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Abstract

In this paper, we provide new insights on the Unadjusted Langevin Algorithm. We show
that this method can be formulated as the first order optimization algorithm for an ob-
jective functional defined on the Wasserstein space of order 2. Using this interpretation
and techniques borrowed from convex optimization, we give a non-asymptotic analysis of
this method to sample from log-concave smooth target distribution on Rd. Based on this
interpretation, we propose two new methods for sampling from a non-smooth target distri-
bution. These new algorithms are natural extensions of the Stochastic Gradient Langevin
Dynamics (SGLD) algorithm, which is a popular extension of the Unadjusted Langevin Al-
gorithm for largescale Bayesian inference. Using the optimization perspective, we provide
non-asymptotic convergence analysis for the newly proposed methods.

Keywords: Unadjasted Langevin Algorithm, convex optimization, Bayesian inference,
gradient flow, Wasserstein metric

1. Introduction

This paper deals with the problem of sampling from a probability measure π on (Rd,B(Rd))
which admits a density, also denoted by π, with respect to the Lebesgue measure given for
all x ∈ Rd by

π(x) = e−U(x)

/∫
Rd

e−U(y)dy ,

where U : Rd → R. This problem arises in various fields such that Bayesian statistical
inference (Gelman et al., 2014), machine learning (Andrieu et al., 2003), ill-posed inverse
problems (Stuart, 2010), and computational physics (Krauth, 2006). Common and current
methods to tackle this problem are Markov Chain Monte Carlo methods (Brooks et al.,
2011), for example the Hastings-Metropolis algorithm (Metropolis et al., 1953; Hastings,
1970) or Gibbs sampling (Geman and Geman, 1984). All these methods boil down to
building a Markov kernel on (Rd,B(Rd)) whose invariant probability distribution is π. Yet,
choosing an appropriate proposal distribution for the Hastings-Metropolis algorithm is a
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tricky subject. For this reason, it has been proposed to consider continuous dynamics
which naturally leave the target distribution π invariant. Perhaps, one of the most famous
examples is the over-damped Langevin diffusion (Rossky et al., 1978; Parisi, 1981) associated
with U , which is assumed to be continuously differentiable:

dYt = −∇U(Yt)dt+
√

2dBt , (1)

where (Bt)t≥0 is a d-dimensional Brownian motion. With appropriate conditions on U ,
this SDE admits a unique strong solution (Yt)t≥0 and defines a strong Markov semi-group
(Pt)t≥0 which converges to π in total variation (Roberts and Tweedie, 1996, Theorem 2.1)
or Wasserstein distance (Bolley et al., 2012). However, simulating exact solutions of such
stochastic differential equations is not possible in most cases, and discretizations of these
equations are used instead. In addition, numerical solutions associated with these schemes
define Markov kernels for which π is not invariant anymore. Therefore quantifying the error
introduced by these approximations is crucial to justify their use to sample from the target
π. We consider in this paper the Euler-Maruyama discretization of (1) which defines the
(possibly inhomogeneous) Markov chain (Xk)k≥0 given for all k ≥ 0 by

Xk+1 = Xk − γk+1∇U(Xk) +
√

2γk+1Gk+1 , (2)

where (γk)k≥1 is a sequence of stepsizes which can be held constant or converges to 0,
and (Gk)k≥1 is a sequence of i.i.d. standard d-dimensional Gaussian random variables.
The use of the Euler-Maruyama discretization (2) to approximatively sample from π is
referred to as the Unadjusted Langevin Algorithm (ULA) (or the Langevin Monte Carlo
algorithm (LMC)), and has already been the matter of many works. For example, weak error
estimates have been obtained in Talay and Tubaro (1990); Mattingly et al. (2002) for the
constant stepsize setting and in Lamberton and Pagès (2003); Lemaire (2005) when (γk)k≥1

is non-increasing and goes to 0. Explicit and non-asymptotic bounds on the total variation
(Dalalyan, 2016; Durmus and Moulines, 2017) or the Wasserstein distance (Durmus and
Moulines, 2016) between the distribution of Xk and π have been obtained. Roughly, all these
results are based on the comparison between the discretization and the diffusion process
and the quantification of error accumulation throughout the algorithm. In this paper, we
propose another point of view on ULA, which shares nevertheless some relations with the
Langevin diffusion (1). Indeed, it has been shown in Jordan et al. (1998) that the family of
distributions (µ0Pt)t≥0, is the solution of a gradient flow equation in the Wasserstein space
of order 2 associated with the Kullback-Leibler (KL) divergence, F , where (Pt)t≥0 is the
semi-group associated with (1) and µ0 is a probability measure on B(Rd) admitting a second
moment (see Section 2). If π is invariant for (Pt)t≥0, then it is a stationary solution of this
equation, and is the unique minimizer of F if U is convex. Starting from this observation, we
interpret ULA as the first order optimization algorithm on the Wasserstein space of order 2
with objective functional F . Namely, we adapt some proofs of convergence for the gradient
descent algorithm from the convex optimization literature to obtain non-asymptotic and
explicit bounds between the Kullback-Leibler (KL) divergence from π to distributions of
averaged distributions associated with ULA for the constant and non-increasing stepsize
setting. Then, these bounds easily imply computable bounds in total variation norm and
Wasserstein distance. Note that these two metrics are different in nature since convergence
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in one of them does not imply convergence in the other. Convergence in one of these metrics
implies a control on the bias of MCMC based estimators of the form f̂n = n−1

∑n
k=1 f(Yk),

where (Yk)k∈N is Markov chain ergodic with respect to the target density π, for f belonging
to a certain class of functions. In the case of the total variation distance, this class is the
set of measurable and bounded functions, in the case of the Wasserstein distance, it is the
set of Lipschitz functions. If the potential U is strongly convex and gradient Lipschitz,
we get back the results of Durmus and Moulines (2017, 2016); Cheng and Bartlett (2017),
when the stepsize is held constant in (2). In the case where U is only convex and from a
warm start, we get a bound on the complexity for ULA of order dŌ(ε−2) and dŌ(ε−4) to
get one sample distributed close from π with accuracy ε > 0, in KL divergence and total
variation distance respectively. Overview of bounds on computational complexity of ULA
is presented in Table 1.

Strongly convex U Convex U

Best Ours
Warm start Minimizer of U

Best Ours Best Ours

TV dŌ(ε−2) dŌ(ε−2) dŌ(ε−6) dŌ(ε−4) d5Ō(ε−2) d3Ō(ε−4)
Wasserstein dŌ(ε−2) dŌ(ε−2) – – – –

KL dŌ(ε−1) dŌ(ε−1) dŌ(ε−3) dŌ(ε−2) – d3Ō(ε−2)

Table 1: Overview of bounds on computational complexity of ULA, with constant stepsize.
We present complexity to get one sample distributed close from π with accuracy
ε > 0 in Wasserstein distance (Wasserstein), total variation distance (TV), and
Kullback Leibler divergence (KL). We compare the best results (Best) from lit-
erature with ours (Ours) in the strongly convex and convex cases. In the convex
case we consider two possible initial measures: a warm start, i.e. W 2

2 (µ0, π) ≤ C,
for some absolute constant C ≥ 0 (Warm start) and starting from Dirac delta at
a minimizer of U , x?.

In addition, we propose two new algorithms to sample from a class of non-smooth
log-concave distributions for which we derive computable non-asymptotic bounds as well.
The first one can be applied to Lipschitz convex potential for which unbiased estimates of
subgradients are available. Remarkably, the bounds we obtain for this algorithm depend
on the dimension only through the initial condition and the variance of the stochastic sub-
gradient estimates. Precisely, we get a bound on the complexity to get a sample with
distribution close from π with accuracy ε > 0, of order (M2 +D2)Ō(ε−2) in the case of the
KL divergence and (M2 +D2)Ō(ε−4) in the case of the total variation distance, where M is
Lipschitz constant of the potential U and D2 is a bound on the variance of the considered
stochastic subgradient.

The second method we propose is a generalization of the Stochastic Gradient Langevin
Dynamics algorithm (Welling and Teh, 2011), which extends ULA by replacing the gradient
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with a sequence of i.i.d. unbiased estimators. In this new scheme, we assume that U can
be decomposed as the sum of two functions U1 and U2, where U1 is at least continuously
differentiable and U2 is only convex, and use stochastic gradient estimates for U1 and the
proximal operator associated with U2. This new method is close to the one proposed in
Durmus et al. (2018) but contrary on this work we do not need to approximate U2 by its
Moreau envelope. To get computable bounds from the target distribution π, we interpret
this algorithm as a first order optimization algorithm and provide explicit bounds between
the KL divergence from π to distributions associated with SGLD. In the case where U is
strongly convex and gradient Lipschitz (i.e. U2 = 0), we get back the same complexity as
Dalalyan and Karagulyan (2017) which is of order dŌ(ε−2) for the Wasserstein distance.
We obtain the same complexity for the total variation distance and a complexity of order
dŌ(ε−1) for the KL divergence . In the case where U is only convex, not necessarily
smooth (i.e. U2 could be non-smooth), and from a warm start, we get a complexity of order
dŌ(ε−2) and dŌ(ε−4) to get one sample distributed close from π with accuracy ε > 0 in
KL divergence and total variation distance respectively. Overview of bounds for SGLD is
presented in Table 2.

Extensive studies have also analyzed SGLD in a general setting, i.e. the potential U is
not necessarily convex. In Vollmer et al. (2016) and Nagapetyan et al. (2017), a study of
this scheme is done by weak error estimates. Finally, Raginsky et al. (2017) and Xu et al.
(2017) gives some results regarding the potential use of SGLD as an optimization algorithm
to minimize the potential U by targeting a target density proportional to x 7→ e−βU(x) for
some β > 0.

Strongly convex U Convex U

Best Our
Warm start Minimizer of U

Best Ours Best Ours

TV – dŌ(ε−2) – dŌ(ε−4) – d3Ō(ε−4)
Wasserstein dŌ(ε−2) dŌ(ε−2) – – – –

KL – dŌ(ε−1) – dŌ(ε−2) – d3Ō(ε−2)

Table 2: Overview of bounds on computational complexity of SGLD, with constant stepsize.
We present complexity to get one sample distributed close from π with accuracy
ε > 0 in Wasserstein distance (Wasserstein), total variation distance (TV), and
Kullback Leibler divergence (KL). We compare the best results (Best) from lit-
erature with ours (Ours) in the strongly convex and convex cases. In the convex
case we consider two possible initial measures: warm start, i.e. W 2

2 (µ0, π) ≤ C,
for some absolute constant C ≥ 0 (Warm start) and starting from Dirac delta at
a minimizer of U , x?.
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In summary, our contributions are the following:

• We give a new interpretation of ULA and use it to get bounds on the KL diver-
gence from π to the iterates of ULA. We recover the dependence on the dimension
of Cheng and Bartlett (2017, Theorem 3) in the strongly convex case and get tighter
bounds. Note that this result implies previously known bounds between π and ULA in
Wasserstein distance and the total variation distance but with a completely different
technique. We also give computable bounds when U is only convex which improves the
results of Durmus and Moulines (2017); Dalalyan (2016); Cheng and Bartlett (2017).

• We give two new methodologies to sample from a non-smooth potential U and make
a non-asymptotic analysis of them. These two new algorithms are generalizations of
SGLD.

The paper is organized as follows. In Section 2, we give some intuition on the strategy
we take to analyze ULA and its variants. These ideas come from gradient flow theory in
Wasserstein space. In Section 3, we give the main results we obtain on ULA and their proof.
In Section 4, two variants of ULA are presented and analyzed. Finally, numerical exper-
iments on logistic regression models are presented in Section 5 to support our theoretical
findings regarding our new methodologies.

1.1. Notations and Conventions

Denote by B(Rd) the Borel σ-field of Rd, Leb the Lebesgue measure on B(Rd), F(Rd) the set
of all Borel measurable functions on Rd and for f ∈ F(Rd), ‖f‖∞ = supx∈Rd |f(x)|. For µ a
probability measure on (Rd,B(Rd)) and f ∈ F(Rd) a µ-integrable function, denote by µ(f)
the integral of f w.r.t. µ. Let µ and ν be two sigma-finite measures on (Rd,B(Rd)). Denote
by µ � ν if µ is absolutely continuous w.r.t. ν and dµ/dν the associated density. Let µ, ν
be two probability measures on (Rd,B(Rd)). Define the Kullback-Leibler (KL) divergence
of µ from ν by

KL (µ|ν) =

{∫
Rd

dµ
dν (x) log

(
dµ
dν (x)

)
dν(x) , if µ� ν

+∞ otherwise .

We say that ζ is a transference plan of µ and ν if it is a probability measure on (Rd ×
Rd,B(Rd×Rd)) such that for all measurable set A of Rd, ζ(A×Rd) = µ(A) and ζ(Rd×A) =
ν(A). We denote by Π(µ, ν) the set of transference plans of µ and ν. Furthermore, we
say that a couple of Rd-random variables (X,Y ) is a coupling of µ and ν if there exists
ζ ∈ Π(µ, ν) such that (X,Y ) are distributed according to ζ. For two probability measures
µ and ν, we define the Wasserstein distance of order 2 as

W2(µ, ν) =

(
inf

ζ∈Π(µ,ν)

∫
Rd×Rd

‖x− y‖2 dζ(x, y)

)1/2

. (3)

By (Villani, 2009, Theorem 4.1), for all µ, ν probability measures on Rd, there exists a
transference plan ζ? ∈ Π(µ, ν) such that for any coupling (X,Y ) distributed according
to ζ?, W2(µ, ν) = E[‖X − Y ‖2]1/2. This kind of transference plan (respectively coupling)
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will be called an optimal transference plan (respectively optimal coupling) associated with
W2. We denote by P2(Rd) the set of probability measures with finite second moment:
for all µ ∈ P2(Rd),

∫
Rd ‖x‖

2 dµ(x) < +∞. By (Villani, 2009, Theorem 6.16), P2(Rd)
equipped with the Wasserstein distance W2 of order 2 is a complete separable metric space.
Denote by Pa(Rd) = {µ ∈ P2(Rd) : µ � Leb}. For two probability measures µ and ν
on Rd, the total variation distance distance between µ and ν is defined by ‖µ − ν‖TV =
supA∈B(Rd) |µ(A)− ν(A)|.

Let n ∈ N ∪ {∞} and U ⊂ Rd be an open set of Rd. Denote by Cn(U) the set of
n-th continuously differentiable function from U to R. Denote by Cnc (U) the set of n-th
continuously differentiable function from U to R with compact support. Let I ⊂ R be an
interval and f : I → R. f is absolutely continuous on I if for all ε > 0, there exists δ > 0
such that for all n ∈ N∗ and t1, . . . , t2n ∈ I, t1 ≤ · · · ≤ t2n,

if

n∑
k=1

{t2k − t2k−1} ≤ δ then

n∑
k=1

|f(t2k)− f(t2k−1)| ≤ ε .

In the sequel, we take the convention that
∑n

p = 0 and
∏n
p = 1 for n, p ∈ N, n < p.

