clustering aims to cluster
the columns of this matrix into K groups such that the columns in each group belong to the same
subspace. Subspace clustering is an important pre-processing step of data analysis when the data lies
in a union of subspaces and is well studied (Elhamifar and Vidal, 2009; Liu et al., 2013; Elhamifar
and Vidal, 2013). The problem is much more challenging with missing data, i.e., when the matrix
U is incomplete, which is an important problem in subspace learning for real-world scenarios and
has been treated broadly (Balzano et al., 2012; Pimentel-Alarcón et al., 2014; Yang et al., 2015). In
particular, the information-theoretic bounds on clustering the union of subspaces is investigated in
(Pimentel-Alarcón et al., 2016a, 2017; Pimentel-Alarcón and Nowak, 2016; Ashraphijuo and Wang,
2019a), based on the geometrical analysis for matrix completion problems (Pimentel-Alarcón et al.,
2016b; Ashraphijuo and Wang, 2019b).
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The theoretical analyses for the clustering problem in the literature focus on two-dimensional
data. On the other hand, in many applications we need to deal with data that are represented with
multiple dimensions in order to capture the correlations across different attributes. Even though a
naive way of treating tensors is to “collapse” a tensor into a matrix and then apply matrix analysis,
such an approach can not fully exploit the multi-way correlation of the data. In contrast, tensor anal-
ysis is capable of taking full advantage of these correlations. Therefore, the problem of clustering
a union of low-rank tensor spaces with missing data is a more fundamental problem, which will be
studied in this paper. Note that two of the main results of this paper are characterizing the minimum
number of samples (i.e., minimum sampling rate) required for clustering a union of tensors with
missing data and completing a union of tensors. The low-rank tensor clustering and tensor comple-
tion problems with missing data are both important topics in the broad area of machine learning. In
particular, the low-rank subspace clustering has many applications in various fields including im-
age processing (Hong et al., 2006), recommender systems (Rennie and Srebro, 2005; Pezeshkpour
et al., 2018), gene expressions (Gan et al., 2007), etc. The low-rank tensor completion problem
plays a vital role in multilinear data analysis against outliers, gross corruptions and missing val-
ues and its diverse applications (Kressner et al., 2014; Zhang et al., 2015). Particularly, low-rank
tensor completion finds applications in 3D image reconstruction (Sauve et al., 1999), video inpaint-
ing (Patwardhan et al., 2007), hyperspectral data recovery (Li and Li, 2010), higher-order web link
analysis (Kolda et al., 2005), etc. In this paper, we provide a fundamental theoretical analysis for
the two important mentioned problems. One of the main ideas behind our analysis for the tensor
space clustering problem is to take advantage of the condition on the sampling rate that guarantees
the unique completability for the tensor completion problem. Then, we use the unique completabil-
ity property on each of the tensors to correctly identify whether a tensor space fits in that tensor.
Moreover, algorithms such as the one developed in (Ashraphijuo et al., 2019) can be developed for
achieving such theoretical bounds and the analysis in this paper can be used for rank estimation as
studied in (Ashraphijuo et al., 2017).

Since we study the data structures that are partially sampled, another important related prob-
lem is the low-rank data retrieval problem and it has many applications in different areas including
compressed sensing (Lim and Comon, 2010; Sidiropoulos and Kyrillidis, 2012; Gandy et al., 2011),
network coding (Harvey et al., 2005), image processing (Candès et al., 2013; Ji et al., 2010) and
data mining (Eldén, 2007) and some literature reviews on this problem can be found in (Candès and
Recht, 2009; Candès and Tao, 2010; Cai et al., 2010). Hence, we also study the union of tensor
spaces retrieval problem and derive the fundamental conditions on the geometry of the sampling
pattern for finite/unique completability based on a polynomial analysis. Then, given the character-
ized deterministic conditions on the sampling pattern, we provide a probabilistic analysis to obtain
a bound on the sampling rate to ensure that these deterministic conditions hold true with high prob-
ability.

The remainder of this paper is organized as follows. In Section 2, some preliminaries are pre-
sented. In Section 3, we state the two problems treated in this paper, i.e., tensor space clustering
with missing data and union of tensor spaces completion, and provide the matrix analysis approach
to these problems. Tensor analysis for clustering tensor spaces is presented in Section 4. Then,
in Sections 5 and 6, we provide deterministic and probabilistic analyses on the finite/unique com-
pletability for union of tensor spaces completion, respectively. Finally, Section 7 concludes the
paper.
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2. Preliminaries

Assume that U ∈ Rn1×n2×...nd−1×nd is a d-way tensor. Throughout this paper, we use the CP rank
as the rank of a tensor, which is defined as the minimum number r such that there exist ali ∈ Rni

for 1 ≤ i ≤ d and 1 ≤ l ≤ r and

U =

r∑
l=1

al1 ⊗ al2 ⊗ . . .⊗ ald, (1)

or equivalently,

U(x1, x2, . . . , xd) =
r∑
l=1

al1(x1)al2(x2) . . .ald(xd), (2)

where ⊗ denotes the tensor product (outer product) and U(x1, x2, . . . , xd) denotes the entry of
tensor U with coordinate ~x = (x1, x2, . . . , xd) and ali(xi) denotes the xi-th entry of vector ali. Note
that al1 ⊗ al2 ⊗ . . .⊗ ald ∈ Rn1×···×nd is a rank-1 tensor, l = 1, 2, . . . , r.

For notational convenience, define N−i ,
Πd

j=1 nj

ni
(i.e., the product of all but the size of i-

th dimension), Ni ,
(

Πi
j=1 nj

)
(i.e., the product of the sizes of the first i dimensions), N̄i ,(

Πd
j=i+1 nj

)
(i.e., the product of the sizes of the last (d − i) dimensions). Also, define x+ ,

max{0, x}.

Definition 1 Define the matrix Ũ(i) ∈ RNi×N̄i as the i-th unfolding of tensor U , such that U(~x) =

Ũ(i)(M̃i(x1, . . . , xi), M̄i(xi+1, . . . , xd)), where M̃i : (x1, . . . , xi) → {1, 2, . . . , Ni} and M̄i :
(xi+1, . . . , xd) → {1, 2, . . . , N̄i} are two bijective mappings. These mappings are basically the
simple and well-known vectorization mappings.

Definition 2 Define the matrix U(i) ∈ Rni×N−i as the i-th matricization of tensor U , such that
U(~x) = U(i)(xi,Mi(x1, . . . , xi−1, xi+1, . . . , xd)), where Mi : (x1, . . . , xi−1, xi+1, . . . , xd) →
{1, 2, . . . , N−i} is a bijective mapping, which is another vectorization mapping.

Definition 3 We call a column u ∈ RNi an “i-th unfolded column,” i = 1, . . . , d− 1, if there exist
us ∈ Rns for s = 1, . . . , i, such that u = vec(u1 ⊗ . . .⊗ ui), where vec(·) uses the same bijective
mappings that is used for the i-th unfolding, i.e., M̃i : (x1, . . . , xi) → {1, 2, . . . , Ni}, and hence
u(M̃i((x1, . . . , xi)) = u1(x1) . . .ui(xi). We call a (d − 1)-th unfolded column as a “structured
column.”

In the remainder of this section, we provide some fundamental properties of tensor and rank that
will be used later.

Lemma 4 The matrix rank of any unfolding or matricization of U is upper bounded by its CP-rank
r. In other words, the CP-rank of a tensor is always greater than or equal to the matrix rank of any
unfolding or matricization.
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Proof In order to show rank
(
Ũ(i)

)
≤ r, it suffices to show that there exist bl1 ∈ RNi and bl2 ∈ RN̄i

for 1 ≤ l ≤ r such that

Ũ(i) =

r∑
l=1

bl1 ⊗ bl2. (3)

Recall the CP decomposition in (1). Then, we defineAl1 = al1⊗. . .⊗ali andAl2 = ali+1⊗. . .⊗ald
for 1 ≤ l ≤ l and let bl1 and bl2 denote the vectorizations of Al1 and Al2 with the bijective mappings
M̃i : (x1, . . . , xi) → {1, 2, . . . , Ni} and M̄i : (xi+1, . . . , xd) → {1, 2, . . . , N̄i} of the unfolding
Ũ(i), respectively. Hence, there exist bl1 ∈ RNi and bl2 ∈ RN̄i for 1 ≤ l ≤ r such that (3) holds.
Similarly, for the matricization U(i), we can write U(i) =

∑r
l=1 cl1 ⊗ cl2, where cl1 = ali ∈ Rni and

cl2 ∈ RN−i is the vectorization of al1 ⊗ . . . ⊗ ali−1 ⊗ ali+1 ⊗ . . . ⊗ ald with the bijective mapping
Mi : (x1, . . . , xi−1, xi+1, . . . , xd)→ {1, 2, . . . , N−i} of the matricization U(i).

Lemma 5 The CP-rank of a tensor U is equal to the minimum number of structured columns
that span all columns of Ũ(d−1).

Proof Recall from Lemma 4 that there exist bl1 ∈ RNi and bl2 ∈ RN̄i for 1 ≤ l ≤ r such that
(3) holds. Define B1 = [b1

1|b2
1|. . . |br1] ∈ RNi×r and B2 = [b1

2|b2
2|. . . |br2]> ∈ Rr×N̄i . Then,

(3) can be rewritten as Ũ(i) = B1B2 and therefore, there exist r columns such that each one is an
i-th unfolded column (columns of B1) and each column of the i-th unfolding of U can be written
as a linear combination of the mentioned r columns. Moreover, the columns of B>2 have a similar
structure, i.e., they are (d− i)-th unfolded columns. Note that in the case of i = d− 1, the columns
of B1 are “structured columns” and the columns of B>2 do no have any particular structure, i.e., B2

is an arbitrary matrix. Therefore, rank(U) = r means that r is the minimum number of structured
columns that span all columns of Ũ(d−1).

Remark 6 rank(U) = r concludes that there exists a set S consisting of r structured columns
whose column span (denoted by T ) includes any column of Ũ(d−1). In other words, the column
span of these r structured columns, i.e., T , is an unfolded tensor space of rank r. In fact, the image
of the bijective mapping (M̃d−1, M̄d−1) with the domain of space of all d-way tensors generated by
this unfolded tensor space is T .

3. Problem Statements, Main Results And Matrix Approaches

3.1. Problem Statements

Assume that Uk ∈ Rn1×n2×...nd−1×ck is a d-way tensor, k = 1, 2, . . . ,K. Define U ∈ Rn1×n2×...,nd

as the concatenation of the mentioned tensors along the d-th dimension (not in any specific order),
where nd =

∑K
k=1 ck. Let rk denote the rank of Uk, k = 1, 2, . . . ,K. We assume that U is (or Uk’s

are) randomly sampled, i.e., each entry of U is independently sampled with probability 0 < p < 1.
Let Ω be an n1 × n2 × . . . × nd binary tensor of sampling pattern such that Ω(~x) = 1 if U(~x)
is sampled and Ω(~x) = 0 otherwise. Let UΩ denote the incomplete tensor consisting of only the

4



UNION OF LOW-RANK TENSOR SPACES

sampled entries of U . We assume that the rank values r1, . . . , rK and the sampled tensor UΩ are
given. Furthermore, we assume that Uk is generated generically from the corresponding tensor space
(of rank rk), i.e., each entry of the vector along the d-th dimension in CP-decomposition of Uk is
drawn independently according to a continuous uniform distribution with respect to the Lebesgue
measure on R, k = 1, . . . ,K. Denote Ck = c1 + · · ·+ ck for k = 1, . . . ,K. Throughout the paper,
we assume the genericty of the data and that the entries of the tensor are sampled uniformly and
independently with some probability p.

For the sake of notational simplicity, instead of working with tensors, we look into the image
of the bijective mapping (M̃d−1, M̄d−1) with the domain U , i.e., Ũ(d−1). Specifically, consider
the set Sk consisting of rk structured columns (i.e., (d − 1)-th unfolded columns) that are chosen
generically, k = 1, . . . ,K. In other words, each of them is obtained through vectorization of the
outer product of d − 1 vectors in Rni , for 1 ≤ i ≤ d − 1, and each entry of any of these d − 1
vectors is drawn independently according to a continuous uniform distribution with respect to the
Lebesgue measure on R. Moreover, let Tk denote the column span of Sk. Then, consider a matrix
Ũk

(d−1) ∈ RNd−1×ck such that ck ≥ rk and the columns of Ũk
(d−1) are drawn generically from the

column span of Sk. Hence, the folded d-way tensor corresponding to Ũk
(d−1) (denoted by Uk) is of

CP-rank rk and the column span of Sk provides an unfolded tensor space of rank ri, i = 1, . . . , k.
Summary of notations:

Symbol Definition
K The number of tensors.
Uk The k-th tensor, which belongs to Rn1×n2×...nd−1×ck .
Ω The binary sampling tensor, which belongs to {0, 1}n1×n2×...nd−1×nd .
Ck Ck = c1 + · · ·+ ck for k = 1, . . . ,K.

