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Abstract

Finding interactions between variables in large and high-dimensional data sets is often
a serious computational challenge. Most approaches build up interaction sets incremen-
tally, adding variables in a greedy fashion. The drawback is that potentially informative
high-order interactions may be overlooked. Here, we propose an alternative approach for
classification problems with binary predictor variables, called Random Intersection Trees.
It works by starting with a maximal interaction that includes all variables, and then grad-
ually removing variables if they fail to appear in randomly chosen observations of a class of
interest. We show that informative interactions are retained with high probability, and the
computational complexity of our procedure is of order pκ, where p is the number of pre-
dictor variables. The value of κ can reach values as low as 1 for very sparse data; in many
more general settings, it will still beat the exponent s obtained when using a brute force
search constrained to order s interactions. In addition, by using some new ideas based on
min-wise hash schemes, we are able to further reduce the computational cost. Interactions
found by our algorithm can be used for predictive modelling in various forms, but they are
also often of interest in their own right as useful characterisations of what distinguishes a
certain class from others.

Keywords: high-dimensional classification, interactions, min-wise hashing, sparse data

1. Introduction

In this paper, we consider classification with high-dimensional binary predictors. We sup-
pose we have data that can be written in the form (Yi, Xi) for observations i = 1, . . . , n; Yi
is the class label and Xi ⊆ {1, . . . , p} is the set of active predictors for observations i (out
of a total of p predictors). An important example of this type of problem is that of text
classification, where then Xi is the set of frequently appearing words (in a suitable sense)
for document i, and Yi indicates whether the document belongs to a certain class. In this
case, the dimension p can be of the order of several thousand or more. More generally, if
data with continuous predictors are available, they can be converted to binary format by
choosing various split-points, and then reporting whether or not each variable exceeds each
of these thresholds.
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Our aim here is to develop methodology that can discover important interaction terms
in the data without requiring that any of their lower order interactions are also informative.
More precisely, we are interested in finding subsets S ⊆ {1, . . . , p} of all predictor variables
that occur more often for observations in a class of interest than for other observations. We
will use the terms “leaf nodes”, “rules”, “patterns” and “interactions” interchangeably to
describe such subsets S. For simplicity, suppose there are only two classes, the set of labels
being {0, 1}. The case with more than two classes can be dealt with using one-versus-one,
or one-versus-all strategies. Given a pair of thresholds, 0 ≤ θ0 < θ1 ≤ 1, our goal is to find
all sets S (or as many as possible), for which

Pn(S ⊆ X|Y = 1) ≥ θ1 and Pn(S ⊆ X|Y = 0) ≤ θ0. (1)

Here and throughout the paper, we use the subscript n to indicate that the probabilities
are empirical probabilities. For example, for c ∈ {0, 1},

Pn(S ⊆ X|Y = c) :=
1

|Cc|
∑
i∈Cc

1{S⊆Xi},

where we have denoted the set of observations in class c by Cc. Of course, one would also
be interested in sets S which satisfy a version of (1) with classes 1 and 0 interchanged, but
we will only consider (1) for simplicity.

The interaction terms uncovered can be used in various ways. For example, they can be
built into tree-based methods, or form new features in linear or logistic regression models.
The interactions may also be of interest in their own right, as they can characterise dis-
tinctions between classes in a simple and interpretable way. These potentially high-order
interactions that our method aims to target would be very difficult to discover using existing
methods, as we now explain.

A pure brute force search examines each potential interaction S of a given size to check
whether it fulfills (1). Restricting the order of interactions to size s, the computational
complexity scales as ps, rendering problems with even moderate values of p infeasible.

Instead of searching through every possible interaction, tree-based methods build up
interactions incrementally. A typical tree classifier such as CART (Breiman et al., 1984)
works by building a decision tree greedily from root node to the leaves; see also Loh and Shih
(1997). The feature space is recursively partitioned based on the variable whose presence
or absence best distinguishes the classes. The myopic nature of this strategy makes it a
computationally feasible approach, even for very large problems. The downside is that
it produces rather unstable results: small changes in the data can lead to very different
partitions being produced at the leaf nodes. Moreover, because of the incremental way in
which interactions are constructed, the success of this strategy in recovering an important
interaction S rests on at least some of its lower order interactions being informative for
distinguishing the classes.

Approaches based on tree ensembles can somewhat alleviate the problem of tree insta-
bility; Random Forests (Breiman, 2001) is a prominent example. Here the data with which
the decision trees are constructed is sampled with replacement from the original data. Fur-
ther randomness is introduced by randomising over the subset of variables considered for
each split in the construction of the trees. While the results of Random Forests are very
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complex and hard to interpret, one can examine what are known as variable importance
measures. These aim to quantify the marginal or pairwise importance of predictor variables
(Strobl et al., 2008). Though such measures can be useful, checking through all possible
high-order interactions is too cumbersome, and so these may fail to be highlighted.

More recently, there has been interest in algorithms that start from deep splits or leaf
nodes in trees and then try to build a simpler model out of many thousands of these leaves by
regularisation and dimension reduction. Examples include Rule Ensembles (Friedman and
Popescu, 2008), Node Harvest (Meinshausen, 2010) and the general framework of Decision
Lists (Marchand and Sokolova, 2006; Rivest, 1987). Though these methods have been
demonstrated to improve on Random Forests in some situations, they nevertheless crucially
rely on a good initial basis of leaf nodes. These bases are usually generated by tree ensemble
methods and so, if the base trees miss some important splits, they would also be absent in
the results of these derivative algorithms.

A complementary approach has developed in data mining under the name of frequent
itemset search, starting with the Apriori algorithm (Agrawal et al., 1994), which has since
then developed into many improved and more specialised forms. The starting point for
these was “market basket analysis”, where the shopping behaviour of customers is analysed
and the goal is to identify items that are often bought together. Many algorithms have
been proposed that aim to improve on Apriori in terms of memory requirements and speed,
such as the FP-growth (Han et al., 2000) and H-mine (Pei et al., 2001) algorithms. While
generally very successful, all these methods are only computationally feasible in large-scale
settings if among the itemsets of low size, there are many that are infrequent, and so using
the principle that subsets of frequent itemsets are also frequent, the search space can be
greatly reduced. However, if small itemsets all have roughly the same frequency, these
methods cannot greatly improve over a brute force search.

We now give a simple example where tree-based approaches and those based on the
Apriori algorithm will struggle. Let Z = (Z1, . . . , Zp) ∈ {0, 1}p be a random variable with
p independent components each having a Bernoulli(1/2)-distribution. We take X to be the
set of active entries {k : Zk = 1}. Suppose the response Y ∈ {0, 1} is determined by an
interaction between the first two variables such that Y = 1{Z1+Z2 6=1}. Then none of the
variables have a marginal effect as Y is independent of Zk for all k = 1, . . . , p. In this case,
when using trees or the Apriori algorithm, one would have to search among O(p2) potential
interactions to find the interaction pattern {1, 2}.