2. Interpretation of ULA as an Optimization Algorithm

Throughout this paper, we assume that U satisfies the following condition for m ≥ 0.

A1 (m) U : Rd → R is m-convex, i.e. for all x, y ∈ Rd,

U(tx+ (1− t)y) ≤ tU(x) + (1− t)U(y)− t(1− t)(m/2) ‖x− y‖2

Note that A1(m) includes the case where U is only convex when m = 0. We consider
in this Section the following additional condition on U which will be relaxed in Section 4.

A2 U is continuously differentiable and L-gradient Lipschitz, i.e. there exists L ≥ 0 such that
for all x, y ∈ Rd, ‖∇U(x)−∇U(y)‖ ≤ L ‖x− y‖

Under A 1 and A 2, the Langevin diffusion (1) has a unique strong solution (Yx
t )t≥0

starting at x ∈ Rd. The Markovian semi-group (Pt)t≥0, given for all t ≥ 0, x ∈ Rd and A ∈
B(Rd) by Pt(x,A) = P(Yx

t ∈ A), is reversible with respect to π and π is its unique invariant
probability measure, see (Ambrosio et al., 2009, Theorem 1.2 and Theorem 1.6). Using
this probabilistic framework, (Roberts and Tweedie, 1996, Theorem 1.2) shows that (Pt)t≥0

is irreducible with respect to the Lebesgue measure, strong Feller and limt→+∞ ‖Pt(x, ·)−
π‖TV = 0 for all x ∈ Rd. But to study the properties of the semi-group (Pt)t≥0, an other
complementary and significant approach can be used. This dual point of view is based on
the adjoint of the infinitesimal generator associated with (Pt)t≥0. The strong generator of
(1) (A,D(A)) is defined for all f ∈ D(A) and x ∈ Rd by

Af(x) = lim
t→0

t−1(Ptf(x)− f(x)) ,

where D(A) is the subset of C0(Rd) such that for all f ∈ D(A), there exists g ∈ C0(Rd)
such that limt→0

∥∥t−1(Ptf − f)− g
∥∥
∞ = 0. In particular for f ∈ C2

c (Rd), we get by Itô’s
formula

Af = 〈∇f,∇U〉+ ∆f .
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In addition, by (Ethier and Kurtz, 1986, Proposition 1.5), for all f ∈ C2
c (Rd), Ptf(x) ∈ D(A)

and for x ∈ Rd, t 7→ Ptf(x) is continuously differentiable,

dPtf(x)

dt
= APtf(x) = PtAf(x) . (4)

For all µ0 ∈ Pa
2 (Rd) and t > 0, by Girsanov’s Theorem (Karatzas and Shreve, 1991,

Theorem 5.1, Corollary 5.16, Chapter 3), µ0Pt(·) admits a density with respect to the
Lebesgue measure denoted by ρt. This density is solution by (4) of the Fokker-Planck
equation (in the weak sense):

∂ρt
∂t

= div(∇ρt + ρt∇U(x)) ,

meaning that for all φ ∈ C∞c (Rd) and t > 0,

∂

∂t

∫
Rd
φ(y)ρt(dy) =

∫
Rd
Aφ(y) ρt(dy) . (5)

In the landmark paper Jordan et al. (1998), the authors shows that if U is infinitely continu-
ously differentiable, (ρt)t>0 is the limit of the minimization scheme which defines a sequence
of probability measures (ρ̃k,γ)k∈N as follows. For γ > 0 set ρ0,γ = dµ0/d Leb and

ρ̃k+1,γ =
dµ̃k+1,γ

d Leb
, µ̃k+1,γ = argmin

µ∈Pa
2 (Rd)

W 2
2 (µ̃k,γ , µ)/2 + γF (µ) , k ∈ N , (6)

where F : P2(Rd)→ (−∞,+∞] is the free energy functional,

F = H + E , (7)

H ,E : P2(Rd) → (−∞,+∞] are the Boltzmann H-functional and the potential energy
functional, given for all µ ∈ P2(Rd) by

H (µ) =

{∫
Rd

dµ
d Leb(x) log

(
dµ

d Leb(x)
)

dx if µ� Leb

+∞ otherwise ,
(8)

E (µ) =

∫
Rd
U(x)dµ(x) . (9)

More precisely, setting ρ̄0,γ = dµ0/d Leb and ρ̄t,γ = ρ̃k,γ for t ∈ [kγ, (k + 1)γ), (Jordan et al.,
1998, Theorem 5.1) shows that for all t > 0, ρ̄t,γ converges to ρt weakly in L1(Rd) as γ goes
to 0. Note that the minimization scheme in (6) can be seen as a proximal type algorithm
(see Martinet (1970) and Rockafeller (1976)) on the Wasserstein space (P2(Rd),W2) used
to minimize the functional F . On Rd, for continuous convex function f the proximal
update with step size γ corresponds to one step of backward Euler discretization of the
gradient flow ordinary differential equation (ODE) dx(t)/dt = −∇f(x(t)) with parameter
γ. Therefore piecewise constant functions (ρ̄t,γ)γ>0 can be interpreted as backward Euler
discretizations of an informal ODE ∂µt/∂t = −∇F (µt) and their limit as γ → 0, can be
interpreted as a solution to this equation. This idea has been formalized and extended
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to construct the framework of gradient flows in the Wasserstein space (P2(Rd),W2), see
Ambrosio et al. (2008). We provide a short introduction to this topic in Section A and
present useful concepts and results for our proofs.

The following lemma shows that π is the unique minimizer of F . As a result, the
distribution of the Langevin diffusion is the steepest descent flow of F and we get back
intuitively that this process converges to the target distribution π.

Lemma 1 Assume A1(0). The following holds:

a) π ∈ P2(Rd), E (π) < +∞ and H (π) < +∞.

b) For all µ ∈ P2(Rd) satisfying E (µ) <∞

F (µ)−F (π) = KL (µ|π) . (10)

Proof The proof is postponed to Section 7.1.

Based on this interpretation, we could think about minimizing F on the Wasserstein
space to get close to π using the minimization scheme (6). However, while this scheme is
shown in Jordan et al. (1998) to be well-defined, finding explicit recursions (ρ̃k,γ)k∈N is as
difficult as minimizing F and can not be used in practice. In addition, to the authors knowl-
edge, there is no efficient and practical schemes to optimize this functional. On the other
hand, discretization schemes have been used to approximate the Langevin diffusion (Yt)t≥0

(1) and its long-time behavior. One of the most popular method is the Euler-Maruyama
discretization (Xk)k∈N given in (2). While most work study the theoretical properties of
this discretization to ensure to get samples close to the target distribution π, by comparing
the distributions of (Xk)k∈N and (Yt)t≥0 through couplings or weak error expansions, we
interpret this scheme as the first order optimization algorithm for the objective functional
F .A similar approach has been recently applied in Wibisono (2018) and in Bernton (2018).
We postpone the comparison of our contributions and the results of this two papers in
Section 4.2 where it is the most relevant.

3. Main Results for the Unadjusted Langevin Algorithm

Let f : Rd → R be a convex continuously differentiable objective function with xf ∈
arg minRd f 6= ∅. The inexact or stochastic gradient descent algorithm used to estimate
f(xf ) defines the sequence (xk)k∈N starting from x0 ∈ Rd by the following recursion for
k ∈ N:

xk+1 = xk − γk+1∇f(xk) + γk+1Ξ(xk) ,

where (γk)k∈N∗ is a non-increasing sequence of stepsizes and Ξ : Rd → Rd is a deterministic
or/and stochastic perturbation of ∇f . To get explicit bound on the convergence (in ex-
pectation) of the sequence (f(xk))k∈N to f(xf ), one possibility (see e.g. Beck and Teboulle
(2009)) is to show that the following inequality holds: for all k ∈ N,

2γk+1(f(xk+1)− f(xf )) ≤ ‖xk − xf‖2 − ‖xk+1 − xf‖22 + Cγ2
k+1 , (11)
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for some constant C ≥ 0. In a similar manner as for inexact gradient algorithms, in this
section we will establish that ULA satisfies an inequality of the form (11) with the objective
function F defined by (7) on P2(Rd), but instead of the Euclidean norm, the Wasserstein
distance of order 2 will be used.

Consider the family of Markov kernels (Rγk)k∈N∗ associated with the Euler-Maruyama
discretization (Xk)k∈N, (2), for a sequence of stepsizes (γk)k∈N∗ , given for all γ > 0, x ∈ Rd
and A ∈ B(Rd) by

Rγ(x,A) = (4πγ)−d/2
∫
A

exp
(
−‖y − x− γ∇U(x)‖2 /(4γ)

)
dy . (12)

Proposition 2 Assume A1(m) for m ≥ 0 and A2. For all γ ∈ (0, L−1] and µ ∈ P2(Rd),
we have

2γ {F (µRγ)−F (π)} ≤ (1−mγ)W 2
2 (µ, π)−W 2

2 (µRγ , π) + 2γ2Ld , (13)

where F is defined in (7).

The main difficulty in establishing Proposition 2 is to deal with the entropy function
H defined by (8) in F . To obtain the desired result, we decompose Rγ for all γ > 0 in the
product of two elementary kernels Sγ and Tγ given for all x ∈ Rd and A ∈ B(Rd) by

Sγ(x,A) = δx−γ∇U(x)(A) , Tγ(x,A) = (4πγ)−d/2
∫
A

exp
(
−‖y − x‖2 /(4γ)

)
dy . (14)

We take the convention that S0 = T0 = Id is the identity kernel given for all x ∈ Rd by
Id(x, {x}) = 1. Sγ is the deterministic part of the Euler-Maruyama discretization, which
corresponds to gradient descent step relative to U for the E functional, whereas Tγ is the
random part, that corresponds to going along the gradient flow of H . Note then Rγ = SγTγ
and consider the following decomposition

F (µRγ)−F (π) = E (µRγ)− E (µSγ) + E (µSγ)− E (π) + H (µRγ)−H (π) . (15)

The proof of Proposition 2 then consists in bounding each difference in the decomposition
above. This is the matter of the following Lemmas. While the proofs of the bounds for the
first two terms are quite elementary, the one for the final term uses results from gradient
flow theory which are summarized in Section A. It is worthwhile to observe that we do not
apply this theory to the Langevin semi-group but only to the heat semi-group.

Lemma 3 Assume A2. For all µ ∈ P2(Rd) and γ > 0,

E (µTγ)− E (µ) ≤ Ldγ .

Proof First note that by (Nesterov, 2004, Lemma 1.2.3), for all x, x̃ ∈ Rd, we have

|U(x̃)− U(x)− 〈∇U(x), x̃− x〉| ≤ (L/2) ‖x̃− x‖2 . (16)

9
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Therefore, for all µ ∈ P2(Rd) and γ > 0, we get

E (µTγ)− E (µ) = (4πγ)−d/2
∫
Rd

∫
Rd
{U(x+ y)− U(x)} e−‖y‖

2/(4γ)dydµ(x)

≤ (4πγ)−d/2
∫
Rd

∫
Rd

{
〈∇U(x), y〉+ (L/2) ‖y‖2

}
e−‖y‖

2/(4γ)dydµ(x) ,

which concludes the proof.

Lemma 4 Assume A1(m) for m ≥ 0 and A2. For all γ ∈ (0, L−1] and µ, ν ∈ P2(Rd),

2γ {E (µSγ)− E (ν)} ≤ (1−mγ)W 2
2 (µ, ν)−W 2

2 (µSγ , ν)− γ2(1− γL)

∫
Rd
‖∇U(x)‖2 dµ(x) ,

where E and Tγ are defined in (9) and (14) respectively.

Proof Using (16) and A1(m), for all x, y ∈ Rd, we get

U(x− γ∇U(x))− U(y) = U(x− γ∇U(x))− U(x) + U(x)− U(y)

≤ −γ(1− γL/2) ‖∇U(x)‖2 + 〈∇U(x), x− y〉 − (m/2) ‖y − x‖2 .

Multiplying both sides by 2γ we obtain:

2γ {U(x− γ∇U(x))− U(y)} ≤ (1−mγ) ‖x− y‖2 − ‖x− γ∇U(x)− y‖2

− γ2(1− γL) ‖∇U(x)‖2 . (17)

Let now (X,Y ) be an optimal coupling between µ and ν. Then by definition and (17), we
get

2γ {E (µSγ)− E (ν)} ≤ (1−mγ)W 2
2 (µ, ν)− E

[
‖X − γ∇U(X)− Y ‖2

]
− γ2(1− γL)E

[
‖∇U(X)‖2

]
.

Using that W 2
2 (µSγ , ν) ≤ E[‖X − γ∇U(X)− Y ‖2] concludes the proof.

Lemma 5 Let µ, ν ∈ P2(Rd), H (ν) <∞. Then for all γ > 0,

2γ {H (µTγ)−H (ν)} ≤W 2
2 (µ, ν)−W 2

2 (µTγ , ν) ,

where Tγ is given in (14).

Proof Denote for all t ≥ 0 by µt = µTt. Since (Tt)t≥0 is the Markov semi-group associated
with the Brownian motion, then (µt)t≥0 is the solution (in the sense of distribution) of the
Fokker-Plank equation:

∂µt
∂t

= ∆µt ,

10
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and µt goes to µ as t goes to 0 in (P2(Rd),W2). Let ν ∈ P2(Rd) and γ > 0. Then by
Theorem 31, for all ε ∈ (0, γ), there exists (δt) ∈ L1((ε, γ)) such that

W 2
2 (µγ , ν)−W 2

2 (µε, ν) =

∫ γ

ε
δsds (18)

δs/2 ≤H (ν)−H (µs) , for almost all s ∈ (ε, γ) . (19)

In addition by (Villani, 2009, Particular case 24.3), s 7→ H (µs) is non-increasing on R∗+
and therefore (19) becomes

δs/2 ≤H (ν)−H (µγ) , for almost all s ∈ (ε, γ) .

Plugging this bound in (18) yields that for all ε ∈ R∗+,

W 2
2 (µt, ν)−W 2

2 (µε, ν) ≤ 2(γ − ε) {H (ν)−H (µγ)} .

Taking ε→ 0 concludes the proof.

We now have all the tools to prove Proposition 2.

Proof [Proof of Proposition 2] Let µ ∈ P2(Rd) and γ ∈ R∗+. By Lemma 3, we get

E (µRγ)− E (µSγ) = E (µSγTγ)− E (µSγ) ≤ Ldγ .

By Lemma 4 since π ∈ P2(Rd) (see Lemma 1-a)),

2γ {E (µSγ)− E (π)} ≤ (1−mγ)W 2
2 (µ, ν)−W 2

2 (µSγ , ν) .

By Lemma 5 and Lemma 1-a),

2γ {H (µRγ)−H (π)} = 2γ {H ((µSγ)Tγ)−H (π)}
≤W 2

2 (µSγ , π)−W 2
2 (µRγ , π) .

Plugging these bounds in (15) concludes the proof.