N−i
Πd

j=1 nj

ni
.

Ni Πi
j=1 nj .

N̄i Πd
j=i+1 nj .

Ũ(i) The i-th unfolding of tensor U , which belongs to RNi×N̄i .
U(i) The i-th matricization of tensor U , which belongs to Rni×N−i .
Tk The tensor space that each column of Ũk

(d−1) is chosen generically from.
Sk The set of structured columns that are a basis for the tensor space Tk, i.e.,

Sk = {u1, . . .urk}.

3.1.1. TENSOR SPACE CLUSTERING WITH MISSING DATA

In Section 4, we are interested in clustering the subtensors of U of size Rn1×n2×...nd−1×1 in K
groups such that members of each group belong to the same d-dimensional source of size n1×n2×
. . . × nd−1 × ck and rank rk with high probability. This is equivalent to clustering the columns of
Ũ(d−1) such that their corresponding tensors (folded versions) belong to the same tensor space.

Assuming that Ik denotes a set of ck columns generically chosen from Tk, i.e., the column span
of the unfolded tensor basis Sk, k = 1, . . . ,K, and we call {I1, . . . , IK} the K unknown sources.
In fact, the (d − 1)-th unfolding Ũk

(d−1) ∈ RNd−1×ck of tensor Uk consists of the ck columns in

Ik. As mentioned earlier, in the clustering problem, we assume that
∑K

k=1 ck structured columns of
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Ik’s are randomly sampled while we do not know the source of each structured column. Then, we
are interested in correctly clustering these sampled structured columns with high probability, i.e.,
correctly identifying the source Ik that each structured column is chosen from with high probability.

3.1.2. UNION OF TENSOR SPACES COMPLETION

For this problem, we assume that: (i) the sets Sk consisting of rk structured columns are such that
S1 ⊆ S2 ⊆ . . . ⊆ SK ; (ii) the subtensors are already correctly clustered. Hence, in this setting
we can assume that the first c1 columns of Ũ(d−1) are Ũ1

(d−1), the next c2 columns of Ũ(d−1) are

Ũ2
(d−1), and so on, i.e., Ũ(d−1) = [Ũ1

(d−1)|. . . |Ũ
K
(d−1)].

In Section 5, we are interested in obtaining the deterministic conditions on the sampling pattern
Ω such that there are finite number of completions of U that have the mentioned data structure and
satisfy all rank constraints. Then, in Section 6, we will further obtain a lower bound on the sampling
rate that ensures the similar results with high probability.

3.2. Summary of Results and Main Steps of Analysis

An executive summary of the steps in our analysis for each section is as follows:
(i) Clustering results for union of tensors (Section 4) - Minimum uniform sampling rate p to

correctly cluster the tensors:

(1) Required sampling rate for unique completability of a single tensor⇐⇒
Lemma 11.
(2) A condition that ensures infinite completability of a single tensor (will
be used in the proof of the main theorem to contradicts the unique com-
pletability)⇐⇒ Lemma 16.
(1) and (2)⇐⇒ Characterize the required sampling rate for correctly clus-
tering the union of tensors with a certain probability (Theorem 17).

(ii) Deterministic analysis for completion of union of tensors (Section 5) - Necessary and suffi-
cient conditions on the sampling pattern Ω:

Completion Problem⇐⇒ Solving polynomial equations in terms of the en-
tries of canonical decomposition of the union of tensors given in Definition
23⇐⇒ Lemma 31.
(1) Finite completability of U given Ak

i ’s⇐⇒ Assumption 1.
(2) Finite completability of Ak

i ’s⇐⇒ Existence of (n1 + · · ·+ nd−1)rK −∑K
k=1 rk(rk − rk−1) − rK(d − 2) algebraically independent polynomials

in P(Ω) (Lemma 33)⇐⇒ Relationship between Ω (via the constraint ten-
sor Ω̆) and the maximum number of algebraically independent polynomials
(Lemma 34).
(1) and (2)⇐⇒ Geometric patterns for finite completability of U (Theorem
36).

(iii) Probabilistic analysis for completion of union of tensors (Section 6) - Minimum uniform
sampling rate p to ensure finite/unique completability:
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(1) Connecting conditions on the number of samples and geometry of Ω
(Lemma 41)
(1) and Theorem 36 (geometry of Ω̆) =⇒ Probabilistic condition for finite
completability (Theorem 42).

3.3. Matrix Analysis Approach To The Clustering Problem

One naive way of treating the above tensor space clustering problem is to ignore the “unfolded
structure” of the columns in Ik and simply apply the subspace clustering results for matrices.

First, we restate the main result of (Pimentel-Alarcón and Nowak, 2016) (i.e., Theorems 1 and
3 in (Pimentel-Alarcón and Nowak, 2016)). Consider a similar problem as described in Section
3.1 for two-dimensional data, or matrix. Let T1, . . . , TK be subspaces independently chosen from
Gr(n1, r) (set of all r-dimensional subspaces of the n1-dimensional space), and source Ik includes
ck columns generically chosen from Tk, k = 1, . . . ,K. The matrix U ∈ Rn1×n2 is such that
n2 =

∑K
k=1 ck and includes all columns of Ik for k = 1, . . . ,K. Ω is an n1 × n2 binary sampling

matrix.

Lemma 7 (Pimentel-Alarcón and Nowak, 2016) Assume that the subspaces T1, . . . , TK are inde-
pendently chosen from Gr(n1, r), r ≤ n1

6 and ck ≥ (r + 1)(n1 − r + 1), k = 1, . . . ,K. Moreover
suppose that each column of UΩ includes at least l sampled entries such that

l > max{12 log

(
n1(r + 1)

ε

)
+ 12, 2r}. (4)

Let T̄ denote an r-dimensional subspace that fits exactly c̄ columns of UΩ (i.e., c̄ is the maximum
number of columns of UΩ that can be covered by T̄ ) and assume that c̄ ≥ (r + 1)(n1 − r + 1).
Then, with probability at least 1 − Kε, the following statement holds: All the c̄ columns of UΩ

covered by T̄ belong to one source Ik0 for some 1 ≤ k0 ≤ K and the rest of the columns of UΩ do
not belong to Ik0 and moreover, c̄ = ck0 and T̄ = Tk0 .

Remark 8 The above lemma provides the conditions for clustering the columns that belong to one
particular subspace with high probability.

For the tensor space clustering problem in Section 3.1, assume that r1 = · · · = rK = r and the
tensor spaces are chosen independently. Then, we can simply apply Lemma 7 to Ũ(d−1) to cluster
one of the tensor spaces if

ck ≥ (rmax + 1)(N−d − rmax + 1), k = 1, . . . ,K, (5)

and

l > max{12 log

(
N−d(rmax + 1)

ε

)
+ 12, 2rmax}. (6)

Note that the assumptions such as r1 = · · · = rK = r, the tensor spaces are chosen indepen-
dently, and (5) are very strong and we are interested in clustering the tensor spaces without requiring
such assumptions.
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Remark 9 The reason that the above naive method is not very efficient and requires a very strong
assumption (5) is that we completely ignored the “unfolded structure” of the columns of Ũ(d−1) and
effectively relaxed the tensor space clustering problem to a matrix clustering problem, i.e., relaxing
the structure of CP decomposition to the simple structure of matrix decomposition.

3.4. Matrix Analysis Approach To The Completion Problem

A naive approach is again to ignore the unfolding structure of the columns of Ũ(d−1) and treat it
as a union of low-rank matrices completion problem. For notational clarity, denote V , Ũ(d−1) ∈
RN−d×(c1+···+cK), Vk , Ũk

(d−1) ∈ RN−d×(c1+···+ck). Note that the CP-rank of a tensor is an
upper bound on the rank of any unfoldings of that tensor and therefore, we can simply conclude that
rank (Vk) ≤ rk, k = 1, . . . ,K. Morover, the tensor space structure for the completion problem
(S1 ⊆ S2 ⊆ . . . ⊆ SK) simply results that span (V1) ⊆ span (V2) ⊆ . . . ⊆ span (VK). Now,
let us consider the special case when rank (Vk) = rk, k = 1, . . . ,K and we know that given
span (V1) ⊆ span (V2) ⊆ . . . ⊆ span (VK), the following lemma found in (Ashraphijuo and
Wang, 2018) gives a lower bound on the number of samples such that V is uniquely completable.

Lemma 10 Assume that rk ≤ N−d and ck ≥ (rk − rk−1 + 1)(N−d − rk) for k = 1, . . . ,K, and
each column of Ω (i.e., Ω̃(d−1) for U) includes at least l nonzero entries where

l > max

{
9 log

(
N−d
ε

)
+ 3 log

(
max1≤k≤K{rk − rk−1}2K

ε

)
+ 6, 2rK

}
. (7)

Then, with probability at least 1− ε, V is uniquely completable.

Recall that N−d = n1n2 . . . nd−1 and hence the condition ck ≥ (rk − rk−1 + 1)(N−d − rk)
implies that a very large number of subtensors are needed, similar to the clustering case [cf. Eq.
(5)].

4. Tensor Space Clustering: Main Results

4.1. Useful Results on Tensor Completion

The tensor completion problem is to recover the missing entries of a randomly sampled tensor given
the rank of the original tensor. In this subsection, we provide some results on the CP-rank tensor
completion, which are instrumental to solving the tensor space clustering problem.

Unique Completability of Tensors

In (Ashraphijuo and Wang, 2017), the conditions on the sampling pattern and sampling probability
are given to ensure finite/unique completability of the sampled tensor of the given rank, where
finite/unique completability means the number of possible completions of the given rank constraint
is finite/one. Consider a d-way tensor U ∈ Rn1×...×nd drawn generically from the manifold of
tensors of the same size and of CP-rank r. The following lemma is taken from (Ashraphijuo and
Wang, 2017).
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Lemma 11 Assume that d > 2, (min1≤i≤d−1 ni) > 200, nd ≥ (r+2)(
∑d−1

i=1 ni), r ≤ min1≤i≤d−1 ni

6 .
Assume that each column of Ũ(d−1) includes at least l nonzero entries, where

l > max

{
27 log

(
2 max1≤i≤d−1 ni

ε

)
+ 9 log

(
8r(d− 1)

ε

)
+ 18, 6r

}
. (8)

Then, with probability at least 1 − ε, there exist only one completion of the sampled tensor U with
CP rank r, which is the original sampled tensor.

Tensor Completion With One Missing Entry

Here, we consider the tensor completion problem with only one missing entry. This will be useful
in proving Lemma 16.

Lemma 12 Let U be a rank-(r − 1) tensor and U(~x) = y be an entry of this tensor. Assume that
changing the value of entry U(~x) from y to y′ results in U ′, which is a rank-r tensor. Then, there
are infinitely many scalars y′′ such that changing the value of entry U(~x) from y to y′′ results in a
rank-r tensor.

Proof First, we claim that changing the value of only one entry of a tensor can increase the rank
of the tensor by at most one. Recall that the rank of a tensor is the minimum number of structured
columns whose column span includes all columns of Ũ(d−1). Assume that only one entry of the ten-
sor is changed and consider the column of Ũ(d−1) where the changed entry resides. Before changing
this entry, the mentioned column was covered by the column span of r − 1 structured columns. To
show the earlier claim, we need to show that there exists a structured column such that together with
the previous r−1 structured columns, they span the modified column of Ũ(d−1). Note that a column
u ∈ RNd−1 with only a single nonzero entry U(M̃d−1(x1, . . . , xd−1)) = u 6= 0, is a structured col-
umn, as we can rewrite u as the vectorization of the outer product of [0, . . . , 0︸ ︷︷ ︸

xi−1

, 1, 0, . . . , 0]> ∈ Rni

for 1 ≤ i ≤ d− 2 and [0, . . . , 0︸ ︷︷ ︸
xd−1−1

, u, 0, . . . , 0]> ∈ Rnd−1 . As a result, by adding a structured column

with a single nonzero entry in the corresponding location of the modified entry (with the value of the
nonzero entry equal to the amount of modification in that entry) to the mentioned r − 1 structured
columns, we obtain an unfolded tensor space of at most rank r and therefore, our earlier claim is
proved. As a consequence, changing the value of only one entry of a tensor results in changing the
rank of the tensor by at most one. Hence, for any scalar y′′, changing the value of entry U(~x) from
y to y′′ results in either a rank-(r − 2), rank-(r − 1) or rank-r tensor. Note that rank-(r − 2) is not
possible since otherwise by changing the value of U(~x) from y′ to y′′ the rank is changed by 2.

Now given a rank-(r − 1) tensor, the CP decomposition

U(~x) =
r−1∑
l=1

al1(x1)al2(x2) . . .ald(xd), (9)

results in a system of |Ω| polynomial equations p in terms of the variables ali, i = 1, . . . , d,
l = 1, . . . , r − 1. By assumption, when the value of the entry U(~x) is changed from y to y′,
the rank is changed from r − 1 to r. This means that when U(~x) = y, p is feasible; and when

9
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U(~x) = y′, p is not feasible. On the other hand, since changing U(~x) to any y′′ results in either
rank-(r − 1) or rank-r tensor, we conclude that if changing U(~x) to y′ leads to infeasible p, then
rank is r. The rest of the proof then follows from Lemma 15.

