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Abstract

We present new practical local differentially private heavy hitters algorithms achieving op-
timal or near-optimal worst-case error and running time – TreeHist and Bitstogram. In both
algorithms, server running time is Õ(n) and user running time is Õ(1), hence improving
on the prior state-of-the-art result of Bassily and Smith [STOC 2015] requiring O(n5/2)
server time and O(n3/2) user time. With a typically large number of participants in local
algorithms (n in the millions), this reduction in time complexity, in particular at the user
side, is crucial for making locally private heavy hitters algorithms usable in practice. We
implemented Algorithm TreeHist to verify our theoretical analysis and compared its per-
formance with the performance of Google’s RAPPOR code.

Keywords: Differential privacy, local differential privacy, heavy hitters, histograms, sketch-
ing.

1. Introduction

We revisit the problem of computing heavy hitters with local differential privacy. Such
computations have already been implemented to provide organizations with valuable infor-
mation about their user base while providing users with the strong the strong guarantee
that their privacy would be preserved even if the organization is subpoenaed for the entire
information seen during an execution. Two prominent examples are Google’s use of RAP-
POR in the Chrome browser (Erlingsson et al., 2014) and Apple’s use of differential privacy
in iOS-10 (Thakurta et al., 2017). These tools are used for learning new words typed by
users and identifying frequently used emojis and frequently accessed websites.

Differential privacy in the local model. Differential privacy (Dwork et al., 2006)
provides a framework for rigorously analyzing privacy risk and hence can help organization
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mitigate users’ privacy concerns as it ensures that what is learned about any individual user
would be (almost) the same whether the user’s information is used as input to an analysis
or not.

Differentially private algorithms work in two main modalities: curator and local. The
curator model assumes a trusted centralized curator that collects all the personal informa-
tion and then analyzes it. In contrast, the local model does not involve a central repository.
Instead, each piece of personal information is randomized by its provider to protect privacy
even if all information provided to the analysis is revealed. Holding a central repository of
personal information can become a liability to organizations in the face of security breaches,
employee misconduct, subpoenas, etc. This makes locally private computations attractive
for implementation. Indeed in the last few years Google and Apple have announced suc-
cessful deployments of locally private analyses (Erlingsson et al., 2014; Thakurta et al.,
2017).

Challenges of the local model. A disadvantage of the local model is that it requires
introducing noise at a significantly higher level than what is required in the curator model.
Furthermore, some tasks which are possible in the curator model are impossible in the local
model (Dwork et al., 2006; Kasiviswanathan et al., 2011; Chan et al., 2012). To see the
effect of noise, consider estimating the number of HIV positives in a given population of
n participants. In the curated model, it suffices to add Laplace noise of magnitude Oε(1),
i.e., independent of n (Dwork et al., 2006). In contrast, a lower bound of Ωε(

√
n) is known

for the local model (Chan et al., 2012). A higher noise level implies that the number of
participants n needs to be large (maybe in the millions for a reasonable choice of ε). An
important consequence is that, to be practical, locally private algorithms must exhibit low
time, space, and communication complexity, especially at the user side. This is the problem
addressed in our work.

Heavy hitters and histograms in the local model. Assume each of n users holds
an element xi taken from a domain of size d. A histogram of this data lists (an estimate
of) the multiplicity of each domain element. When d is large, a succinct representation
of the histogram is desired, either in the form of a frequency oracle – a data structure
allowing to approximate the multiplicity of any domain element – or heavy hitters – listing
the multiplicity of most frequent domain elements, implicitly considering the multiplicity
of other domain elements as zero. The problem of computing histograms with differential
privacy has attracted significant attention both in the curator model (Dwork et al., 2006;
Beimel et al., 2016; Bun et al., 2015) and the local model (Hsu et al., 2012; Erlingsson et al.,
2014; Bassily and Smith, 2015). Of relevance is the work in (Mishra and Sandler, 2006).

We briefly report on the state of the art heavy hitters algorithms of Bassily and Smith
(2015) and Thakurta et al. (2017), which are most relevant for the current work. Bassily and
Smith provide matching lower and upper bounds of Θ(

√
n log(d)/ε) on the worst-case error

of local heavy hitters algorithms. Their local algorithm exhibits optimal communication but
a rather high time complexity: Server running time is O(n5/2) and, crucially, user running
time is O(n3/2) – complexity that severely hampers the practicality of this algorithm.1 The
construction by Thakurta et al. is a heuristic with no bounds on server running time and

1. If pubic randomness or efficient Private Information Retrieval is assumed, then the user running time in
(Bassily and Smith, 2015) can be improved to O(n).
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accuracy (we refer to the maximal difference between the true and estimated multiplicities
of a data element as the error or the accuracy of the protocol).2 User computation time is
Õ(1), a significant improvement over (Bassily and Smith, 2015).

Our contributions. The focus of this work is on the design of locally private heavy
hitters algorithms with near optimal error, keeping time, space, and communication com-
plexity minimal. We provide two new constructions of heavy hitters algorithms TreeHist
and Bitstogram. These algorithms achieve similar performance but apply different tech-
niques. We implemented Algorithm TreeHist and provide measurements in comparison
with RAPPOR (Erlingsson et al., 2014) (the only currently available implementation for
local histograms). Our measurements are performed with a setting that is favorable to
RAPPOR (i.e., a small input domain), yet they indicate that Algorithm TreeHist performs
better than RAPPOR in terms of noise level.

Table 1 details various performance parameters of TreeHist and Bitstogram, and the
reader can check in the table that these are similar up to small factors which we ignore for
the rest of this paragraph. Comparing with (Bassily and Smith, 2015), we improve time
complexity both at the server (reduced from O(n5/2) to Õ(n)) and at the user (reduced
from O(n3/2) to O(max (log n, log d)2)). Comparing with (Thakurta et al., 2017), we get
provable bounds on the server running time and worst-case error. Note that Algorithm
Bitstogram achieves optimal worst-case error whereas Algorithm TreeHist is almost optimal,
by a factor of

√
log(n).

Performance metric TreeHist Bitstogram

Server time (modular multiplications) Õ (n) Õ (n)

User time (modular multiplications) O
(

max (log n, log d)
2
)

O
(

max (log n, log d)
2
)

Server processing memory Õ (
√
n) Õ (

√
n)

User memory O (max(log d, log n)) O (max(log d, log n))
Communication/user O (1) O (1)

Worst-case Error O
(√

n log(n) log(d)
)

O
(√

n log(d)
)

Table 1: Performance of our protocols. Dependency on the privacy parameter ε and failure
probability β is omitted.

Elements of the constructions. Main details of our constructions are presented in
sections 3.1 and 3.2. These are complemented with the detailed descriptions and analyses
in the appendix. Both our algorithms make use of frequency oracles – data structures that
allow estimating various counts.

Algorithm TreeHist identifies heavy-hitters and estimates their frequencies by scanning
the levels of a binary prefix tree whose leaves correspond to dictionary items. The recovery
of the heavy hitters is in a bit-by-bit manner. As the algorithm progresses down the tree it
prunes all the nodes that cannot be prefixes of heavy hitters, hence leaving Õ(

√
n) nodes

in every depth. This is done by making queries to a frequency oracle. Once the algorithm
reaches the final level of the tree it identifies the list of heavy hitters. It then invokes the

2. The underlying construction in (Thakurta et al., 2017) is of a frequency oracle.
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frequency oracle once more on those particular items to obtain more accurate estimates for
their frequencies.

Algorithm Bitstogram hashes the input domain into a domain of size roughly
√
n. The

observation behind this algorithm is that if a heavy hitter x does not collide with other
heavy hitters then (h(x), xi) would have a significantly higher count than (h(x),¬xi) for
every i, where xi is the ith bit of x. This allows recovering all bits of x in parallel given an
appropriate frequency oracle.

Followup work. Our work presents locally-private heavy-hitters algorithms with error
rates that depend optimally on the number of users, the size of the domain, and the privacy
parameter. Following our work, Bun et al. (2018) presented an improved protocol with
error rate that depend optimally also on the failure probability. Their protocol is a refined
version of our Bitstogram protocol.

2. Background and Preliminaries

2.1. Definitions and Notation

Dictionary and user items: Let V = [d]. We consider a set of n users, where each user
i ∈ [n] holds an item vi ∈ V. We will use vi to refer to the binary representation of vi when
it is clear from the context.

Item frequency (multiplicity): For each item v ∈ V, we define the frequency f(v) of v
as the number of users holding v, namely,

f(v) , |{i ∈ [n] : vi = v}| .

Frequency oracle: A frequency oracle is a data structure together with an algorithm that,
for any given v ∈ V, allows computing an estimate f̂(v) of the frequency f(v).

Heavy hitters (succinct histogram): A succinct histogram is a data structure that
provides a (short) list of items (v̂1, ..., v̂k), called the heavy hitters, together with estimates
for their frequencies (f̂(v̂j) : j ∈ [k]). The frequencies of the items not in the list are

implicitly estimated as f̂(v) = 0. We measure the error in a succinct histogram by the

`∞ distance between the estimated and true frequencies, maxv∈[d]

∣∣∣f̂(v)− f(v)
∣∣∣. We will

also consider the maximum error restricted to the items in the list (v̂1, ..., v̂k), that is,

maxj∈[k]

∣∣∣f̂(v̂j)− f(v̂j)
∣∣∣. If a succinct histogram aims to provide `∞ error η, the list does

not need to contain more than O(1/η) items since items with estimated frequencies below
η may be omitted from the list.

2.2. Local Differential Privacy

In the local model, an algorithm A : V → Z accesses the database v = (v1, . . . , vn) ∈ Vn
only via an oracle that, given index i ∈ [n], runs a randomized algorithm (local randomizer)
R : V → Z̃ on input vi and returns R(vi) to A.

Definition 2.1 (Local differential privacy Dwork et al. (2006); Evfimievski et al.
(2003); Kasiviswanathan et al. (2011)) An algorithm satisfies ε-local differential pri-
vacy (LDP) if it accesses the database v = (v1, . . . , vn) ∈ Vn only via invocations of a local
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randomizer R and if for all i ∈ [n], if R(1), . . . ,R(k) denote the algorithm’s invocations
of R on the data sample vi, then the algorithm A(·) ,

(
R(1)(·),R(2)(·), . . . ,R(k)(·)

)
is ε-

differentially private. That is, if for any pair of inputs v,v′ that differ on a single input,
and for all S ⊆ Range(A),

Pr[A(v) ∈ S] ≤ eε · Pr[A(v′) ∈ S].

2.3. Count Sketch and Hadamard Transform

Count sketch (Charikar et al., 2002) together with the Hadamard transform form the basis
of our differentially private construction outlined in Section 3.1 and discussed in detail in
Section 5.

Count sketch (Charikar et al., 2002) is a sketching algorithm for finding frequent
elements in a data stream. Let V = [d] be a domain of data elements, and v = (v1, . . . , vn)
be a stream of data elements. Count sketch ensures that for any given v ∈ V, using a data

structure of size m = O
(
n log(1/β)

k

)
one can ensure that with probability at least 1− β the

estimated frequency of v is within k of the true frequency, and the estimate is unbiased.
The algorithm works as follows: First, pick t pairs of hash functions (hi : V → [m], gi :
V → {−1, 1}), and set a matrix M = {0}t×m. Second, with every data sample vi, populate
the matrix as follows: ∀j ∈ [t],M[j, hj(vi)]←M[j, hj(vi)] + gj(vi). Finally, to estimate the
frequency of an element v ∈ V, compute median {M[1, h1(v)] · g1(v), · · · ,M[t, ht(v)] · gt(v)}.
Hadamard transform: We use Hadamard transform followed by sampling in order to
compress our data transmission from the client to the server and to reduce the space re-
quirements of our protocol. Hadamard transform of a vector w ∈ Rm is obtained via
multiplying with the Hadamard transform matrix Hm ∈ {− 1√

m
, 1√

m
}m×m defined recur-

sively as Hm = 1√
2

[
Hm/2 Hm/2

Hm/2 −Hm/2

]
, and H1 = [1]. Two main properties of Hadamard

transform we use are: i) it is a dense basis transformation, i.e. the columns of the Hadamard
matrix form a basis, and each entry of

√
m ·Hm is in {−1, 1}, and ii) any entry (i, j) in√

m ·Hm can be computed in O(logm) time.

2.4. Error correction codes

We will use error correction codes in order to reduce the error of (some of) our constructions
outlined in Section 3.2 and discussed in detail in Section 6.

Definition 2.2 A binary (n, k)-code is a pair of mappings (Enc,Dec) where Enc : {0, 1}k →
{0, 1}n, and Dec : {0, 1}n → {0, 1}k. The code is ζ-decodable if for every x ∈ {0, 1}k and
every y ∈ {0, 1}n whose Hamming distance to Enc(x) is at most ζn we have that Dec(y) = x.

For any constant 0 < ζ < 1/4, there is a construction of a ζ-decodable (n, k)-code,
where n = O(k), and furthermore, Enc and Dec run in time O(n). See, e.g., (Guruswami,
2001).
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2.5. Tools from Probability

2.5.1. Pairwise k-wise Independence

The definitions given here are taken from (Vadhan, 2012).

Definition 1 A family (i.e., multiset) of functions H = {h : [N ] → [M ]} is pairwise
independent if the following two conditions hold when H is a function chosen uniformly at
random from H:

1. ∀x ∈ [N ], the random variable H(x) is uniformly distributed in [M ].

2. ∀x1 6= x2 ∈ [N ], the random variables H(x1) and H(x2) are independent.

We will use the following tail bound on sums of k-wise independent random variables.

Lemma 2.3 (Bellare and Rompel (1994)) Let λ ≥ 6 be an even integer. Suppose
X1, · · · , Xn are k-wise independent random variables taking values in [0, 1]. Let X = X1 +
· · ·+Xn and µ = E[X], and let α > 0. Then,

Pr[|X − µ| ≥ α] ≤
(
nk

α2

)k/2
.

2.5.2. The Poisson Approximation

We will use the following useful facts about the Poisson approximation. When throwing n
balls into R bins, the distribution of the number of balls in a given bin is Bin(n, 1/R). As the
Poisson distribution is the limit distribution of the binomial distribution, the distribution
of the number of balls in a given bin is approximately Pois(n/R). In fact, in some cases we
could approximate the joint distribution of the number of balls in all the bins by assuming
the load at each bin is an independent Poisson random variable with mean n/R.