Based on inequalities of the form (11) and using the convexity of f , for all n ∈ N, non-
asymptotic bounds (in expectation) between f(x̄n) and f(xf ) can be derived, where (x̄k)k∈N
is the sequence of averages of (xk)k∈N given for all n ∈ N by x̄n = n−1

∑n
k=1 xk. Besides, if

f is assumed to be strongly convex, a bound on E[‖xn − xf‖2] can be established. We will
adapt this methodology to get some bounds on the convergence of sequences of averaged
measures defined as follows. Let (γk)k∈N∗ and (λk)k∈N∗ be two non-increasing sequences of
reals numbers referred to as the sequence of stepsizes and weights respectively. Define for
all n,N ∈ N, n ≥ 1,

ΓN,N+n =
N+n∑
k=N+1

γk , ΛN,N+n =
N+n∑
k=N+1

λk . (20)

11
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Let µ0 ∈ P2(Rd) be an initial distribution. The sequence of probability measures (νNn )n∈N∗

is defined for all n,N ∈ N, n ≥ 1, by

νNn = Λ−1
N,N+n

N+n∑
k=N+1

λk µ0Q
k
γ , Qkγ = Rγ1 · · ·Rγk , for k ∈ N∗ , (21)

where Rγ is defined by (12) andN is a burn-in time. We take in the following, the convention
that Q0

γ is the identity operator.

Contrary to most works on ULA, we state our next results in terms of average measures
νNn , defined by (21) for N ∈ N and n ∈ N∗ instead of the final iterates µ0Q

n
γ . Indeed, in the

case where m = 0, Proposition 2 does not imply very informative bounds for Qnγ . However
using that KL(·|π) is convex and applying Proposition 2 allow to use averaging trick from
optimization to obtain useful bounds on KL(νNn |π).

Theorem 6 Assume A1(m) for m ≥ 0 and A2. Let (γk)k∈N∗ and (λk)k∈N∗ be two non-
increasing sequences of positive real numbers satisfying γ1 ≤ L−1, and for all k ∈ N∗,
λk+1(1 − mγk+1)/γk+1 ≤ λk/γk. Let µ0 ∈ P2(Rd) and N ∈ N. Then for all n ∈ N∗, it
holds:

KL
(
νNn
∣∣π)+ λN+nW

2
2

(
µ0Q

N+n
γ , π

)/
(2γN+nΛN,N+n)

≤ λN+1(1−mγN+1)W 2
2

(
µ0Q

N
γ , π

)/
(2γN+1ΛN,N+n) + (Ld/ΛN,N+n)

N+n∑
k=N+1

γkλk ,

where νNn and QNγ are defined in (21).

Proof Using the convexity of KL divergence (see (Cover and Thomas, 2006, Theorem
2.7.2) or (van Erven and Harremos, 2014, Theorem 11)) and Proposition 2, we obtain

KL
(
νNn
∣∣π) ≤ Λ−1

N,N+n

N+n∑
k=N+1

λk KL
(
µ0Q

k
γ

∣∣∣π)
≤ (2ΛN,N+n)−1

[
(1−mγN+1)λN+1

γN+1
W 2

2

(
µ0Q

N
γ , π

)
− λN+n

γN+n
W 2

2

(
µ0Q

N+n
γ , π

)
+
N+n−1∑
k=N+1

{
(1−mγk+1)λk+1

γk+1
− λk
γk

}
W 2

2

(
µ0Q

k
γ , π
)

+
N+n∑
k=N+1

Ldλkγk

]
.

We get the thesis using that λk+1(1−mγk+1)/γk+1 ≤ λk/γk for all k ∈ N∗.

Corollary 7 Assume A1(0) and A2. Let ε > 0 and µ0 ∈ P2(Rd). Let

γε ≤ min
{
ε/(2Ld), L−1

}
, nε ≥ dW 2

2 (µ0, π)γ−1
ε ε−1e .

Then it holds KL (νnε |π) ≤ ε where νnε = n−1
ε

∑nε
k=1 µ0R

k
γε.

12
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Proof We apply Theorem 6 with γk = γε and λk = 1 for all k ≥ 1. We obtain

KL (νnε |π) + W 2
2

(
µ0Q

nε
γ , π

)/
(2γεnε) ≤ W 2

2 (µ0, π)
/

(2γεnε) + (Ld/nε)

nε∑
k=1

γε ,

and the proof is concluded by a straightforward calculation using the definition of γε and
nε.

Corollary 8 Assume A 1(m) for m ≥ 0 and A 2. Let α ∈ (0, 1). Define (γk)k∈N∗ and
(λk)k∈N∗ for all k ∈ N∗ by γk = γ1/k

α, λk = γ1/(k + 1)α, γ1 ∈
(
0, L−1

)
. Then, there exists

C ≥ 0 such that for all n ∈ N∗ we have KL
(
ν0
n

∣∣π) ≤ C max(nα−1, n−α), if α 6= 1/2, and

for α = 1/2, we have KL
(
ν0
n

∣∣π) ≤ C(ln(n) + 1)n−1/2, where ν0
n is defined by (21).

Proof The proof is postponed to Section 7.2.

In the case where a warm start is available for the Wasserstein distance, i.e. W 2
2 (µ0, π) ≤

C, for some absolute constant C ≥ 0, then Corollary 7 implies that the complexity of
ULA to obtain a sample close from π in KL with a precision ε > 0 is of order dŌ(ε−2).
In addition, by Pinsker inequality, we have for all probability measure µ on (Rd,B(Rd)),
‖µ − π‖TV ≤ {2 KL(µ|π)}1/2, which implies that the complexity of ULA for the total
variation distance is of order dŌ(ε−4).

In addition if we have access to η > 0 and Mη ≥ 0, independent of the dimension,
such that for all x ∈ Rd, x 6∈ B(x?,Mη), U(x) − U(x?) ≥ η ‖x− x?‖, x? ∈ arg minRd U ,
Proposition 32 in Appendix B shows that for all

∫
Rd ‖x− x

?‖2 dπ(x) ≤ 2η−2d(1 + d) +M2
η .

Therefore, starting at δx? , the overall complexity for the KL is in this case d3Ō(ε−2) and
d3Ō(ε−4) for the total variation distance. This discussion justifies the bound we state in
Table 1.

In the case where m > 0, based on Proposition 2, we can directly get a bound on the
Wasserstein distance between the final iterate of ULA and π.

Theorem 9 Assume A1(m) for m > 0 and A2. Let (γk)k∈N∗ be a non-increasing sequence
of positive real numbers, γ1 ∈

(
0, L−1

]
, and µ0 ∈ P2(Rd). Then for all n ∈ N∗, it holds

W 2
2

(
µ0Q

n
γ , π
)
≤

{
n∏
k=1

(1−mγk)

}
W 2

2 (µ0, π) + 2Ld

n∑
k=1

γ2
k

n∏
i=k+1

(1−mγi) ,

where Qnγ is defined in (21).

Proof Using Proposition 2 and since the KL divergence is non-negative, we get for all
k ∈ {1, . . . , n},

W 2
2

(
µ0Q

k
γ , π
)
≤ (1−mγk)W 2

2

(
µ0Q

k−1
γ , π

)
+ 2Ldγ2

k .

The proof then follows from a direct induction.

13
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Corollary 10 Assume A1(m) for m > 0 and A2. Let ε > 0 and µ0 ∈ P2(Rd). Define:

γε ≤ min
{
mε/(4Ld), L−1

}
, nε ≥ dln(2W 2

2 (µ0, π)/ε)γ−1
ε m−1e .

Then we have W 2
2

(
µ0R

nε
γε , π

)
≤ ε, where Rγε is defined by (12).

Proof By Theorem 9, we have

W 2
2

(
µ0Q

nε
γ , π

)
≤ (1−mγε)nεW 2

2 (µ0, π) + 2Ld

nε∑
k=1

γ2
ε (1−mγε)nε−k .

On one hand, by definition of γε, we get 2Ld
∑nε

k=1 γ
2
ε (1−mγε)nε−k ≤ 2Ldγε/m ≤ ε/2. On

the other hand, using that for all t ∈ R+, 1−t ≤ exp(−t) and the definition of nε, we obtain
(1−mγε)nεW 2

2 (µ0, π) ≤ exp(−mγεnε)W 2
2 (µ0, π) ≤ ε/2. Then the thesis of the corollary

follows directly from the above inequalities.

Note that the bound in the right hand side of Theorem 9 is tighter than the previous
bound given in Dalalyan and Karagulyan (2017, Theorem 1) (for constant stepsize) and in
Durmus and Moulines (2016, Theorem 5) (for both constant and non-increasing stepsizes).
Indeed Dalalyan and Karagulyan (2017, Theorem 1) shows that, in the constant stepsize
setting γk = γ, for all k ∈ N,

W2(µ0Q
k
γ , π) ≤ (1−mγ)kW2(µ0, π) + 1.65(L/m)(γd)1/2 .

On the other hand, the inequality (t+ s)1/2 ≤ t1/2 + s1/2 for t, s ≥ 0 and Theorem 9 imply
that for all k ∈ N,

W2(µ0Q
k
γ , π) ≤ (1−mγ)k/2W2(µ0, π) + {2γdL/m}1/2 . (22)

Thus, the dependency on the condition number L/m is improved. This bound is in agree-
ment for the case where π is the zero-mean d-dimensional Gaussian distribution with co-
variance matrix Σ. In that case, all the iterates (Xk)k∈N∗ defined by (2) for γ > 0, starting
from x ∈ Rd, follows the Gaussian distribution with mean (Id−γΣ)kx and covariance ma-
trix 2γ

∑k−1
i=0 (1 − γΣ)2i. Since the Wasserstein distance between d-dimensional Gaussian

distributions can be explicitly computed, see Givens and Shortt (1984), denoting by L and
m the largest and smallest eigenvalues of Σ respectively, we have by an explicit calculation
for γ ∈

(
0, L−1

]
,

W2(µ0Q
k
γ , π) ≤ (1−mγ)kW2(µ0, π) + (d/m)1/2

{
(1− γL/2)−1/2 − 1

}
.

Since for t ∈ [0, 1/2], (1− t)−1/2 − 1− t ≤ 0, we get

W2(µ0Q
k
γ , π) ≤ (1−mγ)kW2(µ0, π) + 2−1γ(d/m)1/2

{
(1− γL)−1/2 − 1

}
.

Using that γ ≤ L−1, we get that the second term in the right hand side is bounded by
(dLγ/m)1/2, which is precisely the order we get from (22).

14
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Finally, if (γk)k∈N∗ is given for all k ∈ N∗, by γk = γ1/k
α, for α ∈ (0, 1), then using

(Durmus and Moulines, 2016, Lemma 7) and the same calculation of (Durmus and Moulines,
2015, Section 6.1), we get that there exists C ≥ 0 such that for all n ∈ N∗, W2(µ0Q

n
γ , π) ≤

Cn−α/2.
Based on Theorem 9, we can improve Corollary 7 in the case where U is strongly convex

using an appropriate burn-in time.

Corollary 11 Assume A1(m) for m > 0 and A2. Let ε > 0, µ0 ∈ P2(Rd) and

γε ≤ min
{
mε/(4Ld), L−1

}
, γ̃ε ≤ min

{
ε/2Ld,L−1

}
,

Nε ≥ dln(2W 2
2 (µ0, π)/ε)(γεm)−1e , nε ≥ dγ̃ε−1e .

Let (γk)k∈N defined by γk = γε for k ∈ {1, . . . , Nε} and γk = γ̃ε for k > Nε. Then we have
KL
(
νNεnε

∣∣π) ≤ ε where νNεnε = n−1
ε

∑nε
k=1 µ0R

Nε
γε R

k
γ̃ε

.

Proof Using Corollary 10, we have W 2
2

(
µ0Q

Nε
γ , π

)
≤ ε. Now applying Theorem 6 we get:

KL
(
νNεnε

∣∣π) ≤ W 2
2 (µNε , π)

/
(2γ̃εnε) + (Ld/nεγ̃ε)

Nε+nε∑
k=Nε+1

(γ̃ε)
2 ≤ ε/(2γ̃εnε) + Ldγ̃ε ≤ ε

By (Durmus and Moulines, 2016, Proposition 1), we have
∫
Rd ‖x− x

?‖2 dπ(x) ≤ d/m,
where x? = arg minRd U . Therefore we have that in the constant stepsize setting, γk = γ ∈
(0, L−1] for all k ∈ N∗, Corollary 10 implies that the sufficient number of iterations to have
W2(δx?Q

n
γ , π) ≤ ε is of order dŌ(ε−2). Then Corollary 11 implies that the sufficient number

of iterations to get KL
(
νNn
∣∣π) ≤ ε, for ε > 0, is of order dŌ(ε−1). By Pinsker inequality,

we obtain that a sufficient number of iterations to get ‖νNn −π‖TV ≤ ε, for ε > 0, is of order
dŌ(ε−2).

For a sufficiently small constant stepsize γ, ULA produces a Markov Chain with a
stationary measure πγ . In general this measure is different from the measure of interest π.
Based on our previous results, we establish computable bounds on the distance between π
and πγ .

Theorem 12 Assume A1(m) for m ≥ 0 and A2. Let γ ∈
(
0, L−1

]
. Then there exists a

measure πγ, such that πγRγ = πγ where Rγ is defined by (12). In addition, we have

KL (πγ |π) ≤ Ldγ, ‖πγ − π‖TV ≤
√

2Ldγ

Furthermore, if m > 0 we also have W 2
2 (πγ , π) ≤ 2Ldγ/m.

Proof Under A1 and A2, (Durmus and Moulines, 2017, Proposition 13) shows that Rγ
satisfies a geometric Foster-Lyapunov drift condition for γ ≤ L−1. In addition, it is easy to
see that Rγ is Leb-irreducible and weak Feller and therefore by (Meyn and Tweedie, 2009,
Theorem 6.0.1 together with Theorem 5.5.7 ), all compact sets are small. Then, by (Meyn
and Tweedie, 2009, Theorem 16.0.1), Rγ has a unique invariant distribution πγ .
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Second, taking µ = πγ in Proposition 2 we obtain:

2γKL (πγRγ |π) ≤ (1−mγ)W 2
2 (πγ , π)−W 2

2 (πγRγ , π) + 2γ2Ld , (23)

and because πγRγ = πγ , the above implies 2 KL (πγ |π) +mW 2
2 (πγ , π) ≤ 2Ldγ. Since both

the KL divergence and Wasserstein distance are positive, the desired bounds in KL and W 2
2

follow. The bound in total variation follows from the bound in KL-divergence and Pinsker
inequality.

4. Extensions of ULA

In this section, two extensions of ULA are presented and analyzed. These two algorithms
can be applied to non-continuously differentiable convex potential U : Rd → R and there-
fore A2 is not assumed anymore. In addition, for the two new algorithms we present, only
i.i.d. unbiased estimates of (sub)gradients of U are necessary as in Stochastic Gradient
Langevin Dynamics (SGLD) (Welling and Teh, 2011). The main difference in these two
approaches is that one relies on the subgradient of U while the other is based on proxi-
mal operators which are tools commonly used in non-smooth optimization. However, the
theoretical results that we can show for these two algorithms, hold for different sets of
conditions.