Next, we prove Lemma 15 which was used in the above lemma. We first need the following
definition.

Definition 13 A closed set is a set that contains all its limit points, i.e., for any sequence of points
limt→∞ at = a0 such that at belongs to the mentioned set for t ≥ 1, we conclude that a0 belongs
to this set as well.

The feasible region of a system of equations of n variables is the set of all n-dimensional real
valued vectors that are solutions to the system.

Lemma 14 Consider an arbitrary system of polynomial equations p = (p1, . . . , pm) = 0 in terms
of n variables. The feasible region of p in Rn is a closed set.

Proof First, we show that the feasible region of any single polynomial equation pi = 0, is a
closed set in Rn. Let Fi denote this feasible region, i = 1, . . . ,m. Consider a sequence of points
{~xt ∈ Rn|t = 1, 2, . . . } such that ~xt ∈ Fi and limt→∞ ~xt = ~x0. The assumption ~xt ∈ Fi
simply results that pi(~xt) = 0. Note that pi is continuous with respect to the vector of variables
~x = (x1, . . . , xn) and therefore, limt→∞ pi(~xt) = 0. As a result, pi(~x0) = 0 and hence, ~x0 ∈ Fi.
Hence, Fi is closed.

Define F = ∩1≤i≤mFi, which denotes the feasible region of p in Rn. Note that the intersec-
tion of several closed sets in Rn is a closed set in Rn (11.1.5 Closed Set Properties in (Bartle and
Sherbert, 2011)). Hence, F is a closed set in Rn.

The following lemma is used in the proof of Lemma 12.

Lemma 15 Consider an arbitrary system of polynomial equations p = (p1, . . . , pm−1, pm−c) = 0
in terms of n variables, where c ∈ R is a constant. Assume that there exist y, y′ ∈ R such that the
feasible region of p is non-empty for c = y and empty for c = y′. Then, there exist infinitely many
real scalars y′′ such that the feasible region of p is empty for c = y′′.

Proof
It suffices to show that for any neighborhoodN (y′) = [y′−ε, y′+ε] (for any ε > 0) there exists

a scalar y′′ ∈ N (y′) such that y′′ 6= y′ and c = y′′ results that the feasible region of p is empty,
since by considering smaller and smaller neighborhoods, e.g., εn = 1

n , we obtain infinitely many
scalars y′′, such that the feasible region of p is empty for c = y′′.

Now, by contradiction, assume that there exist a neighborhoodN (y′) = [y′−ε, y′+ε] (for some
ε > 0) such that for any scalar y′′ ∈ N (y′) that y′′ 6= y′, c = y′′ results that the feasible region of p
is non-empty.

LetF ′ ⊆ Rn denote the feasible region of the system of polynomial equations p′ = (p1, . . . , pm−1) =
0. Note that c = y′′ results that the feasible region of p is non-empty if and only if there exists a
vector ~x′′ ∈ F ′ such that pm( ~x′′) = y′′. In other words, y′′ belongs to the image of pm with F ′

10
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as the domain (pm(F ′)) if and only if c = y′′ results that the feasible region of p is non-empty.
Consequently, for any y′′ ∈ N (y′) and y′′ 6= y′, there exist at least one vector ~x′′ ∈ F ′ such that
pm(~x′′) = y′′.

As a result of the fact that y′ − ε and y′ + ε belong to the image of pm with F ′ as the domain,
there exist ~x′′1 ∈ F ′ and ~x′′2 ∈ F ′ such that pm(~x′′1) = y′ − ε and pm(~x′′2) = y′ + ε. Let l denote the
one dimensional line that connects ~x′′1 to ~x′′2 in Rn and l′ denote the corresponding segment on this
line with endpoints ~x′′1 and ~x′′2 .

According to Lemma 14, F ′ is a closed set. On the other hand, it is easily verified that any one
dimensional segment in Rn that includes its endpoints is a closed set. Hence, l′ is a closed set and
therefore, F ′′ = F ′ ∩ l′ is a closed set (Bartle and Sherbert, 2011). Note that F ′′ denotes all the
points on the segment that connects ~x′′1 to ~x′′2 , i.e., l′, that also belong to F ′. Due to the continuity
of pm, we have a sequence of points ~xt in F ′′ that limt→∞ pm(~xt) = y′. Since, F ′′ is a closed set,
it includes ~x0, the limit of the sequence and therefore, pm(~x0) = y′. This is a contradiction and the
proof is complete.

Infinite Completability of Tensors

The following lemma provides a condition under which there exist infinitely many rank-r comple-
tions of a sampled tensor.

Lemma 16 Let UΩ be a sampled tensor. Assume that there exist a rank-(r − i) completion (with
0 < i < r) and a rank-r completion. Then, there exist infinitely many rank-r completions of UΩ.

Proof As mentioned in the proof of Lemma 12, changing the value of only one entry of a tensor
results in changing the rank of the tensor by at most one. Let U1 and U2 denote the rank-(r− i) and
rank-r completions, respectively. U1 and U2 are the same over the sampled entries, i.e., (U1)Ω =
(U2)Ω, and their difference is only over some of the non-sampled entries. We change the values of
non-sampled entries of U1 one by one to the values of the corresponding non-sampled entries of U2,
which will eventually result in U2 if we continue this for all non-sampled entries. While performing
this simple process, we simply increase the rank from r − 1 to r at some step by changing a non-
sampled entry. This is because at the beginning the rank of the tensor is r − i ≤ r − 1 and at the
end the rank is r and also at each step the rank changes by at most one.

Hence, there exists a rank-(r − 1) completion U3 of the sampled tensor UΩ such that changing
the value of an entry U3(~x) from y to y′ increases the rank to r for some scalars y and y′. Hence,
according to Lemma 12, there exists infinitely many rank-r completions of UΩ.

4.2. Conditions on Tensor Space Clustering

Assumptions for Theorem 17 : For the tensor space clustering problem discussed in Section 3.1
without loss of generality, assume that r1 ≤ r2 ≤ . . . ≤ rK , (min1≤i≤d−1 ni) > 200 and denote
rmax = max1≤k≤K rk = rK . Assume further that rmax ≤

min1≤i≤d−1 ni

6 ,

ck ≥ K(rmax + 2)(
d−1∑
i=1

ni), for k = 1, . . . ,K, (10)

11
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and also, each column of Ũ(d−1) includes at least l sampled entries where

l > max

{
27 log

(
2 max1≤i≤d−1 ni

ε

)
+ 9 log

(
8rmax(d− 1)

ε

)
+ 18, 6rmax

}
. (11)

Let S̄ be a set of r1 structured columns and T̄ denote the unfolded tensor space generated by its
columns span that fits exactly c̄ columns of Ũ(d−1) (i.e., c̄ is the maximum number of columns of
Ũ(d−1) that can be covered by S̄) and assume that c̄ ≥ K(rmax + 2)(

∑d−1
i=1 ni).

Theorem 17 Assume that all the above conditions described in “Assumptions for Theorem 17”
hold true. Then, with probability at least 1 − ε the following statement holds: All the c̄ columns of
Ũ(d−1) covered by S̄ belong to one source Ik0 for some 1 ≤ k0 ≤ K such that rk0 = r1 (if r1 < r2

then k0 = 1 and otherwise there are more options for k0) and the rest of the columns of Ũ(d−1) do
not belong to Ik0 and moreover, c̄ = ck0 and T̄ = Tk0 .

Proof According to the pigeonhole principle, at least d c̄K e ≥ (rmax + 2)(
∑d−1

i=1 ni) columns of
the c̄ covered columns by S̄ are chosen from one source Ik0 . Note that due to the assumption
rmax ≥ rk0 , we have (rmax + 2)(

∑d−1
i=1 ni) ≥ (rk0 + 2)(

∑d−1
i=1 ni) and hence, there are at least

(rk0 + 2)(
∑d−1

i=1 ni) columns covered by S̄ that are chosen from one source Ik0 . Then, according to
Lemma 11, there exists a unique rank-rk0 completion of the tensor corresponding to the mentioned
(rk0 + 2)(

∑d−1
i=1 ni) columns with probability at least 1 − ε. Hence, assuming that the mentioned

unique completability holds, it suffices to show the mentioned claims in the statement of the theorem
hold with probability one.

First, we show that rk0 = r1. By contradiction, assume otherwise that r1 < rk0 . Recall that T̄
is an r1-dimensional tensor space that fits the mentioned (rk0 + 2)(

∑d−1
i=1 ni) columns and hence,

there exists a rank-r1 completion of the tensor corresponding to these columns. Moreover, note that
the original data gives a rank-rk0 completion of the tensor corresponding to these columns. Hence,
according to Lemma 16, there exist infinitely many rank-rk0 completions of the tensor correspond-
ing to these columns, which contradicts the earlier uniqueness assumption. As a result, we have
rk0 = r1 with probability one. Now that rk0 = r1, according to the uniqueness of rank-rk0 com-
pletion assumption, and due to the fact that both subspaces T̄ and Tk0 are r1-dimensional (since
rk0 = r1), we simply conclude T̄ = Tk0 . Consequently, T̄ covers all ck0 columns of Ũ(d−1) that
belong to Ik0 . In order to complete the proof, it suffices to show that c̄ = ck0 , i.e., T̄ does not cover
any other column of Ũ(d−1) that belongs to other sources Ik for k 6= k0, with probability one. Since
we have rk0 = r1 = min{r1, r2, . . . , rK}, we conclude that Tk 6⊆ Tk0 for k 6= k0 and therefore,
any column chosen from sources other than Ik0 does not belong to Tk0 with probability one. Note
that this statement is not valid if rk0 6= min{r1, r2, . . . , rK} and this is why we cluster the tensor
space with the lowest dimension for now.

Now, by contradiction, assume that a column ũΩ(d−1)
of ŨΩ(d−1)

is chosen from Ik1 for some

k1 6= k0, and it can be covered by S̄. Consider r1 random columns of ŨΩ(d−1)
that belong to

Ik0 and denote it by Ũ0
Ω(d−1)

and let Ũ0
(d−1) be the unique rank-r1 completion of Ũ0

Ω(d−1)
. Define

Ũ1
Ω′

(d−1)
= [Ũ0

(d−1)|ũΩ(d−1)
] ∈ RN−d×(r1+1) (only the last column of Ũ1

Ω′
(d−1)

is incomplete). Note

that (11) ensures that ũΩ(d−1)
includes at least r1+1 sampled entries and therefore, Ũ1

Ω′
(d−1)

includes

an (r1 + 1)× (r1 + 1) submatrix such that the r1 + 1 of the sampled entries of ũΩ(d−1)
are included

12
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Figure 1: The required number of subtensors ck for correct clustering.

and denote such submatrix by Ũ1′

(d−1). Note that ũ(d−1) is chosen generically from the column span

of Tk and we know that Tk 6⊆ Tk0 . Therefore, the matrix rank of Ũ1′

(d−1) ∈ R(r1+1)×(r1+1) is r1 + 1.

Hence, any completion of Ũ1
Ω′

(d−1)
has matrix rank of at least r1 + 1 and as a result, any completion

of the tensor corresponding to the unfolding Ũ1
Ω′

(d−1)
has CP-rank of at least r1 + 1. Therefore, S̄

cannot fit ũΩ(d−1)
with probability one since S̄ is an r1-dimensional tensor space, and the proof is

complete due to this contradiction.

Remark 18 The required number of subtensors chosen from each source in the matrix analysis
approach given by (5) isO(rmaxn1 . . . nd−1). However, this number reduces toO(rmax(n1 + · · ·+
nd−1)) in the tensor approach according to Theorem 17. This huge improvement is a consequence
of taking advantage of tensor analysis as opposed to matrix analysis. Moreover, Theorem 17 does
not require the assumptions of r1 = r2 = · · · = rK and independently chosen tensor spaces.

Example 1 Consider an example in which d = 3, K = 10, n1 = n2 = 300, ε = 0.1. We
compare the number of subtensors required for correctly clustering using the matrix analysis and
our proposed tensor analysis in Figure 1, given by (5) and (10), respectively. Note that the bound
obtained by matrix analysis is valid only if r1 = r2 = · · · = r10, which is not the case for the
proposed tensor analysis. Then, we compare the required number of samples per column of the (d−
1)-th unfolding for correct clustering using the matrix analysis and our proposed tensor analysis,
given by (6) and (11), respectively, in Figure 2. It is clearly seen from the two figures that the
proposed tensor analysis substantially reduces the number of subtensors and samples needed for
correct clustering.
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Figure 2: The required number of samples per subtensor for correct clustering.