Theorem 2.4 (e.g., Mitzenmacher and Upfal (2005)) Suppose that n balls are thrown
into R bins independently and uniformly at random, and let Xi be the number of balls in
the ith bin, where 1 ≤ i ≤ R. Let Y1, · · · , YR be independent Poisson random variables with
mean n/R. Let f(x1, · · · , xR) be a nonnegative function. Then,

E [f(X1, · · · , XR)] ≤ e
√
nE [f(Y1, · · · , YR)] .

In particular, the theorem states that any event that takes place with probability p in
the Poisson case, takes place with probability at most pe

√
n in the exact case (this follows

by letting f be the indicator function of that event).
We will also use the following bounds for the tail probabilities of a Poisson random

variable:

Theorem 2.5 (Alon and Spencer (1992)) Let X have Poisson distribution with mean
µ. For 0 ≤ α ≤ 1,

Pr[X ≤ µ(1− α)] ≤ e−α
2µ/2

Pr[X ≥ µ(1 + α)] ≤ e−α
2µ/2.
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3. Our Algorithms

In this section we give an informal description of our algorithms, and highlight some of the
ideas behind our constructions.

3.1. The TreeHist Protocol

We briefly give an overview of our construction that is based on a compressed, noisy ver-
sion of the count sketch. To maintain clarity of the main ideas, we give here a high-level
description of our construction. We refer to Section 5 for a detailed description of this
construction.

We first introduce some objects and public parameters that will be used in the construc-
tion:

Prefixes: For a binary string v, we will use v[1 : `] to denote the `-bit prefix of v. Let
V =

{
v ∈ {0, 1}` for some ` ∈ [log d]

}
. Note that elements of V arranged in a binary prefix

tree of depth log d, where the nodes at level ` of the tree represent all binary strings of
length `. The items of the dictionary V represent the bottommost level of that tree. Note
that |V| = 2d. We will use ⊥ to denote an empty string. For a v ∈ {0, 1}` and b ∈ {0, 1},
let v‖b denote the ` + 1-bit string resulting from appending the bit b to v. For a binary
string v, we define Child(v) ,

{
v‖0, v‖1

}
, that is, the set containing the two children of

v in the prefix tree. Similarly, for a set of strings U , we define ChildSet(U) ,
{
v : v ∈

Child(u) for some u ∈ U
}
.

Hashes: Let t,m be positive integers to be specified later. We will consider a set of
t pairs of hash functions {(h1, g1), . . . , (ht, gt)}, where for each i ∈ [t], hi : V → [m] and
gi : V → {−1,+1} are independently and uniformly chosen pairwise independent hash func-
tions.

Basis matrix: Let W ∈
{
−1,+1

}m×m
be
√
m ·Hm where Hm is the Hadamard transform

matrix of size m. As will be shown later, we will be making operations over the entries of
this matrix. It is important to note that we do not need to store this matrix. The value of
any entry in this matrix can be computed in O(logm) bit operations given the (row, column)
index of that entry. In particular, suppose we want to compute the value of the entry Wi,j

located at the i-th row and j-th column. Let (i0, i1, . . . , ilogm−1) and (j0, j1, . . . , jlogm−1)

denote the bit representation of i and j, respectively. Then, Wi,j = (−1)
∑logm−1
k=0 ikjk .

Global parameters: The total number of users n, the size of the Hadamard matrix m,
the number of hash pairs t, the privacy parameter ε, the confidence parameter β, and
the hash functions

{
(h1, g1), . . . , (ht, gt)

}
are assumed to be public information. We set

t = O(log(n/β)) and m = O

(√
n

log(n/β)

)
.

Public randomness: In addition to the t hash pairs {(h1, g1), . . . , (ht, gt)}, we assume
that the server creates a random partition Π : [n] → [log d] × [t] that assigns to each user
i ∈ [n] a random pair (`i, ji) ← [log(d)] × [t], and another random function Q : [n] → [m]
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that assigns3 to each user i a uniformly random index ri ← [m]. We assume that such
random indices `i, ji, ri are shared between the server and each user.

First, we describe the two main modules of our protocol.

3.1.1. A local randomizer: LocalRnd

For each i ∈ [n], user i runs her own independent copy of a local randomizer, denoted as
LocalRnd, to generate her private report. LocalRnd of user i starts by acquiring the index
triple (`i, ji, ri) ← [log d] × [t] × [m] from public randomness. For each user, LocalRnd is
invoked twice in the full protocol: once during the first phase of the protocol (called the
pruning phase) where the high-frequency items (heavy hitters) are identified, and a second
time during the final phase (the estimation phase) to enable the protocol to get better
estimates for the frequencies of the heavy hitters. In the first invocation, LocalRnd of user i
performs its computation on the `i-th prefix of the item vi of user i, whereas in the second
invocation, it performs the computation on the entire user’s string vi.

Apart from this, in both invocations, LocalRnd follows similar steps. It first selects the
hash pair (hji , gji), computes ci = hji(vi[1 : ˜̀]) (where ˜̀ = `i in the first invocation and
˜̀ = log d in the second invocation, and vi[1 : ˜̀] is the ˜̀-th prefix of vi), then it computes

a bit xi = gji

(
vi[1 : ˜̀]

)
· Wri,ci (where Wr,c denotes the (r, c) entry of the basis matrix

W). Finally, to guarantee ε-local differential privacy, it generates a randomized response
yi based on xi (i.e., yi = xi with probability eε/2/(1 + eε/2) and yi = −xi with probability
1/(1 + eε/2), which is sent to the server.

Our local randomizer can thought of as a transformed, compressed (via sampling),
and randomized version of the count sketch (Charikar et al., 2002). In particular, we can
think of LocalRnd as follows. It starts off with similar steps to the standard count sketch
algorithm, but then deviates from it as it applies Hadamard transform to the user’s signal,
then samples one bit from the result. By doing so, we can achieve significant savings in
space and communication without sacrificing accuracy.

3.1.2. A frequency oracle: FreqOracle

Suppose we want to allow the server to estimate the frequencies of some given subset
V̂ ⊆ {0, 1}` for some given ` ∈ [log d] based on the noisy users’ reports. We give a protocol,
denoted as FreqOracle, for accomplishing this task.

For each queried item v̂ ∈ V̂ and for each hash index j ∈ [t], FreqOracle computes
c = hj(v̂), then collects the noisy reports of a collection of users I`,j that contains every
user i whose pair of prefix and hash indices (`i, ji) match (`, j). Next, it estimates the
inverse Hadamard transform of the compressed and noisy signal of each user in I`,j . In
particular, for each i ∈ I`,j , it computes yi Wri,c which can be described as a multiplication
between yieri (where eri is the indicator vector with 1 at the ri-th position) and the scaled
Hadamard matrix W, followed by selecting the c-th entry of the resulting vector. This
brings us back to the standard count sketch representation. It then sums all the results
and multiplies the outcome by gj(v̂) to obtain an estimate f̂j(v̂) for the frequency of v̂.

3. We could have grouped Π and Q into one random function mapping [n] to [log d] × [t] × [m], however,
we prefer to split them for clarity of exposition as each source of randomness will be used for a different
role.

8
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As in the count sketch algorithm, this is done for every j ∈ [t], then FreqOracle obtains a
high-confidence estimate by computing the median of all the t frequency estimates.

3.1.3. The protocol: TreeHist

The protocol is easier to describe via operations over nodes of the prefix tree V of depth
log d (described earlier). The protocol runs through two main phases: the pruning (or,
scanning) phase, and the final estimation phase.

In the pruning phase, the protocol scans the levels of the prefix tree starting from
the top level (that contains just 0 and 1) to the bottom level (that contains all items of
the dictionary). For a given node at level ` ∈ [log d], using FreqOracle as a subroutine,
the protocol gets an estimate for the frequency of the corresponding `-bit prefix. For any
` ∈ [log(d) − 1], before the protocol moves to level ` + 1 of the tree, it prunes all the
nodes in level ` that cannot be prefixes of actual heavy hitters (high-frequency items in
the dictionary).Then, as it moves to level ` + 1, the protocol considers only the children
of the surviving nodes in level `. The construction guarantees that, with high probability,

the number of surviving nodes in each level cannot exceed O

(√
n

log(d) log(n)

)
. Hence, the

total number of nodes queried by the protocol (i.e., submitted to FreqOracle) is at most

O
(√

n log(d)
log(n)

)
.

In the second and final phase, after reaching the final level of the tree, the protocol
would have already identified a list of the candidate heavy hitters, however, their estimated
frequencies may not be as accurate as we desire due to the large variance caused by the
random partitioning of users across all the levels of the tree. Hence, it invokes the frequency
oracle once more on those particular items, and this time, the sampling variance is reduced
as the set of users is partitioned only across the t hash pairs (rather than across log(d)× t
bins as in the pruning phase). By doing this, the server obtains more accurate estimates
for the frequencies of the identified heavy hitters. The privacy and accuracy guarantees are
stated below. The full details are given in Section 5.

3.1.4. Privacy and Utility Guartantees

Theorem 3.1 Protocol TreeHist is ε-local differentially private.

Theorem 3.2 There is a number η = O
(√

n log(n/β) log(d))/ε
)

such that with probability

at least 1− β (over the choice of all public and private randomnness), the output list of the
TreeHist protocol satisfies the following properties:

1. it contains all items v ∈ V with true frequencies above 3η.

2. it does not contain any item v ∈ V with true frequency below η.

3. Every frequency estimate in the output list is accurate up to an error

≤ O
(√

n log(n/β)/ε
)

9
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3.2. The Bitstogram Protocol

We now present a simplified description of our second protocol, that captures most of the
ideas. Any informalities made hereafter are removed in the full description of the protocol
(Section 6).

First Step: Frequency Oracle. Recall that a frequency oracle is a protocol that, after
communicating with the users, outputs a data structure capable of approximating the fre-
quency of every domain element v ∈ V. So, if we were to allow the server to have linear
runtime in the domain size |V| = d, then a frequency oracle would suffice for computing
histograms. As we are interested in protocols with a significantly lower runtime, we will
only use a frequency oracle as a subroutine, and query it only for (roughly)

√
n elements.

Let Z ∈ {±1}d×n be a matrix chosen uniformly at random, and assume that Z is publicly
known.4 That is, for every domain element v ∈ V and every user j ∈ [n], we have a random
bit Z[v, j] ∈ {±1}. As Z is publicly known, every user j can identify its corresponding bit
Z[vj , j], where vj ∈ V is the input of user j. Now consider a protocol in which users send
randomized responses of their corresponding bits. That is, user j sends yj = Z[vj , j] w.p.
1
2 + ε

2 and sends yj = −Z[vj , j] w.p. 1
2 −

ε
2 . We can now estimate the frequency of every

domain element v ∈ V as

a(v) =
1

ε
·
∑
j∈[n]

yj · Z[v, j].

To see that a(v) is accurate, observe that a(v) is the sum of n independent random variables
(one for every user). For the users j holding the input v (that is, vj = v) we will have that
1
εE[yj ·Z[v, j]] = 1. For the other users we will have that yj and Z[v, j] are independent, and
hence E[yj · Z[v, j]] = E[yj ] · E[Z[v, j]] = 0. That is, a(v) can be expressed as the sum of n
independent random variables: f(v) variables with expectation 1, and (n− f(v)) variables
with expectation 0. The fact that a(v) is an accurate estimation for f(v) now follows from
the Hoeffding bound.

Lemma 3.3 (Algorithm Hashtogram) Let ε ≤ 1. Algorithm Hashtogram satisfies ε-LDP.
Furthermore, with probability at least 1 − β, algorithm Hashtogram answers every query

v ∈ V with a(v) satisfying: |a(v)− f(v)| ≤ O
(

1
ε ·
√
n log

(
nd
β

))
.

Second Step: Identifying Heavy-Hitters. Let us assume that we have a frequency
oracle protocol with worst-case error τ . We now want to use our frequency oracle in order
to construct a protocol that operates on two steps: First, it identifies a small set of poten-
tial “heavy-hitters”, i.e., domain elements that appear in the database at least 2τ times.
Afterwards, it uses the frequency oracle to estimate the frequencies of those potential heavy
elements.5

Let h : V → [T ] be a (publicly known) random hash function, mapping domain elements
into [T ], where T will be set later.6 We will now use h in order to identify the heavy-hitters.

4. As we later explain, Z has a short description, as it need not be uniform.
5. Event though we describe the protocol as having two steps, the necessary communication for these steps

can be done in parallel, and hence, our protocol will have only 1 round of communication.
6. As with the matrix Z, the hash function h can have a short description length.

10
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To that end, let v∗ ∈ V denote such a heavy-hitter, appearing at least 2τ times in the
database S, and denote t∗ = h(v∗). Assuming that T is big enough, w.h.p. we will have
that v∗ is the only input element (from S) that is mapped (by h) into the hash value t∗.
Assuming that this is indeed the case, we will now identify v∗ bit by bit.

For ` ∈ [log d], denote S` = (h(vj), vj,`)j∈[n], where vj,` is bit ` of vj . That is, S` is a

database over the domain ([T ]×{0, 1}), where the row corresponding to user j is (h(vj), vj,`).
Observe that every user can compute her own row locally. As v∗ is a heavy-hitter, for every
` ∈ [log d] we have that (t∗, v∗` ) appears in S` at least 2τ times, where v∗` is bit ` of v∗. On
the other hand, as we assumed that v∗ is the only input element that is mapped into t∗ we
get that (t∗, 1− v∗` ) does not appear in S` at all. Recall that our frequency oracle has error
at most τ , and hence, we can use it to accurately determine the bits of v∗.

To make things more concrete, consider the protocol that for every hash value t ∈ [T ],
for every coordinate ` ∈ [log d], and for every bit b ∈ {0, 1}, obtains an estimation (using
the frequency oracle) for the multiplicity of (t, b) in S` (so there are log d invocations of the
frequency oracle, and a total of 2T log d estimations). Now, for every t ∈ [T ] let us define
v̂t where bit ` of v̂t is the bit b s.t. (t, b) is more frequent than (t, 1− b) in S`. By the above
discussion, we will have that v̂t∗ = v∗. That is, the protocol identifies a set of T log d domain
elements, containing all of the heavy-hitters. The frequency of the identified heavy-hitters
can then be estimated using the frequency oracle.

