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Abstract

PyOD is an open-source Python toolbox for performing scalable outlier detection on multi-
variate data. Uniquely, it provides access to a wide range of outlier detection algorithms,
including established outlier ensembles and more recent neural network-based approaches,
under a single, well-documented API designed for use by both practitioners and researchers.
With robustness and scalability in mind, best practices such as unit testing, continuous in-
tegration, code coverage, maintainability checks, interactive examples and parallelization
are emphasized as core components in the toolbox’s development. PyOD is compatible
with both Python 2 and 3 and can be installed through Python Package Index (PyPI) or
https://github.com/yzhao062/pyod.
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1. Introduction

Outlier detection, also known as anomaly detection, refers to the identification of rare
items, events or observations which differ from the general distribution of a population.
Since the ground truth is often absent in such tasks, dedicated outlier detection algorithms
are extremely valuable in fields which process large amounts of unlabelled data and require
a means to reliably perform pattern recognition (Akoglu et al., 2012). Industry applications
include fraud detection in finance (Ahmed et al., 2016), fault diagnosis in mechanics (Shin
et al., 2005), intrusion detection in network security (Garcia-Teodoro et al., 2009) and
pathology detection in medical imaging (Baur et al., 2018).

To help approach these problems, established outlier detection packages exist in various
programming languages such as ELKI Data Mining (Achtert et al., 2010) and RapidMiner

(Hofmann and Klinkenberg, 2013) in Java and outliers (Komsta and Komsta, 2011) in
R. However, Python, one of the most important languages in machine learning, still lacks
a dedicated toolkit for outlier detection. Existing implementations either stand as single
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Method Category
JIT

Enabled
Multi-
core

LOF (Breunig et al., 2000) Proximity No Yes
kNN (Ramaswamy et al., 2000) Proximity No Yes
AvgkNN (Angiulli and Pizzuti, 2002) Proximity No Yes
CBLOF (He et al., 2003) Proximity Yes No
OCSVM (Schölkopf et al., 2001) Linear Model No No
LOCI (Papadimitriou et al., 2003) Proximity Yes No
PCA (Shyu et al., 2003) Linear Model No No
MCD (Hardin and Rocke, 2004) Linear Model No No
Feature Bagging (Lazarevic and Kumar, 2005) Ensembling No Yes
ABOD (Kriegel et al., 2008) Proximity Yes No
Isolation Forest (Liu et al., 2008) Ensembling No Yes
HBOS (Goldstein and Dengel, 2012) Proximity Yes No
SOS (Janssens et al., 2012) Proximity Yes No
AutoEncoder (Sakurada and Yairi, 2014) Neural Net Yes No
AOM (Aggarwal and Sathe, 2015) Ensembling No No
MOA (Aggarwal and Sathe, 2015) Ensembling No No
SO-GAAL (Liu et al., 2019) Neural Net No No
MO-GAAL (Liu et al., 2019) Neural Net No No
XGBOD (Zhao and Hryniewicki, 2018b) Ensembling No Yes
LSCP (Zhao et al., 2019) Ensembling No No

Table 1: Select outlier detection models in PyOD

algorithm tools like PyNomaly (Constantinou, 2018) or exist as part of a general-purpose
framework like scikit-learn (Pedregosa et al., 2011) which does not cater specifically to
anomaly detection. To fill this gap, we propose and implement PyOD—a comprehensive
Python toolbox for scalable outlier detection.

Compared to existing libraries, PyOD has six distinct advantages. Firstly, it contains
more than 20 algorithms which cover both classical techniques such as local outlier factor
and recent neural network architectures such as autoencoders or adversarial models. Sec-
ondly, PyOD implements combination methods for merging the results of multiple detectors
and outlier ensembles which are an emerging set of models. Thirdly, PyOD includes a uni-
fied API, detailed documentation and interactive examples across all algorithms for clarity
and ease of use. Fourthly, all models are covered by unit testing with cross platform con-
tinuous integration, code coverage and code maintainability checks. Fifthly, optimization
instruments are employed when possible: just-in-time (JIT) compilation and parallelization
are enabled in select models for scalable outlier detection. Lastly, PyOD is compatible with
both Python 2 and 3 across major operating systems (Windows, Linux and MacOS). Popular
detection algorithms implemented in PyOD (version 0.7.0) are summarized in Table 1.
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2. Project Focus