This paper looks at a new way to discover interactions, which we call Random Inter-
section Trees. Rather than searching through potential interactions directly, our method
works by looking for collections of observations whose common active variables together
form informative interactions. We present a basic version of the Random Intersection Trees
algorithm in the following section. This approach allows for computationally feasible dis-
covery of interactions in settings where most existing procedures would perform poorly.
Bounds on the complexity of our algorithm are given in Section 3. For example, our results
yield that in the scenario discussed in the previous paragraph, the order of computational
complexity of our method is at most o(pκ) for any κ > 1. In Section 4, we propose some
modifications of our basic method to reduce its computational cost, based on min-wise
hash schemes. Some numerical examples are given in Section 5. We conclude with a brief
discussion in Section 6, and all technical proofs are collected in the appendix.
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2. Random Intersection Trees

Our method searches for important interactions by looking at intersections of randomly
chosen observations from class 1. We start with the full set of variables as an interaction and
then iteratively prune away variables to make the interaction smaller. At each iteration, we
just keep variables in the interaction that are present in a new randomly chosen observation
of class 1. All variables in the interaction that are not present in the chosen observation are
removed. Then we repeat with a new randomly chosen observation until an interaction of the
desired size emerges. If a pattern S has high prevalence in class 1, that is, Pn(X = S|Y = 1)
is large, it will be included in the observations chosen with high probability. Thus, provided
the overall process is repeated often enough, S is likely to be retained in some of the final
intersections. On the other hand, elements in Sc, the complement of S in {1, . . . , p}, are
unlikely to be present in all the observations being intersected. Thus of those intersections
which contain S, there is a good chance that at least one of them is exactly S. Arranging the
procedure in a tree-type search makes performing the intersections more computationally
efficient; details are given in the following section. One would then consider each of these
intersections as possible solutions of (1), checking whether their prevalence among class 0
is below θ0.

It may at first seem strange that in the above, class 0 plays a part in the procedure only
at the very end. One might expect that many candidate interactions could be generated that
have high prevalence in both classes 1 and 0 and thus would not be useful for distinguishing
between classes. In Section 4, we do present an improved version of our algorithm that
makes use of class 0 at an earlier stage. However, in the sparse setting we are considering
here, interactions with high prevalence in either class would typically be rather few in
number. Thus even if all interactions with high prevalence in class 1, and not necessarily
low prevalence in class 0, were generated by the procedure outlined above, this would be a
manageable number of candidate sets. Note that the assumptions that allow this to happen
certainly do not trivialise the problem: even if, given all solutions to the first equation in
(1), it is easy to uncover those interactions that additionally satisfy the second equation,
the first part of the task is still very challenging.

To describe the details of our algorithm, we first define some terms associated with trees
that will be needed later. Recall that a tree is a pair (N,E) of nodes and edges forming a
connected acyclic (undirected) graph. We will always assume (with no loss of generality)
that N = {1, . . . , |N |}. A rooted tree is the directed acyclic graph obtained from a tree by
designating one node as root and directing all edges away from this root.

Let α and β be two nodes in a rooted tree, with β not the root node. If (α, β) ∈ E, β is
said to be the child of α, and α, the parent of β. We will denote by ch(α), the set of children
of a node α. Since we are only considering rooted trees here as opposed to general directed
graphs, we will differ with convention slightly and will use pa(β) to mean the unique parent
of β. Thus here, pa(β) is a node itself, whereas ch(α) is a set of nodes.

If α 6= β lies on the unique path from the root to β, we say α is an ancestor of β, and
β is a descendant of α. We denote the sets of all ancestors and descendants of α by an(α)
and de(α) respectively. The depth of α, denoted depth(α), is the number of ancestors of α:
depth(α) = |an(α)|. In particular, the depth of the root node is 0. The depth (also known
as the height) of a rooted tree is the length of the longest path, or equivalently, the greatest
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number of ancestors of any particular node. By level d of the tree, we will mean the set of
nodes with depth d.

We will say an indexing of the nodes is chronological if, for every parent and child pair,
larger indices are assigned to the child than the parent. In particular, the root node will be
1. Note that both depth-first and breadth-first indexing methods are chronological in this
way.

Algorithm 1 A basic version of Random Intersection Trees

for tree m = 1 to M do
Let m be a rooted tree of depth D, with each node j in levels 0, . . . , D − 1 having
Bj children, where the Bj are i.i.d. with a pre-specified distribution. Denote by J the
total number of nodes in the tree, and index the nodes chronologically. For each of the
nodes j = 1, . . . , J , let i(j) be an independently and uniformly chosen index in the set
of class 1 observations {i : Yi = 1}.

Set S1 = Xi(1).
for node j = 2 to J do

Set Sj = Xi(j) ∩ Spa(j).
end for

Denote the collection of resulting sets from all nodes at depth d, for d = 1, . . . , D, by
Ld,m = {Sj : depth(j) = d}.

end for
return candidate set of interactions LD :=

⋃M
m=1 LD,m.

Algorithm 1 describes a basic version of the Random Intersection Trees procedure. The
reason for allowing random choices of children is for the proof of Theorem 1, where we can
randomly choose the number of children to be in {b, b + 1} for a suitable integer value b.
Although we have allowed the number of children of each non-leaf node in the trees to be
random, in practice we would take this as a fixed number.

Looking at the innermost for-loop, we see that each node in each tree is associated with
a randomly drawn observation from class 1. For every tree, we visit each non-root node in
turn, and compute the intersection of the observation assigned to it, and all those assigned
to its ancestors. Because of the way the nodes are indexed, parents are always visited before
their children, and this intersection can simply be computed as Sj = Xi(j) ∩ Spa(j). This is
crucial to reducing the computational complexity of the procedure, as we shall see in the
next section.

Each of the sets assigned to the leaf nodes of each of the trees yields a collection of
potential candidate interactions, LD. One could then proceed to test these as potential
solutions to (1); we present a more efficient approach in Section 4, where we build this
testing step into the construction of the trees.