Remark 2 As should be clear from the above discussion, it suffices to take T & n2, as this
will ensure that there are no collisions among different input elements. As we only care
about collisions between “heavy-hitters” (appearing in S at least

√
n times), it would suffice

to take T & n to ensure that w.h.p. there are no collisions between heavy-hitters. In fact,
we could even take T &

√
n, which would ensure that a heavy-hitter v∗ has no collisions

with constant probability, and then to amplify our confidence using repetitions.

Lemma 3.4 (Algorithm Bitstogram) Let ε ≤ 1. Algorithm Bitstogram satisfies ε-LDP.
Furthermore, the algorithm returns a list L of length Õ(

√
n) satisfying:

1. With probability 1−β, for every (v, a) ∈ L we have that |a−f(v)| ≤ O
(
1
ε

√
n log(n/β)

)
.

2. W.p. 1− β, for every v ∈ V s.t. f(v) ≥ O
(
1
ε

√
n log(d/β) log( 1

β )
)

, we have that v is in

L.

4. Detailed Experimental Results

In this section we discuss implementation details of our algorithms mentioned in Section 5.7

The main objective of this section is to emphasize the empirical efficacy of our algorithms
along with the theoretical optimality in terms of error, space, time and communication.
Thakurta et al. (2017) recently claimed space optimality for a similar problem, but a formal
analysis (or empirical evidence) was not provided. Our experiments corroborate both the
analytical bounds in our current work, and in (Thakurta et al., 2017). Our experiments
are performed on a macOS-Sierra 10.12 system (in Python 2.7) with 3.3Ghz (Intel Core i5)
and 16GB of DDR-3 RAM.

7. The experiments are performed without the Hadamard compression during data transmission.

11
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4.1. Private Frequency Oracle

In this experiment, the objective is to test the efficacy of our algorithm in estimating the
frequencies of a known set of dictionary of user items, under local differential privacy. We
estimate the error in estimation while varying the size of the data set n, changing the privacy
parameter ε. (See Section 2.1 for a refresher on the notation.)

Figure 1 shows results on a synthetic data set with the domain size of hundred (i.e.,
d = 100) drawn from a power law distribution with power of 15. The default parameters
used in Figure 1 are: number of data samples (n) : 10 million, range of the hash function
(m):

√
n, number of hash functions (t): 285, and the privacy parameter ε = 2.0. For the

hash functions, we used the prefix bits of SHA-256. The estimated frequency is scaled by
the number of samples to normalize the result, and each experiment is averaged over ten
runs. The bars for True refers to the the true frequencies, and the bars for Priv corre-
sponds to the differentially private frequencies. The pctle corresponds to the frequency of
a domain element at the corresponding percentile in the frequency distribution of the data
set. Observations: i) The plots corroborate the fact that the frequency oracle is indeed
unbiased. The average frequency estimate (over ten runs) for each percentile is within one
standard deviation of the corresponding true estimate. ii) The error in the estimates go
down significantly as the number of samples are increased or the privacy parameter ε is
increased.
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Figure 1: Frequency vs number of samples (n) and privacy parameter (ε) on the synthetic
data set.

In Figure 2 we show the result of changing the range of the hash function (m). The
observation is that the results are seemingly insensitive to the range of the hash function.

We also ran the same experiment (Figure 3) on a real data set drawn uniformly at
random the NLTK Brown corpus (NLT). The data set we created has n = 10 million
samples drawn i.i.d. from the corpus with replacement, and the system parameters are the
same default parameters described earlier. In this plot, the rank corresponds to the rank
of a domain element in the distribution of frequencies in the data set. The observation is
here is also consistent with that of Figure 1.

Comparison to RAPPOR (Erlingsson et al., 2014): Here we compare ourselves
to the only other system (RAPPOR project from GOOGLE) for the private frequency
estimation problem whose code is publicly available. We took the snapshot of their code
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Figure 2: Frequency vs sketch width (m) on the synthetic data set.
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Figure 3: Frequency vs privacy (ε) on the NLTK-Brown corpus.

base (https://github.com/google/rappor) on May 9th, 2017. In order to perform a
fair comparison, we tested our algorithm against one of their demo experiments available
(Demo3 using the demo.sh script). We used the privacy parameter ε = ln(3), the number
of data samples n = 1 million, and the data set to be the same data set generated by the
demo.sh script. In Figure 4 we observe that for higher frequencies both RAPPOR and our
algorithm perform similarly. However, in lower frequency regimes, the RAPPOR estimates
are zero most of the times, while our estimates are closer to the true estimates. N.B. We
do not claim that our algorithm would outperform the RAPPOR system on all problem
instances. However, our current experiment does highlight the need to perform an at-scale
comparison between the two algorithms.

4.2. Private Heavy-hitters

In this section, we take on the harder task of identifying the heavy hitters, rather than
estimating the frequencies of domain elements. We run our experiments on the same two

13
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Figure 4: Frequency vs privacy (ε) on the Demo 3 experiment from RAPPOR

data sets described earlier with the same setting of parameters, except now we assume that
we do not know the domain. As a part of our algorithm design, we assume that every
element in the domain is from the English alphabet set [a-z] and are of length exactly equal
to six. If they are of larger length, we truncate before entering them in the data set, and
if they are of smaller length we tag a ⊥ at the end. We generate the domain elements for
the synthetic data set by first generating the frequency histogram based on the power law
distribution described earlier, and then assign random strings of length eight to each bin of
the histogram. That becomes our data set. For the NLTK Brown corpus (NLT), we sample
n = 10 million samples with replacement from the corpus to form our data set. We set
a threhold of 15 ·

√
n as the threshold for being a heavy hitter. We measure the efficacy

of our system by measuring the precision and recall. Figures 5 and 6 show the true data
distribution for the synthetic and the NLTK data set.
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Figure 5: Distr. for Synthetic
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Figure 6: Distr. for Brown (top 100 words)
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In Table 4.2 we state our corresponding precision and recall parameters. Our recall
numbers are much better than the precision numbers, primarily because of the large number
of negative examples (3×108 examples). In practice, if there are false-positives, they can be
easily pruned using domain expertise. For example, if we are trying to identify new words
which users are typing in English (app, 2016), then using the domain expertise of English, a
set of false positives can be easily ruled out by inspecting the list of heavy hitters output by
the algorithm. Further, notice that since we are working with domain elements with size six
characters, a brute force algorithm would require 266 queries to the frequency oracle, which
would be computationally (near) infeasible. While there are other algorithms for finding
heavy-hitters (Bassily and Smith, 2015; Hsu et al., 2012), either they do not provide any
theoretical guarantee for the utility (Erlingsson et al., 2014; Fanti et al., 2015; Thakurta
et al., 2017), or there does not exist a scalable and efficient implementation for them. Our
work scores well on both these aspects.

Data set # of unique words Precision Recall

Synthetic 93 0.36 (σ = 0.05) 0.95 (σ = 0.03)

NLTK Brown corpus 25991 0.24 (σ = 0.04) 0.86 (σ = 0.05)

Table 2: Private Heavy-hitters with threshold=15
√
n. Here σ corresponds to the standard

deviation.

5. Locally Private Heavy-hitters via Count-Sketch: The TreeHist Protocol

We start with a detailed description of our construction described at a high level in Section
3.1.

We refer to Section 3.1 for definitions and public parameters that will be used in the
construction, namely, prefixes, hashes, the basis matrix, global parameters, and public ran-
domness. We restate below our public parameters and, when applicable, their specific
settings.

Global parameters: We will assume that total number of users n, the size of the Hadamard
matrix m, the number of hash pairs t, the privacy parameter ε, and the confidence pa-
rameter β are public parameters, and hence they will not be explicitly provided as in-
puts to the algorithms. For integer parameters, we will implicitly assume that results are

rounded to the nearest integer. We set t = 110 log(n/β) and m = 48
√

n
log(n/β) . The

hash functions
{

(h1, g1), . . . , (ht, gt)
}

will also be assumed to be public information (this is
O(log(d) log(n/β)) bits of shared randomness).

Public randomness: In addition to the t hash pairs {(h1, g1), . . . , (ht, gt)}, we assume
that the server creates a random partition Π : [n]→ [log d]× [t] over the set of users, that is,
a each user i gets a random pair (`i, ji)← [log(d)]× [t] that represents the index of one of
log(d)× t “buckets.” Moreover, the server uses another random function Q : [n]→ [m] that
assigns to each user i a uniformly random index ri ← [m]. We assume that such random
indices `i, ji, ri are shared between the server and each user. For each ` ∈ [log d] and each
j ∈ [t], we define I`,j ,

{
i : `i = `, ji = j

}
and Ij ,

{
i : ji = j

}
= ∪`∈[log d]I`,j .
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5.1. A Local Randomizer: LocalRnd

For each i ∈ [n], user i runs her own independent copy of Algorithm 1 below, refered to as
LocalRnd, to generate her private report. We note that LocalRnd takes a flag Final ∈ {0, 1}
as an input. The role of this input will become clear when we discuss the full protocol. In a
nutshell, the flag is used to distinguish between two invocations of LocalRnd. In particular,
the local randomizer of each user is invoked twice in the full protocol: once during the
first phase of the protocol (called the pruning phase) where the high-frequency items (heavy
hitters) are identified, and a second time during the final phase (the final estimation phase)
to enable the protocol to get better estimates for the frequencies of the heavy hitters.

Connection to count sketch and Hadamard transform: Our local randomizer can
be thought of as a transformed, compressed (via sampling), and randomized version of the
count sketch. Up to Step 5 in LocalRnd (Algorithm 1), our algorithm follows the standard
count sketch algorithm (Charikar et al., 2002). Starting from Step 6, we start to deviate
from the standard count sketch as we apply Hadamard transform to the user’s signal, then
sample one bit from the result. Indeed Step 6 can be thought of as a composition of two
operations: first, we multiply the indicator vector eci ∈ {0, 1}m by the scaled Hadamard
matrix W (this is equivalent to selecting wci : the ci-th column of W), then we randomly
sample one entry from wci . By doing so, we can achieve significant savings in space and
communication without sacrificing accuracy.

Algorithm 1 LocalRnd

Input: User i input: vi ∈ V, Flag: Final ∈ {0, 1}.
1: Using shared randomness, get random indices (`i, ji)← [log d]× [t] and ri ← [m].
2: if Final = 0 then
3: Set si := gji (vi[1 : `i]) and ci := hji (vi[1 : `i]) . {v[1 : `] denotes the `-bit prefix of

v.}
4: else
5: Set si := gji (vi) and ci := hji (vi)
6: Compute xi := si ·Wri, ci

{Wr, c denotes the sign of the (r, c) entry of Hm (Hadamard matrix of size m).}
7: Generate a randomized version yi of the bit xi:

yi=

{
xi w.p. eε/2

eε/2+1

−xi w.p. 1
eε/2+1

8: return yi.

The output of LocalRnd is 1 bit per invocation. Hence, during the entire span of the
protocol, each user sends 2 bits to the server. Here, we will assume the user’s identity (i.e.,
the index i ∈ [n]) associated with each report is known to the server (e.g., from a higher
layer in the communication protocol stack).
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5.2. A Frequency Oracle: FreqOracle

Before describing our protocol for identifying the heavy hitters and estimating their fre-
quencies, we first discuss a protocol for a simpler task. Suppose we want to allow the server
to estimate the frequencies of some given subset V̂ ⊆ {0, 1}` for some given ` ∈ [log d] based
on the users’ reports. Algorithm 2 describes a protocol, denoted as FreqOracle, for accom-
plishing this task. Note that in this protocol, we assume that all items whose frequencies
are in question are given as inputs.

For each queried item v̂ ∈ V̂ and for each hash index j ∈ [t], FreqOracle starts by
collecting the noisy reports of the collection I`,j of users where each user i ∈ I`,j is assigned
a pair of prefix and hash indices (`i, ji) that matches (`, j). Next, it estimates the inverse
Hadamard transform of the compressed and noisy signal of each user in I`,j . It then sums all

the results and multiplies the outcome by gj(v̂) to obtain an estimate f̂j(v̂) for the frequency
of v̂. As in the count sketch algorithm, this is done for every j ∈ [t], then FreqOracle obtains
a high-confidence estimate for the frequency of v̂ by computing the median of all the t
frequency estimates.

Inverse transform and back to count sketch: We note here that Steps 7 in FreqOracle
(Algorithm 2) can be described as an inverse Hadamard transform of the users’ compressed
and noisy signals. In particular, each term yi Wri,c inside the sum can be described as a
multiplication between yieri (where eri is the indicator vector with 1 at the ri-th position)
and the scaled Hadamard matrix W, followed by picking the c-th entry of the resulting
vector. This brings us back to the standard count sketch representation (Charikar et al.,
2002). The FreqOracle protocol then proceeds to process the frequency estimates in the same
way a count sketch does. Indeed, Step 8 is a standard step in count sketch algorithm where a
high-confidence frequency estimate is obtained via the median technique. Hence, we attain
the functionality of the count sketch algorithm with much less space and communication
by transforming the users’ signals to the Fourier domain, compressing signals via sampling,
and then transforming them back at the server.

5.3. Succinct Histogram via a Tree Aggregation Protocol: TreeHist

We now describe our protocol (Algorithm 3), denoted as TreeHist, that outputs a succinct
histogram, that is, it outputs a list of heavy hitters together with estimates for their fre-
quencies. W.l.o.g., we will assume that n > log(n/β) log(d) since otherwise, we cannot
guarantee less than trivial error (i.e., an error of order n). A high-level description of the
protocol is given in Section 3.1.3.

The protocol is comprised of two main phases: the pruning phase, and the final es-
timation phase. We note that the binary flag Final is used to distinguish between these
two phases. In particular, depending on the value of this flag, the partition of users and
the scaling factor passed to FreqOracle will differ. More precisely, when Final = 0 (the
pruning phase), for each prexix length `, the partition of users is given by the collection{
I`,j : j ∈ [t]

}
and the scaling factor is set as γ = t log d. When Final = 1 (the final phase),

the partition of users is
{
Ij : j ∈ [t]

}
and the scaling factor is γ = t.
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Algorithm 2 FreqOracle

Input: Prefix length: ` ∈ [log d], a subset of `-bit prefixes V̂ ⊆ {0, 1}`, collection of t
disjoint subsets of users:

{
Ĩj : j ∈ [t]

}
, oracle access to items of relevant users:(

vi : i ∈ ∪j∈[t]Ĩj
)

, scaling factor: γ, Flag: Final ∈ {0, 1}. {aε , eε/2+1
eε/2−1 is assumed to

be a global constant seen by FreqOracle.}
1: for v̂ ∈ V̂ do
2: for Hash index j = 1 to t do
3: Set s := gj(v̂) and c := hj(v̂).
4: for Users i ∈ Ĩj do
5: Get user-i’s 1-bit report: yi = LocalRnd(vi,Final)
6: Get user-i’s random index ri = Q(i) using public randomness.
7: Compute the j-th estimate of the frequency of v̂: f̂j(v̂) := γ · aε

∑
i∈Ĩj yi · s ·Wri,c.