According to Theorem 17, we identify all columns of Ũ(d−1) chosen from a source (generated
by a set of r1 structured columns). Then, we can simply exclude the subtensors (corresponding to
the identified columns) from the sampled tensor. Then, the problem reduces to the similar problem
with K − 1 tensor spaces of ranks r2 ≤ . . . ≤ rK . Hence, the same analysis as in Theorem 17
is applicable again. In particular, let S̄1, . . . , S̄K′ (for some 1 ≤ K ′ < K) denote different sets
of r1, . . . , rK′ structured columns that fit exactly c̄1, . . . , c̄K′ columns of Ũ(d−1), respectively, and
assume that c̄k ≥ K(rmax + 2)(

∑d−1
i=1 ni), k = 1, . . . ,K ′. Let T̄1, . . . , T̄K′ denote the column span

of S̄1, . . . , S̄K′ , respectively. Moreover, assume that there exist K(rmax + 2)(
∑d−1

i=1 ni) columns of
Ũ(d−1) covered by S̄k that cannot be covered by any of S̄1, . . . , S̄k−1, k = 1, . . . ,K ′. Then, using
Theorem 17, we have T̄1 = Tk1 and c̄1 = ck1 with probability at least 1− ε. Hence, we can exclude
all the ck1 the subtensors (corresponding to the identified ck1 columns) from the sampled tensor and
the identified tensor space Tk1 . Therefore, similarly, we can apply Theorem 17 again. We consider
the scenario of correct identification of the subtensors corresponding to the first source, which holds
true with probability at least 1− ε and continue clustering the rest of the subtensors.

Given the previous correct clustering, we can cluster the subtensors of the next tensor space
correctly with probability at least 1 − ε. This can be done because due to the assumption, after
excluding the columns of Ũ(d−1) of the first source, there still existK(rmax+2)(

∑d−1
i=1 ni) columns

covered by S̄2 that cannot be covered by S̄1. Hence, we apply Theorem 17 again and therefore, with
probability at least (1 − ε)2 the following statement holds: All the c̄k columns of Ũ(d−1) covered
by S̄k belong to one source Ik′ such that rk′ = rk and the rest of the columns of Ũ(d−1) do not
belong to Ik′ and moreover, c̄k = ck′ and T̄k = Tk′ , k = 1, 2. By simply repeating this procedure,
we conclude the following corollary.

Assumptions for Corollary 19 : Without loss of generality, assume that r1 ≤ r2 ≤ . . . ≤
rK , (min1≤i≤d−1 ni) > 200 and denote rmax = max1≤k≤K rk = rK . Assume further that
rmax ≤

min1≤i≤d−1 ni

6 , (10) holds, and also, each column of Ũ(d−1) includes at least l sampled

14



UNION OF LOW-RANK TENSOR SPACES

entries such that (11) holds. Let S̄1, . . . , S̄K′ (for some 1 ≤ K ′ < K) denote different sets of
r1, . . . , rK′ structured columns that fit exactly c̄1, . . . , c̄K′ columns of Ũ(d−1), respectively, and as-
sume that c̄k ≥ K(rmax + 2)(

∑d−1
i=1 ni), k = 1, . . . ,K ′. Let T̄1, . . . , T̄K′ denote the column span

of S̄1, . . . , S̄K′ , respectively. Moreover, assume that there exist K(rmax + 2)(
∑d−1

i=1 ni) columns of
Ũ(d−1) covered by S̄k that cannot be covered by any of S̄1, . . . , S̄k−1, k = 1, . . . ,K ′.

Corollary 19 Assume that all the above conditions described in “Assumptions for Corollary 19”
hold true. Then, with probability at least (1−ε)K′ the following statement holds: All the c̄k columns
of Ũ(d−1) covered by S̄k belong to one source Ik′ such that rk′ = rk and the rest of the columns of
Ũ(d−1) do not belong to Ik′ and moreover, c̄k = ck′ and T̄k = Tk′ , k = 1, . . . ,K ′.

5. Union of Tensor Spaces Completion: Deterministic Analysis

5.1. Canonical Decomposition

Recall that for the problem of union of tensor spaces completion, we have Ũ(d−1) =

[Ũ1
(d−1)|Ũ

2
(d−1)|. . . |Ũ

K
(d−1)] and each column of Ũk

(d−1) is chosen generically from a tensor space
Tk, k = 1, . . . ,K. Also, Sk denotes the set of structured columns that are a basis for the tensor
space Tk, i.e., Tk is the column span of the structured columns in Sk, k = 1, . . . ,K. Moreover, this
union of tensor spaces is such that the rk structured columns of Sk can be denoted by u1, . . .urk ,
i.e., Sk = {u1, . . .urk}, k = 1, . . . ,K, and as a consequence we have S1 ⊆ S2 ⊆ . . . ⊆ SK .

Recall that ul = vec(al1 ⊗ . . . ⊗ ald−1), ali ∈ Rni for l = 1, . . . , rK , where vec(·) uses the
same bijective mappings that is used for the (d − 1)-th unfolding, i.e., M̄d−1 : (x1, . . . , xd−1) →
{1, 2, . . . , Nd−1}. Denote Ak

i = [a
rk−1+1
i |ark−1+2

i |. . . |arki ] ∈ Rni×(rk−rk−1) for i = 1, . . . , d and
k = 1, . . . ,K. Note that the decomposition in (1) is not unique (in fact there are infinitely many
different decompositions). Next, we will impose certain structure on ali such that the decompo-
sition becomes unique and we will denote such unique decomposition by āli, i = 1, . . . , d and
l = 1, . . . , rK , which will be called the canonical decomposition.

The canonical structure features two properties: Property I and Property II. Property I given in
Lemma 20, imposes structures on āld, l = 1, . . . , rK , and is a consequence of the rank constraints
and the assumption S1 ⊆ S2 ⊆ . . . ⊆ SK . Property II given in Lemma 24, imposes structures on
āli, i = 1, . . . , d− 1 and l = 1, . . . , rK , and is a consequence of the assumption that Sk is generated
generically from its structured columns. This canonical structure is such that among all possible
CP-decompositions of U , exactly one of them satisfies the proposed canonical structure.

Lemma 20 There exist āld ∈ Rnd for l = 1, . . . , rK such that U =
∑rK

l=1 al1⊗ . . .⊗ ald−1⊗ āld and
for any k = 1, . . . ,K, x = 1, . . . , (c1 + · · ·+ ck−1) and l = rk−1 + 1, . . . , rk we have āld(x) = 0.
In other words, Āk

d(1 : (c1 + · · ·+ ck−1), 1 : rk − rk−1) = 0(c1+···+ck−1)×(rk−rk−1). We call such
property in the CP-decomposition of U as Property I.

Proof Note that since each column of Ũk
(d−1) is chosen from Tk, there exist Bk ∈ Rrk×ck such

that Ũk
(d−1) = [u1|. . . |urk ]Bk, k = 1, . . . ,K. Recall that Ũ(d−1) = [Ũ1

(d−1)|. . . |Ũ
K
(d−1)]. There-

fore, by considering the union of the mentioned decompositions of Ũk
(d−1) for k = 1, . . . ,K, we
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conclude

Ũ(d−1) = [u1|. . . |urK ] [C1|. . . |CK ]︸ ︷︷ ︸
[ā1

d|...|ā
rK
d ]>

, (12)

where Ck = [Bk> |0ck×(rK−rk)]
> ∈ RrK×ck and [ā1

d|. . . |ā
rK
d ]> = [C1|. . . |CK ]. Hence, for any

k = 1, . . . ,K and l = rk−1 + 1, . . . , rk we have āld(x) = 0 if x ≤ c1 + · · · + ck−1. Since
ul = vec(al1 ⊗ . . .⊗ ald−1) for l = 1, . . . , rK , (12) can be written as

U =

rK∑
l=1

al1 ⊗ . . .⊗ ald−1 ⊗ āld, (13)

and hence, the proof is complete.

Remark 21 Note that according to the described structure, Ā1
d has no pattern and all its entries

are unknown variables.

Example 2 Consider an example where d = 3, K = 2, r1 = 2, r2 = 4, n1 = 5, n2 = 4, c1 = 3
and c2 = 3 (recall that n3 = c1 + c2). Here we show the mentioned structure for this example.

By Property I, we have

Ā1
3 =

ā1
3 ā2

3

Ā1
3(1, 1) Ā1

3(1, 2)

Ā1
3(2, 1) Ā1

3(2, 2)

Ā1
3(3, 1) Ā1

3(3, 2)

Ā1
3(4, 1) Ā1

3(4, 2)

Ā1
3(5, 1) Ā1

3(5, 2)

Ā1
3(6, 1) Ā1

3(6, 2)

, Ā2
3 =

ā3
3 ā4

3

0 0

0 0

0 0

Ā2
3(4, 1) Ā2

3(4, 2)

Ā2
3(5, 1) Ā2

3(5, 2)

Ā2
3(6, 1) Ā2

3(6, 2)

.

Definition 22 Consider an arbitrary number i0 ∈ {1, . . . , d−1}. Property II for a CP-decomposition
of U is defined as follows:

(i) All entries of the first row of Āk
i are equal to one for i ∈ {1, . . . , d− 1}\i0 and 1 ≤ k ≤ K.

(ii) Ā1
i0

(1 : r1, 1 : r1) = Ir1 , Ā2
i0

(1 : r2, 1 : (r2 − r1)) = [0(r2−r1)×r1 |I(r2−r1)]
>, . . . ,

ĀK
i0

(1 : rK , 1 : (rK − rK−1)) = [0(rK−rK−1)×rK−1
|I(rK−rK−1)]

>.

Example 2. (continued) By Property II, for i0 = 1, Ā1
1 includes an r1 × r1 identity matrix on the

top. Ā2
1 includes an r1× (r2− r1) zero matrix on the top and then an (r2− r1)× (r2− r1) identity

matrix below it. And for i = 2, Ā1
2 and Ā2

2 only include a row of all ones on the top.

Ā1
1 =

ā1
1 ā2

1

1 0

0 1

Ā1
1(3, 1) Ā1

1(3, 2)

Ā1
1(4, 1) Ā1

1(4, 2)

Ā1
1(5, 1) Ā1

1(5, 2)

, Ā2
1 =

ā3
1 ā4

1

0 0

0 0

1 0

0 1

Ā2
1(5, 1) Ā2

1(5, 2)

,
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and

Ā1
2 =

ā1
2 ā2

2

1 1

Ā1
2(2, 1) Ā1

2(2, 2)

Ā1
2(3, 1) Ā1

2(3, 2)

Ā1
2(4, 1) Ā1

2(4, 2)

, Ā2
2 =

ā3
2 ā4

2

1 1

Ā2
2(2, 1) Ā2

2(2, 2)

Ā2
2(3, 1) Ā2

2(3, 2)

Ā2
2(4, 1) Ā2

2(4, 2)

.

Definition 23 A CP-decomposition of U is called a canonical decomposition if and only if both
Property I and Property II hold.

Example 3 To illustrate the canonical decomposition of U , we have provided the known entries or
the canonical pattern for the components of the decomposition for 1 ≤ l ≤ r1 and r1 + 1 ≤ l ≤ r2

(i.e., Ā1
i and Ā2

i ) as the following.
For 1 ≤ l ≤ r1:

Ā1
i0

=

ā1
i0

ā2
i0

. . . ār1i0

1 0 . . . 0

0 1 . . . 0
...

... . . .
...

0 0 . . . 1

ā1
i0

(r1 + 1) ā2
i0

(r1 + 1) . . . ār1i0 (r1 + 1)
...

... . . .
...

ā1
i0

(ni0) ā2
i0

(ni0) . . . ār1i0 (ni0)

,

and for i ∈ {1, . . . , d− 1}\i0

Ā1
i =

ā1
i . . . ār1i

1 . . . 1

ā1
i (2) . . . ār1i (2)
... . . .

...
ā1
i (ni) . . . ār1i (ni)

.

For r1 + 1 ≤ l ≤ r2:

Ā2
i0

=

ār1+1
i0

ār1+2
i0

. . . ār2i0

0r1 0r1 . . . 0r1
1 0 . . . 0

0 1 . . . 0
...

... . . .
...

0 0 . . . 1

ār1+1
i0

(r2 + 1) ār1+2
i0

(r2 + 1) . . . ār2i0 (r2 + 1)
...

... . . .
...

ār1+1
i0

(ni0) ār1+2
i0

(ni0) . . . ār2i0 (ni0)

,
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where 0r1 is all-zero vector of size r1 and for i ∈ {1, . . . , d− 1}\{i0}

Ā2
i =

ār1+1
i . . . ār2i

1 . . . 1

ār1+1
i (2) . . . ār2i (2)

... . . .
...

ār1+1
i (ni) . . . ār2i (ni)

.

Moreover, we have

Ā1
d =

ā1
d . . . ār1d

ā1
d(1) . . . ār1d (1)
... . . .

...
ā1
d(nd) . . . ār1d (nd)

, Ā2
d =

ār1+1
d . . . ār2d

0c1 . . . 0c1
ār1+1
d (c1 + 1) . . . ār2d (c1 + 1)

... . . .
...