An illustration of this improved algorithm applied to the Tic-Tac-Toe data discussed in
Section 5 is given in Figure 1. Observations here correspond to winning endgame positions,
coded such that the data is binary. Class labels record which player (black or white) won the
game, and the goal is to infer the interactions (corresponding to positions of a few counters)
that lead to a win for each player. In this example, the root node contains a randomly
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drawn final win-state for black (class 1). This corresponds to S1 in our algorithm. For each
other node j, we draw a new random observation i(j) from all class 1 observations. The
randomly chosen additional black-win state Xi(j) is shown along the edge from its parent
node. The new intersection, Sj , is the intersection of the interaction in the parent node and
the new set Xi(j); it is shown in the corresponding node. The early stopping added in the
improved algorithm also allows it to run until the algorithm has terminated in all nodes.
Thus no prior specification of the tree depth will be necessary in practice, as will be shown
in Section 4.

3. Computational Complexity

How many trees do we have to compute to have a very high probability of finding an
interesting interaction S that fulfills (1)? And what is the required size of these trees? If the
interaction is not associated with a main effect, most approaches like trees and association
rules would require of order p|S| searches. In this section, we show that in many settings,
Random Intersection Trees improves on this complexity. We consider a single interaction S
of size s := |S|, and examine the computational cost for returning S as one of the candidate
interactions, with a given probability. We will see that this depends critically on three
factors:

• Prevalence θ1 := Pn(S ⊆ X|Y = 1) of the interaction pattern. If the pattern S in
question appears frequently in class 1, the search is more efficient.

• Sparsity δk := Pn(k ∈ X|Y = 1) of the predictor variables k = 1, . . . , p. If δk is very
low for many k (and sparsity of predictors consequently high), computation of the
intersections is much cheaper, and so overall computational cost is greatly reduced.
Indeed, for a fixed tree m, consider a node j with depth d < D. We have that

E(|Sj |) =

p∑
k=1

δd+1
k .

Thus, for j′ ∈ ch(j), computation of Sj′ requires on average at most

O

(
log(p)

p∑
k=1

δd+1
k

)

operations. This is because in order to compute the intersection, one can check
whether each member of Sj is in Xi(j′), and each such check is O(log(p)) if the sets Xi

are ordered so a binary search can be used. If we compare this to the O(p) computa-
tions required to calculate each of the Sj if no tree structure were used, we see that
large efficiency gains are possible when d ≥ 1 if many variables are sparse. For inter-
sections with the root node, the tree structure offers no advantage, and in practice,
branching the tree only after level 1 (so the root node has only one child), is more
efficient, though this modification does not improve the order of complexity.

• Independence of S: Define ν := maxk∈Sc Pn(k ∈ X|S ⊆ X,Y = 1). If ν is low,
less computational effort is required to recover S. Note that if, for some k ∈ Sc,
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Figure 1: An intersection tree for the Tic-Tac-Toe game data set. Given winning positions
of the black player, we intersect them randomly to produce the interactions (cor-
responding to positions of black or white stones) that are responsible for wins.
Starting with a randomly chosen class 1 (black wins) observation at the root
node, B = 4 randomly chosen class 1 observations are intersected with the pat-
tern. These randomly chosen observations are shown along the edges and the
resulting intersections Sj as the nodes in the next layer of the tree. Nodes are
only shown if the corresponding patterns Sj have an estimated prevalence among
class 0 below a set threshold; the branching of the tree terminates for all other
nodes. The algorithm continues until all resulting Sj corresponding to the leaf
nodes have prevalence among class 0 exceeding the threshold. Here, one of the
winning states for black is filtered out after three intersections.
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Pn(k ∈ X|S ⊆ X) = 1, interest would centre on S ∪ {k} rather than S itself. Indeed,
if S satisfied (1), so would S ∪ {k}. In general, if ν is large, the search will tend to
find sets containing S, though not necessarily S itself.

With the assumptions that θ1 > 0 and ν < 1, we can give a bound on the computational
complexity of the basic version of Random Intersection Trees introduced in the previous
section.

Let us define

C(M,D,FB)

to be the expected number of computations required to perform all the intersections in
the algorithm when M trees of depth D are created and the distribution of the branching
factors Bj is FB.

Theorem 1 Given η, ε ∈ (0, 1], there exist choices of M,D and FB such that the set LD
returned by Algorithm 1 contains S with probability at least 1− η, and

C(M,D,FB) = O

log(1/η)
log2(p)

ε

{
p+

∑
k: (1+ε)δk>θ1

p
log{(1+ε)δk/θ1}

log(1/ν)

} . (2)

As a function of the number of variables p, there is a contribution of p log2(p) and
an additional contribution in the brackets that depends on the sparsity δk of each variable.
Sparse variables do not contribute to this sum, which can be O(1) if sparsity among variables
is high enough. This would yield a computational complexity with order bounded above
by o(pκ) for any κ > 1, compared to the corresponding complexity of ps for a brute force
search. In most interesting settings, however, we would not achieve a nearly linear scaling
in complexity, but would hope to still be faster than a brute force search.

Before discussing the result further, we comment briefly on the values of M,D and the
distribution of the Bj , that yield (2). From the proof, it follows that there exist choices of
M and D giving (2) that satisfy

M ≤ (1 + 2ε) log(1/η)

2εθ1
,

D ≤ log{p(1 + 2ε)}
log(1/ν)

.

The random number Bj used in the proof takes just one of two consecutive integers (es-
sentially to avoid the discretisation effect when being restricted to integers), and E(Bj) ≤
(1 + ε)/θ1. Though the optimal choices of parameters for the theorem depend on the un-
known ν and the minimising ε, which will in turn depend on ν, the functional relationships
given above still provide rough qualitative guidelines for good choices for these parameters
in practice.

Using the values of M , D and Bj necessary to guarantee that with high probability S is
in the set LD, we can also obtain a bound on the expected number of candidate interaction
sets in LD. This will in turn bound the expected number of “false positives” returned. The
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expected number of sets returned is bounded by

E(|LD|) ≤ME(Bj)
D ≤ log(1/η)

ε

{
(1 + 2ε)p

ν

} log(1+ε)/θ1
log(1/ν)

.

The value of ε can be chosen to minimise the bound above, but its value here and in the
computational complexity bound of Theorem 1 have to be the same, as they are linked
to the choice of the branching factor used when building the trees. We see that in many
situations, we can expect the bound above to be very much lower than the O(ps) sets a
complete list of s-way interactions would contain. Note that if s were known, the relevant
quantity to consider would be

E(|{S′ ∈ LD : |S′| = s}|),

which is likely to be much less than E(|LD|). Even if s were unknown, one would only be
interested in the expected number of non-empty sets in LD, a quantity which may well also
be substantially lower than the derived bound on E(|LD|).

3.1 The Influence of Sparsity on Computational Complexity

It is interesting to make the influence of the sparsity of individual variables, δk, on the overall
computational complexity, more explicit. We have the following corollary to Theorem 1.