8: Compute final estimate for the frequency of v̂: f̂(v̂) := Median
({
f̂j(v̂) : j ∈ [t]

})
.

9: FreqList :=
{(
v̂, f̂(v̂)

)
: v̂ ∈ V̂

}
.

10: return FreqList.

Algorithm 3 TreeHist The Full Protocol

Input: Oracle access to users’ items (vi ∈ V : i ∈ [n]).

1: Set η := 147
√
n log(n/β) log(d)/ε and aε := eε/2+1

eε/2−1 .

2: Set γ := t log d {This setting will change at the final stage of the protocol.}
3: Initialize Prefixes = {⊥}.
4: for Prefix length ` = 1 to log d do
5: Get the collection

{
I`,j : j ∈ [t]

}
using the random partition Π. {See “Public

randomness” above.}
6:

{(
v̂, f̂(v̂)

)
: v̂ ∈ ChildSet (Prefixes)

}
=

FreqOracle

(
`, ChildSet (Prefixes) ,

{
I`,j : j ∈ [t]

}
,
(
vi : i ∈ ∪j∈[t]I`,j

)
, γ, Final = 0

)
.

7: Initialize NewPrefixes = ∅.
8: for v ∈ ChildSet (Prefixes) do
9: if f̂(v̂) ≥ 2η then

10: Add v̂ to NewPrefixes.
11: Update Prefixes← NewPrefixes.

12: Set γ := t

13: SuccHist := FreqOracle

(
log d, Prefixes,

{
Ij : j ∈ [t]

}
,
(
vi : i ∈ [n]

)
, γ, Final = 1

)
.

{Here Ij = ∪`∈[log d]I`,j as defined earlier in the “Public randomness” paragraph.}
14: return SuccHist.
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5.3.1. Running Time and Processing Memory of TreeHist

Running Time: We note that Algorithm FreqOracle (Algorithm 2) is invoked log(d)+1 =
O(log d) times by TreeHist (Algorithm 3): once per each level of the tree and another at the
final estimation phase at the bottom level of the tree.
The main time-consuming step in FreqOracle is the summation in Step 7. This step is

executed O
(√

n logn
log d

)
times in every invocation of FreqOracle since there are O

(√
n

logn log d

)
nodes queried in every level of the tree and for each node FreqOracle computes t ≈ log n
frequency estimates. That is, in total, this step is executed O

(√
n log n log d

)
times in the

TreeHist protocol. A direct implementation would involve summing ≈ n bits each time this
step is executed, and hence would amount for running time of ≈ n1.5. However, we now
show that this can be reduced to ≈ n.
Consider Step 7 of Algorithm FreqOracle when FreqOracle is invoked by TreeHist at any given
prefix level ` ∈ [log d] during the pruning phase. We will not consider the final estimation
phase here since its running time is dominated by that of the pruning phase. Note that

since the size of the basis matrix W is m = O
(√

n
logn

)
, there are only O

(√
n

logn

)
values

that the row index ri can take. Hence, f̂j(v̂) (computed in Step 7) can be expressed as
follows:

f̂j(v̂) = γ · aε
∑
κ∈[m]

 ∑
i∈I`,j : ri=κ

yi

 · s ·Wκ,c.

Thus, to implement Step 7 of FreqOracle for all items (`, j, v̂), we first compute

( ∑
i∈I`,j : ri=κ

yi

)
for every κ ∈ [m], ` ∈ [log d], and j ∈ [t] (this amounts to a running time of O(n) in total).

Then, for every value of (`, j, v̂), computing f̂j(v̂) would require summing m = O
(√

n
logn

)
numbers. Hence, in total, the running time of TreeHist is O

(√
n

logn log d ·m · t log d
)

=

O
(
n
√

log d
)
.

Processing memory: For the implementation described above, Algorithm FreqOracle
maintains m · t · log d sums of at most n bits each. This would require a processing memory
of O

(√
n log1.5(n) log(d)

)
bits. The memory required for all the remaining steps of the

TreeHist protocol does not exceed this amount, and hence, the total processing memory
required by TreeHist is O

(√
n log1.5(n) log(d)

)
bits.

5.3.2. Privacy and Utility Guartantees

In this section we provide the privacy and utility gurantees for the TreeHist protocol.

Theorem 5.1 [ε-Local Differential Privacy of the TreeHist Protocol] The TreeHist protocol
(Algorithm 3) is ε-local differentially private.
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Theorem 5.2 [Utility of the TreeHist Protocol] Let η = 147
√
n log(n/β) log(d)/ε. With

probability at least 1−β (over the choice of all public and private randomnness), the output
SuccHist of the TreeHist protocol (Algorithm 3) satisfies the following properties:

1. SuccHist contains all items v ∈ V with true frequencies above 3η.

2. SuccHist does not contain any item v ∈ V whith true frequency below η.

3. Every frequency estimate in SuccHist is accurate up to an error ≤ 147

√
n log(n/β)

ε

We defer the proofs of Theorems 5.1 and 5.2 to Appendix A.

The following lemma states the error guarantees of the Algorithm FreqOracle used by
the TreeHist protocol. Note that FreqOracle is invoked by the TreeHist protocol during both
pruning and final estimation phases of the protocol. This lemma is central to our proof of
Theorem 5.2.

In the following lemma, we will use {Ĩj} to generically denote the collection of users
subsets passed to FreqOracle. As described early in Section 5.3, the form of this collection
depends on whether the protocol is in the pruning phase (the flag Final = 0) or the final
estimation phase (Final = 1). In particular, for any prefix length ` ∈ [log d], note that
when FreqOracle is invoked by TreeHist in the pruning phase (i.e., Final = 0), the collection{
Ĩj : j ∈ [t]

}
=
{
I`,j : j ∈ [t]

}
and the scaling factor γ = t log d, whereas when FreqOracle

is invoked by TreeHist in the final phase (i.e., Final = 1), the collection
{
Ĩj : j ∈ [t]

}
=
{
Ij :

j ∈ [t]
}

and γ = t. We will use the generic notation
{
Ĩj : j ∈ [t]

}
and γ since the same

proof works for both cases.

Lemma 5.3 Let β ∈ (0, 1). Let the number of hash pairs t ≥ 110 log(n/β), and the size of

Hadamard basis matrix m ≥ 48
√

n
log(n/β) . Consider algorithm FreqOracle (Algorithm 2) as

invoked by the TreeHist protocol (Algorithm 3). For any ` ∈ [log d], suppose that FreqOracle
is invoked on inputs: `, subset V̂ ⊆ {0, 1}` of size |V̂| ≤

√
n, collection of users’ subsets{

Ĩj : j ∈ [t]
}

, and scaling factor γ. Assuming that n ≥ 48t log(d), then, with probability

1− β
log d , we have:

∀ v ∈ V̂ : |f(v)− f(v)|14
√
nγ/ε.

where f̂(v) is the estimate of FreqOracle for the true frequency f(v) of the item v ∈ V̂.

Proof Fix β ∈ (0, 1), ` ∈ [log d], t ≥ 110 log(n/β), m ≥ 48
√

n
log(n/β) , and a subset

V̂ ⊆ {0, 1}` of size |V̂| ≤
√
n.

There are three independent sources of randomness. The first is due to randomness
in the collection

{
Ĩj : j ∈ [t]

}
induced by the random partitioning of users via Π. The

second source of randomness is due to the randomness in the choice of the t hash pairs
(h1, g1), . . . , (ht, gt). The third source of randomness is due to the random row indices
ri, i ∈ [n], generated by Q, and the randomization for privacy (step 7 in Algorithm 1).

Before we discuss the guarantees we can attain under these sources of randomness, we
first introduce some notation. For j ∈ [t], v ∈ V̂, we define fĨj (v) ,

∑
i∈Ĩj 1 (vi[1 : `] = v);
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that is, fĨj (v) is the number of users in Ĩj whose the `-prefix of their items is v, and define

nĨj ,
∣∣Ĩj∣∣, i.e., nĨj is the number of users in Ĩj . Let f̂Ĩ1(v), . . . , f̂Ĩt(v) be independent

Poisson random variables with mean f(v)
γ , and let n̂Ĩ1 , . . . , n̂Ĩt be independent Poisson

random variables with mean n
γ .

For each v ∈ V̂, let

G1(v) =
{
j ∈ [t] : |γfĨj (v)− f(v)| ≤ 4

√
nγ,

n

2
≤ γnĨj ≤ 2n

}
.

Claim 5.4 With probability 1 − β
3 log d over the randomness in

{
Ĩj : j ∈ [t]

}
, for every

v ∈ V̂, we have |G1(v)| ≥ 9
10 t.

Fix v ∈ V̂ and j ∈ [t]. Consider the Poisson random variables hfĨj (v) and n̂Ĩj with

mean f(v)
γ and n

γ , respectively. By Theorem 2.5 (a tail bound for the Poisson distribution),
the union bound, and assuming that n ≥ 48γ (the assumption stated in the lemma), then
with probability at least 0.996, we have

|γf̂Ĩj (v)− f(v)| ≤ 4
√
nγ ,

n

2
≤ γn̂Ĩj ≤ 2n.

Now, consider the sequences of independent Poisson random variables f̂Ĩ1(v), . . . , f̂Ĩt(v) and

n̂Ĩ1 , . . . , n̂Ĩt as defined above. Using the fact that t ≥ 110 log(n/β) ≥ 55 log
(
3en log d

β

)
, then

by Chernoff’s bound, with probability at least 1− β
3en log d , we have∣∣∣{j ∈ [t] : |γf̂Ĩj (v)− f(v)| ≤ 4

√
nγ ,

n

2
≤ γn̂Ĩj ≤ 2n

}∣∣∣ ≥ 9

10
t.

Using Theorem 2.4 (the Poisson approximation), with probability at least 1− β
3
√
n log(d)

, we

have |G1(v)| ≥ 9
10 t. Hence, by the fact that |V̂| ≤

√
n and the union bound, with probability

at least 1− β
3 log d , for all v ∈ V̂, we have |G1(v)| ≥ 9

10 t.
For the remainder of the proof, we will condition on the event in Claim 5.4.
Let wc denote the c-th column of the basis matrix W. Since the prefix length ` is fixed,

we will denote vi[1 : `] (the `-prefix of the item of user i) as vi for brevity.
For each v ∈ V̂, let

G2(v) =
{
j ∈ [t] :

∣∣∣∣ γ∑
i∈Ĩj

gj(vi) · gj(v)

m
· 〈whj(vi),whj(v)〉 − f(v)

∣∣∣∣ ≤ 8
√
γn
}
.

Claim 5.5 Conditioned on the event in Claim 5.4, with probability at least 1− β
3 log d over

the choice of the t hash pairs
{

(hj , gj) : j ∈ [t]
}

, for all v ∈ V̂, we have |G2(v)| ≥ 4
5 t.

Fix v ∈ V̂ and j ∈ G1(v). First consider

∣∣∣∣∑i∈Ĩj
gj(vi)·gj(v)

m · 〈whj(vi),whj(v)〉 − fĨj (v)

∣∣∣∣.
Note that the columns of W are orthogonal, and each of them has norm

√
m. Hence, the
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error quantity above comes from those i ∈ Ĩj with vi 6= v and yet hj(vi) = hj(v). In
particular, we can write this error as∣∣∑

i∈Ĩj

zi gj(vi) gj(v)
∣∣

where zi = 1 (vi 6= v, hj(vi) = hj(v)). Define VBad =
{
v̂ ∈ V̂ : fĨj (v̂) ≥ 2

√
nĨj

}
. Note that∣∣VBad∣∣ ≤√nĨj/2. Now, observe that

P
hj ,gj

 ∣∣∑
i∈Ĩj

zi gj(vi) gj(v)
∣∣ > 2

√
nĨj

 ≤ P
hj ,gj

[∃ v̂ ∈ VBad : hj(v̂) = hj(v)]

+ P
hj ,gj

 ∣∣∑
i∈Ĩj

zi gj(vi) gj(v)
∣∣ > 2

√
nĨj

∣∣ ∀ v̂ ∈ VBad, hj(v̂) 6= hj(v)


By the pairwise independence property of hj and the union bound, the first probability

term on the right hand side is bounded from above by |VBad|m =

√
nĨj
2m . We now consider the

second probability term. Note that the event we conditioned on in the second probability
term implies that for every i ∈ Ĩj where vi 6= v, we must have fĨj (vi) < 2

√
nĨj . Hence,

conditioned on this event, by the pairwise independence of each of hj and gj , we have

Var

∑
i∈Ĩj

zi gj(vi) gj(v)

 =
∑
i∈Ĩj

Var [zi gj(vi)] +
∑
i,k∈Ĩj :
vi=vk 6=v

E [zizk]E [gj(vi)gj(vk)]

≤ nĨj/m+ 2n
3/2

Ĩj
/m ≤ 3n

3/2

Ĩj
/m.

Hence, by using Chebyshev’s inequality, the second probability term is bounded by
3
√
nĨj

4m . Hence, we have

P
hj ,gj

 ∣∣∑
i∈Ĩj

zi gj(vi) gj(v)
∣∣ > 2

√
nĨj

 ≤ 5
√
nĨj

4m
≤
√

log(n/β)

25
√
γ
≤ 1

250
,

where the last inequality follows from the fact that j ∈ G1(v) and the fact that m ≥
48
√

n
log(n/β) . Thus, with probability at least 0.996, we have

∣∣∣∣ ∑
i∈Ĩj

gj(vi) · gj(v)

m
· 〈whj(vi),whj(v)〉 − fĨj (v)

∣∣∣∣ ≤ 2
√
nĨj .
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Now, as we conditioned on the event in Claim 5.4, this implies that with probability at least
0.996, we have∣∣∣∣ γ∑

i∈Ĩj

gj(vi) · gj(v)

m
· 〈whj(vi),whj(v)〉 − f(v)

∣∣∣∣
≤
∣∣∣∣ γ∑

i∈Ĩj

gj(vi) · gj(v)

m
· 〈whj(vi),whj(v)〉 − γfĨj (v)

∣∣∣∣+ |γfĨj (v)− f(v)|

≤ 8
√
γn.