4.1. Stochastic SubGradient Langevin Dynamics

Note that if U is convex and l.s.c then for any point x ∈ Rd, its subdifferential ∂U(x) defined
by

∂U(x) =
{
v ∈ Rd : U(y) ≥ U(x) + 〈v, y − x〉 for all y ∈ Rd

}
, (24)

is non empty, see (Rockafellar and Wets, 1998, Proposition 8.12, Theorem 8.13). For all x ∈
Rd, any elements of ∂U(x) is referred to as a subgradient of U at x. Consider the following
condition on U which assumes that we have access to unbiased estimates of subgradients of
U at any point x ∈ Rd.

A3 (i) The potential U is M -Lipschitz, i.e. for all x, y ∈ Rd, |U(x)− U(y)| ≤M ‖x− y‖.

(ii) There exists a measurable space (Z,Z), a probability measure η on (Z,Z) and a measur-
able function Θ : Rd × Z→ Rd for all x ∈ Rd,∫

Z
Θ(x, z)dη(z) ∈ ∂U(x) .

Note that under A3-(i), for all x ∈ Rd and v ∈ ∂U(x),

‖v‖ ≤M . (25)

Assumption A3 is satisfied for example in the case where U = U1 +U2, U1 is L-gradient
Lipschitz and Lipschitz and U2 is non-smooth but Lipschitz, if there exists a measurable
Θ̃ : Rd × Z → Rd such that

∫
Z Θ̃(x, z)dη(z) = ∇U1(x) for any x ∈ Rd. Then by (Bauschke
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and Combettes, 2011, Corollary 16.38), unbiased and i.i.d. estimates of∇f can be computed
setting Θ = ∂g + Θ̃.

Let (Zk)k∈N∗ be a sequence of i.i.d. random variables distributed according to η, (γk)k∈N∗

be a sequence of non-increasing stepsizes and X̄0 distributed according to µ0 ∈ P2(Rd).
Stochastic SubGradient Langevin Dynamics (SSGLD) defines the sequence of random vari-
ables (X̄k)k∈N starting at X̄0 for n ≥ 0 by

X̄n+1 = X̄n − γn+1Θ(X̄n, Zn+1) +
√

2γn+2Gn+1 , (26)

where (Gk)k∈N∗ is a sequence of i.i.d. d-dimensional standard Gaussian random variables,
independent of (Zk)k∈N∗ , see Algorithm 1. Consequently this method defines a new sequence
of Markov kernels (R̄γk,γk+1

)k∈N∗ given for all γ, γ̃ > 0, x ∈ Rd and A ∈ B(Rd) by

R̄γ,γ̃(x,A) = (4πγ̃)−d/2
∫
A×Z

exp
(
−‖y − x+ γΘ(x, z)‖2 /(4γ̃)

)
dη(z)dy . (27)

Algorithm 1: SSGLD

Data: initial distribution µ0 ∈ P2(Rd), non-increasing sequence (γk)k≥1, U,Θ, η
satisfying A3

Result: (X̄k)k∈N
begin

Draw X̄0 ∼ µ0 ;
for k ≥ 0 do

Draw Gk+1 ∼ N (0, Id) and Zk+1 ∼ η ;
Set X̄k+1 = X̄k − γk+1Θ(X̄k, Zk+1) +

√
2γk+2Gk+1

Let (γk)k∈N∗ and (λk)k∈N∗ be two non-increasing sequences of reals numbers and µ0 ∈
P2(Rd) be an initial distribution. The weighted averaged distribution associated with (26)
(ν̄Nn )n∈N is defined for all N,n ∈ N, n ≥ 1 by

ν̄Nn = Λ−1
N,N+n

N+n∑
k=N+1

λk µ0Q̄
k
γ , Q̄kγ = R̄γ1,γ2 · · · R̄γk,γk+1

, for k ∈ N∗ , (28)

where N is a burn-in time and ΛN,N+n is defined in (20). We take in the following the
convention that Q̄0

γ is the identity operator.

Under A3, define for all µ ∈ P2(Rd),

υΘ(µ) =

∫
Rd×Z

∥∥∥∥Θ(x, z)−
∫
Z

Θ(x, z̃)dη(z̃)

∥∥∥∥2

dη(z)dµ(x) = E
[∥∥Θ(X̄0, Z1)− v

∥∥2
]
, (29)

where X̄0, Z1 are independent random variables with distribution µ and η respectively and
v ∈ ∂U(X0) almost surely. In addition, consider S̄γ , the Markov kernel on (Rd,B(Rd))
defined for all x ∈ Rd and A ∈ B(Rd) by

S̄γ(x,A) =

∫
Z
1A (x− γΘ(x, z)) dη(z) . (30)
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Theorem 13 Assume A1(0) and A3. Let (γk)k∈N∗ and (λk)k∈N∗ be two non-increasing
sequences of positive real numbers satisfying for all k ∈ N∗, λk+1/γk+2 ≤ λk/γk+1. Let
µ0 ∈ P2(Rd) and N ∈ N. Then for all n ∈ N∗, it holds

KL
(
ν̄Nn
∣∣π) ≤ λN+1W

2
2

(
µ0Q̄

N
γ S̄γN+1 , π

)/
(2γN+2ΛN,N+n)

+ (2ΛN,N+n)−1
N+n∑
k=N+1

{
γk+1λk

(
M2 + υΘ(µ0Q̄

k
γ)
)}

,

where ν̄Nn and Q̄Nγ are defined in (28).

Proof The proof is postponed to Section 7.3.1..

Note that in the bound given by Theorem 13, we need to control the ergodic average
of the variance of the stochastic gradient estimates. When A 3 is satisfied, a possible
assumption is that x 7→ υ(δx) is uniformly bounded. This assumption will be satisfied for
example when the potential U is a sum of Lipschitz continuous functions.

Corollary 14 Assume A 1(0) and A 3. Assume that supx∈Rd υΘ(δx) ≤ D2 < ∞. Let
(γk)k∈N∗ and (λk)k∈N∗ given for all k ∈ N∗ by λk = γk = γ > 0. Let µ0 ∈ P2(Rd). Then for
any N ∈ N, n ∈ N∗ we have

KL
(
ν̄Nn
∣∣π) ≤ W 2

2

(
µ0Q̄

N
γ S̄γ , π

)/
(2nγ) + (γ/2)

(
M2 +D2

)
.

Furthermore, let ε > 0 and

γε ≤ ε/(M2 +D2) , nε ≥ dW 2
2 (µ0S̄γ , π)(γεε)

−1e .

Then for γ = γε we have KL
(
ν̄0
nε

∣∣π) ≤ ε.
Proof The first inequality is a direct consequence of Theorem 13. The bound for KL

(
ν̄0
nε

∣∣π)
follows directly from this inequality and definitions of γε and nε.

In the case where a warm start is available for the Wasserstein distance, i.e. W 2
2 (µ0, π) ≤

C, for some absolute constant C ≥ 0, then Corollary 14 implies that the complexity of
SSGLD to obtain a sample close from π in KL with a precision target ε > 0 is of order
(M2 +D2)Ō(ε−2). Therefore, this complexity bound depends on the dimension only trough
M and D2 contrary to ULA. In addition, Pinsker inequality implies that the complexity of
SSGLD for the total variation distance is of order (M2 +D2)Ō(ε−4).

In addition if we have access to η > 0 and Mη ≥ 0, independent of the dimension, such
that for all x ∈ Rd, x 6∈ B(x?,Mη), U(x) − U(x?) ≥ η ‖x− x?‖, where x? ∈ arg minRd U ,
Proposition 32 and A3-(i) imply that starting at δx? , the overall complexity of SSGLD for
the KL is in this case (η−2d2 +M2

η )(M2 +D2)Ō(ε−2) and (η−2d2 +M2
η )(M2 +D2)Ō(ε−4)

for the total variation distance.
If (γk)k∈N∗ and (λk)k∈N∗ are given for all k ∈ N∗ by γk = λk = γ1/k

−α, with α ∈ (0, 1),
then by the same reasoning as in the proof of Corollary 8, we obtain that there exists C ≥ 0
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such that for all n ∈ N∗, we have KL
(
ν̄0
n

∣∣π) ≤ C max(nα−1, n−α), if α 6= 1/2, and for

α = 1/2, we have KL
(
ν̄0
n

∣∣π) ≤ C(ln(n) + 1)n−1/2.
We can have a better control on the variance terms using the following conditions on Θ.

A4 There exists L̃ ≥ 0 such that for η-almost every z ∈ Z, x 7→ Θ(x, z) is 1/L̃-cocoercive,
i.e. for all x ∈ Rd,

〈Θ(x, z)−Θ(y, z), x− y〉 ≥ (1/L̃) ‖Θ(x, z)−Θ(y, z)‖2 .

This assumption is for example satisfied if η-almost every z, x 7→ Θ(x, z) is the gradient
of a continuously differentiable convex function with Lipschitz gradient, see Nesterov (2004,
Thereom 2.1.5) and Zhu and Marcotte (1995). Note that in general A4 is not implied by
A1(0) and A2. Indeed, A4 is a regularity condition on the stochastic (sub)gradient of U ,
Θ, while A1 and A2 depend only on U . However, if U is continuously differentiable, Jensen
inequality and A4 imply that A2 is satisfied with L equals L̃.

Proposition 15 Assume A3 and A4. Then we have for all x ∈ Rd and γ, γ̃ > 0, γ ≤ L̃−1

2γ(L̃−1 − γ)υΘ(δx) ≤ ‖x− x?‖2 −
∫
Rd
‖y − x?‖2 R̄γ,γ̃(x, dy) + 2γ2υΘ(δx?) + 2γ̃d ,

where υΘ is defined by (29).

Proof Consider X̄1 = x − γΘ(x, Z1) +
√

2γ̃G1, where Z1 and G1 are two independent
random variables, Z1 has distribution η and G1 is the standard Gaussian random variables.
Then using A4, we have

E
[∥∥X̄1 − x?

∥∥2
]

= E [‖x− γΘ(x, Z1)− x?‖] + 2γ̃d

= ‖x− x?‖2 + E
[
γ2 ‖Θ(x, Z1)‖2 − 2γ 〈Θ(x, Z1), x− x?〉

]
+ 2γ̃d

≤ ‖x− x?‖2 − 2γ(L̃−1 − γ)E
[
‖Θ(x, Z1)−Θ(x?, Z1)‖2

]
+ 2γ2E

[
‖Θ(x?, Z1)‖2

]
+ 2γ̃d .

The proof is completed upon noting that υΘ(δx) ≤ E[‖Θ(x, Z1)−Θ(x?, Z1)‖2] and

υΘ(δx?) = E
[
‖Θ(x?, Z1)‖2

]
Combining Theorem 13 and Proposition 15, we get the following result.

Corollary 16 Assume A1(0)-A3 and A4. Let (γk)k∈N∗ and (λk)k∈N∗ defined for all k ∈ N∗
by γk = λk = γ ∈ (0, L̃−1). Let µ0 ∈ P2(Rd). Then for all N ∈ N and n ∈ N∗, we have

KL
(
ν̄Nn
∣∣π) ≤ W 2

2

(
µ0R̄

N
γ,γS̄γ , π

)/
(2γn)

+ γM2/2 + (2(L̃−1 − γ))−1

{
(2n)−1

∫
Rd
‖x− x?‖2 dµ0R̄

N+1
γ,γ (x) + γ2υΘ(δx?) + γd

}
.
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Furthermore, let ε > 0 and

γε ≤ min

[
ε
/{

2M2 + 4L̃d
}
,

√
ε
(

4L̃υΘ(δx?)
)−1

, (2L̃)−1

]
,

nε ≥ 2 max

{⌈
W 2

2 (µ0S̄γε , π)(γεε)
−1
⌉
,

⌈
L̃ε−1

∫
Rd
‖x− x?‖2 dµ0R̄γε,γε(x)

⌉}
.

Then for γ = γε, then we have KL
(
ν̄0
nε

∣∣π) ≤ ε.
Proof The proof is postponed to Section 7.3.2.

Note that compared to Corollary 14, the dependence on the variance of the stochastic
subgradients in the bound on nε, given in Corollary 16, is less significant since nε scales
as (υΘ(δx?))

1/2 and not as supx∈Rd υΘ(δx). However, the dependency on the dimension
deteriorates a little.

4.2. Stochastic Proximal Gradient Langevin Dynamics

In this section, we propose and analyze an other algorithm to handle non-smooth target dis-
tribution using stochastic gradient estimates and proximal operators. For m ≥ 0, consider
the following assumptions on the gradient.

A5 (m) There exists U1 : Rd → R and U2 : Rd → R such that U = U1 + U2 and satisfying
the following assumptions:

(i) U1 satisfies A 1(m) and A 2. In addition, there exists a measurable space (Z̃, Z̃), a
probability measure η̃1 on (Z̃, Z̃) and a measurable function Θ̃1 : Rd× Z̃→ Rd such that
for all x ∈ Rd, ∫

Z̃
Θ̃1(x, z̃)dη̃1(z̃) = ∇U1(x) .

(ii) U2 satisfies A1(0) and is M2-Lipschitz.

Under A5, consider the proximal operator associated with U2 with parameter γ > 0
(see Rockafellar and Wets (1998, Chapter 1 Section G)), defined for all x ∈ Rd by

proxγU2
(x) = arg min

y∈Rd

{
U2(y) + (2γ)−1 ‖x− y‖2

}
.

Note that taking the derivative in the right hand side of this equation, we get that for any
x ∈ Rd and γ > 0,

proxγU2
(x) ∈ x− γ∂U2(proxγU2

(x)) . (31)

Let (Z̃k)k∈N∗ be a sequence of i.i.d. random variables distributed according to η̃1, (γk)k∈N∗

be a sequence of non-increasing stepsizes and X̃0 distributed according to µ0 ∈ P2(Rd).
Stochastic Proximal Gradient Langevin Dynamics (SPGLD) defines the sequence of random
variables (X̃n)n∈N starting at X̃0 for n ≥ 0 by

X̃n+1 = prox
γn+1

U2
(X̃n)− γn+2Θ̃1{prox

γn+1

U2
(X̃n), Z̃n+1}+

√
2γn+2Gn+1 , (32)
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where (Gk)k∈N∗ is a sequence of i.i.d. d-dimensional standard Gaussian random variables,
independent of (Z̃k)k∈N∗ . The recursion (32) is associated with the family of Markov kernels
(R̃γk,γk+1

)k∈N∗ given for all γ, γ̃ > 0, x ∈ Rd and A ∈ B(Rd) by

R̃γ,γ̃(x,A)

= (4πγ̃)−d/2
∫
A×Z̃

exp

(
−
∥∥∥y − proxγU2

(x) + γ̃Θ̃1{proxγU2
(x), z}

∥∥∥2
/

(4γ̃)

)
dη̃1(z)dy . (33)

Note that for all γ, γ̃ > 0, R̃γ,γ̃ can be decomposed as the product S̃2
γS̃

1
γ̃Tγ̃ where Tγ̃ is

defined by (14) and for all x ∈ Rd and A ∈ B(Rd)

S̃1
γ̃(x,A) =

∫
Z̃
1A(x− γ̃Θ̃1(x, z))dη̃1(z) , S̃2

γ(x,A) = δproxγU2
(x)(A) . (34)

Algorithm 2: SPGLD

Data: initial distribution µ0 ∈ P2(Rd), non-increasing sequence (γk)k≥1,
U = U1 + U2, Θ̃1, η̃1 satisfying A5

Result: (X̃k)k∈N
begin

Draw X̃0 ∼ µ0;
for k ≥ 1 do

Draw Gk+1 ∼ N (0, Id) and Z̃k+1 ∼ η̃1 ;

Set X̃k+1 = prox
γk+1

U2
(X̃k)− γk+2Θ̃1(prox

γk+1

U2
(X̃k), Z̃k+1) +

√
2γk+2Gk

Let(γk)k∈N∗ and (λk)k∈N∗ be two non-increasing sequences of reals numbers and µ0 ∈
P2(Rd) be an initial distribution. The weighted averaged distribution associated with (32)
(ν̃Nn )n∈N is defined for all N,n ∈ N, n ≥ 1 by

ν̃Nn = Λ−1
N,N+n

N+n∑
k=N+1

λk µ0Q̃
k
γ , Q̃kγ = R̃γ1,γ2 · · · R̃γk,γk+1

, for k ∈ N∗ , (35)

where N is a burn-in time and ΛN,N+n is defined in (20). We take in the following the
convention that Q̃0

γ is the identity operator.