ār1+1
d (nd) . . . ār2d (nd)

.

Note that the canonical structure is mainly imposed on āli0 and āld. And for i 6= i0, d, the
canonical structure means āli(1) = 1.

Lemma 24 Given that tensor U is chosen generically from the described union of tensor spaces,
with probability one, there exists a unique canonical decomposition of U .

Proof We show our claim by induction on the value of K. For K = 1 the canonical structure
is exactly the canonical structure in (Ashraphijuo and Wang, 2017) and therefore, according to
Lemma 3 in (Ashraphijuo and Wang, 2017), there exists a unique canonical decomposition. Now,
we assume that the statement holds true for K = 1 and we show the statement holds true for K = 2
as well (similarly we can show the statement for K = k′ + 1 given the statement for K = k′).

For K = 2, recall that U1 ∈ Rn1×n2×...×c1 , U2 ∈ Rn1×n2×...×c2 and U ∈ Rn1×n2×...×(c1+c2)

is the concatenation of U1 and U2 along the d-th dimension. Also, rank(U1) = r1, rank(U2) =
rank(U) = r2. Then we need to show that the following equation

U =

r2∑
l=1

āl1 ⊗ āl2 ⊗ . . .⊗ āld−1 ⊗ āld, (14)

has a unique solution, where {āli} satisfy Properties I and II. From (14), we can write

U1 = U(:, :, . . . , :, 1 : c1) =

r2∑
l=1

āl1 ⊗ āl2 ⊗ . . .⊗ āld−1 ⊗ āld(1 : c1), (15)

and

U2 = U(:, :, . . . , :, c1 + 1 : c2) =

r2∑
l=1

āl1 ⊗ āl2 ⊗ . . .⊗ āld−1 ⊗ āld(c1 + 1 : c2). (16)
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By the induction hypothesis, U1 has a unique canonical decomposition. Also note that by Prop-
erty I, āld(x) = 0 for r1 + 1 ≤ l ≤ r2 and 1 ≤ x ≤ c1. Hence, (15) becomes

U1 =

r1∑
l=1

āl1 ⊗ āl2 ⊗ . . .⊗ āld−1 ⊗ āld(1 : c1). (17)

Note that rank(U1) = r1 and also the canonical structure on the entries that are involved in
(17) are exactly the same canonical structure for K = 1 and a rank-r1 tensor case. Therefore,
according to the induction hypothesis, all the entries involved in (17), i.e., āl1, . . . , ā

l
d−1, ā

l
d(1 : c1)

for l = 1, . . . , r1, will be determined uniquely. As a results, we can rewrite (16) as

U2 =

r1∑
l=1

āl1 ⊗ āl2 ⊗ . . .⊗ āld−1 ⊗ āld(c1 + 1 : c2) (18)

+

r2∑
l=r1+1

āl1 ⊗ āl2 ⊗ . . .⊗ āld−1 ⊗ āld(c1 + 1 : c2).

In the following, we first show that āld(c1 + 1 : c2) in the first term of (18) can be determined
uniquely by the genericity assumption; then we show the vectors in the second term of (18) are
unique by invoking the induction hypothesis.

For notational simplicity in this proof, assume that i0 = 1. Then, from (18) we have

U2(1 : r1, 1, . . . , 1, 1 : c2) =
∑r2

l=1 āl1(1 : r1)⊗ āl2(1)⊗ . . .⊗ āld−1(1)⊗ āld(c1 + 1 : c1 + c2)

(a)
=
∑r1

l=1 āl1(1 : r1)⊗ āl2(1)⊗ . . .⊗ āld−1(1)⊗ āld(c1 + 1 : c1 + c2), (19)

where (a) follows from the fact that the first r1 entries of āl1 is zero for l = r1 +1, . . . , r2 (according
to Property II). This linear system of r1c2 equations in terms of the entries of āld(c1 +1 : c1 +c2) for
1 ≤ l ≤ r1 can be solved uniquely due to the genericity assumption. Note that āld(c1 + 1 : c1 + c2)
for 1 ≤ l ≤ r1 are the coefficients of the first r1 structured columns. Now, we look at it the rest of
the entries of (18), given by

U2(r1 + 1 : n1, :, . . . , :) =

r1∑
l=1

āl1(r1 + 1 : n1)⊗ āl2 ⊗ . . .⊗ āld−1 ⊗ āld(c1 + 1 : c1 + c2) (20)

+

r2∑
l=r1+1

āl1(r1 + 1 : n1)⊗ āl2 ⊗ . . .⊗ āld−1 ⊗ āld(c1 + 1 : c1 + c2).

Since all vectors in the first line of (20) have been shown unique, we consider

U ′ = U ′2(r1 + 1 : n1, :, . . . , :) = (21)∑r2
l=r1+1 āl1(r1 + 1 : n1)⊗ āl2 ⊗ . . .⊗ āld−1 ⊗ āld(c1 + 1 : c1 + c2).

Note that rank(U ′) = r2 − r1 and also the canonical structure on the vectors in (21) is exactly
the same canonical structure for K = 1 and a rank-(r2 − r1) tensor case. Therefore, according to
the induction hypothesis, all vectors in (21) can be determined uniquely.
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5.2. Polynomials

Remark 25 We consider the unique canonical decomposition for the sampled tensor and using
the sampled entries, recovering the original tensor is equivalent with recovering the entries of the
components of this unique decomposition. Henceforth, for notational simplicity, we will use ali
instead of āli.

Denote Ck = c1 + · · ·+ ck for k = 1, . . . ,K. Then, according to Property I, we have

Uk =

rk∑
l=1

al1 ⊗ . . .ald−1 ⊗ ald(Ck−1 + 1 : Ck), (22)

or equivalently

U(x1, . . . , xd−1, xd + Ck−1) = Uk(x1, . . . , xd−1, xd) =

rk∑
l=1

al1(x1) . . .ald−1(xd−1)ald(xd + Ck−1), (23)

for 1 ≤ xd ≤ ck or equivalently, Ck−1 + 1 ≤ xd + Ck−1 ≤ Ck.
The reason to represent the size of the last dimension by CK instead of nd is due to the fact that

the K original tensors are unionized over the last dimension and since in all of the statements and
proofs we need the size of each of these tensors we used the notations c1, . . . , cK and their sums
Ck = c1 + · · ·+ ck. Hence, nd is basically CK but as we use ck’s in the statements throughout the
paper, we used CK instead of nd here as well.

Remark 26 It can be seen from (23), any observed entry Uk(~x) results in an equation that involves
one entry of ali, i = 1, . . . , d and l = 1, . . . , rk. Considering the entries of ali’s as variables
(right-hand side of (23)), each observed entry results in a polynomial in terms of these variables.
Moreover, for any observed entry Uk(~x), the value of xi specifies the location of the entry of ali that
is involved in the corresponding polynomial, i = 1, . . . , d and l = 1, . . . , rk.

Assumption 1: Each column of Ũk
(d−1) (or equivalently each row of Uk

(d)) includes at least rk
observed entries, for 1 ≤ k ≤ K.

Lemma 27 Given Ak
i ’s for i = 1, . . . , d− 1 and 1 ≤ k ≤ K, Assumption 1 holds if and only if Ak

d

can be determined uniquely for 1 ≤ k ≤ K.

Proof We show that each column of Ũk
(d−1) includes at least rk observed entries is equivalent

to unique solvability of ald(Ck−1 + 1 : Ck)’s for 1 ≤ l ≤ rk, k ∈ {1, . . . ,K}. This com-
pletes the proof since the rest of the entries of Ak

d for 1 ≤ k ≤ K are zero due to Property
I. It can be seen from (12) that each observed entry in the i-th column of Ũk

(d−1) results in a
degree-1 polynomial (because [u1|. . . |urK ] is given) in terms of the rk entries of the i-th row
of [a1

d(Ck−1 + 1 : Ck)|. . . |arkd (Ck−1 + 1 : Ck)] ∈ Rck×rk . Therefore, Assumption 1 is equiv-
alent with assuming that we have rk degree-1 polynomials in terms of the entries of each row of
[a1
d(Ck−1 + 1 : Ck)|. . . |arkd (Ck−1 + 1 : Ck)]. Genericity of the coefficients of these polynomials

results that with probability one each row of [a1
d(Ck−1 + 1 : Ck)|. . . |arkd (Ck−1 + 1 : Ck)] can be

determined uniquely.
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Remark 28 According to Lemma 27, Ak
d can be determined uniquely in terms of the entries of

Ak
i ’s for i = 1, . . . , d− 1 and k = 1, . . . ,K and recall that each observed entry is equivalent to a

polynomial in the form of (23). Consider all such polynomials excluding those that have been used
to obtain Ak

d (rk samples in each column of Ũk
(d−1)) and denote this set of polynomials in terms of

the entries of Ak
i ’s for i = 1, . . . , d− 1 and k = 1, . . . ,K by P(Ω).

5.3. Constraint Tensor

Recall that Ω ∈ Rn1×...×nd is the binary sampling pattern tensor. Let Ωk ∈ Rn1×...×nd−1×ck

denote the subtensor of Ω corresponding to Uk and P(Ωk) denote those polynomials of P(Ω) that
correspond to an observed entry of Uk.

In the following, a procedure is described to construct a binary tensor Ω̆ based on Ω, which is
used to obtain the conditions for finite and unique completability. First, we construct Ω̆1 from Ω1

according to the same procedure described in (Ashraphijuo and Wang, 2017), which is described
here again for completeness.

For each subtensor Y ∈ Rn1×n2×···×nd−1×1 of U1, let NΩ(Y) denote the number of sampled
entries in Y . Then, since r1 polynomials have been used to obtain [a1

d(1 : C1)|. . . |ar1d (1 : C1)]
(as Y is the tensor corresponding to a column of the (d − 1)-th unfolding of U1), Y contributes
NΩ(Y) − r1 polynomial equations in terms of the entries of ali’s for 1 ≤ i ≤ d − 1 among all
NΩ(U1)− r1c1 polynomials in P(Ω1).
U1 includes c1 subtensors that belong to Rn1×n2×···×nd−1×1 (columns of the (d−1)-th unfolding

of U1) and let Yt for 1 ≤ t ≤ c1 denote these c1 subtensors. Define a binary valued tensor Y̆t ∈
Rn1×n2×···×nd−1×yt , where yt = NΩ(Yt)−r1 and its entries are described as the following. We can
look at Y̆t as yt tensors each belonging to Rn1×n2×···×nd−1×1. We choose r1 of theNΩ(Yt) observed
entries and for each of the mentioned yt tensors in Y̆t, and we set the entries corresponding to these
r1 entries equal to 1. For each of the other yt observed entries (excluding the mentioned r1 observed
entries that we chose), we pick one of the yt tensors of Y̆t and set its corresponding entry (the same
location as that specific observed entry) equal to 1 and set the rest of the entries equal to 0. In the
case that yt = 0 we simply ignore Y̆t, i.e., Y̆t = ∅.

By putting together all c1 tensors in dimension d, we construct a binary valued tensor Ω̆1 ∈
Rn1×n2×···×nd−1×y, where y =

∑c1
i=1 yt = NΩ(U1)− r1c1 and denote it by Ω̆1. Similarly, we con-

struct Ω̆k for k = 2, . . . ,K. Then, we combine all these Ω̆k’s together along dimension d and call
it the constraint tensor Ω̆. Observe that each subtensor of Ω̆k which belongs to Rn1×n2×···×nd−1×1

includes exactly rk + 1 nonzero entries.
For notational simplicity, define Ω̆k:K and Ωk:K as the remaining of the constraint tensor Ω̆ and

the sampling pattern Ω after removing Ω̆1, . . . , Ω̆k−1 and Ω1, . . . ,Ωk−1, respectively. Moreover,
in this paper, when we use Ω̆′ ∈ Rn1×n2×···×nd−1×t to denote a subtensor of Ω̆, Ω̆′k:K denotes the
subtensor of Ω̆′ that also is a subtensor of Ω̆k:K . Let mi(Ω̆

′) and mi(Ω̆
′
k:K) denote the number of

nonzero rows of matricizations Ω̆′(i) and Ω̆′k:K(i)
, respectively. Also, let P(Ω̆′) denote the set of

polynomials that correspond to nonzero entries of Ω̆′.

Remark 29 Note that when the j-th row of the i-th matricization of Ω̆′k0:K has a non-zero entry, it
means that the j-th row of the i-th matricization of Ω′k0:K has a non-zero entry and therefore, there
exists a sampled entry (corresponding to the non-zero entry) such that its i-th coordinate is equal to
j and also it belongs to Uk for some k ≥ k0. Therefore, the entries of j-th row of Ak0

i are involved in
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the polynomial corresponding to this sampled entry. Hence, the number of non-zero rows of the i-th
matricization of Ω̆′k0:K is equal to the number of rows of Ak0

i that are involved in the polynomial in
P(Ω̆′).