Corollary 2 Define β by ν = θβ1 . Suppose that γ, α?, α? are such that α? > α?, and

δk ≤ θ1−α
?

1 for all k ∈ {1, . . . , p},
δk > θ1−α?1 for at most pγ variables.

Given η ∈ (0, 1], there exist choices of M,D and FB such that the set LD returned by
Algorithm 1 contains S with probability at least 1− η, and

C(M,D,FB) = o
(
pκ
)

for any κ > max

{
α?

β
+ γ,

[α?
β

]
+

+ 1

}
.

The implication of Corollary 2 is most apparent if we take γ = 1 as we can then set α? = 0.
In this case,

α? = 1− log(maxk δk)

log(θ1)
.

We can then bound the computational complexity by

o
(
pκ
)

for any κ > 1 +
log(1/θ1)− log(1/maxk δk)

log(1/ν)
.

The fraction on the right-hand side is a function of the prevalence of the pattern S, θ1,
the maximum sparsity of the variables, and the maximum sparsity of the variables in Sc,
conditional on the presence of S. As long as this fraction is less than 1, the computational
complexity is guaranteed to be better than a brute force search with the knowledge that
s = 2, and the relative advantage grows for larger sizes of the pattern.
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3.2 Independent Noise Variables

To gain further insight, we consider the special case where variables in Sc are independent
of S (conditional on being in class 1), in the sense that for all k ∈ Sc,

Pn(k ∈ X|S ⊆ X,Y = 1) = Pn(k ∈ X|Y = 1) = δk. (3)

Corollary 3 Assume (3) and that δk < 1 for all k. Given η ∈ (0, 1], there exist choices of
M,D and FB such that the set LD returned by Algorithm 1 contains S with probability at
least 1− η, and

C(M,D,FB) = o(pκ) for any κ >
log(1/θ1)

log(1/maxk δk)
. (4)

We see that the computational complexity is approximately linear in p if the prevalence of
the pattern S is as high as the prevalence of the least sparse predictor variables. This is
the case in the example mentioned in the introduction, where θ = δk = 1/2.

We can also consider the situation where in addition to the independence (3), all vari-
ables have the same sparsity δ. If the prevalence θ1 of S is only as high as that of a random
occurrence of two independent predictor variables, we get κ > 2 and the computational
complexity is approximately quadratic in p. In this case, the algorithm would not yield a
computational advantage over brute force search if looking for patterns of size 2. This is to
be expected since every pattern S of size 2 would have the same prevalence in this scenario,
and so there is nothing special about a pattern S of size 2 with prevalence δ2, and in general
no hope of beating the complexity ps of a brute force search. However, the bound in (4)
is independent of s. Thus provided the prevalence, θ1, drops more slowly than the rate
δs, at which every pattern of size S would occur randomly among independent predictor
variables, our results show that Random Intersection Trees is still to be preferred over a
brute force search.

4. Early Stopping Using Min-Wise Hashing

While Algorithm 1 is computationally attractive, the following observation suggests that
further improvements are possible. Suppose that, for a particular tree, we have just com-
puted the intersection Sj corresponding to a node j at depth d < D. If

Pn(Sj ⊆ X|Y = 0) > θ0,

then since for all j′ ∈ de(j), Sj′ ⊆ Sj , we also have

Pn(Sj′ ⊆ X|Y = 0) > θ0.

Thus no intersection sets corresponding to descendants of j have any hope of yielding
solutions to (1), and so all further associated computations are wasted.

In view of this, one option would be to compute the quantity Pn(Sj ⊆ X|Y = 0) at
each node j as the algorithm progresses, and if this exceeds the threshold θ0, not visit any
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descendants j′ of j for computation of Sj′ . This could be prohibitively costly, though, as it
would require a pass over all observations in class 0, for each node of each tree. One could
work with a subsample of the observations, but if θ0 is low, the subsample size may need
to be fairly large in order to estimate the probabilities to a sufficient degree of accuracy.

Instead, we propose a fast approximation, using some ideas based on min-wise hashing
(Broder et al., 1998; Cohen et al., 2001; Datar and Muthukrishnan, 2002) applied to the
columns of the data-matrix. We describe the scheme by leaving aside the conditioning on
Y = 0, which can be added at the end by restricting to observations in class 0. Consider
taking a random permutation σ of all observations {1, . . . , n}. Let hσ(k) be the minimal
value ι such that variable k is active in observation σ(ι):

hσ(k) := min{ι′ : k ∈ Xσ(ι′)}.

It is well known (Broder et al., 1998) that the probability that hσ(k) and hσ(k′) agree for
two variables k, k′ under a random permutation σ is identical to the Jaccard-index for the
two sets Ik = {i : k ∈ Xi} and Ik′ = {i : k′ ∈ Xi}, that is

Pσ(hσ(k) = hσ(k′)) =
|Ik ∩ Ik′ |
|Ik ∪ Ik′ |

.

Here the subscript σ indicates that the probability is with respect to a random permutation
σ of the observations. A min-wise hash scheme is typically used to estimate the Jaccard-
index by approximating the probability on the left-hand side of the equation above.

Now,

Pn(S ⊆ X) = Pn(k ∈ X for all k ∈ S)

= Pn(k ∈ X for all k ∈ S | ∃ k′ ∈ S such that k′ ∈ X)

× Pn(∃k ∈ S such that k ∈ X).

Let us denote the first and second terms on the right-hand side by π1(S) and π2(S) respec-
tively. Note that π1(S) is equal to the probability that all variables k ∈ S have the same
min-wise hash value hσ(k):

π1(S) = Pσ(∃ ι : hσ(k) = ι for all k ∈ S). (5)

Turning now to π2(S), observe that

Eσ(min
k∈S

hσ(k)) =
n+ 1

π2(S)n+ 1
, (6)

and so

π2(S) =
n+ 1

n

{
1

Eσ(mink∈S hσ(k))
− 1

n+ 1

}
. (7)

A derivation of (6) is given in the appendix.
Equations (5) and (7) provide the basis for an estimator of Pn(S ⊆ X). First we generate

L random permutations of {1, . . . , n}: σ1, . . . , σL. We then use these to create an L × p
matrix H whose entries are given by

Hlk = hσl(k).
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Now we estimate π1(S) and π2(S) by their respective finite-sample approximations, π̂1(S)
and π̂2(S):

π̂1(L;S,H) := 1
L

L∑
l=1

1{Hlk=Hlk′ for all k,k′∈S},

π̂2(L;S,H) :=
n+ 1

n

{
1

1
L

∑L
l=1 mink∈S Hlk

− 1

n+ 1

}
.