Conditioned on the event of Claim 5.4, |G1(v)| ≥ 9
10 t ≥ 99 log(n/β) ≥ 49 log

(
3
√
n log d
β

)
. We

note also that the sums

{∑
i∈Ĩj

gj(vi)·gj(v)
m · 〈whj(vi),whj(v)〉 : j ∈ [t]

}
are independent.

Thus, conditioned on the event of Claim 5.4, by Chernoff’s bound, with probability at least
1 − β

3
√
n log d

, we have |G2(v)| ≥ 22
25 |G1(v)| ≥ 4

5 t. Hence, by the fact that |V̂| ≤
√
n and the

union bound, with probability at least 1 − β
3 log d , for all v ∈ V̂, we have |G2(v)| ≥ 4

5 t. We
continue the proof while conditioning on this event as well.

For every i ∈ [n] let ri ← [m] be the row index chosen uniformly at random for user
i using the random function Q, and let yi denote the randomized bit generated by user
i in step 7 of Algorithm 1. As was denoted in algorithm FreqOracle, for each v ∈ V̂, let
f̂j(v) = γaε

∑
i∈Ĩj yi gj(v) Wri,hj(v) denote the j-th frequency estimate of FreqOracle for

v ∈ V̂.
For each v ∈ V̂, let

G3(v) =
{
j ∈ [t] :

∣∣f̂j(v)− f(v)
∣∣ ≤ 14

√
nγ/ε

}
.

Claim 5.6 Conditioned on the events in Claims 5.4 and 5.5, with probability at least 1 −
β

3 log d over the randomness in
{

(ri, yi) : i ∈ Ĩj , j ∈ [t]
}

, for all v ∈ V̂, we have |G3(v)| ≥ 7
10 t

Fix v ∈ V̂ and j ∈ G2(v). Note that, conditioned on any realization for Ĩj , each term in the
sum ∑

i∈Ĩj

(
aε yi gj(v) Wri,hj(v) −

gj(vi) gj(v)

m
〈whj(vi),whj(v)〉

)
is independent, zero mean random variable whose support length is bounded by aε + 1 =
O
(
1
ε

)
. Hence, by Chernoff’s bound, with probability at least 0.99, we have

∣∣ ∑
i∈Ĩj

(
aε yi gj(v) Wri,hj(v) −

gj(vi) gj(v)

m
〈whj(vi),whj(v)〉

)∣∣ ≤ 4
√
nĨj/ε.

Thus, conditioned on the events in Claims 5.4 and 5.5, with probability at least 0.99, we
have ∣∣γ∑

i∈Ĩj

aε yi gj(v) Wri,hj(v) − f(v)
∣∣ ≤ 14

√
γn/ε,
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i.e., |f̂j(v)− f(v)
∣∣ ≤ 14

√
nγ/ε.

Conditioned on the event of Claim 5.5, |G2(v)| ≥ 4
5 t ≥ 88 log(n/β) ≥ 44 log

(
3
√
n log d
β

)
.

We note also that the above sums for j = 1, . . . , t are independent. Thus, conditioned on
the event of Claim 5.5, by Chernoff’s bound, with probability at least 1− β

3
√
n log d

, we have

|G3(v)| ≥ 22
25 |G2(v)| ≥ 88

125 t ≥
7
10 t. Hence, by the fact that |V̂| ≤

√
n and the union bound,

with probability at least 1− β
3 log d , for all v ∈ V̂, we have |G3(v)| ≥ 7

10 t.

By combining Claims 5.4, 5.5, and 5.6, we conclude that with probability at least 1− β
log d ,

for all v ∈ V̂, we have ∣∣∣∣{j ∈ [t] : |f̂j(v)− f(v)| ≤ 14
√
nγ/ε

}∣∣∣∣ > 1

2
t.

Since for any item v, the final frequency estimate f̂(v) generated by FreqOracle is the
median of f̂1(v), . . . , f̂t(v), then the above implies that with probability at least 1 − β

log d ,

for all v ∈ V̂, we have |f̂(v)− f(v)| ≤ 14
√
nγ/ε. This completes the proof of the lemma.

6. Locally Private Heavy-hitters bit-by-bit: The Bitstogram Protocol

In this section we provide the full details for our Bitstogram protocol. We will use the
following notation. Let S ∈ Vn be a database, which may be distributed across n users
(each holding one row). For v ∈ V, we will be interested in estimating the the multiplicity
of v in S, i.e., fS(v) = |{vi ∈ S : vi = v}|. As we explained in Section 3.2, we provide both
an alternative frequency oracle protocol, as well as an alternative protocol for identifying
the heavy-hitters.

6.1. Warmup: A Simple Protocol for Heavy-Hitters

For readability, we first present a simplification of our protocol that captures most of the
ideas presented in Section 3.2. This simplification does not achieve the optimal error rate,
space complexity, and time complexity that we aim for. We will later modify this construc-
tion in order to reduce these complexities.

6.1.1. Frequency Oracle

Our protocols use the simple local randomizer R (Algorithm 4), where every user holds one
bit, and flips it with probability 1/(eε + 1).

Algorithm 4 R: Basic Randomizer

Inputs: x ∈ {±1}, and privacy parameter ε.

1. Generate and return a random bit z =

{
x w.p. eε/(eε + 1)
−x w.p. 1/(eε + 1)
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Let Z ∈ {±1}d×n be a matrix chosen uniformly at random, and assume that Z is
publicly known. That is, for every domain element v ∈ V and every user j ∈ [n], we
have a random bit Z[v, j] ∈ {±1}. As Z is publicly known, every user j can identify its
corresponding bit Z[vj , j], where vj ∈ V is the input of user j. We now present a simple
protocol, ExplicitHist, in which users send randomized responses of their corresponding
bits in this matrix. As we show, this allows the server to estimate the frequency of every
domain element.

Algorithm 5 ExplicitHist

Public randomness: Uniformly random matrix Z ∈ {±1}d×n.

Setting: Each player j ∈ [n] holds a value vj ∈ V. Define S = (v1, · · · , vn).

Define S̃ = (ṽ1, · · · , ṽn) where ṽj = Z [vj , j].

Input: Oracle access to S̃.

1. For j ∈ [n], get user-j’s 1-bit report: yj ← R(ṽj).

2. On input v ∈ V, return a(v) = eε+1
eε−1 ·

∑
j∈[n] yj · Z[v, j], and wait for the next input.

Lemma 6.1 Let ε ≤ 1, and fix a subset V ⊆ V of size d′ ≤ d. With probability at least
1− β, algorithm ExplicitHist answers every v ∈ V with a(v) satisfying:

|a(v)− fS(v)| ≤ 3

ε

√
n · ln(4d′/β).

Proof Fix v ∈ V , and denote c(v) =
∑

j∈[n] yj · Z[v, j], and recall that algorithm

ExplicitHist answers the query v with a(v) = eε+1
eε−1 · c(v). We start by analyzing the

expectation of c(v):

E[c(v)] =
∑
j∈[n]

E [yj · Z[v, j]] =
∑

j∈[n]:vj=v

E [yj · Z[v, j]] +
∑

j∈[n]:vj 6=v

E [yj · Z[v, j]]

=
∑

j∈[n]:vj=v

E [yj · Z[v, j]] +
∑

j∈[n]:vj 6=v

E [yj ] · E [Z[v, j]] = fS(v) · e
ε − 1

eε + 1
.

That is, c(v) can be expressed as two sums of ±1 independent random variables: fS(v)
variables with expectation eε−1

eε+1 , and (n − fS(v)) variables with expectation 0. Using the

Hoeffding bound, with probability at least 1 − β
d′ we have that |c(v) − eε−1

eε+1 · fS(v)| ≤√
n · ln(4d′/β). That is, |a(v)− fS(v)| ≤ eε+1

eε−1 ·
√
n · ln(4d′/β). Using the union bound, this

holds simultaneously for every v ∈ V with probability at least 1− β.

Observation 6.2 For the analysis above it suffices that, for every j ∈ [n], the entries
of column j of Z are only pairwise independent. Furthermore, appealing to Lemma 2.3
(concentration of k-wise independent random variables) instead of the Hoeffding bound, is
suffices that, for every v ∈ V, the entries of row v of Z are only k-wise independent, for
k = 3 ln(d/β).
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6.1.2. A Simple Heavy Hitters Protocol

We next give a (simplified version) of our construction that uses a frequency oracle protocol
with worst-case error τ in order to identify the heavy-hitters. Let h : V → [T ] be a (publicly
known) random hash function, mapping domain elements into [T ], where T will be set later.
We will use h in order to identify the heavy-hitters. To that end, let v∗ ∈ V denote such
a heavy-hitter, appearing at least 2τ times in the database S, and denote t∗ = h(v∗).
Assuming that T is big enough, w.h.p. we will have that v∗ is the only input element (from
S) that is mapped (by h) into the hash value t∗. Assuming that this is indeed the case, we
will now identify v∗ bit by bit.

For ` ∈ [log d], denote S` = (h(vj), vj,`)j∈[n], where vj,` is bit ` of vj . That is, S` is a

database over the domain ([T ]×{0, 1}), where the row corresponding to user j is (h(vj), vj,`).
Observe that every user can compute her own row locally. As v∗ is a heavy-hitter, for every
` ∈ [log d] we have that (t∗, v∗` ) appears in S` at least 2τ times, where v∗` is bit ` of v∗. On
the other hand, as we assumed that v∗ is the only input element that is mapped into t∗ we
get that (t∗, 1− v∗` ) does not appear in S` at all. Recall that our frequency oracle has error
at most τ , and hence, we can use it to accurately determine the bits of v∗. The details are
given in algorithm SuccinctHist.

Algorithm 6 SuccinctHist

Public randomness: Random hash function h : V → [T ].
Random partition of [n] into log d subsets I1, · · · , Ilog d.

Setting: Each player j ∈ [n] holds a value vj ∈ V. Define S = (v1, · · · , vn).
For ` ∈ [log d], let S` = (h(vj), vj,`)j∈I` , where vj,` is bit ` of vj .

That is, S` is a database over the domain [T ]×{0, 1}.
Input: Oracle access to S and S` for ` ∈ [log d].

1. For ` ∈ [log d], use ExplicitHist(S`) with ε
2 to get a`(t, b) for all (t, b) ∈ [T ]×{0, 1}.

2. For t ∈ [T ], define v̂t ∈ V, where bit ` of v̂t is v̂t,` = argmax{a`(t, 0), a`(t, 1)}.

3. Use ExplicitHist(S) with privacy parameter ε
2 to obtain a(v̂t) for all t ∈ [T ].

4. Return list L = {(v̂t, a(v̂t)) : t ∈ [T ]}.

Lemma 6.3 Let ε ≤ 1, denote w , 32 log(d) log(16 log d) + 48
ε

√
2n log d · ln(64 log d), and

set T = 32n
w . Algorithm SuccinctHist returns a list L of length T satisfying:

1. With probability 1−β, for every (v, a) ∈ L we have that |a−fS(v)| ≤ 6
ε

√
n · ln(4T/β).

2. For every v ∈ V s.t. fS(v) ≥ w, with probability 1/2 we have that v is in L.

Remark 3 In this simplified version of our protocol, we successfully recover a heavy-hitter
only if we recover (exactly) all of its bits. As will be illustrated in Section 6.2.2, this
requirement can be relaxed using an error correction code s.t. in order to recover a heavy-
hitter v∗ it suffices to recover correctly only part of its bits.

26



Practical Locally Private Heavy Hitters

Proof Item 1 of the lemma follows directly from Lemma 6.1. We now prove item 2.
Assuming that n ≥ 12 log(d) log(12 log d), by the Chernoff bound, with probability at least
7/8 (over partitioning [n] into subsets I1, · · · , Ilog d), for every ` ∈ [log d] we have that
n

2 log d ≤ |I`| ≤
2n
log d . We continue the analysis assuming that this is the case.

Fix v∗ ∈ V s.t. fS(v∗) ≥ w, and consider the following good event (over sampling h):

Event E1 : |{v ∈ S : v 6= v∗ and h(v) = h(v∗)}| ≤ w/4.

Event E1 states that v∗ is mapped (by the hash function h) into a cell without too many
collisions with different input elements. Denote t∗ = h(v∗). While the multiplicity of v∗ in
S is at least w, event E1 states that other than v∗ there are at most w/4 elements which
are mapped into t∗. That is, v∗ dominates the cell t∗. We first show that if E1 occurs, then
w.h.p. v∗ is in the list L.

Asserting that w ≥ 32 log(d) log(16 log d), by the Chernoff bound we get that with
probability 7/8 (over partitioning [n] into subsets I1, · · · , Ilog d), for every ` ∈ [log d] we
have that

fS`(h(v∗), v∗` ) ≥ fS`(h(v∗), 1− v∗` ) +
w

4 log d
.

If that is the case, then by the properties of algorithm ExplicitHist, for

w ≥ 48

ε

√
2n log d · ln(64 log d),

with probability at least 1 − 1
8 log d we have that v̂t∗,` = v∗` , where t∗ = h(v∗). Using the

union bound, this holds simultaneously for all ` ∈ [log d] with probability at least 7/8, in
which case v∗ = v̂t∗ is in the list L.

It remains to show that Event E1 occurs with high probability. To that end, observe
that

Eh [| {v ∈ S : v 6= v∗ and h(v) = h(v∗)} |] =
∑

v∈S:v 6=v∗
Eh
[
1h(v)=h(v∗)

]
≤ n

T
.

Thus, by Markov’s inequality, we have that

Pr

[
| {v ∈ S : v 6= v∗ and h(v) = h(v∗)} | ≥ 8n

T

]
≤ 1

8
.

Setting T = 32n
w completes the proof.

6.2. Reducing Space and Time Complexities

In this section we give the full details for algorithm Bitstogram.

6.2.1. Space and Time Efficient Frequency Oracle

We modify algorithm ExplicitHist to obtain our frequency oracle with improved time
and space complexity – algorithm Hashtogram. Intuitively, this algorithm is obtained by
applying algorithm ExplicitHist after hashing every domain element using a (pairwise
independent) hash function (however, to boost accuracy, we use several hash functions).
This will mean that the random matrix Z we use only has ≈

√
n rows, instead on |V| rows.