Remark 30 Note that each Ω̆k is constructed based on the number rk and the rkck sampled entries
from Assumption 1, k = 1, . . . ,K. However, if we simply ignore the first (K − 1) rank constraints
and apply the analysis in (Ashraphijuo and Wang, 2017), the constraint tensor will be constructed
based only on the number rK and the rK(c1 + · · · + cK) sampled entries from Assumption 1 in
(Ashraphijuo and Wang, 2017). In the following example, we construct the constraint tensor based
on the above description and compare it with the simple scenario from (Ashraphijuo and Wang,
2017).

Example 4 Consider an example where d = 3,K = 2, r1 = 1, r2 = 2, n1 = 4, n2 = 4, c1 = 2 and
c2 = 2 (recall that n3 = c1 + c2). Assume that Ω(x, y, z) = 1 if (x, y, z) ∈ S and Ω(x, y, z) = 0
otherwise (i.e., S denotes the set of sampled entries), where

S = {(1, 1, 1), (2, 3, 1), (4, 3, 1), (1, 1, 2), (2, 4, 2), (1, 3, 3), (3, 2, 3), (2, 2, 4), (2, 4, 4), (3, 4, 4), (4, 1, 4)}.

Hence, observed entries (1, 1, 1), (2, 3, 1), (4, 3, 1) belong toY1, observed entries (1, 1, 2), (2, 4, 2)
belong toY2, observed entries (1, 3, 3), (3, 2, 3) belong toY3, and observed entries (2, 2, 4), (2, 4, 4),
(3, 4, 4), (4, 1, 4) belong to Y4. As a result, y1 = 3−r1 = 2, y2 = 2−r1 = 1, y3 = 2−r2 = 0, and
y4 = 4 − r2 = 2. Hence, Y̆1 ∈ R4×4×2, Y̆2 ∈ R4×4×1, Y̆3 = ∅, and Y̆4 ∈ R4×4×2, and therefore
the constraint tensor Ω̆ ∈ R4×4×5.

Also, assume that the entries that we use to obtain Ak
3 , in terms of the entries of Ak

1 and
Ak

2 , for k = 1 and 2, are (1, 1, 1), (1, 1, 2), (1, 3, 3), (3, 2, 3), (2, 2, 4) and (2, 4, 4). Note that
Y̆1(1, 1, 1) = Y̆1(1, 1, 2) = 1 (correspond to entries of Y1 that have been used to obtain Ak

3’s),
and also for the two other observed entries we have Y̆1(2, 3, 1) = 1 (correspond to U(2, 3, 1)) and
Y̆1(4, 3, 2) = 1 (correspond to U(4, 3, 1)) and the rest of the entries of Y̆1 are equal to zero. Sim-
ilarly, Y̆2(1, 1, 1) = Y̆2(2, 4, 1) = 1 and the rest of the entries of Y̆2 are equal to zero. Y̆3 = ∅.
Y̆4(2, 2, 1) = Y̆4(2, 2, 2) = Y̆4(2, 4, 1) = Y̆4(2, 4, 2) = 1 (correspond to entries of Y4 that have
been used to obtain Ak

3’s), and also for the two other observed entries we have Y̆4(3, 4, 1) = 1
(correspond to U(3, 4, 4)) and Y̆4(4, 1, 2) = 1 (correspond to U(4, 1, 4)) and the rest of the entries
of Y̆4 are equal to zero.

Then, Ω̆(x, y, z) = 1 if (x, y, z) ∈ S̆ and Ω̆(x, y, z) = 0 otherwise, where

S̆ = {(1, 1, 1), (1, 1, 2), (2, 3, 1), (4, 3, 2), (1, 1, 3), (2, 4, 3),

(2, 2, 4), (2, 2, 5), (2, 4, 4), (2, 4, 5), (3, 4, 4), (4, 1, 5)}.

Note that if we just construct the constraint tensor based on only one rank constraint rank(U) =
rK , as given in (Ashraphijuo and Wang, 2017), Ω̆ would have been totally different. For exam-
ple, in this case it is required to use two observed entries of Y1, . . . ,Y4 and therefore in this case
Ω̆ ∈ R4×4×3, as Y̆1 ∈ R4×4×1, Y̆2 = ∅, Y̆3 = ∅, and Y̆4 ∈ R4×4×2. To mention another funda-
mental difference between these two cases, according to the above definitions even if we assume
that U(2, 4, 2) is not observed anymore, still Assumption 1 holds and we can construct the con-
straint tensor and it would belong to R4×4×4. But in the case that we only use the rank constraint
rank(U) = rK and the definition of constraint tensor in (Ashraphijuo and Wang, 2017), the con-
straint tensor cannot be even built because Assumption 1 in (Ashraphijuo and Wang, 2017) is not
satisfied.
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5.4. Finite Completability

Denote D = (n1 + · · ·+ nd−1)rK −
∑K

k=1 rk(rk − rk−1)− rK(d− 2). Then, D is the number of
unknown entries of āli’s for 1 ≤ i ≤ d− 1 and 1 ≤ l ≤ rK , i.e., the number of entries excluding the
0’s and 1’s in the structure of Property II.

Lemma 31 UΩ is finitely completable with probability one if and only if the maximum number of
algebraically independent polynomials in P(Ω) is equal to D.

Proof Assume that L denotes the set of all possible ali’s for i = 1, . . . , d − 1 and 1 ≤ l ≤ rK
given ald’s for 1 ≤ l ≤ rK without any observed entry, i.e., without any polynomial constraint of
the form of (23) and the dimension of L is equal to the number of unknown entries D. The rest
of the proof follows easily as each algebraically independent polynomial reduces the dimension of
the set of solution by one and also finite completability is equivalent to the dimension of the set of
solution being zero, similar to the proof of Lemma 4 in (Ashraphijuo and Wang, 2017).

The set of polynomials corresponding to Ω̆′, i.e., P(Ω̆′) is called minimally algebraically depen-
dent if the polynomials in P(Ω̆′) are algebraically dependent but polynomials in every of its proper
subsets are algebraically independent. The following lemma which is Lemma 7 in (Ashraphijuo and
Wang, 2017), provides a useful property about a set of minimally algebraically dependent P(Ω̆′),
which will be used later to derive the maximum number of algebraically independent polynomials
in P(Ω̆′).

Lemma 32 Given Assumption 1, consider a subtensor Ω̆′ ∈ Rn1×n2×···×nd−1×t of the constraint
tensor Ω̆. Assume that polynomials in P(Ω̆′) are minimally algebraically dependent. Then, the
number of variables (unknown entries) of ali’s for 1 ≤ i ≤ d− 1 and 1 ≤ l ≤ rK that are involved
in P(Ω̆′) is equal to t− 1.

In order to obtain the maximum number of algebraically independent polynomials in a set of
polynomials, we first need to derive the number of involved entries of the CP-decomposition in
the polynomials (Lemma 33) and then, obtain the number of involved variables (unknowns) of the
CP-decomposition in the polynomials (Lemma 34).

Lemma 33 Given Assumption 1, consider a subtensor Ω̆′ ∈ Rn1×n2×···×nd−1×t of the constraint
tensor Ω̆. The number of entries of the first d−1 components of CP-decomposition that are involved
in at least one of the polynomials in P(Ω̆′) is

K∑
k=1

(rk − rk−1)(
d−1∑
i=1

mi(Ω̆
′
k:K)). (24)

Proof It is easily verified from (1) and Property I that the entries of the j-th row of Ak0
i are involved

in a certain polynomial if and only if, first the i-th coordinate of the corresponding sampled entry
is equal to j and second, the sampled entry belongs to Uk for some k ≥ k0. Note that the first
condition is a result of (1) and the second condition is a result of Property I. Moreover, note that if a
sampled entry is such that its i-th coordinate is equal to j and also the sampled entry belongs to Uk
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for some k ≥ k0, then we know that the j-th row of the i-th unfolding of Ω̆′k:K has a non-zero entry
(corresponding the mentioned sampled entry).

Recall that according to Remark 29, the number of rows of Ak
i that are involved in the polyno-

mials in P(Ω̆′) is equal to mi(Ω̆
′
k:K) and therefore, the number of entries of Ak

i that are involved in
the polynomials in P(Ω̆′) is equal to (rk − rk−1)mi(Ω̆

′
k:K) since Ak

i has rk − rk−1 columns.

Lemma 34 Given Assumption 1, consider a subtensor Ω̆′ ∈ Rn1×n2×···×nd−1×t of the constraint
tensor Ω̆. The maximum number of algebraically independent polynomials in P(Ω̆′) is at most

f(Ω̆′) ≡
K∑
k=1

(rk − rk−1)(
d−1∑
i=1

mi(Ω̆
′
k:K)) (25)

− max
1≤i≤d−1

{
K∑
k=1

min
{

(rk − rk−1)mi(Ω̆
′
k:K), rk(rk − rk−1)

}}

−(d− 2)

K∑
k=1

min
{
rk − rk−1, (rk − rk−1)m1(Ω̆′k:K)

}
.

Proof The maximum number of algebraically independent polynomials in a subset of polynomials
of P(Ω̆′) is at most equal to the total number of variables that are involved in the corresponding
polynomials as each polynomial reduces the dimension of the set of solutions by one. As mentioned
in Remark 26, due to the structure of each polynomial obtained from a sampled entry in Uk (given
in (22) or (23)), exactly one entry (corresponding coordinate) of each ali for 1 ≤ i ≤ d − 1 and
1 ≤ l ≤ rk is involved in the polynomial. According to Lemma 33, the number of entries of Ak

i

that are involved in the polynomials P(Ω̆′) is equal to (rk− rk−1)mi(Ω̆
′
k:K) and hence, the number

of entries of ali’s for 1 ≤ i ≤ d − 1 and 1 ≤ l ≤ rK that are involved in the polynomials P(Ω̆′) is
equal to

∑K
k=1(rk− rk−1)(

∑d−1
i=1 mi(Ω̆

′
k:K)). However, some of the entries of ali’s are known as in

Definition 22, and we should subtract them from the total number of involved entries.
Note that any permutation of rows of [A1

i |. . . |AK
i ] in the canonical structure preserves the same

property as in Lemma 24 and therefore, assuming that i0 is a fixed number in Definition 22, we can
simply observe that the maximum number of known entries of [A1

i0
|. . . |AK

i0
] that are involved in

the polynomials P(Ω̆′) is

K∑
k=1

min
{

(rk − rk−1)mi0(Ω̆′k:K), rk(rk − rk−1)
}
. (26)

This is because as long as mi0(Ω̆′k:K) ≤ rk, all mi0(Ω̆′k:K) nonzero rows can be the 0’s and 1’s
in the canonical structure and when mi0(Ω̆′k:K) > rk, all the 0’s and 1’s in the canonical structure
(rk(rk−rk−1 entries) are involved, since for a permutation of rows of [A1

i |. . . |AK
i ] in the canonical

structure can maximize the number involved known entries. In other words, for a permutation of
rows of [A1

i |. . . |AK
i ] in the canonical structure, the number of involved known entries reaches its

possible maximum, which is given in (26). Therefore, by changing i0 from 1 to d− 1 we can obtain
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the maximum number of known entries of A1
i0

as

max
1≤i≤d−1

{
K∑
k=1

min
{

(rk − rk−1)mi(Ω̆
′
k:K), rk(rk − rk−1)

}}
. (27)

Similarly, we can obtain the maximum number of involved known entries in the polynomials
for the other (d − 2) dimensions as the following. On the other hand, there is one single known
entry in all other ali’s for i ∈ {1, . . . , d− 1}\i0 in the canonical structure. Again by permuting the
corresponding row, it is easily verified that the corresponding known entry of Ak

i can be involved
in at least one of the polynomials in P(Ω̆′) if m1(Ω̆′k:K). Note that m1(Ω̆′k:K) ≥ 1 is equivalent
to mi(Ω̆

′
k:K) ≥ 1 for any i as existence of one polynomial corresponding to a sampled entry in Uk

results that the number of nonzero rows in any of the matricizations of Uk is at least one. Therefore,
the maximum number of involved known entries for the these (d− 2) dimensions combined is

(d− 2)
K∑
k=1

min
{
rk − rk−1, (rk − rk−1)m1(Ω̆′k:K)

}
. (28)

Hence, for a canonical pattern, the number of variables, i.e., the unknown entries of ali’s for 1 ≤ i ≤
d− 1 and 1 ≤ l ≤ rK that are involved in the polynomials P(Ω̆′) is equal to f(Ω̆′) given in (25).

Given a subtensor Ω̆′ ∈ Rn1×n2×···×nd−1×t of the constraint tensor Ω̆, we are interested in
obtaining the maximum number of algebraically independent polynomials in P(Ω̆′) based on the
structure of nonzero entries of Ω̆′. The next lemma can be used to characterize this number in terms
of a simple geometric structure of nonzero entries of Ω̆′.