Build robustness. Continuous integration tools (Travis CI, AppVeyor and CircleCI ) are
leveraged to conduct automated testing under various versions of Python and operating
systems. Tests are executed daily, when commits are made to the development and master
branches, or when a pull request is opened.
Quality assurance. The project follows the PEP8 standard; maintainability is ensured
by CodeClimate, an automated code review and quality assurance tool. Additionally, code
blocks with high cognitive complexity are actively refactored and a standard set of unit
tests exist to ensure 95% overall code coverage. These design choices enhance collaboration
and this standard is enforced on all pull requests for consistency.
Community-based development. PyOD’s code repository is hosted on GitHub1 to facil-
itate collaboration. At the time of this writing, eight contributors have helped develop the
code base and others have contributed in the form of bug reports and feature requests.
Documentation and examples. Comprehensive documentation is developed using sphinx

and numpydoc and rendered using Read the Docs2. It includes detailed API references, an
installation guide, code examples and algorithm benchmarks. An interactive Jupyter note-
book is also hosted on Binder allowing others to experiment prior to installation.
Project relevance. PyOD has been used in various academic and commercial projects
(Zhao and Hryniewicki, 2018a; Ramakrishnan et al., 2019; Krishnan and Wu, 2019). The
GitHub repository receives more than 10,000 monthly views and its PyPI downloads exceed
6,000 per month.

3. Library Design and Implementation

PyOD is compatible with both Python 2 and 3 using six; it relies on numpy, scipy and
scikit-learn as well. Neural networks such as autoencoders and SO GAAL additionally
require Keras. To enhance model scalability, select algorithms (Table 1) are optimized with
JIT using numba. Parallelization for multi-core execution is also available for a set of algo-
rithms using joblib. Inspired by scikit-learn’s API design (Buitinck et al., 2013), all im-
plemented outlier detection algorithms inherit from a base class with the same interface: (i)
fit processes the train data and computes the necessary statistics; (ii) decision function

generates raw outlier scores for unseen data after the model is fitted; (iii) predict returns
a binary class label corresponding to each input sample instead of the raw outlier score and
(iv) predict proba offers the result as a probability using either normalization or Unifica-
tion (Kriegel et al., 2011). Within this framework, new models are easy to implement by
taking advantage of inheritance and polymorphism. Base methods can then be overridden
as necessary.

Once a detector has been fitted on a training set, the corresponding train outlier scores
and binary labels are accessible using its decision scores and labels attributes. Once
fitted, the model’s predict, decision function and predict proba methods may be
called for use on new data. An example showcasing the ease of use of this API is shown in
Code Snippet 1 with an angle-based outlier detector (ABOD).

1. https://github.com/yzhao062/pyod
2. https://pyod.readthedocs.io
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>>> from pyod.models.abod import ABOD

>>> from pyod.utils.data import generate_data

>>> from pyod.utils.data import evaluate_print

>>> from pyod.utils.example import visualize

>>>

>>> X_train, y_train, X_test, y_test = generate_data(\

... n_train=200, n_test=100, n_features=2)

>>>

>>> clf = ABOD(method="fast") # initialize detector

>>> clf.fit(X_train)

>>>

>>> y_test_pred = clf.predict(X_test) # binary labels

>>> y_test_scores = clf.decision_function(X_test) # raw outlier scores

>>> y_test_proba = clf.predict_proba(X_test) # outlier probability

>>>

>>> evaluate_print("ABOD", y_test, y_test_scores) # performance evaluation

ABOD Performance; ROC: 0.934; Precision at n: 0.902

>>>

>>> visualize(y_test, y_test_scores) # prediction visualization

Code Snippet 1: Demo of PyOD API with the ABOD detector

In addition to the outlier detection algorithms, a set of helper and utility functions
(generate data, evaluate print and visualize) are included in the library for quick
model exploration and evaluation. The two-dimensional artificial data used in the example is
created by generate data which generates inliers from a Gaussian distribution and outliers
from a uniform distribution. An example of using visualize is shown in Figure 1.

Figure 1: Demonstration of using PyOD in visualizing prediction result
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4. Conclusion and Future Plans

This paper presents PyOD, a comprehensive toolbox built in Python for scalable outlier
detection. It includes more than 20 classical and emerging detection algorithms and is
being used in both academic and commercial projects. As avenues for future work, we
plan to enhance the toolbox by implementing models that work well with time series and
geospatial data, improving computational efficiency through distributed computing and
addressing engineering challenges such as handling sparse matrices or memory limitations.
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