Under A3, define for all µ ∈ P2(Rd),

υ1(µ) =

∫
Rd×Z̃

∥∥∥∥Θ̃1(x, z)−
∫
Z̃

Θ̃1(x, z̃)dη̃1(z̃)

∥∥∥∥2

dη(z)dµ(x)

= E
[∥∥∥Θ̃1(X̃0, Z̃1)−∇U1(X̃0)

∥∥∥2
]
, (36)

where X̃0, Z̃1 are independent random variables with distribution µ and η̃1 respectively.

Theorem 17 Assume A5(m), for m ≥ 0. Let (γk)k∈N∗ and (λk)k∈N∗ be two non-increasing
sequences of positive real numbers satisfying γ1 ∈

(
0, L−1

]
, and for all k ∈ N∗, λk+1/γk+2 ≤
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λk/γk+1. Let µ0 ∈ P2(Rd) and N ∈ N. Then for all n ∈ N∗, we have

KL
(
ν̃Nn
∣∣π) ≤ λN+1W

2
2

(
µ0Q̃

N
γ S̃

2
γN+1

, π
)/

(2γN+2ΛN,N+n)

+ (2ΛN,N+n)−1
N+n∑
k=N+1

λkγk+1{2Ld+ (1 + γk+1L)υ1(µ0Q
k−1
γ S̃2

γk
) + 2M2

2 } .

Proof The proof is postponed to Section 7.4.1.

Corollary 18 Assume A5(m), for m ≥ 0. Assume that supx∈Rd υ1(δx) ≤ D2 < ∞. Let
(γk)k∈N∗ and (λk)k∈N∗ given for all k ∈ N∗ by λk = γk = γ ∈

(
0, L−1

]
. Let µ0 ∈ P2(Rd).

Then for any N ∈ N, n ∈ N∗ we have

KL
(
ν̃Nn
∣∣π) ≤ W 2

2

(
µ0Q̄

N
γ S̄γ , π

)/
(2nγ) + γ

(
Ld+M2

2 +D2
)
,

Furthermore, let ε > 0 and

γε ≤ min
{
ε/(2(Ld+M2

2 +D2)), L−1
}
, nε ≥ dW 2

2 (µ0S̃
2
γ1 , π)(γεε)

−1e .

Then we have KL
(
ν̃0
nε

∣∣π) ≤ ε.
In the case where a warm start is available for the Wasserstein distance, i.e. W 2

2 (µ0, π) ≤
C, for some absolute constant C ≥ 0, then Corollary 18 implies that the complexity of
SPGLD to obtain a sample close from π in KL with a precision target ε > 0 is of order
(d+M2

2 +D2)Ō(ε−2). In addition, Pinsker inequality implies that the complexity of SPGLD
for the total variation distance is of order (d+M2

2 +D2)Ō(ε−4).

In addition if we have access to η > 0 and Mη ≥ 0, independent of the dimension, such
that for all x ∈ Rd, x 6∈ B(x?,Mη), U(x)−U(x?) ≥ η ‖x− x?‖, Proposition 32, A5-(ii), (31)
and (25) imply that starting at δx? , the overall complexity of SPGLD for the KL is in this
case (η−2d2 +M2

η )(d+M2
2 +D2)Ō(ε−2) and (η−2d2 +M2

η )(d+M2
2 +D2)Ō(ε−4) for the total

variation distance If (γk)k∈N∗ and (λk)k∈N∗ are given for all k ∈ N∗ by γk = λk = γ1/k
−α,

γ1 ∈
(
0, L−1

]
. Then by the same reasoning as in the proof of Corollary 8, we obtain that

there exists C ≥ 0 such that for all n ∈ N∗, we have KL
(
ν̄0
n

∣∣π) ≤ C max(nα−1, n−α), if

α 6= 1/2, and for α = 1/2, we have KL
(
ν̄0
n

∣∣π) ≤ C(ln(n) + 1)n−1/2.

If supx∈Rd υ1(δx) < +∞ does not hold, we can control the variance of stochastic gradient
estimates using A4 again based on this following result.

Proposition 19 Assume A 5 and Θ̃1 satisfies A 4. Then we have for all x ∈ Rd and
γ ∈ (0, L̃−1]

2γ(L̃−1 − γ)υ1(δx) ≤ ‖x− x?‖2 −
∫
Rd
‖y − x?‖2 (S̃1

γTγS̃
2
γ)(x,dy) + 2γ2υ1(δx?) + 2γd ,

where S̃1
γ , S̃

2
γ and υ1 are defined by (34)-(36) respectively.
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Proof Let γ > 0, x ∈ Rd and consider X̃1 = proxγU2

{
x− γΘ̃1(x, Z̃1) +

√
2γG1

}
, where Z̃1

and G1 are two independent random variables, Z̃1 has distribution η̃1 and G1 is the standard
Gaussian random variable, so that X̃1 has distribution S̃1

γTγS̃
2
γ(x, ·). First by (Bauschke

and Combettes, 2011, Theorem 26.2(vii)), we have that x? = proxγU2
(x? − γ∇U1(x?)) and

by (Bauschke and Combettes, 2011, Proposition 12.27), the proximal is non-expansive, for
all x, y ∈ Rd, ‖proxγU2

(x)−proxγU2
(y)‖ ≤ ‖x− y‖. Using these two results and the fact that

Θ̃1 satisfies A4, we have

E
[∥∥∥X̃1 − x?

∥∥∥2
]

= E
[∥∥∥proxγU2

{
x− γΘ̃1(x, Z̃1) +

√
2γG1

}
− proxγU2

{x? − γ∇U1(x?)}
∥∥∥2
]

≤ E
[∥∥∥(x− γΘ̃1(x, Z̃1) +

√
2γG1

)
− (x? − γ∇U1(x?))

∥∥∥2
]

≤ ‖x− x?‖2

+ E
[
2γ
〈
x− x?,∇U1(x?)− Θ̃1(x, Z̃1)

〉
+ γ2

∥∥∥∇U1(x?)− Θ̃1(x, Z̃1)
∥∥∥2
]

+ 2γd

≤ ‖x− x?‖2 − 2γ(L̃−1 − γ)E
[∥∥∥Θ̃1(x, Z̃1)− Θ̃1(x?, Z̃1)

∥∥∥2
]

+ 2γ2E
[∥∥∥Θ̃1(x?, Z̃1)−∇U1(x?)

∥∥∥2
]

+ 2γd .

The proof is completed upon noting that υ1(δx) ≤ E[
∥∥∥Θ̃1(x, Z̃1)− Θ̃1(x?, Z̃1)

∥∥∥2
].

Combining Theorem 17 and Proposition 19, we get the following result.

Corollary 20 Assume A 5(m) for m ≥ 0 and that Θ̃1 satisfies A 4. Let (γk)k∈N∗ and
(λk)k∈N∗ be two non-increasing sequences of positive real numbers given for all k ∈ N∗ by
γk = λk = γ ∈ (0, L−1] , γ < L̃−1. Let µ0 ∈ P2(Rd) and N ∈ N. Then for all n ∈ N∗, it
holds

KL
(
ν̃Nn
∣∣π) ≤ W 2

2

(
µ0Q̃

N
γ S̃

2
γN+1

, π
)/

(2γn) + γ(Ld+M2
2 )

+ (1 + γL)(2(L̃−1 − γ))−1

{
(2n)−1

∫
Rd
‖x− x?‖2 dµ0Q̃

N
γ S̃

2
γ(y) + γ2υ1(δx?) + γd

}
.

Furthermore, for ε > 0, consider stepsize and a number of iterations satisfying:

γε ≤ min

[
ε
/{

4M2
2 + 4Ld+ 8L̃d

}
,

√
ε/
(

8L̃υ1(δx?)
)
, L−1, (2L̃)−1

]
,

nε ≥ 2 max

{⌈
W 2

2 (µ0S̃
2
γε , π)(γεε)

−1
⌉
,

⌈
2L̃ε−1

∫
Rd
‖x− x?‖2 dµ0S̃

2
γ(y)

⌉}
.

Then, we have KL
(
ν̃0
nε

∣∣π) ≤ ε.
Proof The proof of the corollary is a direct consequence of Theorem 17 and Proposition 19,
and is postponed to Section 7.4.2.
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Note that the dependency on the variance of the stochastic gradients is improved com-
pared to the bound given by Corollary 18. We specify once again the result of Theorem 17
for strongly convex potential.

Theorem 21 Assume A5(m), for m > 0. Let (γk)k∈N∗ be a non-increasing sequences of
positive real numbers satisfying for all k ∈ N∗, γk ∈

(
0, L−1

]
. Let µ0 ∈ P2(Rd). Then for

all n ∈ N∗, it holds

W 2
2 (µ0Q̃

n
γ S̃

2
γn+1

, π) ≤

{
n∏
k=1

(1−mγk+1)

}
W 2

2 (µ0S̃
2
γ1 , π)

+

n∑
k=1

γ2
k+1

{
n+1∏
i=k+2

(1−mγi)

}
{2Ld+ (1 + γk+1L)υ1(µ0Q̃

k−1
γ S̃2

γk
) + 2M2

2 } .

Proof The proof is postponed to Section 7.4.3.

Corollary 22 Assume A5(m), for m > 0. Assume that supx∈Rd υ1(δx) ≤ D2 < ∞. Let
ε > 0, µ0 ∈ P2(Rd), and

γε ≤ min
{
mε/(4(Ld+D2 +M2

2 )), L−1
}
, nε ≥ dln(2W 2

2 (µ0S̃
2
γε , π)/(εγεm)−1e .

Then W 2
2 (µ0R̃

nε
γε,γεS̃

2
γε , π) ≤ ε, where R̃γ,γ and S̃

2
γ are defined by (33) and (34) respectively.

Proof Since γε ≤ L−1, we have (1 + γεL)υ1(µ0R̃
k
γεS̃

2
γ) ≤ 2D2 for all k ≥ 1. Using Theo-

rem 21 then concludes the proof.

Note that the bounds given by Theorem 21 are tighter the one given by Dalalyan and
Karagulyan (2017, Theorem 3) which shows under A5 with U2 = 0 and supx∈Rd υ1(δx) ≤ D2

that

W2(µ0R̃γ,γ , π) ≤ (1−mh)W2(µ0, π) + 1.65(L/m)(γd)1/2 +D2(γd)1/2/(1.65L+Dm) .

Indeed, for constant stepsize γk = γ ∈ (0, L−1] for all k ∈ N∗, Theorem 21 implies with the
same assumptions that

W2(µ0R̃γ,γ , π) ≤ (1−mh)1/2W2(µ0, π) + (2Ldγ/m)1/2 + ((1 + γ)γ/m)1/2D .

As for ULA, the dependency on the condition number L/m is improved.
In the strongly convex case, we can improve the dependency on the variance of the

stochastic gradient under the following condition.

A6 There exist L̃1, m̃1 > 0 such that for all for η̃1-almost every z ∈ Z̃, for all x, y ∈ Rd, we
have 〈

Θ̃1(x, z)− Θ̃1(y, z), x− y
〉
≥ m̃1 ‖x− y‖2 + (1/L̃1)

∥∥∥Θ̃1(x, z)− Θ̃1(y, z)
∥∥∥2

.
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The condition A6 is for example satisfied if η-almost surely, x 7→ Θ̃1(x, z) is strongly convex,
see (Nesterov, 2004, Theorem 2.1.12).

Proposition 23 Assume A5(m) for m > 0 and A6. Then for all γ > 0 we have

2γ(L̃−1
1 − γ)υ1(δx) ≤ (1− m̃1γ) ‖x− x?‖2−∫

Rd
‖y − x?‖2 (S̃1

γTγS̃
2
γ)(x,dy) + 2γ2υ1(δx?) + 2γd ,

where S̃1
γ , S̃

2
γ and υ1 are defined by (34)-(36) respectively.

Proof The proof is similar to the proof of Proposition 19 and is postponed to Section 7.4.4.

Corollary 24 Assume A5(m), for m > 0 and that Θ̃1 satisfies A6. Let (γk)k∈N∗ defined
for all k ∈ N∗ by γk = γ ∈ (0, L−1 ∧ (2L̃1)−1]. Let µ0 ∈ P2(Rd). Define m̃ = min(m, m̃1)
and

∆1 = 2(Ld+M2)/m+ {2L̃1(1 + γL)/m̃}d
∆2 = {2L̃1(1 + γL)/m̃}υ1(δx?)

∆3 = γL̃1(1 + γL)

{∫
Rd
‖x− x?‖2 dµ0S̃

2
γε(x)

}
.

(37)

Then for all n ∈ N∗, it holds

W 2
2 (µ0R̃

n
γ,γS̃

2
γ , π) ≤ (1 − mγ)nW 2

2 (µ0S̃
2
γ , π) + (1 − m̃γ)n∆3 + γ∆1 + γ2∆2 , (38)

where R̃γ,γ and S̃
2
γ are defined by (33) and (34).

Therefore, for ε > 0 and

γε ≤ min
{
ε/(4∆1), [ε/(4∆2)]1/2, L−1, (2L̃1)−1

}
nε ≥ max

{
dln(4W 2

2 (µ0S̃
2
γε , π)/ε)(γεm)−1e, dln(4∆3/ε)(γεm̃)−1e

}
,

it holds W 2
2 (µ0R̃

nε
γε,γεS̃

2
γε , π) ≤ ε.

Proof The proof of the corollary is postponed to Section 7.4.5.