Finally, we estimate Pn(S ⊆ X) by

P̂n(L;S,H) := π̂1(L;S,H) · π̂2(L;S,H). (8)

To our knowledge, this use of min-wise hashing techniques, and in particular the estimator
π̂2(L;S,H), is new. The estimator enjoys reduced variance compared to that which would
be obtained using subsampling, as the following theorem shows.

Theorem 4 For P̂n(L;S,H), π1(S) and π2(S) defined as in (8), (5), and (7) respectively,
as L→∞, we have

√
L(P̂n(L;S,H)− Pn(S ⊆ X))

d→ N(0, π2(S)2π1(S)(1− π1(S)π2(S))(1 + ε(n))), (9)

where

ε(n) =
1

n

n−1 − π22 − 2π2n
−1

π2(π2 + 2n−1)(1 + n−1)
= O(n−1). (10)

A derivation is given in the appendix. If we tried to estimate π1π2 by evaluating the
prevalence of S on a subset of the data of size L, the corresponding estimator multiplied by√
L would have variance

π2(S)π1(S)(1− π1(S)π2(S)) + on(1),

where on(1) → 0 as n → ∞. Comparing this variance to the variance of the normal
distribution in (9), we see that a factor of π2(S) is gained: matching the accuracy of the
min-wise hash scheme with subsampling would require roughly 1/π2(S) times as many
samples. By using min-wise hashing, choosing L = 100 typically delivers a reasonable
approximation as long as we just want to resolve values at θ0 = 0.01 and above.

An improved version of Algorithm 1, building in the ideas discussed above, is given in
Algorithm 2 below. Note that P̂n(Spa(j), H) need only be computed once for every j with
the same parent.

Early stopping decreases the computational cost of the algorithm as many nodes in
the trees generated may not need to have their associated intersections calculated. In
addition, the set of candidate intersections LD will be smaller but the chance of it containing
interesting intersections would not decrease by much. These gains comes at a small price,
since the min-wise hash matrix H must be computed, and the computational effort going
into this will in turn determine the quality of the approximation in (8). We have previously
shown the complexity bounds in the absence of early stopping and thus avoided the difficulty
of making this trade-off explicit. We will use the improved version of Random Intersection
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Algorithm 2 Random Intersection Trees with early stopping

Compute the L× p min-wise hash matrix H, using only class 0 observations.
for tree m = 1 to M do

Let m be a rooted tree of depth D, with each node j in levels 0, . . . , D − 1 having
Bj children, where the Bj are i.i.d. with a pre-specified distribution. Denote by J the
total number of nodes in the tree, and index the nodes chronologically. For each of the
nodes j = 1, . . . , J , let i(j) be an independently and uniformly chosen index in the set
of class 1 observations {i : Yi = 1}.

Set S1 = Xi(1).
for node j = 2 to J do

if P̂n(Spa(j), H) ≤ θ0 then
Set Sj = Xi(j) ∩ Spa(j).

end if
end for

Denote the collection of resulting sets of all nodes at depth d, for d = 1, . . . , D, by
Ld,m = {Sj : depth(j) = d}.

end for
return LD :=

⋃M
m=1 LD,m.

Trees with early stopping in all the practical examples to follow, taking small values of L
in the range of a (few) hundred permutations.

The depth D of the tree is still given explicitly in Algorithm 2. An interesting modifi-
cation creates the tree recursively. Starting with the root node, B children are added to all
leaf nodes of the tree in which the early stopping criterion has not been triggered yet. When
the algorithm terminates, all intersections in the leaf nodes of the final tree are collected.

5. Numerical Examples

In this section, we give two numerical examples to provide further insight into the per-
formance of our method. The first is about learning the winning combinations for the
well-known game Tic-Tac-Toe. This example serves to illustrate how Random Intersection
Trees can succeed in finding interesting interactions when other methods fail. The second
example concerns text classification. Specifically, we want to find simple characterisations
(using only a few words, or word-stems in this case) for classes within a large corpus in a
large-scale text analysis application.

5.1 Tic-Tac-Toe Endgame Prediction

The Tic-Tac-Toe endgame data set (Matheus and Rendell, 1989; Aha et al., 1991) contains
all possible winning end states of the game Tic-Tac-Toe, along with which player (white
or black) has won for each of these. There are just under 1000 possible such end states,
and our goal is to learn the rules that determine which player wins from a randomly chosen
subset of these. We use half of the observations for training, and the other half for testing.
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Figure 2: Left panel: patterns that are returned by Random Intersection Trees (bottom
row), emphRandom Forests of depth 3 (middle row) and brute force search among
all interactions of size 3 (top row) for the Tic-Tac-Toe data. Each pattern is
scaled to make the area proportional to the empirical frequency with which each
pattern is found by these search algorithms. Right panel: the same results in
the case when 100 noise variables are added. Note that Random Intersection
Trees were not constrained to find interactions of depth 3. In the case with
noise variables, some of the patterns with the very smallest areas also contained
a small number of noise variables, which are not shown. Just counting three- to
five-way interactions, there are more than 108 potential interactions when 100
noise variables are added.
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Figure 3: From left to right: the misclassification rate (in %) on Tic-Tac-Toe data for 0,
60, 300 and 400 added noise variables. Each classifier is tuned to have equal
misclassification rate in both classes. The simple classifier based on Random
Intersection Trees (RI) has a misclassification rate of 0% in all cases, as the
winning patterns are sampled very frequently (see Figure 2). Random Forests
(RF) and Random Forests limited to depth 3 trees (RF3) are competitive but the
misclassification rate increases sharply when many noise variables are added.

There are 9 variables in the original data set which can take the values ‘black’, ‘white’
or ‘blank’. These can trivially be transformed into a set of twice as many binary variables
where the first block of variables encodes presence of black and the second block encodes
presence of white.

Two properties of this data set that make it particularly interesting for us here are:

• The presence of interactions is obvious by the nature of the game.

• There are only very weak marginal effects. Knowing that the upper right corner is
occupied by a black stone is only very weakly informative about the winner of the
game. Greedy searches by trees fail in the presence of many added noise variables and
linear models do not work well at all.

We apply Random Intersection Trees to finding patterns that indicate a black win
(class 1), and also patterns that indicate a white win (class 0). We use the early stopping
modifications proposed in Section 4, and create two min-wise hash tables from the available
observations in each of the classes, taking L = 200. Figure 1 shows how the individual
Intersection Trees are constructed and illustrates the use of the early stopping rule. We
emphasise that we do not need to specify or know that the winning states are functions of
only three variables. We let each tree run until all its branches terminate, and collect all
resulting leaves.
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Figure 2 illustrates the importance sampling effect of Random Intersection Trees when
using only the training data, and adding a varying number of noise variables. When adding
100 noise variables, all 16 winning final combinations are among the 40 most frequently
chosen patterns. All winning states are chosen hundreds of millions times more often than
a random sampling of interactions would pick them.