As we will see, this will allow us to efficiently implement the algorithm.
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Algorithm 7 Hashtogram

Public randomness: Random partition of [n] into R subsets I1, · · · , IR.
Random hash functions h1, · · · , hR mapping V to [T ].
Uniformly random matrix Z ∈ {±1}T×n.

Setting: Each player j ∈ [n] holds a value vj ∈ V. Define S = (v1, · · · , vn).

Define S̃ = (ṽ1, · · · , ṽn), where ṽj = Z [hr(vj), j] and hr is s.t. j ∈ Ir.
Input: Oracle access to S̃.

1. For j ∈ [n], get user-j’s 1-bit report: yj ← R(ṽj).

2. For every (r, t) ∈ [R]×[T ] compute ar(t) = eε+1
eε−1 ·

∑
j∈Ir yj · Z[t, j].

3. On input v ∈ V, return a(v) = R ·Median{a1(h1(v)), · · · , aR(hR(v))}, and wait for
the next input.

Lemma 6.4 Algorithm Hashtogram satisfies ε-LDP.

Lemma 6.5 Let ε ≤ 1, and fix a subset V ⊆ V of size d′ ≤ d to be queried to algorithm
Hashtogram. Let algorithm Hashtogram be executed with R ≥ 132 log(4d′/β), and T ≥
ε2 · log(d′/β) + ε ·

√
n/ log(d′/β), and n ≥ 8R log(8d′/β). With probability at least 1 − β,

algorithm Hashtogram answers every v ∈ V with a(v) satisfying:

|a(v)− fS(v)| ≤ 27

ε
·

√
nR log(

2Rd′

β
).

Observe that the error in the lemma is sub-optimal, as the optimal error behaves like
1
ε

√
n log d. However, we will only use Lemma 6.5 with constant d′ and constant β, and

hence, will not be effected by this issue. A similar analysis (for the same algorithm) gives
better bounds for other settings of parameters. Specifically,

Lemma 6.6 Let ε ≤ 1. Fix a subset V ⊆ V of size d′ ≤ d to be queried to algorithm
Hashtogram. Let algorithm Hashtogram be executed with R ≥ 300 log(12nd′/β) and n ≥
43R and T ≥ ε ·

√
n/ log(nd′/β). With probability at least 1 − β, algorithm Hashtogram

answers every v ∈ V with a(v) satisfying:

|a(v)− fS(v)| ≤ 400

ε
·

√
n log

(
12nd′

β

)
.

As the analysis of the two lemmas are very similar, we only present the proof of
Lemma 6.6. The proof of Lemma 6.5 appears in Section B for completness.
Proof [Proof of Lemma 6.6] Consider the following good event:

Event E1 (over sampling h1, · · ·, hR):
For every query v∗ ∈ V there exists a subset Rv

∗
1 ⊆ [R] of size |Rv∗1 | ≥ 7

8R s.t. for every
r∗ ∈ Rv∗1 it holds that |{v ∈ S : v 6= v∗ and hr∗(v) = hr∗(v

∗)}| ≤ 16n
T .
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Event E1 states that for at least 7R/8 of the hash functions, we have that v∗ is mapped
into a cell without too many collisions with different input elements. Informally, for every
single hash function hr, algorithm Hashtogram estimates the number of occurrences of
hr(v

∗) in S. Hence, if event E1 occurs, then most of the estimations result in accurate
answers. We start by showing that event E1 happens with high probability. To that end,
fix v∗ ∈ V and fix r∗ ∈ [R]. We have that

Ehr∗ [| {v ∈ S : v 6= v∗ and hr∗(v) = hr∗(v
∗)} |] =

∑
v∈S:v 6=v∗

Ehr∗
[
1hr∗ (v)=hr∗ (v∗)

]
≤ n

T
.

Thus, by Markov’s inequality, we have that

Pr
hr∗

[
| {v ∈ S : v 6= v∗ and hr∗(v) = hr∗(v

∗)} | ≥ 16n

T

]
≤ 1

16
.

As the hash functions are independent from each other, for R ≥ 48 ln(d
′

β ), by the Chernoff

bound we get that with probability at least 1−β/d′ (over sampling h1, · · · , hR) there exists
a subset Rv

∗
1 ⊆ [R] of size |Rv∗1 | ≥ 7

8R s.t. for every r∗ ∈ Rv∗1 it holds that

|{v ∈ S : v 6= v∗ and hr∗(v) = hr∗(v
∗)}| ≤ 16n

T
.

Using the union bound over every v∗ ∈ V , we have that event E1 happens with probability
at least 1− β.

Event E2 (over partitioning [n] into I1, · · ·, IR):
There exists a subset R2 ⊆ [R] of size |R2| ≥ 7

8R s.t. for every r ∈ R2 it holds that
n
2R ≤ |Ir| ≤

2n
R .

Following Theorem 2.4 (the Poisson approximation), we analyze event E2 in the Poisson
case. To that end, let Î1, · · · , ÎR be independent Poisson random variables with mean n/R.
Now fix r ∈ R. Using a tail bound for the Poisson distribution (see Theorem 2.5), assuming
that n ≥ 43R we have that Pr[ n2R ≤ Îr ≤ 2n

r ] ≥ 99
100 . As Î1, · · · , ÎR are independent,

assuming that R ≥ 300 ln(3nβ ), by the Chernoff bound we get that event E2 happens with

probability at least 1 − β
3n in the Poisson case. Hence, by Theorem 2.4, event E2 happens

with probability at least 1− β.8

For every r ∈ [R], let Sr = (vj)j∈Ir denote a database containing the data of all users j
s.t. j ∈ Ir. Also for v∗ ∈ V and r ∈ [R] denote Sr,v

∗
, {v ∈ S : hr(v) = hr(v

∗)}. That is,
|Sr,v∗ | is the number of users j s.t. hr(vj) = hr(v

∗). Furthermore, for v∗ ∈ V and r ∈ [R]
denote Iv

∗
r , {v ∈ Sr : hr(v) = hr(v

∗)}. That is, |Iv∗r | is the number of users j s.t. j ∈ Ir
and hr(vj) = hr(v

∗). Observe that |Sr,v∗ | ≥ fS(v∗) and that |Iv∗r | ≥ fSr(v∗).

8. Alternatively, instead of the requirement on R, it suffices to ensure that n ≥ O(R log(R
β

)). In such a

case, by the Chernoff bound, for every fixed r ∈ [R] we will have that n
2R
≤ |Ir| ≤ 2n

r
with probability at

least 1− β
R

. Hence, using the union bound, this happens simultaneously for all r ∈ [R] with probability

at least 1− β. Observe that at any case we already require that R ≥ O(log( d
′

β
)) for Event E1.
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Event E3 (over partitioning [n] into I1, · · ·, IR):
For every query v∗ ∈ V there exists a subset Rv

∗
3 ⊆ [R] of size |Rv∗3 | ≥ 9

10R s.t. for every

r∗ ∈ Rv∗3 it holds that
∣∣ R · |Iv∗r | − |Sr,v∗ | ∣∣ ≤ √8Rn

We analyze event E3 in the Poisson case. To that end, fix v∗ ∈ V , and let Îv
∗

1 , · · · , Îv∗R
be independent Poisson random variables with mean |S

r,v∗ |
R . Now fix r ∈ [R]. Using a tail

bound for the Poisson distribution (see Theorem 2.5), with probability at least 19/20 we
have that ∣∣∣ R · Îv∗r − |Sr,v∗ | ∣∣∣ ≤ √8Rn. (1)

As Îv
∗

1 , · · · , Îv∗R are independent, assuming that R ≥ 300 ln(3nd
′

β ), by the Chernoff bound

we get that with probability at least 1− β
3nd′ , Inequality (1) holds for at least 9/10 choices

of r ∈ [R]. By Theorem 2.4 (the Poisson approximation), with probability at least 1 − β
d′ ,

this is also the case for the random variables |Iv∗r |. That is, with probability at least 1− β
d′ ,

there exists a subset Rv
∗

3 ⊆ [R] of size |Rv∗3 | ≥ 9
10R s.t. for every r∗ ∈ Rv∗3 it holds that∣∣∣ R · |Iv∗r | − |Sr,v∗ | ∣∣∣ ≤ √8Rn.

Using the union bound over every choice of v∗ ∈ V , we get that event E3 happens with
probability at least 1− β.9

Event E4 (over sampling Z and the coins of the local randomizers):
For every query v∗ ∈ V there exists a subset Rv

∗
4 ⊆ [R] of size |Rv∗4 | ≥ 7

8 ·
9
10R s.t. for every

r∗ ∈ Rv∗4 it holds that
∣∣ R · ar∗(hr∗(v∗))−R · |Iv∗r∗ | ∣∣ ≤ eε+1

eε−1 ·
√

11nR.

For v∗ ∈ V and r ∈ [R] denote cr(v
∗) =

∑
j∈Ir yj ·Z[hr(v

∗), j], and recall that algorithm

Hashtogram answers the query v∗ ∈ V with a(v∗) = R · eε+1
eε−1 · Median{cr(v∗)}r∈[R]. Fix

v∗ ∈ V and r ∈ R2 (where R2 ⊆ [R] is the subset from event E2). We now analyze the
expectation of cr(v

∗):

E[cr(v
∗)] =

∑
j∈Ir

E [yj · Z[hr(v
∗), j]]

=
∑

j∈Ir: hr(vj)=hr(v∗)

E [yj · Z[hr(v
∗), j]] +

∑
j∈Ir: hr(vj)6=hr(v∗)

E [yj · Z[hr(v
∗), j]]

=
∑

j∈Ir: hr(vj)=hr(v∗)

E [yj · Z[hr(v
∗), j]] +

∑
j∈Ir: hr(vj)6=hr(v∗)

E [yj ] · E [Z[hr(v
∗), j]]

= |{v ∈ Sr : hr(v) = hr(v
∗)}| · e

ε − 1

eε + 1
, |Iv∗r | ·

eε − 1

eε + 1

9. Alternatively, instead of the requirement on R, it suffices to ensure that n ≥ O(R log( d
′R
β

)), in which
such the analysis follows from the Chernoff bound.
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That is, cr(v
∗) can be expressed as two sums of ±1 independent random variables: |Iv∗r |

variables with expectation eε−1
eε+1 , and (|Ir| − |Iv

∗
r |) variables with expectation 0 (recall that

by event E2 we have n
2R ≤ |Ir| ≤

2n
R ). Using the Hoeffding bound, with probability at least

43/44 we have that
∣∣∣ cr(v∗)− eε−1

eε+1 · |I
v∗
r |
∣∣∣ ≤√11n/R. That is,∣∣∣ R · ar(hr(v∗))−R · |Iv∗r | ∣∣∣ ≤ eε + 1

eε − 1
·
√

11nR. (2)

Fix v∗ ∈ V , and observe that the above sums are independent for different values of r.
Hence, using the Chernoff bound and asserting that R ≥ 150 ln(d′/β), for that fixed v∗ ∈M ,
with probability at least 1−β/d′ we have that Inequality (2) holds for at least 7R/8 choices
of r ∈ R1. Using the union bound, with probability at least 1 − β, this is true for every
v∗ ∈ V simultaneously. That is, event E4 happens with probability at least 1− β.

We are now ready to complete the proof, bu showing that the guarantees of the lemma
holds whenever events E1, E2, E3, E4 occur. Fix v∗ ∈ V . Combining events E3 and E4, we
get that for every r ∈ Rv∗3 ∩Rv

∗
4∣∣∣ R · ar(hr(v∗))− |Sr,v∗ | ∣∣∣ ≤ eε + 1

eε − 1
·
√

11nR+
√

8Rn. (3)

Recall that for every r ∈ [R] we have that |Sr,v∗ | ≥ fS(v∗). Furthermore, by event E1,
for every r ∈ Rv∗1 we have that |Sr,v∗ | ≤ fS(v∗) + 16n

T . Hence, for every r ∈ Rv∗1 ∩Rv
∗

3 ∩Rv
∗

4

we have that

| R · ar(hr(v∗))− fS(v∗) | ≤ eε + 1

eε − 1
·
√

11nR+
√

8Rn+
16n

T
, error(v∗).

That is, for every r ∈ Rv∗1 ∩Rv
∗

3 ∩Rv
∗

4 we have that R ·ar(hr(v∗)) is accurate up to error(v∗).
As |Rv∗1 ∩ Rv

∗
3 ∩ Rv

∗
4 | ≥ 9

16R, and as algorithm Hashtogram answers v∗ with a(v∗) chosen
as the median of {R · ar(hr(v∗))}, we get that |a(v∗) − fS(v∗)| ≤ error(v∗). This holds for
every v∗ ∈M .

Processing Memory. Algorithm Hashtogram maintains (on step 2) R ·T sums of at most
n bits. This requires O(R · T · log n) bits for processing memory.

Runtime. Observe that a direct implementation of (step 2 of) algorithm Hashtogram

consists of summing a total of T ≈
√
n bits per user, and hence results in a runtime of

≈ n1.5. As we next explain, this can be reduced to ≈ n. First observe that for the analysis
of Lemma 6.6 (specifically, for the analysis of Event E4), it suffices that, for every j ∈ [n], the
entries of column j of Z are only pairwise independent. That is, each column of Z consists of
T ≈

√
n pairwise independent bits. We can represent such a column using log T ≈ log

√
n

bits, in which case there are at most T ≈
√
n choices for the columns of Z (see, e.g.,

Construction 3.18 of Vadhan (2012)). So, even though the matrix Z contains n columns, it
has at most T ≈

√
n distinct columns. Let us denote those distinct columns as z1, . . . , zT ,

where zγ [t] denotes the bit in position t in this column. We will write Z[·, j] = zγ to indicate
that the jth column of Z is zγ . With this notation, we can restate ar(t) (computed on step 2
of algorithm Hashtogram) as follows.
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ar(t) =
eε + 1

eε − 1
·
∑
j∈Ir

yj · Z[t, j] =
eε + 1

eε − 1
·
∑

1≤γ≤T

 ∑
j∈Ir s.t. Z[·,j]=zγ

yj

 · zγ [t].