Corollary 25 Assume A5(m), for m > 0 and that Θ̃1 satisfies A6. Define
m̃ = min(m, m̃1). Let ε > 0, µ0 ∈ P2(Rd) and

γε ≤ min
{
ε/(4∆1), [ε/(4∆2)]1/2, L−1, (2L̃1)−1

}
,

Nε ≥ max
{
dln(4W 2

2 (µ0S̃
2
γε , π)/ε)(γεm)−1e, dln(4∆3/ε)(γεm̃)−1e

}
γ̃ε ≤ min

[
ε
/{

4M2
2 + 4Ld+ 8L̃d

}
,

√
ε/
(

8L̃υ1(δx?)
)
, L−1, (2L̃)−1

]
,

nε ≥ 2 max

{⌈
γ−1
ε

⌉
,

⌈
2L̃ε−1

∫
Rd
‖x− x?‖2 dµ0R̃

Nε
γε,γεS̃

2
γ(y)

⌉}
,
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where ∆1,∆2,∆3 are defined in (37) and R̃γ,γ and S̃
2
γ are defined by (33) and (34). Let

(γk)k∈N defined by γk = γε for k ∈ {1, . . . , Nε} and γk = γ̃ε for k > Nε. Then we have

KL
(
ν̃Nεnε

∣∣π) ≤ ε where ν̃Nεnε = n−1
ε

∑nε
k=1 µ0R̃

Nε
γε,γεR̃

k
γ̃ε,γ̃ε.

Proof Corollary 24 implies that after the burn in phase of Nε steps with stepsize γε, we

have W 2
2 (µ0Q̃

Nε
γ S̃

2
γε , π) ≤ ε. Then, since we can treat µ0Q̃

Nε
γ as a new starting measure,

Corollary 20 concludes the proof.

4.2.1. Discussion on Related Works

Note that the SPGLD is different from the algorithm MYULA proposed by Durmus et al.
(2018) which approximates U2 by its Moreau envelope, and under A5 defines the Markov
chain (XM

k )k∈N by the recursion:

XM
k+1 = (1− γ/λM) + (γ/λM) proxλ

M

U2
(XM

k )− γ∇U1(XM
k ) +

√
2γGk+1 ,

for a stepsize γ > 0, (Gk)k∈N∗ a sequence of i.i.d. d-dimensional standard Gaussian random
variables and λM > 0 a regularization parameter. So taking λM = γ, we get that the
recursion boils down to

XM
k+1 = proxγU2

(XM
k )− γ∇U1(XM

k ) +
√

2γGk+1 .

Then the main difference with (32) setting γk = γ for all k ∈ N∗ and Θ̃1 = ∇U1 is that
∇U1(XM

k ) is replaced in (32) by ∇U1(proxγU2
(XM

k )).
Recently, two papers have independently interpreted ULA as an algorithm that opti-

mizes F on the Wasserstein space. They both relies on this interpretation to derive and
analyze different algorithms for sampling log-concave target measures, that use the proximal
operator associated with U .

First, Wibisono (2018) proposed and analyzed the symmetrized Langevin algorithm
(SLA) in order to reduce the discretization bias. SLA combines backward and forward
steps, i.e. it defines the Markov chain (XSLA

k )k∈N by the recursion

XSLA
k+1 = proxγU

{
XSLA
k − γ∇U(XSLA

k ) +
√

4γGk+1

}
, (39)

for a stepsize γ > 0 and (Gk)k∈N∗ a sequence of i.i.d. d-dimensional standard Gaussian
random variables. Wibisono (2018) shows that in the Gaussian case, i.e. for any x ∈
Rd, U(x) = 〈(x − x̄)Σ−1, (x − x̄)〉/2 for some mean x̄ ∈ Rd and covariance matrix Σ ∈
Rd×d, SLA is unbiased and converges with an exponential rate to π. For general strongly
convex potentials U , exponential convergence in Wasserstein distance of the sequence of
distributions associated with (XSLA

k )k∈N to a biased limit πSLA
γ is established as k → +∞.

However, no explicit bound on W2(πγ , π
SLA) or nonasymptotic convergence rates are given.

In a parallel work, Bernton (2018) considers the proximal Langevin algorithm (PLA).
This algorithm defines the Markov chain (XPLA

k )k∈N by the recursion

XPLA
k+1 = prox

γk+1

U (XPLA
k )− γ

√
2γk+1Gk+1 .

26



Analysis of Langevin MC via Convex Optimization

Applying techniques from Ambrosio et al. (2008), quantitative results on the Wasserstein
distance between the above discretization and gradient flow of KL divergence are obtained.
From those results, bounds on the Wasserstein distance between iterates and target distri-
butions are given, in the case where U is strongly convex. The complexity bounds for PLA
obtained in Bernton (2018) are of order dŌ(ε−2) when U is smooth and strongly convex,
and are equivalent to our results up to dependence on the starting measure. In the case of
U = U1 + U2 where U1 is strongly convex and U2 is Lipschitz, bounds in Bernton (2018)
are of order d2Ō(ε−4) while our bounds are still of the same order as in the smooth case.

5. Numerical Experiments

In this section, we experiment SPGLD and SSGLD on a Bayesian logistic regression prob-
lem, see e.g. (Holmes and Held, 2006; Gramacy and Polson, 2012; Park and Hastie, 2007).
Consider i.i.d. observations (Xi, Yi)i∈{1,...,N}, where (Yi)i∈{1,...,N} are binary response vari-
ables and (Xi)i∈{1,...,N} are d-dimensional covariance variables. For all i ∈ {1, . . . , N}, Yi
is assumed to be a Bernoulli random variable with parameter Φ(βTXi) where β is the pa-
rameter of interest and for all u ∈ R, Φ(u) = eu/(1 + eu). We choose as prior distributions
(see Genkin et al. (2007) and Li and Lin (2010)) a d-dimensional Laplace distribution and
a combination of the Laplace distribution and the Gaussian distribution, with density with
respect to the Lebesgue measure given respectively for all β ∈ Rd by

p1(β) ∝ exp

(
−a1

d∑
i=1

|βi|

)
, p1,2(β) ∝ exp

(
−a1

d∑
i=1

|βi| − a2

d∑
i=1

β2
i

)
,

where a1 is set to 1 in the case of p1 and a1 = 0.9, a2 = 0.1 in the case of p1,2. The
chosen priors on the one hand reduce impact of the irrelevant features by shrinking them
close to zero. On the other hand this choice of priors leads to the log-concave posteriors.
Both these property are highly desirable in the high dimensional setting. We obtain then
the two different a posteriori distributions p1(·|(X,Y )i∈{1,...,N}) and p1,2(·|(X,Y )i∈{1,...,N})
with potentials given, respectively, by

β 7→
N∑
n=1

`n(β) + a1

d∑
i=1

|βi| , β 7→
N∑
n=1

`n(β) + a2

d∑
i=1

β2
i + a1

d∑
i=1

|βi| .

where

`n(β) = −YnβTXn + log[1 + exp(βTXn)] .

We consider the three data sets from UCI repository (Dua and Efi, 2017) Heart disease
dataset (N = 270, d = 14), Australian Credit Approval dataset (N = 690, d = 34) and
Musk dataset (N = 476, d = 166). We approximate p1(·|(X,Y )i∈{1,...,N}) using SPGLD and
SSGLD, since the associated potential is Lipschitz, whereas regarding p1,2(·|(X,Y )i∈{1,...,N})
we only apply SPGLD.
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Figure 1: Mean absolute error of estimator of I2 for Australian Credit Approval dataset:
(top row) results for p1,2(·|(X,Y )i∈{1,...,N}); (a) convergence of SPGLD for Ñ =
N , (b) convergence of SPGLD in terms of effective passes for τ = 0.1, (c)
boxplot of SPGLD for full runs; (bottom row) results for p1(·|(X,Y )i∈{1,...,N});

(d) convergence of SPGLD and SSGLD for Ñ = N , (e) convergence of SPGLD
and SSGLD in terms of effective passes for τ = 0.1, (f) boxplot of SPGLD and
SSGLD for full run.

SPGLD is performed using the following stochastic gradient

Θ̃1(β, Z) = (N/Ñ)
∑
n∈Z
∇`n(β) + a2β ,

where a2 is set to 0 in the case of p1(·|(X,Y )i∈{1,...,N}) and Z is a uniformly distributed

random subset of {1, . . . , N} with cardinal Ñ ∈ {1, . . . , N}. In addition, the proximal
operator associated with β 7→ a1

∑d
i=1 |βi| is given for all β ∈ Rd and γ > 0 by (see

e.g. Parikh and Boyd (2013))

(proxγa1,`1(β))i = sign(βi) max(|βi| − a1γ, 0) , for i ∈ {1, . . . , d} .
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Figure 2: Mean absolute error of estimator of I1 for Australian Credit Approval dataset:
(top row) results for p1,2(·|(X,Y )i∈{1,...,N}); (a) convergence of SPGLD for Ñ =
N , (b) convergence of SPGLD in terms of effective passes for τ = 0.1, (c)
boxplot of SPGLD for full runs; (bottom row) results for p1(·|(X,Y )i∈{1,...,N});

(d) convergence of SPGLD and SSGLD for Ñ = N , (e) convergence of SPGLD
and SSGLD in terms of effective passes for τ = 0.1, (f) boxplot of SPGLD and
SSGLD for full run.

SSGLD is performed using the following stochastic subgradient

Θ(β, Z) = (N/Ñ)
∑
n∈Z
∇`n(β) + a1

d∑
i=1

sign(βi)ei ,

where (ei)i∈{1,...,d} denotes the canonical basis and Z is a uniformly distributed random

subset of {1, . . . , N} with cardinal Ñ ∈ {1, . . . , N}.
Based on the results of SPGLD and SSGLD, we estimate the posterior mean I1 and I2

of the test functions β 7→ β1 and β 7→ (1/d)
∑d

i=1 β
2
i . For our experiments, we use constant

stepsizes γ of the form τ(L + m)−1 with τ = 0.01, 0.1, 1 and for stochastic (sub) gradient
we use Ñ = N, bN/10c, bN/100c. For all datasets and all settings of τ , Ñ we run 100
independent runs of SPGLD (SSGLD), where each run was of length 106. For each set of
parameters we estimate I1, I2 and we compute the absolute errors, where the true value were
obtained by prox-MALA (see Pereyra (2015)) with 107 iterations and stepsize corresponding
to optimal acceptance ratio ≈ 0.5, see (Roberts and Rosenthal, 1998). The results for I2

are presented on Figure 1, Figure 3 and Figure 5 for Australian Credit Approval dataset,
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Figure 3: Mean absolute error of estimator of I2 for Heart disease dataset: (top row) results
for p1,2(·|(X,Y )i∈{1,...,N}); (a) convergence of SPGLD for Ñ = N , (b) conver-
gence of SPGLD in terms of effective passes for τ = 0.1, (c) boxplot of SPGLD
for full run; (bottom row) results for p1(·|(X,Y )i∈{1,...,N}); (d) convergence of

SPGLD and SSGLD for Ñ = N , (e) convergence of SPGLD and SSGLD in
terms of effective passes for τ = 0.1, (f) boxplot of SPGLD and SSGLD for full
run.

Heart disease dataset and Musk data respectively. The results for I1 are presented on
Figure 2, Figure 4 and Figure 6 for Australian Credit Approval dataset, Heart disease
dataset and Musk data respectively. We note that in the all cases, bias decreases but
convergence becomes slower with decreasing γ. When we look for stochastic (sub)gradient
then the bias of estimators and also their variance increase when we decrease Ñ . However
if we look for the effective passes, i.e. the number of iteration is scaled with the cost of
computing gradients, we observe that convergence is faster with reasonably small Ñ . If we
compare SSGLD with SPGLD we see that in the almost all cases, except Musk dataset,
SSGLD leads to slightly smaller bias. For the Musk dataset differences between SSGLD
and SPGLD are negligible and we do not present the results for SPGLD. In the presented
experiments, all results agrees with our theoretical findings and suggest that SPGLD or
SSGLD could be an alternative for other MCMC methods.
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Figure 4: Mean absolute error of estimator of I1 for Heart disease dataset: (top row) results
for p1,2(·|(X,Y )i∈{1,...,N}); (a) convergence of SPGLD for Ñ = N , (b) conver-
gence of SPGLD in terms of effective passes for τ = 0.1, (c) boxplot of SPGLD
for full run; (bottom row) results for p1(·|(X,Y )i∈{1,...,N}); (d) convergence of

SPGLD and SSGLD for Ñ = N , (e) convergence of SPGLD and SSGLD in
terms of effective passes for τ = 0.1, (f) boxplot of SPGLD and SSGLD for full
run.

6. Discussion

In this paper, we presented a novel interpretation of the Unadjusted Langevin Algorithm
as the first order optimization algorithm, and a new technique of proving non-asymptotic
bounds for ULA, based on the proof techniques known from convex optimization. Our proof
technique gives simpler proofs of some of the previously known non-asymptotic results for
ULA. It can be also used to prove non-asymptotic bound that were previously unknown.
Specifically, to the best of the authors knowledge, we provide the first non-asymptotic
results for Stochastic Gradient ULA in the non-strongly convex case, as well as the first
non-asymptotic results in the non-smooth non-strongly convex case. Furthermore, our
technique extends effortlessly to the stochastic non-smooth case, and to the best of the
authors knowledge we provide the first non-asymptotic analysis of that case.
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Figure 5: Mean absolute error of estimator of I2 for Musk dataset: (top row) results for
p1−2 prior; (a) convergence of SPGLD for Ñ = N , (b) convergence of SPGLD in
terms of effective passes for τ = 0.1, (c) boxplot of SPGLD for full run; (bottom
row) results for p1 prior; (d) convergence of SSGLD for Ñ = N , (e) convergence
of SSGLD in terms of effective passes for τ = 0.1, (f) boxplot of SSGLD for full
run.

Furthermore our new perspective on the Unadjusted Langevin Algorithm, provides a
starting point for the further research into connections between Langevin Monte Carlo and
Optimization. In particular, we believe that a very promising direction for future research is
to try to modify well-known effective optimization algorithms to minimize the KL divergence
with respect to some target density π in Wasserstein space.

7. Postponed Proofs

7.1. Proof of Lemma 1

a) Since e−U is integrable with respect to the Lebesgue measure, under A1(m) for m ≥ 0,
by (Brazitikos et al., 2014, Lemma 2.2.1), there exists C1, C2 > 0 such that for all x ∈ Rd,
U(x) ≥ C1 ‖x‖ − C2. This inequality and A2 implies that π ∈ P2(Rd). In addition, since
the function x 7→ U(x)e−U(x)/2 is bounded on [−C2,+∞), we have for all x ∈ Rd,

∣∣∣(U(x)e−U(x)/2
)

e−U(x)/2
∣∣∣ ≤ C3e−U(x)/2
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Figure 6: Mean absolute error of estimator of I1 for Musk dataset: (top row) results for
p1−2 prior; (a) convergence of SPGLD for Ñ = N , (b) convergence of SPGLD in
terms of effective passes for τ = 0.1, (c) boxplot of SPGLD for full run; (bottom
row) results for p1 prior; (d) convergence of SSGLD for Ñ = N , (e) convergence
of SSGLD in terms of effective passes for τ = 0.1, (f) boxplot of SSGLD for full
run.

for some constant C3. From this, and U(x) ≥ C1 ‖x‖ − C2 we conclude that E (π) < +∞.
Using the same reasoning, we have H (π) < +∞ which finishes the proof of the first part.
b) First, if µ does not admit a density with respect to Lebesgue measure, then both sides of
(10) are +∞. Second, if µ admits a density still denoted by µ with respect to the Lebesgue
measure, we have by (7):

F (µ)−F (π) = KL (µ|π) +

∫
Rd
{µ(x)− π(x)} {U(x) + log(π(x))}dx = KL (µ|π) .