As discussed in Section 1, the interactions or rules that are found could be entered
into any existing aggregation method, such as Rule Ensembles (Friedman and Popescu,
2008) or Decision Lists (Marchand and Sokolova, 2006; Rivest, 1987). Here, we consider
an even simpler aggregation method by selecting all patterns during 1000 iterations of
Random Intersection Trees (with B = 5 samples as branching factor in each tree) that were
selected by at least two trees. For each selected pattern, we compute the (empirical) class
distributions conditional on the presence and absence of the pattern, using the training
sample. That is, for each selected pattern S, we compute

Pn(Y = 1|X ⊆ S) and Pn(Y = 1|X * S).

Then, given an observation from the test set, we classify according to the average of the
log-odds of being in class 1 calculated from each of the conditional probabilities above.

Figure 3 shows the misclassification rates under situations with different numbers of
added noise variables. The simple prediction based on Random Intersection Trees achieves
perfect classification even when 400 noise variables are added. Neither k-NN nor CART
(Breiman et al., 1984), either restricted to trees of depth 3 (TREE3) or depth chosen by
cross-validation (TREE), are as successful, giving misclassification rates between 5% and
40%. Interestingly, trees of depth 3 perform much worse than deeper trees. The winning
patterns are not identified in a pure form but only after some other variables have been
factored in first. This also means that it is very hard to read the winning states of the
trees, unlike the patterns obtained by our method. Random Forests also maintain a 0%
misclassification rate up until about a hundred added noise variables but start to degrade in
performance when further noise variables are added. It is easy to identify the noise variables
from a variable importance plot (Strobl et al., 2008). However, within the signal variables
the patterns are not easy to see since each variable is approximately equally important for
determining the winner (with the slight exception of the middle field in the 3 × 3 board
which is more important than the other fields) and the nature of the interactions is thus
not obvious from analysing a Random Forest fit.

5.2 Reuters RCV1 Text Classification

The Reuters RCV1 text data contain the tf-idf (term frequency-inverse document fre-
quency) weighted presence of 47, 148 word-stems in each document; for details on the
collection and processing of the original data, see Lewis et al. (2004). Each document
is assigned possibly more than one topic. Here we are interested in whether Random Inter-
section Trees is able to give a quick and accurate summary of each topic. For each topic, we
seek sets of word-stems, S, whose simultaneous presence is indicative of a document falling
within that topic.

To evaluate the performance of Random Intersection Trees, we divide the documents
into a training and test set with the first batch of 23, 149 documents as training and the
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Figure 4: The misclassification rate Pn(c /∈ Y |S ⊆ X) on the test data for a pattern S
chosen with a tree ensemble node generation mechanism (black circles), Random
Intersection Trees (white circles), and a linear method (black triangles) for topics
c ∈ C in the Reuters RCV1 text classification data. The topics are shown on
the left and the word combinations chosen by Random Intersection Trees on the
right.
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following 30000 documents as test documents. We compare our procedure to an approach
based on Random Forests and a simple linear method.

Random Forests and classification trees can be very time- and memory-intensive to
apply on a data set of the scale we consider here. In order to be able to compute Random
Forests, we only consider word-stems if they appear in at least 100 documents in the training
data. This leaves 2484 word-stems as predictor variables. We also only consider topics that
contain at least 200 documents. To simplify the problem further, we consider a binary
version of the predictor variables for all methods, using a 1 or 0 to represent whether each
tf-idf value is positive or not.

Let C be the set of topics in our modified data set. Let Y ⊆ C indicate the topics that
a given document belongs to. Consider a topic or class c ∈ C. Our goal is to find patterns
S that maximise

Pn(c ∈ Y |S ⊆ X), (11)

whilst also maintaining that the prevalence of S among all observations be bounded away
from 0. Specifically, we shall require that

Pn(S ⊆ X) ≥ pc/10 where pc = Pn(c ∈ Y ). (12)

To see how this can be cast within the framework set in (1), note that if S? maximises (11)
and S?? satisfies

Pn(S?? ⊆ X|Y ∈ c) ≥ Pn(S? ⊆ X|Y ∈ c) and

Pn(S?? ⊆ X|Y /∈ c) ≤ Pn(S? ⊆ X|Y /∈ c),

then

Pn(c ∈ Y |S? ⊆ X) =
Pn(S? ⊆ X|c ∈ Y )Pn(c ∈ Y )

Pn(S? ⊆ X|c ∈ Y )Pn(c ∈ Y ) + Pn(S? ⊆ X|c /∈ Y )Pn(c /∈ Y )

≤ Pn(S?? ⊆ X|c ∈ Y )Pn(c ∈ Y )

Pn(S?? ⊆ X|c ∈ Y )Pn(c ∈ Y ) + Pn(S?? ⊆ X|c /∈ Y )Pn(c /∈ Y )

= Pn(c ∈ Y |S?? ⊆ X),

whence S?? also maximises (11) by optimality of S?. Thus treating those documents be-
longing to topic c as class 1, and all others as class 0, by solving (1) with θ0 and θ1 chosen
appropriately, we can obtain all solutions to (11).

In view of this, we use each of the methods to search for patterns S that have high
prevalence for a given topic c. We then remove all patterns that do not satisfy (12) on the
test data. Then, from the remaining patterns, we select the one that maximises (11) on
training data. Below, we describe specific implementation details of each of the methods
under consideration.

To compute Random Intersection Trees, we create the min-wise hash table for the preva-
lence among all samples once, using 200 permutations with associated min-wise hash values
for each word-stem. Then 1000 iterations of the tree search are performed with a cut-off
value θ0 = (3/20)pc and all remaining patterns S with a length less than or equal to 4 are
retained.
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For a tree-based procedure, one approach is to fit classification trees on subsampled
data and adding randomness in the variable selection as in Random Forests (Breiman,
2001) and then looking among all created leaf nodes for the most suitable node among all
nodes created.

We generate 100 trees as in the Random Forests method: each is fit to subsampled
training data using CART algorithm restricted to depth 4, and further randomness is
injected by only permitting variables to be selected from a random subset of those available,
for each tree. This takes on average between 90% to 110% of the computational time of a
non-optimised pure R (R Core Team, 2013) implementation of Random Intersection Trees
for these data. Note that this is when using the Fortran version of Breiman (2001) for the
Random Forests node generation; we expect a significant speedup if Fortran or C code were
used for Random Intersection Trees. We are currently working on such a version and plan
to make it available soon. Furthermore, Random Forests would scale much worse if many
more word-stems were included as variables.