Thus, we can implement step 2 of algorithm Hashtogram by first computing(∑
j∈Ir s.t. Z[·,j]=zγ yj

)
for every 1 ≤ γ ≤ T and 1 ≤ r ≤ R (this amounts to summing

a total of n bits, and can be done it time ≈ n). Afterwards, for every choice of (r, t),
computing ar(t) consists of summing T ≈

√
n elements. Overall, step 2 of the algorithm

can be executed in time ≈ R · T · T ≈ n log n.

6.2.2. The Full Protocol

We are now ready to present the full Bitstogram protocol. This protocol is obtained
by repeating the the strategy outlined in algorithm SuccinctHist to boost the success
probability, and by using an error correction code to reduce the error (as we mentioned in
Remark 3).

Algorithm 8 Bitstogram

Tool used: Binary code (Enc,Dec), where Enc : V → V ′, correcting 1
8 -fraction of errors

with constant rate, that is log d′ = O(log d), where d = |V| and d′ = |V ′|.
Public randomness: Random partition of [n] into R log d′ subsets Ir,` for (r, `) ∈

[R]×[log d′]. Random hash functions h1, · · · , hR mapping V ′ to [T ].

Setting: Each player j ∈ [n] holds a value vj ∈ V. Define S = (v1, · · · , vn).
For every j ∈ [n] denote cj = Enc(vj) ∈ V ′.
For (r, `) ∈ [R]×[log d′], let Sr,` = (hr(cj), cj,`)j∈Ir,` , where cj,` is bit ` of cj .

That is, Sr,` is a database over the domain [T ]×{0, 1}.
Input: Oracle access to S and to Sr,` for every (r, `) ∈ [R]×[log d′].

1. For (r, `) ∈ [R]×[log d′], use Hashtogram(Sr,`) with ε
2 to get

{
ar,`(t, b) : (t, b) ∈

[T ]×{0, 1}
}

.

2. For (r, t) ∈ [R]×[T ], define ĉr,t ∈ V ′, where bit ` of ĉr,t is ĉr,t,` =
argmax{ar,`(t, 0), ar,`(t, 1)}. That is, if ar,`(t, 0) ≥ ar,`(t, 1) then ĉr,t,` = 0, and other-
wise ĉr,t,` = 1.

3. For (r, t) ∈ [R]×[T ], define v̂r,t = Dec(ĉr,t) ∈ V.

4. Use Hashtogram(S) with privacy parameter ε
2 to obtain a(v̂r,t) for all (r, t) ∈ [R]×[T ].

5. Return list L = {(v̂r,t, a(v̂r,t)) : (r, t) ∈ [R]×[T ]}.

Remark 4 The execution of Hashtogram on step 4 is made using the parameters stated
in Lemma 6.6, in order to obtain accurate answers for every fixture of n queries with
probability 1 − β. The executions of Hashtogram on step 1 are made using the parameters
stated in Lemma 6.5, in order to obtain accurate answers for every fixture of two queries
with probability 255/256. Observe that every such instantiation of Hashtogram is queried 2T
times, and hence, some of these queries might result in inaccurate answers. Nevertheless,
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as will be made clear later, due to our use of error correction code, these inaccurate answers
will not effect the final outcome of the algorithm.

Lemma 6.7 Algorithm Bitstogram satisfies ε-LDP.

Lemma 6.8 Let ε ≤ 1, and assume that log d ≥ O(log(n/β)). Set R = O (log(1/β)) and

T = O
(

ε·n√
R log d

)
. Algorithm Bitstogram returns a list L of length R · T satisfying:

1. With probability 1−β, for every (v, a) ∈ L we have that |a−fS(v)| ≤ O
(
1
ε

√
n log(n/β)

)
.

2. With probability 1− β, for every v ∈ V s.t. fS(v) ≥ O
(
1
ε

√
n log(d) log( 1

β )
)

, we have

that v is in L.

Remark 5 The assumption in Lemma 6.8 that log d ≥ O(log(n/β)) is without loss of
generality, as otherwise the universe size d is small enough to allow the server to run in
time linear in d, which makes the problem much easier. Specifically, if d <

√
n then we can

instantiate the frequency oracle of Lemma 6.1, and query it for every domain element. As
d <

√
n, this can be executed in time ≈ n (the runtime analysis is similar to the one in

Section 6.2.1). Otherwise, if d ≥
√
n then we already have that log d ≥ O(log n), and (if

necessary) we can pad the representation of domain elements to satisfy the assumption that
log d ≥ O(log(n/β)).

Proof [Proof of Lemma 6.8] Item 1 of the lemma follows directly from Lemma 6.6. We
now prove item 2. Consider the following good event (over sampling h1, · · · , hR):

Event E1 (over sampling h1, · · ·, hR):
There exists a subset R1 ⊆ [R] of size |R1| ≥ 7

8R s.t. for every r∗ ∈ R1 and for every v∗ ∈ S
satisfying fS(v∗) ≥ n1.5

T it holds that |{v ∈ S : v 6= v∗ and hr∗(Enc(v)) = hr∗(Enc(v∗))}| ≤
16n1.5

T .

We start by showing that event E1 happens with high probability. To that end, fix
v∗ ∈ S and fix r∗ ∈ [R]. We have that

Ehr∗ [| {v ∈ S : v 6= v∗ and hr∗(Enc(v)) = hr∗(Enc(v∗))} |]

=
∑

v∈S:v 6=v∗
Ehr∗

[
1hr∗ (Enc(v))=hr∗ (Enc(v∗))

]
≤ n

T
.

Thus, by Markov’s inequality, we have that

Pr
hr∗

[
| {v ∈ S : v 6= v∗ and hr∗(Enc(v)) = hr∗(Enc(v∗))} | ≥ 16n1.5

T

]
≤ 1

16
√
n
.
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Assuming that T ≤ n, there could be at most
√
n “heavy” elements v∗ satisfying fS(v∗) ≥

n1.5

T . Hence, using the union bound,

Pr
hr∗

 ∃v∗ s.t. fS(v∗) ≥ n1.5

T
and

| {v ∈ S : v 6= v∗ and hr∗(Enc(v)) = hr∗(Enc(v∗))} | ≥ 16n1.5

T

 ≤ 1

16
.

As the hash functions are independent from each other, for R ≥ 48 ln( 1
β ), by the Chernoff

bound we get that with probability at least 1 − β (over sampling h1, · · · , hR) there exists

a subset R1 ⊆ [R] of size |R1| ≥ 7
8R s.t. for every v∗ satisfying fS(v∗) ≥ n1.5

T and every
r∗ ∈ R1 it holds that

|{v ∈ S : v 6= v∗ and hr∗(Enc(v)) = hr∗(Enc(v∗))}| ≤ 16n1.5

T
.

That is, event E1 happens with probability at least 1−β. We continue the analysis assuming
that event E1 occurs.

Event E2 (over partitioning [n] into {Ir,`}):
There exists a subset R2 ⊆ [R] of size |R2| ≥ 7

8R s.t. for every r∗ ∈ R2, there exist at least
31
32 log d′ choices for `∗ ∈ [log d′] for which |Ir∗,`∗ | ≤ 2n

R log d′ .

Following Theorem 2.4 (the Poisson approximation), we analyze event E2 in the Poisson
case. To that end, let Ĩ1,1, · · · , ĨR,log d′ be independent Poisson random variables with mean

n
R log d′ . Now fix (r, `) ∈ [R]×[log d′]. Using a tail bound for the Poisson distribution (see

Theorem 2.5), assuming that n ≥ 10R log d′ we have that Pr[Ĩr,` ≤ 2n
R log d′ ] ≥

99
100 . As

Ĩ1,1, · · · , ĨR,log d′ are independent, assuming that R log d′ ≥ 300 ln(3nβ ), by the Chernoff

bound we get that with probability at least 1− β
3n there are at least 98

100R log d′ choices for

(r, `) ∈ [R]×[log d′] s.t. Ĩr,` ≤ 2n
R log d′ . Hence, by Theorem 2.4, with probability at least 1−β

there are at least 98
100R log d′ choices for (r, `) ∈ [R]×[log d′] s.t. |Ir,`| ≤ 2n

R log d′ . If that is the

case, then there must be at least 7R
8 choices for r ∈ [R] for which∣∣∣∣{` ∈ [log d′] : |Ir,`| ≤

2n

R log d′

}∣∣∣∣ ≥ 31

32
log d′.

That is, Pr [E2] ≥ 1− β.

Event E3 (over partitioning [n] into {Ir,`}):
For every v∗ ∈ S s.t. fS(v∗) ≥ n1.5

T there exists a subset Rv
∗

3 ⊆ [R] of size |Rv∗3 | ≥ 7
8R s.t. for

every r∗ ∈ Rv∗3 there exist at least 31
32 log d′ choices for `∗ ∈ [log d′] for which |{j ∈ Ir∗,`∗ :

vj = v∗}| ≥ fS(v
∗)

2R log d′ .
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We analyze event E3 in the Poisson case. To that end, fix v∗ ∈ S s.t. fS(v∗) ≥ n1.5

T ,

and let Ĩv
∗

1,1, · · · , Ĩv
∗
R,log d′ be independent Poisson random variables with mean fS(v

∗)
R log d′ . Now

fix (r, `) ∈ [R]×[log d′]. Using a tail bound for the Poisson distribution (see Theorem 2.5),

assuming that n1.5

T ≥ 37R log d′ we have that Pr[Ĩr,` ≥ fS(v
∗)

2R log d′ ] ≥
99
100 . As Ĩv

∗
1,1, · · · , Ĩv

∗
R,log d′

are independent, assuming that R log d′ ≥ 300 ln(3n
2

β ), by the Chernoff bound we get that

with probability at least 1− β
3n2 there are at least 98

100R log d′ choices for (r, `) ∈ [R]×[log d′]

s.t. Ĩr,` ≥ fS(v
∗)

2R log d′ . Hence, by Theorem 2.4, with probability at least 1− β
n there are at least

98
100R log d′ choices for (r, `) ∈ [R]×[log d′] s.t. |{j ∈ Ir∗,`∗ : vj = v∗}| ≥ fS(v

∗)
2R log d′ . If that is

the case, then there must be at least 7R
8 choices for r ∈ [R] for which∣∣∣∣{` ∈ [log d′] : |{j ∈ Ir∗,`∗ : vj = v∗}| ≥ fS(v∗)

2R log d′

}∣∣∣∣ ≥ 31

32
log d′.

Using the union bound, this holds simultaneously for every such v∗ with probability at least
1− β. That is, Pr [E3] ≥ 1− β.

Event E4 (over partitioning [n] into {Ir,`}):
For every v∗ ∈ S s.t. fS(v∗) ≥ n1.5

T there exists a subset Rv
∗

4 of size |Rv∗4 | ≥ 7
8 ·

7
8R s.t. for

every r∗ ∈ Rv∗4 there exist at least 31
32 log d′ choices for `∗ ∈ [log d′] for which

|{j ∈ Ir∗,`∗ : vj 6= v∗ and hr∗(Enc(vj)) = hr∗(Enc(v∗))}| ≤ 32n1.5

RT log d′ .

We analyze event E4 in the Poisson case. To that end, fix v∗ ∈ S s.t. fS(v∗) ≥ n1.5

T . For
r ∈ [R] denote

Colr(v
∗) = |{v ∈ S : v 6= v∗ and hr(Enc(v)) = hr(Enc(v∗))}| ,

and recall that by event E1, for r ∈ R1 we have that Colr(v
∗) ≤ 16n1.5

T .

Let Ĩv
∗

1,1, · · · , Ĩv
∗
R,log d′ be independent Poisson random variables with mean Colr(v∗)

R log d′ . Now

fix (r, `) ∈ R1×[log d′]. Using a tail bound for the Poisson distribution (see Theorem 2.5),

assuming that T ≤ n1.5

R log d′ we have that Pr[Ĩv
∗
r,` ≤

32n1.5

RT log d′ ] ≥
99
100 . As Ĩv

∗
1,1, · · · , Ĩv

∗
R,log d′ are

independent, assuming that |R1| log d′ ≥ 300 ln(3n
2

β ), by the Chernoff bound we get that

with probability at least 1− β
3n2 there are at least 98

100 |R1| log d′ choices for (r, `) ∈ R1×[log d′]

s.t. Ĩv
∗
r,` ≤

32n1.5

RT log d′ . Hence, by Theorem 2.4, with probability at least 1− β
n there are at least

98
100 |R1| log d′ choices for (r, `) ∈ R1×[log d′] s.t.

|{j ∈ Ir∗,`∗ : vj 6= v∗ and hr∗(Enc(vj)) = hr∗(Enc(v∗))}| ≤ 32n1.5

RT log d′
.

If that is the case, then there must be at least 7R1
8 choices for r ∈ R1 for which∣∣∣∣{` ∈ [log d′] : |{j ∈ Ir∗,`∗ : vj = v∗}| ≤ 32n1.5

RT log d′

}∣∣∣∣ ≥ 31

32
log d′.
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Using the union bound, this holds simultaneously for every such v∗ with probability at least
1− β. That is, Pr [E4] ≥ 1− β.

We are now ready to complete the proof. Fix v∗ ∈ S s.t. fS(v∗) ≥ 264n1.5

T . Let
R1, R2, R

v∗
3 , R

v∗
4 be the sets from events E1, E2, E3, E4, and observe that |R1 ∩ R2 ∩ Rv

∗
3 ∩

Rv
∗

4 | ≥ 3
8R, and furthermore, for every r∗ ∈ (R1 ∩ R2 ∩ Rv

∗
3 ∩ Rv

∗
4 ) there exist at least

29
32 log d′ choices for ` ∈ [log d′] for which

(a) |{j ∈ Ir∗,` : vj = v∗}| ≥ 132n1.5

TR log d′ ,

(b) |{j ∈ Ir∗,` : vj 6= v∗ and hr∗(Enc(vj)) = hr∗(Enc(v∗))}| ≤ 32n1.5

TR log d′ ,

(c) |Ir∗,`| ≤ 2n
R log d′ .

Denote c∗ = Enc(v∗). Observe that by items (a),(b) above, we have that

fSr∗,`(hr∗(c
∗), c∗` ) ≥ fSr∗,`(hr∗(c

∗), 1− c∗` ) +
100n1.5

TR log d′
.

Let us assume that T ≤ εn
326
√
R log d′

. By the properties of algorithm Hashtogram (Lemma 6.5),

For every r∗, `∗ satisfying items (a),(b),(c), algorithm Hashtogram(Sr∗,`∗) ensures that with
probability at least 255

256 we have ĉr∗,t∗,` = c∗` , where t∗ = hr∗(v
∗).