7.2. Proof of Corollary 8

Using Theorem 6 we first get

KL (νn|π) ≤ W 2
2 (µ0, π)

/
(2Γ0,n) + (Ld/Γ0,n)

n∑
k=1

γ2
k . (40)

Note that using a simple integral test, we have Γ0,n ≥ C1n
1−α for some constant C1 ≥ 0.

On the other hand, for some constant C2 ≥ 0 we have
∑n

k=1 γ
2
k ≤ C2(1 +n1−2α) if α 6= 1/2,
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and
∑n

k=1 γ
2
k ≤ C2(1+log(n)) if α = 1/2. Combining all these inequalities in (40) concludes

the proof.

7.3. Proofs of Section 4.1

Note that for all γ, γ̃ > 0, R̄γ,γ̃ can be decomposed as S̄γTγ̃ where Tγ̃ is defined in (14) and
S̄γ is given by (30). Then similarly to the proof of Theorem 6, we first give a preliminary
bound on F (µR̄γ,γ̃)−F (π) for µ ∈ P2(Rd) and γ, γ̃ > 0 as in Proposition 2.

Lemma 26 Assume A1(0) and A3. For all γ > 0 and µ ∈ P2(Rd),

2γ {E (µ)− E (π)} ≤W 2
2 (µ, π)−W 2

2 (µS̄γ , π) + γ2
{
M2 + υΘ(µ)

}
,

where E and Tγ are defined in (9) and (14) respectively, υΘ(µ) in (29) and S̄γ in (30).

Proof Let Z be a random variable with distribution η, γ > 0 and µ ∈ P2(Rd). For all
x, y ∈ Rd, we have using the definition of ∂U(x) (24) and A3-(ii)

‖y − x+ γΘ(x, Z)‖2 = ‖y − x‖2 + 2γ 〈Θ(x, Z), y − x〉+ γ2 ‖Θ(x, Z)‖2

≤ ‖y − x‖2 − 2γ {U(x)− U(y)}+ 2γ 〈Θ(x, Z)− E [Θ(x, Z)] , y − x〉+ γ2 ‖Θ(x, Z)‖2 .

Let (X,Y ) be an optimal coupling between µ and π independent of Z. Then by A3-(ii)
and rearranging the terms in the previous inequality, we obtain

2γ {E (µ)− E (ν)} ≤W 2
2 (µ, π)− E

[
‖Y −X + γΘ(X,Z)‖2

]
+ γ2E

[
‖Θ(X,Z)‖2

]
.

The proof is concluded upon noting that W 2
2 (µS̄γ , π) ≤ E[‖Y −X + γΘ(X,Z)‖2] and

E[‖Θ(X,Z)‖2] ≤M2 + υΘ(µ).

Proposition 27 Assume A1(0) and A3. For all γ, γ̃ > 0 and µ ∈ P2(Rd),

2γ̃
{
F (µR̄γ,γ̃)−F (π)

}
≤
{
W 2

2

(
µS̄γ , π

)
−W 2

2

(
µR̄γ,γ̃S̄γ̃ , π

)}
+ γ̃2

{
M2 + υΘ(µR̄γ,γ̃)

}
.

where F is defined in (9), υΘ(µ) in (29), R̄γ,γ̃ and S̄γ in (27) in (30) respectively.

Proof Note that by Lemma 26, we have

2γ̃
{
E (µR̄γ,γ̃)− E (π)

}
≤W 2

2

(
µR̄γ,γ̃ , π

)
−W 2

2

(
µR̄γ,γ̃S̄γ̃ , π

)
+ γ̃2

{
M2 + υΘ(µR̄γ,γ̃)

}
. (41)

In addition by Lemma 5, it holds

2γ̃
{
H (µR̄γ,γ̃)−H (π)

}
≤W 2

2

(
µS̄γ , π

)
−W 2

2

(
µR̄γ,γ̃ , π

)
.

The proof then follows from combining this inequality with (41).
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7.3.1. Proof of Theorem 13

By Proposition 27, for all k ∈ N∗, we have

F (µQ̄kγ)−F (π) ≤ (2γk+1)−1
{
W 2

2

(
µQ̄k−1

γ S̄γk , π
)
−W 2

2

(
µQ̄kγS̄γk+1

, π
)}

+ (γk+1/2)
{
M2 + υΘ(µQ̄kγ)

}
.

Similarly to the proof of Theorem 6 using the convexity of KL divergence and the condition
that (λk/γk+1)k∈N∗ is non-increasing concludes the proof.

7.3.2. Proof of Corollary 16

On the one hand, using Theorem 13, we get:

KL
(
ν̃Nn
∣∣π) ≤ (2γn)−1W 2

2

(
µ0Q̄

N
γ S̄γ , π

)
+ γM2/2 + (γ/(2n))

N+n∑
k=N+1

υΘ(µ0Q̄
k
γ) .

On the other hand, using Proposition 15, we obtain:

2γ(L̃−1 − γ)

(
N+n∑
k=N+1

υΘ(µ0Q̄
k
γ)

)
≤
∫
Rd
‖x− x?‖2 dµ0Q̄

N+1
γ (x)

−
∫
Rd
‖x− x?‖2 dµ0Q̄

N+n+1
γ + 2nγ2υΘ(δx?) + 2nγd .

Combining the two inequalities above finishes the proof of the first part of Corollary 16.
For the second part, first observe that since γε ≤ (2L̃)−1 we have (2(L̃−1 − γ))−1 ≤ L̃.

Furthermore, from the definition of γε we have γε(
M2

2 + L̃d) ≤ ε/4, as well as γ2
ε L̃υΘ(δx?) ≤

ε/4. On the other hand, from the definition of nε we have W 2
2 (µ0S̄γε , π)/(2γεnε) ≤ ε/4 as

well as L̃(2nε)
−1
∫
Rd ‖x− x

?‖2 dµ0R̄γε,γε(x) ≤ ε/4. Combining those four bounds together
finishes the proof.

7.4. Proof of Section 4.2

We proceed for the proof of Theorem 17 similarly to the one of Theorem 6, by decomposing
F (µR̃γ,γ̃)−F (π) = E (µR̃γ,γ̃)− E (π) + H (µR̃γ,γ̃)−H (π), for µ ∈ P2(Rd) and γ, γ̃ > 0.
The main difference is that we now need to handle carefully the proximal step in the first
term of the decomposition. To this end, we decompose the potential energy functional
according to the decomposition of U , E = E1 + E2 where for all µ ∈ P2(Rd),

E1(µ) =

∫
Rd
U1dµ(x) , E2(µ) =

∫
Rd
U2dµ(x) , (42)

and consider

F (µR̃γ,γ̃)−F (π) = E1(µR̃γ,γ̃)− E1(µS̃2
γS̃

1
γ̃)

+ E1(µS̃2
γS̃

1
γ̃)− E1(π) + E2(µR̃γ,γ̃)− E2(π) + H (µR̃γ,γ̃)−H (π) . (43)

The first and last terms in the right hand side will be controlled using Lemma 3 and
Lemma 5. In the next lemmas, we bound the other terms separately.
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Lemma 28 Assume A5(m), for m ≥ 0. For all µ, ν ∈ P2(Rd) and γ ∈ (0, L−1],

2γ{E1(µS̃1
γ)− E1(ν)} ≤ (1−mγ)W 2

2 (µ, ν)−W 2
2 (µS̃1

γ , ν)

− γ2(1− γL)

∫
Rd
‖∇U1(x)‖2 dµ(x) + γ2(1 + γL)υ1(µ) ,

where E1, S̃
1
γ is defined by (42)-(34) and υ1(µ) by (36).

Proof Let µ, ν ∈ P2(Rd) and γ > 0. Since U1 satisfies A2 by (Nesterov, 2004, Lemma
1.2.3), for all x, x̃ ∈ Rd, we have |U1(x̃)−U1(x)−〈∇U1(x), x̃− x〉 | ≤ (L/2) ‖x̃− x‖2. Using
that U1 is m-strongly convex by A5(m), for all x, y ∈ Rd, z ∈ Z, we get

U1(x− γΘ̃1(x, z))− U1(y) = U1(x− γΘ̃1(x, z))− U1(x) + U1(x)− U1(y)

≤ −γ
〈
∇U1(x), Θ̃1(x, z)

〉
+ (Lγ2/2)

∥∥∥Θ̃1(x, z)
∥∥∥2

+ 〈∇U1(x), x− y〉 − (m/2) ‖y − x‖2 .

Then multiplying both sides by γ, we obtain

2γ
{
U1(x− γΘ̃1(x, z))− U1(y)

}
≤ (1−mγ) ‖x− y‖2 −

∥∥∥x− γΘ̃1(x, z)− y
∥∥∥2

− 2γ2
〈
∇U1(x), Θ̃1(x, z)

〉
+ γ2(1 + γL)

∥∥∥Θ̃1(x, z)
∥∥∥2

+ 2γ
〈
∇U1(x)− Θ̃1(x, z), x− y

〉
.

(44)

Let now (X,Y ) be an optimal coupling between µ and ν and Z with distribution η inde-
pendent of (X,Y ). Note that A5 implies that E[Θ̃1(X,Z)|(X,Y )] = ∇U1(X). Then by
definition and (44), we get

2γ
{

E (µS̃1
γ)− E (ν)

}
≤ (1−mγ)W 2

2 (µ, ν)− E
[∥∥∥X − γΘ̃1(X)− Y

∥∥∥2
]

− 2γ2E
[
‖∇U1(X)‖2

]
+ γ2(1 + γL)E

[∥∥∥Θ̃1(X)
∥∥∥2
]

≤ (1−mγ)W 2
2 (µ, ν)− E

[∥∥∥X − γΘ̃1(X)− Y
∥∥∥2
]

− γ2(1− γL)E
[
‖∇U1(X)‖2

]
+ γ2(1 + γL)υ1(µ) .

Using that W 2
2 (µS̃1

γ , ν) ≤ E[‖X − γΘ̃1(X)− Y ‖2] concludes the proof.

Lemma 29 Assume A5(m) for m ≥ 0. For all µ, ν ∈ P2(Rd) and γ > 0, we have

2γ {E2(µ)− E2(ν)} ≤W 2
2 (µ, ν)−W 2

2 (µS̃2
γ , ν) + 2γ2M2

2 ,

where E2, S̃
2
γ are defined by (42) and (34) respectively.
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Proof Let µ, ν ∈ P2(Rd) and γ > 0. First we bound for any x, y ∈ Rd, U2(x) − U2(y)
using the decomposition U2(x)−U2(proxγU2

(x))+U2(proxγU2
(x))−U2(y). For any x, y ∈ Rd,

we have using that γ−1(x− proxγU2
(x)) ∈ ∂U2(proxγU2

(x)) (see Rockafellar and Wets (1998,
Chapter 1 Section G)), where ∂U2 is the subdifferential of U2 defined by (24),

U2(proxγU2
(x))− U2(y) ≤ γ−1

〈
x− proxγU2

(x), proxγU2
(x)− y

〉
.

Since ‖x − y‖2 = ‖x − proxγU2
(x)‖2 + ‖ proxγU2

(x) − y‖2 + 2〈x − proxγU2
(x), proxγU2

(x) − y〉,
we get for all x, y ∈ Rd,

U2(proxγU2
(x))− U2(y) ≤ (2γ)−1(‖x− y‖2 − ‖ proxγU2

(x)− y‖2) . (45)

Second, since U2 is M2-Lipschitz, we get for any x ∈ Rd, |U2(x) − U2(proxγU2
(x))| ≤

M2‖x−proxγU2
(x)‖. Then using that γ−1(x−proxγU2

(x)) ∈ ∂U2(proxγU2
(x)), and for any v ∈

∂U2(proxγU2
(x)), since U2 is M2-Lipschitz, ‖v‖ ≤ M2, we obtain |U2(x)− U2(proxγU2

(x))| ≤
γM2

2 . Combining this result and (45) yields for any x, y ∈ Rd

2γ {U2(x)− U2(y)} ≤ ‖x− y‖2 − ‖ proxγU2
(x)− y‖2 + 2γ2M2

2 .

Let (X,Y ) be an optimal coupling for µ and ν. The proof then follows from using the in-
equality above for (X,Y ), taking the expectation and because W 2

2 (µS̃1
γ , ν) ≤ ‖proxγU2

(X)−
Y ‖2.

Lemma 30 Assume A5(m), for m ≥ 0. For all µ0 ∈ P2(Rd) and γ, γ̃ ∈
(
0, L−1

]
,

2γ̃{F (µ0R̃γ,γ̃)−F (π)} ≤ (1−mγ̃)W 2
2 (µ0S̃

2
γ , π)−W 2

2 (µ0R̃γ,γ̃S̃
2
γ̃ , π)

+ γ̃2{2Ld+ (1 + γ̃L)υ1(µ0S̃
2
γ) + 2M2

2 } ,

where F , R̃γ,γ̃ and S̃2
γ are defined by (7)-(33)-(34) respectively.

Proof Let µ0 ∈ P2(Rd) and γ, γ̃ ∈
(
0, L−1

]
. By Lemma 3 and since R̃γ,γ̃ = S̃2

γS̃
1
γ̃Tγ̃ , we

have
E1(µ0R̃γ,γ̃)− E1(µ0S̃

2
γS̃

1
γ̃) ≤ 2Ldγ̃ . (46)

By Lemma 28 since γ̃ ≤ 1/L,

2γ̃{E1(µ0S̃
2
γS̃

1
γ̃)− E1(π)} ≤ (1− γ̃m)W 2

2 (µ0S̃
2
γ , π)−W 2

2 (µ0S̃
2
γS̃

1
γ̃ , π)

+ γ̃2(1 + γ̃L)υ1(µ0S̃
2
γ) . (47)

By Lemma 29, we have

2γ̃{E2(µ0R̃γ,γ̃)− E2(π)} ≤W 2
2 (µ0R̃γ , π)−W 2

2 (µ0R̃γ,γ̃S̃
2
γ̃ , π) + 2γ̃2M2

2 . (48)

Finally by Lemma 5, we have

2γ̃{H (µ0R̃γ,γ̃)−H (π)} ≤W 2
2 (µ0S̃

2
γS̃

1
γ̃ , π)−W 2

2 (µ0R̃γ,γ̃ , π) . (49)

Combining (46)-(47)-(48)-(49) in (43) concludes the proof.
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7.4.1. Proof of Theorem 17

Using the convexity of KL divergence and Lemma 30, we obtain

KL
(
ν̃Nn
∣∣π) ≤ Λ−1

N,N+n

N+n∑
k=N+1

λk KL
(
µ0Q̃

k
γ

∣∣∣π)
≤ (2ΛN,N+n)−1

[
(1−mγN+2)λN+1

γN+2
W 2

2

(
µ0Q̃

N
γ S̃

2
γN+1

, π
)

− λN+n

γN+n+1
W 2

2

(
µ0Q̃

N+n
γ S̃2

γN+n+1
, π
)

+
N+n−1∑
k=N+1

{
(1−mγk+2)λk+1

γk+2
− λk
γk+1

}
W 2

2

(
µ0Q

k−1
γ S̃2

γk+1
, π
)

+
N+n∑
k=N+1

λkγk+1{2Ld+ (1 + γk+1L)υ1(µ0Q
k
γS̃

2
γk

) + 2M2
2 }

]
.