For linear models, we fit a sparse model with at most ` predictors (with ` ≤ 4), using a
logistic model with an `1-penalty (Tibshirani, 1996; Friedman et al., 2010). We constrain
the regression coefficients to be positive since we are only looking for positive associations
in the two previously discussed approaches, and want to keep the same interpretability for
the linear model. For each value of ` ≤ 4, we take S` to be the set of variables with a
positive regression coefficient. We select the largest value of ` such that the fraction of
documents attaining the maximal value is at least pc/10 and select the associated pattern
S`. (An alternative approach would be to retain the documents with the highest predicted
value when using a sparse regression fit. This approach gave very similar results.)

After screening the candidate patterns returned by each of the methods using (12) on
all of the topics c ∈ C, we evaluate the misclassification rate Pn(c /∈ Y |S ⊆ X) on the test
data. The results for all of the topics are shown in Figure 4. The rules found with Random
Intersection Trees have a smaller loss than those found with Random Forests in all but 5
of the topics. For those topics where Random Forests performs better, the difference in
loss is typically small. Linear models achieve a smaller loss than Random Forests among
most of the topics, but only have a smaller loss than Random Intersection Trees in 6 topics,
performing worse in all remaining 46 topics.

6. Discussion

We have proposed Random Intersection Trees as an efficient way of finding interesting
interactions. In contrast to more established algorithms, the patterns are not built up
incrementally by adding variables to create interactions of greater and greater size. Instead
we start from the full interaction S = {1, . . . , p} and remove more and more variables from
this set by taking intersections with randomly chosen observations. Arranging the search
in a tree increases efficiency by exploiting sparsity in the data. For the basic version of our
method (Algorithm 1), we were able to derive a bound on the computational complexity.
The bound depends on (a) the prevalence or frequency with which the pattern S appears
among observations in class 1, and (b) the overall sparsity of the data, with higher sparsity
making it easier to detect the interaction using a given computational budget. In the best
case, we can achieve an almost linear complexity bound as a function of p; more generally
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our complexity bound typically has a smaller exponent than that for a brute force search.
Further improvements can be made by using min-wise hashing techniques to terminate
parts of the search (i.e., branches of the Intersection Tree) that have no chance of leading to
interesting interactions. Numerical examples illustrate the improved interaction detection
power of Random Intersection Trees over other tree-based methods and linear models.

There are many diverse ways in which interactions that solve (1) can be used in further
analysis. The interactions may be of interest in their own right as shown in both numerical
examples. One can also simply use the search to make sure that a data set is unlikely to have
strong interactions that could otherwise have been missed. If the aim is to build a classifier,
they can be added to a linear model, or built into classifiers based on tree ensembles. For
the latter approach one could consider, for example, averaging predictions in a linear way
or averaging log-odds as in Random Ferns (Bosch et al., 2007). We believe developments
along these lines will prove to be fruitful directions for future research. We also plan to
generalise the idea to categorical and continuous predictor variables.

Appendix A.

Here we include proofs omitted earlier in the paper.
Proof of Theorem 1. Fix a tree m ∈ {1, . . . ,M} and suppose this has node set N =
{1, . . . , J} indexed chronologically (see Section 2). For d ∈ {1, . . . , D}, define

Nd = {j ∈ N : depth(j) = d and Sj ⊇ S},
Wd = |Nd|.

Let E be the event that S is contained in S1, the random sample selected for the root
node of tree m. Further, let Gd(t) = E(tWd |E), the probability generating function of Wd

conditional on the event E.
We make a few simple observations from the theory of branching processes. Firstly, for

d ≤ D − 1, Gd+1 = Gd ◦G where G := G1. To see this, first note that

Wd+1 =
∑
j∈Nd

∑
j′∈ch(j)

1{S⊆Xi(j′)}.

Now conditional on E, the random variables
∑

j′∈ch(j) 1{S⊆Xi(j′)} for j ∈ Nd, are indepen-

dent of Nd. Moreover, they are independent of each other and have identical distributions
equal to that of ∑

j′∈ch(1)

1{S⊆Xi(j′)} = W1.

This entails
E(tWd+1 |Wd = w,E) = {E(tW1 |E)}w = {G(t)}w.

Thus
Gd+1(t) = E(E(tWd+1 |Wd, E)|E) = E({G(t)}Wd |E) = Gd(G(t)),

as claimed.
From this we can conclude that if G has a fixed point q, then this must be a fixed point

for all Gd. Since each Gd is non-decreasing on (0, 1], we have that for all d ∈ N, if q′ ≤ q
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and q′ ∈ (0, 1], then Gd(q
′) ≤ q. The relevance of these remarks will become clear from the

following: for an S′ ∈ LD,m, we have

GD(P(S′ ) S|S′ ⊇ S)) =

∞∑
`=0

P(WD = `|E)P(S′ ) S|S′ ⊇ S)`

=

∞∑
`=0

P({WD = `} ∩ {S /∈ LD,m}|E)

= P(S /∈ LD,m|E).

Thus if we can ensure that P(S′ ) S|S′ ⊇ S) is at most q, then the final probability in
the above display will also be at most q. The rest of the proof proceeds with the following
steps:

1. Find conditions on FB, the distribution of the Bj , such that there exists a fixed point
of G, q.

2. Find conditions on the tree depth D such that P(S′ ) S|S′ ⊇ S) ≤ q.

3. Given q establish conditions on M such that the overall probability of recovering S is
at least 1− η.

4. Given FB, D and M , compute the expected computational cost of the algorithm.

Step 1: Let the distribution of the Bj be such that

Bj =

{
b with probability 1− α,
b+ 1 with probability α.

Now given a q ∈ (0, 1], we shall pick b ∈ Z+ and α ∈ [0, 1) to satisfy G(q) = q. To this end,
observe that

G(q) = (1− α)(1− θ1(1− q))b + α(1− θ1(1− q))b+1

= [1− {(α+ b)− bα+ bc}θ1(1− q)]{1− θ1(1− q)}bα+bc.

From the last displayed equation, we see that G(q) varies with α+ b continuously. Further-
more, when α+ b = 0, G(q) = 1, and by making α+ b large, we can make G(q) arbitrarily
close to 0. Thus by the intermediate value theorem, for any q ∈ (0, 1], α+ b can be chosen
such that G(q) = q.

We now bound α+ b from above in terms of q for use later in creating a bound on the
complexity of the algorithm. We have

b+ α =
log(q)− log(1− αθ1(1− q))

log(1− θ1(1− q))
+ α

≤ − log(q) + log(1− αθ1(1− q))
θ1(1− q)

+ α

≤ − log(q)

θ1(1− q)

≤ 1 + (1− q)/(2q)
θ1

. (13)
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In the final line, we used the inequality

log(z) ≥ (z − 1)− (z − 1)2

2z
, 0 < z ≤ 1.