Lemma 35 Given Assumption 1, consider a subtensor Ω̆′ ∈ Rn1×n2×···×nd−1×t of the constraint
tensor. The polynomials inP(Ω̆′) are algebraically independent if and only if for any t′ ∈ {1, . . . , t}
and any subtensor Ω̆′′ ∈ Rn1×n2×···×nd−1×t′ of Ω̆′′ we have f(Ω̆′′) ≥ t′.

Proof By contradiction, assume that the polynomials in P(Ω̆′) are algebraically dependent. Hence,
there exists a subset of the polynomials that are minimally algebraically dependent and let us denote
it byP(Ω̆′′) ∈ Rn1×n2×···×nd−1×t′ , which is a subtensor of Ω̆′. As showed in Lemma 34, the number
involved variables (unknown entries) is at least f(Ω̆′′). According to Lemma 32, the number of
involved variables in polynomials in P(Ω̆′′) is equal to t′ − 1. Consequently, f(Ω̆′′) ≤ t′ − 1.

Now, assume that there exists a subtensor Ω̆′′ ∈ Rn1×···×nd−1×t′ of Ω̆′ that f(Ω̆′′) < t′. Note
that according to the definitions, P(Ω̆′′) includes t′ polynomials. Moreover, according to Lemma 34
the maximum number of algebraically independent polynomials in P(Ω̆′′) is at most f(Ω̆′′). Hence,
the polynomials in P(Ω̆′′) (and therefore in P(Ω̆′)) are not algebraically independent.

Finally, the following theorem characterizes the necessary and sufficient condition on Ω̆ for
finite completability of the sampled tensor U .

Theorem 36 Given Assumption 1, with probability one, UΩ is finitely many completable if and
only if Ω̆ contains a subtensor Ω̆′ ∈ Rn1×···×nd−1×D such that for any D′ ∈ {1, . . . , D} and any
subtensor Ω̆′′ ∈ Rn1×···×nd−1×D′ of Ω̆′, f(Ω̆′′) ≥ D′.
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Proof This theorem is an easy conclusion of Lemmas 31 and 35. Specifically, according to Lemma
31, U is finitely many completable with probability one if and only ifP(Ω̆) includesD algebraically
independent polynomials. On the other hand, Lemma 35 results that polynomials corresponding to
a subtensor Ω̆′ ∈ Rn1×n2×···×nd−1×D of the constraint tensor are algebraically independent if and
only if for any D′ ∈ {1, . . . , D} and any subtensor Ω̆′′ ∈ Rn1×···×nd−1×D′ of Ω̆′, f(Ω̆′′) ≥ D′.

Remark 37 If we set K = 1, then using (25), the condition in Theorem 36 simply reduces to

rK

((
d−1∑
i=1

mi(Ω̆
′′)

)
−min

{
max

{
m1(Ω̆′′), . . . ,md−1(Ω̆′′)

}
, rK

}
− (d− 2)

)
≥ D′, (29)

and therefore, Theorem 36 reduces to Theorem 1 in (Ashraphijuo and Wang, 2017) for finite com-
pletability of a regular tensor.

5.5. Unique Completability

In the previous subsection we characterized the deterministic conditions on the sampling pattern for
finite completability in Theorem 36. However, knowing whether U is uniquely completable can be
very useful. For example, having the unique completability property, any valid completion provided
by an optimization algorithm is the original sampled union of tensor spaces; or as we observed in
Section 4, the unique completability can be useful in clustering problems. According to Theorem 36
finite completability is equivalent to having D algebraically independent polynomials. As a result,
adding any single polynomial to these D algebraically independent polynomials results in a set of
algebraically dependent polynomials. Then, according to Lemma 38 below, a certain subset of the
entries of ali’s can be determined uniquely and these additional polynomials are captured in the
structure of new condition on the sampling pattern given in Theorem 40 below such that all entries
of the canonical decomposition can be determined uniquely.

The following lemma is a re-statement of Lemma 25 in (Ashraphijuo and Wang, 2017), which
shows that variables involved in a minimally algebraically dependent polynomials can be deter-
mined uniquely.

Lemma 38 Given Assumption 1, consider a subtensor Ω̆′ ∈ Rn1×n2×...×nd−1×t of the constraint
tensor Ω̆. Assume that polynomials in P(Ω̆′) are minimally algebraically dependent. Then, all
variables that are involved in P(Ω̆′) can be determined uniquely.

The following lemma is useful in proving Theorem 40.

Lemma 39 Consider a subtensor Ω̆′K ∈ Rn1×n2×···×nd−1×t of Ω̆K such that mi(Ω̆
′
K) = ni. Then,

all the rows of [A1
i |. . . |AK

i ] are involved in at least one of the polynomials in P(Ω̆′K).

Proof Recall from the proof of Lemma 33 thatmi(Ω̆
′
K) denotes the number of rows of [A1

i |. . . |AK
i ]

that are involved in at least one of the polynomials in P(Ω̆′K) and hence, the proof is completed as
[A1

i |. . . |AK
i ] has ni rows.
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Theorem 40 Suppose that Assumption 1 holds and also there exists a subtensor Ω̆′ ∈ Rn1×n2×···×nd−1×D

of Ω̆ such that the condition given in Theorem 36 holds (we call it Condition (i)). Moreover, assume
that there exists a subtensor Ω̆′K ∈ Rn1×n2×···×nd−1×t of Ω̆K which is disjoint from Ω̆′ and the
following Condition (ii) holds: mi(Ω̆

′
K) = ni for 1 ≤ i ≤ d− 1. Then, with probability one, there

exists exactly one union of tensors that fits UΩ and satisfies the rank constraints for each tensor
space (which is the original sampled union of tensor spaces U).

Proof Note that to complete the proof, it suffices to show that all unknown entries of ali’s for
1 ≤ i ≤ d − 1 and 1 ≤ l ≤ rK can be determined uniquely. Because then, Lemma 27 results in
the uniqueness of ald’s. According to Lemma 39, Condition (ii) ensures that for each entry of ali’s
for 1 ≤ i ≤ d− 1 and 1 ≤ l ≤ rK , there exists at least one polynomial p0 ∈ P(Ω̆′K) that involves
that particular entry. In the following, we show that we can obtain all the variables involved in any
polynomial p0 ∈ P(Ω̆′K) uniquely, and consequently according to Lemma 39, all unknown entries
of ali’s for 1 ≤ i ≤ d− 1 and 1 ≤ l ≤ rK can be determined uniquely.

Therefore, we only need to show that all variables involved in any polynomial p0 ∈ P(Ω̆′K)

can be determined uniquely. According to Theorem 36, condition (i) means that P(Ω̆′) includes D
algebraically independent polynomials and denote these polynomials by {p1, . . . , pD}. By adding
any polynomial p0 to {p1, . . . , pD} we will have a set of algebraically dependent polynomials as
they are in terms of D variables. Hence, there exists a subset of polynomials P ′ ⊂ {p1, . . . , pD}
such that polynomials in P ′ ∪ p0 are minimally algebraically dependent polynomials. By Lemma
38 we can obtain all variables involved in P ′∪p0 uniquely, and consequently, all variables involved
in p0 can be determined uniquely.

6. Union of Tensor Spaces Completion: Probabilistic Analysis

In this section, we obtain the probabilistic versions of Theorem 36 (finite completability) and The-
orem 40 (unique completability) in Theorems 42 and 43, respectively. Recall that Ω̆′k is a subtensor
of Ω̆′k:K . First note that we relax the statements in Theorems 36 and 40 in terms of the number of
nonzero rows of Ω̆′k instead of Ω̆′k:K .

The following lemma is a re-statement of Lemma 19 in (Ashraphijuo and Wang, 2017) and
provides a bound on the number of samples that ensures the sampling pattern satisfies a certain
condition as in (31). In particular, it connects the relationship between the number of sampled
entries and a geometrical condition on the non-zero entries of the constraint tensor. Note that in
the following lemma, r and r′i’s are not “rank” values but are just numbers that satisfy some given
properties (similar to Lemma 19 in (Ashraphijuo and Wang, 2017)). Moreover, note that when we
consider a submatrix Ω̃′(d−1) of the (d − 1)-th unfolding of the sampling pattern, we denote its

corresponding submatrix of the (d− 1)-th unfolding of the constraint tensor by ˜̆Ω′(d−1).

Lemma 41 Assume that (min1≤i≤d−1 ni) > 200 and also Ω̃(d−1) includes at least r(ni − r′i)

columns, where r′i ≤ r ≤ ni
6 . Assume that each column of Ũ(d−1) includes at least l nonzero

entries, where

l > max

{
27 log

(max1≤i≤d−1 ni
ε

)
+ 9 log

(
2rs

ε

)
+ 18, 6r′i

}
. (30)
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Then, there exists an Nd−1 × r(ni − r′i) matrix ˜̆Ω′(d−1) such that: each column has exactly r′i + 1

entries equal to one, and if ˜̆Ω′(d−1)(x, y) = 1 then we have Ω̃′(d−1)(x, y) = 1 and also it satisfies

the following property: with probability at least 1 − ε
s , every subset ˜̆Ω′′(d−1) of columns of ˜̆Ω′(d−1)

satisfies the following inequality

r
(
mi(Ω̆

′′)− r′i
)
≥ t, (31)

where t is the number of columns of ˜̆Ω′′(d−1) and Ω̆′′ is the tensor corresponding to unfolding ˜̆Ω′′(d−1).

In the following theorem, we are interested to find the required number of samples to ensure
that Ω̆ contains a subtensor Ω̆′ ∈ Rn1×···×nd−1×D such that for any D′ ∈ {1, . . . , D} and any
subtensor Ω̆′′ ∈ Rn1×···×nd−1×D′ of Ω̆′, D′ ≤ f(Ω̆′′) as shown in (43). To this end we use Lemma
41 along different dimensions several times (Eq. (33)) and then combine them (Eq. (39)) by using
the following fact; assuming that a ≥ a0 and b ≥ b0 with probabilities at least 1 − ε1 and 1 − ε2,
respectively, then a+ b ≥ a0 + b0 with probability at least 1− ε1 − ε2.

Note that the conditions rk ≤ nk
6 and min1≤i≤d−1 ni > 200 in the theorem below are required

for the probabilistic analysis but they are not required in the deterministic analysis.

Theorem 42 Assume that rk ≤ nk
6 and (min1≤i≤d−1 ni) > 200 and ck ≥ (rk−rk−1)(

∑d−1
i=1 ni)−

rk(rk − rk−1)− (d− 2)(rk − rk−1) for 1 ≤ k ≤ K. Assume that each column of Ω̃(d−1) includes
at least l nonzero entries, where

l > max

{
27 log

(max1≤i≤d−1 ni
ε

)
+ 9 log

(
2K(d− 1) (max1≤k≤K{rk − rk−1})

ε

)
+ 18, 6rK

}
. (32)

Then, with probability at least 1− ε, UΩ is finitely many completable.

Proof Since the proof is long, we first provide an overview. First, we consider disjoint sets of
columns Ω̃′

(i,k)

(d−1) of Ω̃k
(d−1), where Ω̃′

(i,k)

(d−1) ∈ RNd−1×(rk−rk−1)(ni−1) for i ∈ {1, . . . , d − 1}\{i0}
and Ω̃′

(i0,k)

(d−1) ∈ RNd−1×(rk−rk−1)(ni0
−rk). Then, we use Lemma 42 to conclude (33) holds. Then,

we put these columns together and show that (39) holds. Finally, we derive (43) from (39), which
completes the proof according to Theorem 36.