We get the thesis using that λk+1(1−mγk+2)/γk+2 ≤ λk/γk+1 for all k ∈ N.

7.4.2. Proof of Corollary 20

Using Theorem 17 we get:

KL
(
ν̃Nn
∣∣π) ≤ W 2

2

(
µ0Q̃

N
γ S̃

2
γ , π
)/

(2γn) + γ(Ld+M2
2 ) +

γ

2n

N+n∑
k=N+1

(1 + γL)υ1(µ0Q
k
γS̃

2
γ)

and using Proposition 19 we obtain:

2γ(L̃−1 − γ)

(
N+n∑
k=N+1

υ1(µ0Q
k
γS̃

2
γ)

)
≤
∫
Rd
‖y − x?‖2 dµ0Q

N+1
γ S̃2

γ(y)

−
∫
Rd
‖y − x?‖2 dµ0Q

N+n+1
γ S̃2

γ(y) + 2nγ2υ1(δx?) + 2nγd ,

Combining the two inequalities above finishes the proof of the first part of Corol-
lary 20. For the second part, observe that since γε ≤ L−1 and γε ≤ (2L̃)−1 we have
(1+γL)(2(L̃−1−γ))−1 ≤ 2L̃. Therefore from definition of γε we have γε(Ld+M2

2 +2L̃d) ≤
ε/4, as well as γ2

ε2L̃υ1(δx?) ≤ ε/4. On the other hand, from definition of nε we have

W 2
2 (µ0S̃

2
γε , π)/(2nεγε) ≤ ε/4 as well as 2L̃(2nε)

−1
∫
Rd ‖x− x

?‖2 dµ0S̃
2
γ(y) ≤ ε/4. Combin-

ing this four bounds we get the thesis.

7.4.3. Proof of Theorem 21

Using Lemma 30 and since the KL divergence is non-negative, we get for all k ∈ {1, . . . , n},

W 2
2

(
µ0Q̃

k
γS̃

2
γk+1

, π
)
≤ (1−mγk+1)W 2

2

(
µ0Q

k−1
γ S̃2

γk
, π
)

+ γ2
k+1{2Ld+ (1 + γk+1L)υ1(µ0Q

k−1
γ S̃2

γk
) + 2M2

2 } .

The proof then follows from a direct induction.
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7.4.4. Proof of Proposition 23

Let γ > 0, x ∈ Rd and consider X̃1 = proxγU2

{
x− γΘ̃1(x, Z1) +

√
2γG1

}
, where Z1 and

G1 are two independent random variables, Z1 has distribution η̃1 and G1 is a standard
Gaussian random variable, so that X̃1 has distribution S̃1

γTγS̃
2
γ(x, ·). First by (Bauschke

and Combettes, 2011, Theorem 26.2(vii)), we have that x? = proxγU2
(x? − γ∇U1(x?)) and

by (Bauschke and Combettes, 2011, Proposition 12.27), the proximal is non-expansive, for
all x, y ∈ Rd, ‖proxγU2

(x)−proxγU2
(y)‖ ≤ ‖x− y‖. Using these two results and the fact that

Θ̃1 satisfies A4, we have

E
[∥∥∥X̃1 − x?

∥∥∥2
]

= E
[∥∥∥proxγU2

{
x− γΘ̃1(x, Z1) +

√
2γG1

}
− proxγU2

{x? − γ∇U1(x?)}
∥∥∥2
]

≤ E
[∥∥∥(x− γΘ̃1(x, Z1) +

√
2γG1

)
− (x? − γ∇U1(x?))

∥∥∥2
]

≤ ‖x− x?‖2

+ E
[
2γ
〈
x− x?,∇U1(x?)− Θ̃1(x, Z1)

〉
+ γ2

∥∥∥∇U1(x?)− Θ̃1(x, Z1)
∥∥∥2
]

+ 2γd

≤ (1− m̃1γ) ‖x− x?‖2 − 2γ(L̃−1
1 − γ)E

[∥∥∥Θ̃1(x, Z1)− Θ̃1(x?, Z1)
∥∥∥2
]

+ 2γ2E
[∥∥∥Θ̃1(x?, Z1)−∇U1(x?)

∥∥∥2
]

+ 2γd .

The proof is completed upon noting that υ1(δx) ≤ E[‖Θ(x, Z1)−Θ(x?, Z1)‖2].

7.4.5. Proof of Corollary 24

Using Theorem 21 we get:

W 2
2 (µ0R̃

n
γ,γS̃

2
γ , π) ≤ (1−mγ)nW 2

2 (µ0S̃
2
γ , π)

+ γ2
n∑
k=1

(1−mγ)n−k
(

2Ld+ (1 + γL)υ1(µ0R̃
k
γ,γS̃

2
γ) + 2M2

2

)
≤ (1−mγ)nW 2

2 (µ0S̃
2
γ , π) + 2(Ld+M2)γ/m

+ γ2
n∑
k=1

(1− m̃γ)n−k(1 + γL)υ1(µ0R̃
k
γ,γS̃

2
γ) . (50)

In addition, using Proposition 23 and γ ≤ (2L̃1)−1, we have

γL̃−1
1

n∑
k=1

(1− m̃γ)n−kυ1(µ0R̃
k
γ,γS̃

2
γ) ≤ 2γ

n∑
k=1

(1− m̃γ)n−k(γυ1(δx?) + d)

+

n∑
k=1

(1− m̃γ)n−k+1

∫
Rd
‖x− x?‖2 dµ0R

k
γ,γS̃

2
γ(x)

−
n∑
k=1

(1− m̃γ)n−k
∫
Rd
‖x− x?‖2 dµ0R

k+1
γ,γ S̃

2
γ(x) .
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Combining this result and (50) concludes the proof of (38).
Now, for γε, nε as defined in the thesis of the corollary we have γε∆1 ≤ ε/4 and ∆2γ

2
ε ≤

ε/4. Furthermore, (1 − mγε)
nεW 2

2 (µ0S̃
2
γε , π) ≤ exp(−nεmγε)W 2

2 (µ0S̃
2
γε , π) ≤ ε/4, and

(1− γεm̃)∆3 ≤ ε/4 similarly. Together, the above inequalities conclude the proof.
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Appendix A. Definitions and Useful Results from Theory of Gradient
Flows

For a continously differentiable function f : Rd → R, the gradient flow associated with f
starting at x0 is the solution (x(t))t∈R+ of the ordinary differential equation: dx(t)/dt =
−∇f(x(t)), with x(0) = x0. Classical theory of gradient flows was developed for functions
defined on Rd, and later extended to functionals on Banach spaces. Main motivation for this
development were connections between gradient flows in Banach spaces and some partial
differential equation - for example the heat equation can be formulated as the gradient flow
of u 7→

∫
Rd ‖∇u‖

2 dx (which is called the Dirichlet energy) on L2(Rd) = {u : Rd → R :

u is measurable and
∫
Rd ‖u‖

2 dx < +∞}. Similarly, widespread interest in the theory of
gradient flows in metric spaces started with the work of Jordan et al. (1998), which showed
that gradient flow of the free energy functional defined in (7) in the space (P2(Rd),W2) is
a measure valued solution of the Fokker-Planck equation.

For a brief overview of the theory of gradient flows in Euclidean and metric spaces, with a
focus on Wasserstein spaces, we refer to (Santambrogio, 2017). For a detailed introduction
to the theory of gradient flows in metric spaces we refer the reader to (Ambrosio et al.,
2008). Below, we only introduce definitions and results from the theory of gradient flows in
the space of probability measures, which are relevant to our work.

Let I ⊂ R be an open interval of R and (µt)t∈I be a curve on P2(Rd), i.e. a family
of probability measures belonging to P2(Rd). (µt)t∈I is said to be absolutely continuous if
there exists ` ∈ L1(I) such that for all s, t ∈ I, s ≤ t, W2(µs, µt) ≤

∫ t
s |`| (u)du. Denote by

AC(I) the set of absolutely continuous curves on I and

ACloc(R∗+) =
{

(µt)t≥0 : (µt)t∈I ∈ AC(I) for any open interval I ⊂ R∗+
}
.

Note that if (µt)t∈I ∈ AC(I), then for any ν ∈ P2(Rd), t 7→ W2(ν, µt) is absolutely con-
tinuous on I (as a curve from I to R+). Therefore by (Nielsen, 1997, Theorem 20.8) and
(Mitrovic and Zubrinic, 1997, Exercise 4, p.45), t 7→W2(ν, µt) has derivative for the almost
all t ∈ I and there exists δ : I → R satisfying∫

I
|δ| (u)du < +∞ and W 2

2 (ν, µt)−W 2
2 (ν, µs) =

∫ t

s
δ(u)du , for all s, t ∈ I (51)

Let µ, ν ∈ P2(Rd). A constant speed geodesic (λt)t∈[0,1] between µ and ν is a curve in

P2(Rd) such that λ0 = µ, λ1 = ν and for all for all s, t ∈ [0, 1], W2(λs, λt) = |t− s|W2(µ, ν).
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Note that by the triangle inequality, this definition is equivalent to the following: for all s, t ∈
[0, 1], W2(λs, λt) ≤ |t− s|W2(µ, ν). Indeed by the triangle inequality and the assumption
W2(λs, λt) ≤ |t− s|W2(µ, ν), we have for all s, t ∈ [0, 1], s < t,

W2(µ, ν) ≤W2(µ, λt) +W2(λt, λs) +W2(λs, ν) ≤W2(µ, ν) .

Therefore the first inequality is in fact an equality, and therefore using again the assumption
for W2(µ, λt) and W2(λs, ν) concludes the proof. By definition of the Wasserstein distance
of order 2, a constant speed geodesic (λt)t∈[0,1] between µ and ν is given for all t ∈ [0, 1]
by λt = (tproj1 +(1 − t) proj2)]ζ where ζ is an optimal transport plan between µ and ν
and proj1, proj2 : R2d → Rd are the projections on the first and the last d components
respectively.

Let S : P2(Rd)→ (−∞,+∞]. The functional S is said to be lower semi-continuous if
for all M ∈ R, {S ≤ M} is a closed set of P2(Rd) and m-geodesically convex for m ≥ 0
if for any µ, ν ∈ P2(Rd) there exists a constant speed geodesic (λt)t∈[0,1] between µ and ν
such that for all t ∈ [0, 1]

S (λt) ≤ tS (µ) + (1− t)S (ν)− t(1− t)(m/2)W 2
2 (µ, ν) .

If m = 0, S will be simply said geodesically convex.
A curve (µt)t>0 ∈ ACloc(R∗+) is said to be a gradient flow for the lower semi-continuous

and m-geodesically convex function S : P2(Rd)→ (−∞,+∞] if for all ν ∈ P2(Rd), S (ν) <
+∞, and for almost all t ∈ R∗+,

(1/2)δt + (m/2)W 2
2 (µt, ν) ≤ S (ν)−S (µt) ,

where δ : R∗+ → R satisfies (51) for all open interval of R∗+. We say that (µt)t∈R∗
+

starts at
µ if limt→0W2(µt, µ) = 0 and then set µ0 = µ. By (Ambrosio et al., 2008, Theorem 11.1.4),
there exists at most one gradient flow associated with S .

Consider the functional F̃ : P2(Rd) → (−∞,+∞] given by F̃ = H + Ẽ where H is
defined by (8) and Ẽ for all µ ∈ P2(Rd) by

Ẽ (µ) =

∫
Rd
V (x)dµ(x) ,

where V : Rd → (−∞,+∞] is a convex lower-semicontinuous function (for all M ≥ 0,
{V ≤ M} is closed subset of Rd) with {V < +∞} 6= ∅ and the interior of this set is
non empty as well. By (Ambrosio et al., 2008, Proposition 9.3.2, Theorem 9.4.12), F̃ is
geodesically convex and (Ambrosio et al., 2008, Theorem 11.2.8,Theorem 11.1.4) shows that
there exists the unique gradient flow (µt)t≥0 starting at µ ∈ P2(Rd) and this curve is the
unique solution of the Fokker-Plank equation (in the sense of distributions) :

∂µt
∂t

= div(∇µxt + µxt∇V (x)) ,

i.e. for all φ ∈ C∞c (Rd) and t > 0,

∂

∂t

∫
Rd
φ(y)µt(dy) =

∫
Rd
Aφ(y)µt(dy) .

In addition for all t > 0, µt is absolutely continuous with respect to the Lebesgue measure.
In particular for V = 0, we get the following result.
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Theorem 31 For all µ ∈ P2(Rd), there exists a unique solution of the Fokker-Plank equa-
tion (in the sense of distributions) :

∂µt
∂t

= ∆µt .

In addition (µt)t≥0 ∈ AC(R∗+) and satisfies for almost all t ∈ R∗+,

δt/2 ≤H (ν)−H (µt) ,

where δt is given in (51).

Appendix B. On the Second Order Moment of Log-Concave Measures

A7 There exist η > 0, Mη ≥ 0 such that for all x ∈ Rd, x 6∈ B(0,Mη),

U(x)− U(x?) ≥ η ‖x− x?‖ .

In this section, we give some bounds on to deal with the distance of the initial condition
of the algorithms from π in W2.

Proposition 32 Assume A1(0) and A7. Then, we have∫
Rd
‖x− x?‖2 dπ(x) ≤ 2η−2d(1 + d) +M2

η .

Proof Note that under A7, we have∫
Rd
‖x− x?‖2 dπ(x) ≤ η−2

∫
Rd
|U(x)− U(x?)|2 dπ(x) +M2

η

≤ 2η−2

∫
Rd
|U(x) + log(Z) + H (π)|2 dπ(x) + 2η−2 |−H (π)− log(Z)− U(x?)|2 +M2

η .

(52)

where H is defined by (8) and Z =
∫
Rd e−U(y)dy. Then, by (Bobkov and Madiman, 2011,

Proposition I.2), |−H (π)− log(Z)− U(x?)| ≤ d and by (Fradelizi et al., 2016, Theorem
2.3), (see also Nguyen (2013) and Wang (2014)),

∫
Rd |U(x) + log(Z) + H (π)|2 dπ(x) ≤ d.

Combining these two results in (52) concludes the proof.
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978-3-7643-8721-1.
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