Now fix r∗ ∈ (R1 ∩R2 ∩Rv
∗

3 ∩Rv
∗

4 ), and recall that the coins of Hashtogram(Sr∗,`) are
independent for different values of `. Hence, by the Chernoff bound, for log d′ ≥ 850 log(nβ )
we get that

Pr

[∣∣{` ∈ [log d′] : ĉr∗,t∗,` = c∗`
}∣∣ ≥ 9

10
log d′

]
≥ 1− β

n
.

That is, for our fixed v∗ there exists an r∗ ∈ (R1 ∩ R2 ∩ Rv
∗

3 ∩ Rv
∗

4 ) s.t. with probability
at least 1 − β

n we have that ĉr∗,t∗ and c∗ = Enc(v∗) differ on at most 1
10 -fraction of their

bits. Using the union bound, with probability at least 1− β, this holds simultaneously for
every v∗ s.t. fS(v∗) ≥ 264n

T . By the properties of the error correction code, in such a case,

for every v∗ s.t. fS(v∗) ≥ 264n1.5

T we have that v̂r∗,t∗ = Dec(ĉr∗,t∗) = v∗, and that v∗ is in
the list L.

Runtime. On step 1 algorithm Bitstogram instantiates O(R ·log d) copies of the frequency
oracle Hashtogram. Every such instantiation takes time ≈ n. Afterwards, the algorithm
queries the oracles for a total of O(2RT log d) ≈ n queries, each of which takes time Õ(1).
Thus, step 1 takes time ≈ n to compute. Steps 2 and 3 loop for every (r, t) ∈ [R]×[T ], and
take time ≈ RT ≈ n to compute. Finaly, step 4 instantiates Hashtogram (in time ≈ n) and
queries it for a total or R ·T ≈ n queries. Overall, algorithm Bitstogram runs in time ≈ n.

Processing Memory. Recall that step 1 of algorithm Bitstogram requires querying
algorithm Hashtogram for a total of O(2RT log d) ≈ n queries. As we are aiming for an
algorithm with processing memory ≈

√
n, we cannot store all of the answers in memory

simultaneously. To resolve this issue, let us reorganize step 1 of algorithm Bitstogram as
follows:
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1a. For every (r, `) ∈ [R]×[log d′], invoke Hashtogram(Sr,`) with ε
2 .

1b. For every (r, t) ∈ [R]×[T ], for every ` ∈ [log d′], query Hashtogram(Sr,`) to get{
ar,`(t, b) : b{0, 1}

}
.

Now, every one of the steps 1b,2,3,4 of the algorithm Bitstogram contains a loop over
every choice of (r, t) ∈ [R]×[T ], and we can group all of this steps together into one loop
over (r, t) ∈ [R]×[T ]. If an iteration of this loop results in a value a(v̂r,t) ≤

√
n, we can

simply ignore it (recall that the frequencies of domain elements that are not in the list L
are estimated as zero, and that

√
n is less than the guaranteed bound on the error of the

protocol, so this step does not effect our error bounds). As there could be at most
√
n

elements with frequencies at least ≈
√
n, the necessary processing memory is only ≈

√
n.
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A. Missing Proofs from Section 5

A.1. Proof of Theorem 5.1

It is easy to see that each invocation of LocalRnd is ε/2-locally differentially private since
conditioned on any realization of `i, ji, ri, for any pair of possible input items vi, v

′
i ∈ V to

LocalRnd and any output bit b generated in step 7 of Algorithm 1, we have

P [yi = b | vi] ≤ eε/2 P
[
yi = b | v′i

]
Note that LocalRnd is invoked only twice for each user: once when Final = 0 (the

scanning/pruning phase of TreeHist) and another time when Final = 1 (the final phase of
TreeHist). Thus, it follows that protocol TreeHist is ε-differentially private.

A.2. Proof of Theorem 5.2

Let β ∈ (0, 1) and η as defined in the theorem statement. Consider the pruning phase of
TreeHist, that is, Steps 1 to 11 in Algorithm 3. Let γ be as set in Step 2. In this phase,
TreeHist invokes FreqOracle once in every iteration of the outer for loop (over the levels of
the tree) with the flag Final = 0. Consider any such iteration `. Suppose, for now, that
the size of ChildSet(Prefixes) passed to FreqOracle in that iteration is at most 2n/η. (We
will show that with probability at least 1 − β this condition is satisfied at all levels ` of
the tree, i.e., it’s a loop invariant). By invoking Lemma 5.3 with V̂ = ChildSet(Prefixes),{
Ĩj : j ∈ [t]

}
=
{
I`,j : j ∈ [t]

}
, and γ = t log d = 110 log(n/β) log d, we have that with

probability at least 1 − β/ log(d), for every v̂ ∈ ChildSet(Prefixes) : f(v̂) > 3η, FreqOracle
gives an estimate f̂(v̂) ≥ 2η, and for every v̂ ∈ ChildSet(Prefixes) : f(v̂) ≤ η, FreqOracle
gives an estimate f̂(v̂) < 2η. Hence, Step 9 implies, that with probability at least 1−β/ log d,
all v̂ ∈ ChildSet(Prefixes) with true frequencies f(v̂) ≥ 3η will proceed to the next iteration
`+ 1 and all those v̂ ∈ ChildSet(Prefixes) with true frequencies f(v̂) < η will be pruned out.
Since the number of nodes v̂ with true frequency f(v̂) ≥ η cannot be more than n/η, then
the number of surviving nodes in the next iteration `+1 cannot be more than 2n/η. Hence,
this condition will be satisfied in the next iteration, and we can proceed in the same fashion.
Note that when ` = 1, the condition is trivially satisfied since there are only 2 < 2n/η nodes
at that level. This induction argument shows that with probability at least 1− β, for every
level ` ∈ [log d], the surviving nodes at level ` correspond to prefixes whose true frequencies
are not below η and include all prefixes whose true frequencies are above 3η. In particular,
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with probability at least 1 − β, all items in SuccHist satisfy these properties. This covers
the proof of items 1 and 2 of Theorem 5.2.

Now, consider the final phase of TreeHist, that is, Steps 12 to 14 Algorithm 3. Let γ
be as set in Step 12. In this phase, TreeHist invokes FreqOracle on the surviving nodes
at the final level of the tree (the last update of Prefixes) and with input flag Final = 1.
Now, by invoking Lemma 5.3 with V̂ = Prefixes,

{
Ĩj : j ∈ [t]

}
=
{
Ij : j ∈ [t]

}
, and

γ = t = 110 log(n/β), we have that with probability at least 1 − β/ log(d), for every

v̂ ∈ Prefixes, |f̂(v̂) − f(v̂)| ≤ 14
√
nt/ε = O

(√
n log(n/β)

ε

)
. This proves item 3 of the

theorem.

B. Missing Proofs from Section 6

B.1. Proof of Lemma 6.5

Consider the following good event:

Event E1 (over sampling h1, · · ·, hR):
For every query v∗ ∈ V there exists a subset Rv

∗
1 ⊆ [R] of size |Rv∗1 | ≥ 7

8R s.t. for every
r∗ ∈ Rv∗1 it holds that |{v ∈ S : v 6= v∗ and hr∗(v) = hr∗(v

∗)}| ≤ 16n
T .

Event E1 states that for at least 7R/8 of the hash functions, we have that v∗ is mapped
into a cell without too many collisions with different input elements. Informally, for every
single hash function hr, algorithm HashHist estimates the number of occurrences of hr(v

∗)
in S. Hence, if event E1 occurs, then most of the estimations result in accurate answers.
We start by showing that event E1 happens with high probability. To that end, fix v∗ ∈ V
and fix r∗ ∈ [R]. We have that

Ehr∗ [| {x ∈ S : v 6= v∗ and hr∗(v) = hr∗(v
∗)} |] =

∑
v∈S:v 6=v∗

Ehr∗
[
1hr∗ (v)=hr∗ (v∗)

]
≤ n

T
.

Thus, by Markov’s inequality, we have that

Pr
hr∗

[
| {v ∈ S : v 6= v∗ and hr∗(v) = hr∗(v

∗)} | ≥ 16n

T

]
≤ 1

16
.

As the hash functions are independent from each other, for R ≥ 48 ln(d
′

β ), by the Chernoff

bound we get that with probability at least 1−β/d′ (over sampling h1, . . . , hR) there exists
a subset Rv

∗
1 ⊆ [R] of size |Rv∗1 | ≥ 7

8R s.t. for every r∗ ∈ Rv∗1 it holds that

|{v ∈ S : v 6= v∗ and hr∗(v) = hr∗(v
∗)}| ≤ 16n

T
.

Using the union bound, we have that event E1 happens with probability at least 1−β. We
continue the analysis assuming that event E1 occurs.
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For every r ∈ [R], let Sr = (vj)j∈Ir denote a database containing the data of all users j
s.t. j ∈ Ir. Also for v∗ ∈ V and r ∈ [R] denote |Sr,v∗ | , |{v ∈ S : hr(v) = hr(v

∗)}|. That is,
|Sr,v∗ | is the number of users j s.t. hr(vj) = hr(v

∗). Furthermore, for v∗ ∈ V and r ∈ [R]
denote |Iv∗r | , |{v ∈ Sr : hr(v) = hr(v

∗)}|. That is, |Iv∗r | is the number of users j s.t. j ∈ Ir
and hr(vj) = hr(v

∗). Observe that |Sr,v∗ | ≥ fS(v∗) and that |Iv∗r | ≥ fSr(v∗).
Fix v∗ ∈ V . By the Chernoff bound, with probability at least 1−β/d′ (over partitioning

[n] into subsets I1, . . . , IR), for every r ∈ [R] we have that

∣∣∣ R · |Iv∗r | − |Sr,v∗ | ∣∣∣ ≤
√

3R · |Sr,v∗ | · log(
2Rd′

β
). (4)

Using the union bound this holds simultaneously for every v∗ ∈ V and r ∈ [R] with
probability at least 1− β. Also, assuming that n ≥ 8R log(2R/β), by the Chernoff bound,
with probability at least 1−β (over partitioning [n] into subsets I1, . . . , IR), for every r ∈ [R]
we have that n

2R ≤ |Ir| ≤
2n
R . We continue the analysis assuming that this is the case, and

that Inequality (4) holds.

Event E2 (over sampling Z and the coins of the local randomizers):
For every query v∗ ∈ V there exists a subset Rv

∗
2 ⊆ [R] of size |Rv∗2 | ≥ 7

8R s.t. for every

r∗ ∈ Rv∗2 it holds that
∣∣ R · ar∗(hr∗(v∗))−R · |Iv∗r∗ | ∣∣ ≤ eε+1

eε−1 ·
√

11nR.

For v∗ ∈ V and r ∈ [R] denote cr(v
∗) =

∑
j∈Ir yj ·Z[hr(v

∗), j], and recall that algorithm

Hashtogram answers the query v∗ with a(v∗) = R · eε+1
eε−1 ·Medianr∈[R]{cr(v∗)}. Fix v∗ ∈ V

and r ∈ [R]. We now analyze the expectation of cr(v
∗):

E[c(v∗)] =
∑
j∈Ir

E [yj · Z[hr(v
∗), j]]

=
∑

j∈Ir: hr(vj)=hr(v∗)

E [yj · Z[hr(v
∗), j]] +

∑
j∈Ir: hr(vj)6=hr(v∗)

E [yj · Z[hr(v
∗), j]]

=
∑

j∈Ir: hr(vj)=hr(v∗)

E [yj · Z[hr(v
∗), j]] +

∑
j∈Ir: hr(vj) 6=hr(v∗)

E [yj ] · E [Z[hr(v
∗), j]]

= |{v ∈ Sr : hr(v) = hr(v
∗)}| · e

ε − 1

eε + 1
, |Iv∗r | ·

eε − 1

eε + 1

That is, cr(v) can be expressed as two sums of ±1 independent random variables: |Iv∗r |
variables with expectation eε−1

eε+1 , and (|Ir| − |Iv
∗
r |) variables with expectation 0 (recall that

n
2R ≤ |Ir| ≤

2n
R ). Using the Hoeffding bound, with probability at least 43/44 we have that∣∣∣ cr(v∗)− eε−1

eε+1 · |I
v∗
r |
∣∣∣ ≤√11n/R. That is,

∣∣∣ R · ar(hr(v∗))−R · |Iv∗r | ∣∣∣ ≤ eε + 1

eε − 1
·
√

11nR. (5)
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Fix v∗ ∈ V , and observe that the above sums are independent for different values of r.
Hence, using the Chernoff bound and asserting that R ≥ 132 ln(d′/β), for that fixed v∗ ∈ V ,
with probability at least 1−β/d′ we have that Inequality (5) holds for at least 7R/8 choices of
r ∈ [R]. Using the union bound, with probability at least 1−β, this is true for every v∗ ∈ V
simultaneously. That is, event E2 happens with probability at least 1−β. We continue the
analysis assuming that event E2 occurs. For every v∗ ∈ V we denote Rv

∗
3 = Rv

∗
1 ∩Rv

∗
2 .

Combining event E2 with Inequality (4), we get that for every r ∈ Rv∗2∣∣∣ R · ar(hr(v∗))− |Sr,v∗ | ∣∣∣ ≤ eε + 1

eε − 1
·
√

11nR+

√
3R · |Sr,v∗ | · log(

2Rd′

β
). (6)

Recall that for every v∗ ∈ V and every r ∈ [R] we have that |Sr,v∗ | ≥ fS(v∗). Further-
more, for every v∗ ∈ V and every r ∈ Rv∗1 we have that |Sr,v∗ | ≤ fS(v∗) + 16n

T . Hence, for
every v∗ ∈ V and every r ∈ Rv∗3 we have that

| R · ar(hr(v∗))− fS(v∗) | ≤ eε + 1

eε − 1
·
√

11nR+

√
3R ·

(
fS(v∗) +

16n

T

)
· log(

2Rd′

β
) +

16n

T

, error(v∗).

That is, for every r ∈ Rv
∗

3 we have that R · ar(hr(v∗)) is accurate up to error(v∗). As
|Rv∗3 | ≥ 3

4R, and as algorithm Hashtogram answers v∗ with a(v∗) chosen as the median of
{R · ar(hr(v∗))}, we get that |a(v∗)− fS(v∗)| ≤ error(v∗) for every v∗ ∈ V .
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