In order to prove this theorem, we need to show that Ω̆ contains a subtensor that satisfies the
property described in the statement of Theorem 36. The assumption ck ≥ (rk − rk−1)(

∑d−1
i=1 ni)−

rk(rk − rk−1) − (d − 2)(rk − rk−1) results that there exist disjoint sets of columns Ω̃′
(i,k)

(d−1) of

Ω̃k
(d−1), where Ω̃′

(i,k)

(d−1) ∈ RNd−1×(rk−rk−1)(ni−1) for i ∈ {1, . . . , d − 1}\{i0} and Ω̃′
(i0,k)

(d−1) ∈
RNd−1×(rk−rk−1)(ni0

−rk).
Define r′(i,k) = 1 if i ∈ {1, . . . , d − 1}\{i0} and r′(i,k) = rk if i = i0. By Lemma 41 we

conclude that there exists ˜̆Ω′(i,k,1)(d−1) ∈ RNd−1×(rk−rk−1)(ni−r′(i,k)) such that each column of it includes

r′(i,k) + 1 nonzero entries and if ˜̆Ω′(i,k,1)(d−1) (x, y) = 1 then we have Ω̃′
(i,k)

(d−1)(x, y) = 1 and moreover,
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with probability at least 1− ε
(d−1)K , every subset ˜̆Ω′′(i,k,1)(d−1) ∈ RNd−1×t of columns of ˜̆Ω′(i,k,1)(d−1) satisfies

the following inequality

(rk − rk−1)
(
mi(Ω̆

′′
(i,k,1))− r

′
(i,k)

)
≥ t. (33)

Next, note that according to the definition of the constraint tensor, each column of ˜̆Ωk

(d−1) has
exactly rk + 1 nonzero entries. On the other hand, r′(i,k) + 1 = 2 or r′(i,k) + 1 = rk + 1 and

hence, the columns of ˜̆Ωk

(d−1) corresponding to ˜̆Ω′(i,k,1)(d−1) also satisfy (33) with probability at least

1− ε
(d−1)K , as those columns of ˜̆Ωk

(d−1) have more or equal number of nonzero entries in addition

to the nonzero entries of ˜̆Ω′(i,k,1)(d−1) . Let us denote these columns by ˜̆Ω′(i,k)(d−1). Therefore,

˜̆
Ω
′k

(d−1) = [
˜̆
Ω
′(1,k)

(d−1)|. . . |
˜̆
Ω
′(d−1,k)

(d−1) ] ∈ RNd−1×((rk−rk−1)(
∑d−1

i=1 ni)−rk(rk−rk−1)−(d−2)rk), (34)

is a submatrix of ˜̆Ωk

(d−1) and with probability at least 1− ε
(d−1)K , every subset ˜̆Ω′′(i,k)(d−1) ∈ RNd−1×t

of columns of ˜̆Ω′(i,k)(d−1) satisfies

(rk − rk−1)
(
mi(Ω̆

′′
(i,k))− r

′
(i,k)

)
≥ t. (35)

Note that D = (n1 + · · · + nd−1)rK −
∑K

k=1 rk(rk − rk−1) − rK(d − 2) =
∑K

k=1(rk −

rk−1)(ni0 − rk) +
∑d−1

i=1,i 6=i0
∑K

k=1(rk − rk−1)(ni − 1). Let ˜̆Ω′(d−1) denote the union of ˜̆Ω′k(d−1)’s
for 1 ≤ k ≤ K, i.e.,

˜̆
Ω
′
(d−1) = [

˜̆
Ω
′1

(d−1)|. . . |
˜̆
Ω
′K

(d−1)] ∈ RNd−1×D. (36)

Note that (35) holds for each ˜̆Ω′(i,k)(d−1) with probability at least 1 − ε
(d−1)K and hence, it holds

for all 1 ≤ i ≤ d − 1 and 1 ≤ k ≤ K simultaneously with probability at least 1 − ε. In the

rest of the proof we show that the tensor corresponding to unfolding ˜̆Ω′(d−1), or in other words,
Ω̆′ ∈ Rn1×...×nd−1×D satisfies the property described in the statement of Theorem 36.

Let ˜̆Ω′′(d−1) ∈ RNd−1×D′ denote a subset of columns of ˜̆Ω′(d−1). Moreover, define ˜̆Ω′′(i,k)(d−1) ∈

RNd−1×D′(i,k) and ˜̆Ω′′k(d−1) ∈ RNd−1×D′k as the matrices containing those columns of ˜̆Ω′′(d−1) that

also belong to ˜̆Ω′(i,k)(d−1) and ˜̆Ω′k(d−1), respectively. Hence, D′ =
∑K

k=1D
′
k and D′k =

∑d−1
i=1 D

′
(i,k).

Note that we only need to show that D′ ≤ f(Ω̆′′).
Recall that

(rk − rk−1)
(
mi(Ω̆

′′
(i,k))− r

′
(i,k)

)
≥ D′(i,k), if D′(i,k) 6= 0, (37)
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since D′(i,k) may be zero as we consider a subset of the union of columns. Since each column of˜̆
Ω
′(i,k)

(d−1) has exactly rk + 1 nonzero entries and rk + 1 ≥ r′(i,k) + 1,
(
mi(Ω̆

′′
(i,k))− r

′
(i,k)

)+
= 0 if

mi(Ω̆
′′
(i,k)) = 0 or equivalently D′(i,k) = 0 and

(
mi(Ω̆

′′
(i,k))− r

′
(i,k)

)+
> 0 otherwise. Hence,

(rk − rk−1)
(
mi(Ω̆

′′
(i,k))− r

′
(i,k)

)+
≥ D′(i,k). (38)

Therefore, we have

D′k =
d−1∑
i=1

D′(i,k) ≤
d−1∑
i=1

(rk − rk−1)
(
mi(Ω̆

′′
(i,k))− r

′
(i,k)

)+ (a)

≤
d−1∑
i=1

(rk − rk−1)
(
mi(Ω̆

′′
k)− r′(i,k)

)+
(39)

(b)
= (rk − rk−1)

(
d−1∑
i=1

mi(Ω̆
′′
k))−min{rk,mi0(Ω̆′′k)} −

d−1∑
i=1,i 6=i0

min{1,mi(Ω̆
′′
k)}

 ,

where (a) follows from the fact that Ω̆′′(i,k) is a subset of Ω̆′′k and (b) follows from (x − y)+ =

x−min{x, y}. Then

D′ =
K∑
k=1

D′k ≤
K∑
k=1

(rk − rk−1)(
d−1∑
i=1

mi(Ω̆
′′
k)) (40)

−
K∑
k=1

min
{

(rk − rk−1)rk, (rk − rk−1)mi0(Ω̆′′k)
}

−
K∑
k=1

d−1∑
i=1,i 6=i0

min
{
rk − rk−1, (rk − rk−1)mi(Ω̆

′′
k)
}
.

Note that i0 can be any number in {1, . . . , d − 1}. Moreover, m1(Ω̆′k) ≥ 1 is equivalent with
mi(Ω̆

′
k) ≥ 1 for any i as existence of one polynomial corresponding to a sampled entry in Uk

results that the number of nonzero rows in any of the matricizations of Uk is at least one. Hence,
independent from the choice of i0,

K∑
k=1

d−1∑
i=1,i 6=i0

min
{
rk − rk−1, (rk − rk−1)mi(Ω̆

′′
k)
}

= (d− 2)
K∑
k=1

min
{
rk − rk−1, (rk − rk−1)m1(Ω̆′′k)

}
. (41)

As a result, in order to obtain the tightest bound on the RHS of (40), we chose i0 such that

K∑
k=1

min
{

(rk − rk−1)rk, (rk − rk−1)mi0(Ω̆′′k)
}

= (42)

max
1≤i≤d−1

{
K∑
k=1

min
{

(rk − rk−1)rk, (rk − rk−1)mi(Ω̆
′′
k)
}}

,
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and consequently

D′ ≤
K∑
k=1

(rk − rk−1)(

d−1∑
i=1

mi(Ω̆
′′
k)) (43)

− max
1≤i≤d−1

{
K∑
k=1

min
{

(rk − rk−1)rk, (rk − rk−1)mi(Ω̆
′′
k)
}}

−(d− 2)

K∑
k=1

min
{
rk − rk−1, (rk − rk−1)m1(Ω̆′′k)

}
≤ f(Ω̆′′).

Theorem 43 Assume that rk ≤ nk
6 and (min1≤i≤d−1 ni) > 200, ck ≥ (rk − rk−1)(

∑d−1
i=1 ni) −

rk(rk − rk−1) − (d − 2)(rk − rk−1) for 1 ≤ k ≤ K − 1 and cK ≥ (max1≤i≤d−1 ni) + (rK −
rK−1)(

∑d−1
i=1 ni) − rK(rK − rK−1) − (d − 2)(rK − rK−1). Assume that each column of Ω̃(d−1)

includes at least l nonzero entries, where

l > max

{
27 log

(max1≤i≤d−1 ni
ε

)
+ 9 log

(
4K(d− 1) (max1≤k≤K{rk − rk−1})

ε

)
+ 18, 6rK

}
. (44)

Then, with probability at least 1− ε, UΩ is uniquely completable.

Proof According to the proof of Theorem 42, existence of (rk−rk−1)(
∑d−1

i=1 ni)−rk(rk−rk−1)−
(d − 2)(rk − rk−1) columns in Ω̃k

(d−1) and the assumption (44) result that (35) holds with proba-
bility at least 1 − ε

(d−1)2K (instead of 1 − ε
(d−1)K in Theorem 42) and therefore, it results in finite

completability of UΩ, i.e., condition (i) in Theorem 40, with probability at least 1 − ε
2 . Hence, to

complete the proof, it suffices to show that having (max1≤i≤d−1 ni) more columns in Ω̃K
(d−1), con-

dition (ii) in Theorem 40 holds with probability at least 1− ε
2 . By Lemma 41 (for r = 1 and r′i = 0),

mi(Ω̆
′
K) = ni with probability at least 1 − ε

2K(d−1)(max1≤k≤K{rk−rk−1})
for any 1 ≤ i ≤ d − 1.

Therefore, mi(Ω̆
′
K) = ni with probability at least 1 − ε

2K(max1≤k≤K{rk−rk−1})
≥ 1 − ε

2 for all

1 ≤ i ≤ d− 1.

Note that if U is finitely (uniquely) completable given rK (ignoring the union of tensors struc-
ture), then U is finitely (uniquely) completable given r1, . . . , rK . Hence, for a looser bound, we can
simply apply tensor analysis by invoking Lemma 11.

Remark 44 Assuming that O(rk − rk−1) = 1, the required number of samples per column of
the (d − 1)-th unfolding for unique completability using the matrix analysis (7) , the tensor anal-
ysis (8) and our proposed union of tensors analysis (44) are of orders O(log(Kn1 . . . nd−1)),
O(log(drK maxni)), and O(log(K maxni)), respectively. The orders for the tensor analysis and
our proposed union of tensors analysis are similar (this is expected as intuitively a few more rank
constraints should not change the order of the fundamental limits) but still when we compare the
exact numbers in the following example, we see the advantage of an efficient analysis that takes
advantage of all the rank constraints.
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Figure 3: The total number of subtensors c1 + · · ·+ cK required for unique completability.

Example 5 Consider an example in which d = 7, K = 10, n1 = · · · = n6 = 300, ε = 0.1. Also,
let rk = 2k + r for k = 1, . . . , 10, where r varies from 0 to 30, i.e., rmax varies from 20 to 50.

First, we compare the total number of subtensors, i.e., structured columns, needed for the three
approaches. For the matrix analysis, Lemma 10 requires the condition ck ≥ (rk−rk−1 +1)(N−d−
rk) = 3 × 106 − 6k − 3r ≈ 3 × 106, and hence the total number of subtensors is approximately
3 × 107 since K = 10. For the union of tensor spaces analysis, Theorem 43 requires ck ≥ (rk −
rk−1)(

∑d−1
i=1 ni)−rk(rk−rk−1)− (d−2)(rk−rk−1) = 110−4k−2r and hence, c1 + · · ·+cK ≥

110K − 4
∑K

k=1 k − 2Kr = 1045 − 20r. The tensor analysis in Lemma 11 requires only one
condition (instead of K conditions for all ck’s) and it is c1 + · · · + cK ≥ (rK + 2)(

∑d−1
i=1 ni) =

1320 + 60r. In Figure 3, we plot the tensor and union of tensors cases and it is seen that in terms of
the total number of subtensors, the requirement of the union of tensor spaces analysis is much less
than the tensor analysis, and both are orders of magnitude less than the matrix analysis.

Next, we compare the required number of samples per subtensor, i.e., column of the (d − 1)-th
unfolding, using the matrix analysis (7), the tensor analysis (8) and our proposed union of tensors
analysis (44) in Figure 4. It is seen that the union of tensors analysis requires the least number of
samples per subtensor followed by the tensor analysis, and the matrix analysis requires the most.

7. Conclusions

We have investigated the generalization of the problems of union of two-dimensional subspace
clustering/retrieval to higher dimensions. In order to develop a clustering analysis for a union of
tensor spaces, we made use of the condition on unique completability of a sampled tensor and
developed an approach for identifying which tensor space correctly fits a certain tensor component
of the union of tensor spaces, given that the sampling rate is higher than our obtained fundamental
limit. Moreover, we investigated the completion problem for the case that the tensor spaces satisfy
certain geometrical properties. Combinatorial conditions on the sampling pattern are characterized
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Figure 4: The required number of samples per subtensor for unique completability.

to ensure finite/unique completability of the data with probability one. And finally, the sampling
rates that ensure finite/unique completability of the data with high probability are derived.

To the best of our knowledge, this work is the first to provide a fundamental theoretical analysis
for the two important problems of low-rank tensor clustering and completion. There are a number
of avenues for future investigations. First, this work is based on the assumption that the tensors are
chosen generically from certain tensor spaces. One future direction is to develop similar/weaker
results without this assumption. Secondly, the deterministic analysis in this paper characterizes the
necessary and sufficient conditions on the sampling pattern for finite completability and therefore,
it cannot be improved. However, the deterministic analysis for unique completability only pro-
vides sufficient conditions and it could be improved. Moreover, the probabilistic analysis provides
sufficient conditions on the sampling rate and they could also be potentially improved. Further,
conditions such as rk ≤ nk

6 and min1≤i≤d−1 ni > 200 are the limitations in the probabilistic anal-
ysis due to the combinatorial analysis and another future direction is to achieve similar results with
weaker restrictions.
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