Step 2: We now bound P(S′ ) S|S′ ⊇ S) from above in terms of D. The set S′ is the
intersection of D+ 1 observations selected independently of one another. In order for some
k ∈ Sc to be contained in S′, it must have been present in all these D + 1 observations.
Thus by the union bound we have

P(S′ ) S|S′ ⊇ S) ≤
∑
k∈Sc

P(k ∈ S′|S′ ⊇ S) ≤ pνD+1,

the rightmost inequality following from (A2).

To ensure this is at most q, we take

D =

⌈
log(p/q)

log(1/ν)

⌉
− 1, (14)

so

D ≤ log(p/q)

log(1/ν)
. (15)

Step 3: Turning now to the probability of recovering S, we have

P(S ∈ LD) = 1− [1− {1− P(S /∈ LD,m|E)}θ1]M .

Given the choices of α and b (13), and D (14), we have that P(S /∈ LD,m|E) ≤ q. Thus
taking M to be at least

− log(η)

(1− q)θ1
≥ − log(η)

log{1− (1− q)θ1}
(16)

guarantees recovery of S with probability at least 1− η.

Step 4: To bound the complexity of the algorithm, observe that E(Bj) = b+ α, so

C(M,D,FB) ≤ log(p)M

p∑
k=1

[(b+ α)δk + · · ·+ {(b+ α)δk}D]

≤ log(p)MD

[
p+

∑
k:(b+α)δk>1

{(
(b+ α)δk

)D − 1
}]
. (17)

Substituting Equations (13), (15) and (16) into the complexity bound (17), and writing
ε = (1− q)/(2q) gives a bound for the computational complexity of

log(p)
log(1/η)

θ1

1 + 2ε

2ε

log{p(1 + 2ε)}
log(1/ν)

[
p+

∑
k:(1+ε)δk>θ1

{(
p(1 + 2ε)

) log{(1+ε)δk/θ1}
log(1/ν) − 1

}]
. (18)

Given that ε is bounded above, removing constant factors not depending on p, we get that
the order of the computational complexity is bounded above by
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log(1/η)
log2(p)

ε

{
p+

∑
k:(1+ε)δk>θ1

(
p

log{(1+ε)δk/θ1}
log(1/ν) − 1

)}
.

Proof of Corollary 2. Note that ∑
k:(1+ε)δk>θ1

p
log((1+ε)δk/θ1)

log(1/ν)

is bounded by

(1 + ε)
log(p)

log(1/ν)

(
pγ · pα?/β1{α?/β>0} + p · pα?/β1{α?/β>0}

)
.

The result then follows from substituting into (18) and taking ε ∝ 1/ log(p)

Proof of Equation (6). Writing r = nπ2(S), we have(
n

r

)
Eσ(min

k∈S
hσ(k)) =

n−r+1∑
`=1

`

(
n− `
r − 1

)

=
n−r+1∑
`=1

{
(`− 1)

(
n− (`− 1)

r

)
− `
(
n− `
r

)}
+
n−r+1∑
`=1

(
n− `+ 1

r

)
.

The first two terms sum to zero leaving only the final term. Thus(
n

r

)
Eσ(min

k∈S
hσ(k)) =

n−r+1∑
`=1

{(
n− `+ 2

r + 1

)
−
(
n− `+ 1

r + 1

)}
=

(
n+ 1

r + 1

)
, (19)

whence

Eσ(min
k∈S

hσ(k)) =
n+ 1

r + 1
. (20)

Proof of Theorem 4. Writing

π̃−12 (L;S,H) := 1
L

L∑
l=1

min
k∈S

Hlk

and suppressing dependence on S and H, we have

π̂1π̂2 − π1π2 =
(n+ 1− π̃−12 )π̂1

nπ̃−12

− π1π2

=
n+ 1− π̃−12

nπ̃−12

{
(π̂1 − π1)− π1

nπ2 + 1

n+ 1− π̃−12

(
π̃−12 −

n+ 1

nπ2 + 1

)}
. (21)
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Consider L→∞. By the weak law of large numbers and the continuous mapping theorem,
we have

n+ 1− π̃−12 (L)

nπ̃−12 (L)

p→ π2 and

nπ2 + 1

n+ 1− π̃−12 (L)

p→ (π2 + n−1)2

π2(1 + n−1)
.

By the central limit theorem, Slutsky’s lemma and Lemma 5,

AL :=
√
L(π̂1(L)− π1)

d→ N(0, π1(1− π1)) and

BL := −π1
nπ2 + 1

n+ 1− π̃−12 (L)
×
√
L

(
π̃−12 (L)− n+ 1

nπ2 + 1

)
d→ N(0, π21(1− π2)(1 + ε(n))),

with ε(n) defined as in (10). Define IS := {i : S ⊆ X} and let k ∈ S. Now observe that

{∃ι′ : hσ(k) = ι′ for all k′ ∈ S} = {σ−1(hσ(k)) ∈ IS} and {min
k∈S

hσ(k) = ι}

are independent: in words, the distribution of mink∈S hσ(k) conditional on the fact that an
observation index in IS was permuted to a lower value than any in Ik \ IS is the same as its
unconditional distribution. This implies the independence of π̂1 and π̃−12 and thence also
that of AL and BL. Thus we have that for all t1, t2 ∈ R,

E(ei(t1AL+t2BL)) = E(eit1AL)E(eit2BL)→ exp[12 t
2
1π1(1− π1) + 1

2 t
2
2{π21(1− π2)(1 + ε(n))}].

pointwise as L→∞. Returning to (21), by Lévy’s continuity theorem we have
√
L{π̂1(L)π̂2(L)− π1π2}

d→ N(0, π22π1(1− π1π2)(1 + ε(n))).

Lemma 5 Let r = nπ2(S) and suppose n ≥ r + 2. Then

Varσ(min
k∈S

hσ(k)) =
r(n+ 1)(n− r)
(r + 1)2(r + 2)

.

Proof We have,(
n

r

)
Eσ{(min

k∈S
hσ(k))2} =

n−r+1∑
`=1

`2
(
n− `
r − 1

)

=

n−r+1∑
`=1

{
(`− 1)2

(
n− (`− 1)

r

)
− `2

(
n− `
r

)}

+
n−r+1∑
`=1

{
2(`− 1)

(
n− (`− 1)

r

)
+

(
n− `+ 1

r

)}
= 2

(
n+ 1

r + 2

)
+

(
n+ 1

r + 1

)
,

where in the last line we used (19) and (20). Simplifying and using (6) gives the result.
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