
Journal of Machine Learning Research 14 (2013) 867-897 Submitted 8/12; Revised 2/13; Published 3/13

A Widely Applicable Bayesian Information Criterion

Sumio Watanabe SWATANAB@DIS.TITECH.AC.JP

Department of Computational Intelligence and Systems Science

Tokyo Institute of Technology

Mailbox G5-19, 4259 Nagatsuta, Midori-ku

Yokohama, Japan 226-8502

Editor: Manfred Opper

Abstract

A statistical model or a learning machine is called regular if the map taking a parameter to a prob-

ability distribution is one-to-one and if its Fisher information matrix is always positive definite. If

otherwise, it is called singular. In regular statistical models, the Bayes free energy, which is defined

by the minus logarithm of Bayes marginal likelihood, can be asymptotically approximated by the

Schwarz Bayes information criterion (BIC), whereas in singular models such approximation does

not hold.

Recently, it was proved that the Bayes free energy of a singular model is asymptotically given

by a generalized formula using a birational invariant, the real log canonical threshold (RLCT),

instead of half the number of parameters in BIC. Theoretical values of RLCTs in several statistical

models are now being discovered based on algebraic geometrical methodology. However, it has

been difficult to estimate the Bayes free energy using only training samples, because an RLCT

depends on an unknown true distribution.

In the present paper, we define a widely applicable Bayesian information criterion (WBIC)

by the average log likelihood function over the posterior distribution with the inverse temperature

1/ logn, where n is the number of training samples. We mathematically prove that WBIC has

the same asymptotic expansion as the Bayes free energy, even if a statistical model is singular

for or unrealizable by a statistical model. Since WBIC can be numerically calculated without any

information about a true distribution, it is a generalized version of BIC onto singular statistical

models.

Keywords: Bayes marginal likelihood, widely applicable Bayes information criterion

1. Introduction

A statistical model or a learning machine is called regular if the map taking a parameter to a prob-

ability distribution is one-to-one and if its Fisher information matrix is always positive definite. If

otherwise, it is called singular. Many statistical models and learning machines are not regular but

singular, for example, artificial neural networks, normal mixtures, binomial mixtures, reduced rank

regressions, Bayesian networks, and hidden Markov models. In general, if a statistical model con-

tains hierarchical layers, hidden variables, or grammatical rules, then it is singular. In other words,

if a statistical model is devised so that it extracts hidden structure from a random phenomenon, then

it naturally becomes singular. If a statistical model is singular, then the likelihood function cannot

be approximated by any normal distribution, resulting that neither AIC, BIC, nor MDL can be used
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in statistical model evaluation. Hence constructing singular learning theory is an important issue in

both statistics and learning theory.

A statistical model or a learning machine is represented by a probability density function p(x|w)
of x ∈R

N for a given parameter w ∈W ⊂R
d , where W is a set of all parameters. A prior probability

density function is denoted by ϕ(w) on W . Assume that training samples X1,X2, ...,Xn are indepen-

dently subject to a probability density function q(x), which is called a true distribution. The log loss

function or the minus log likelihood function is defined by

Ln(w) =−1

n

n

∑
i=1

log p(Xi|w). (1)

Also the Bayes free energy F is defined by

F =− log

∫ n

∏
i=1

p(Xi|w)ϕ(w)dw. (2)

This value F can be understood as the minus logarithm of marginal likelihood of a model and a

prior, hence it plays an important role in statistical model evaluation. In fact, a model or a prior is

often optimized by maximization of the Bayes marginal likelihood (Good, 1965), which is equiva-

lent to minimization of the Bayes free energy.

If a statistical model is regular, then the posterior distribution can be asymptotically approxi-

mated by a normal distribution, resulting that

F = nLn(ŵ)+
d

2
logn+Op(1), (3)

where ŵ is the maximum likelihood estimator, d is the dimension of the parameter space, and n is

the number of training samples. The right hand side of Equation (3) is the well-known Schwarz

Bayesian information criterion (BIC) (Schwarz, 1978).

If a statistical model is singular, then the posterior distribution is different from any normal

distribution, hence the Bayes free energy cannot be approximated by BIC in general. Recently, it

was proved that, even if a statistical model is singular,

F = nLn(w0)+λ logn+Op(log logn),

where w0 is the parameter that minimizes the Kullback-Leibler distance from a true distribution to

a statistical model, and λ > 0 is a rational number called the real log canonical threshold (RLCT)

(Watanabe, 1999, 2001a, 2009, 2010a) .

The birational invariant RLCT, which was firstly found by a research of singular Schwartz dis-

tribution (Gelfand and Shilov, 1964), plays an important role in algebraic geometry and algebraic

analysis (Bernstein, 1972; Sato and Shintani, 1974; Kashiwara, 1976; Varchenko, 1976; Kollár,

1997; Saito, 2007). In algebraic geometry, it represents a relative property of singularities of a pair

of algebraic varieties. In statistical learning theory, it shows the asymptotic behaviors of the Bayes

free energy and the generalization loss, which are determined by a pair of an optimal parameter set

and a parameter set W .

If a triple of a true distribution, a statistical model, and a prior distribution is fixed, then there

is an algebraic geometrical procedure which enables us to find an RLCT (Hironaka, 1964). In
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fact, RLCTs for several statistical models and learning machines are being discovered. For exam-

ple, RLCTs have been studied in artificial neural networks (Watanabe, 2001b; Aoyagi and Nagata,

2012), normal mixtures (Yamazaki and Watanabe, 2003), reduced rank regressions (Aoyagi and

Watanabe, 2005), Bayes networks with hidden variables (Rusakov and Geiger, 2005; Zwiernik,

2010, 2011), binomial mixtures, Boltzmann machines (Yamazaki and Watanabe, 2005), and hidden

Markov models. To study singular statistical models, new algebraic geometrical theory is con-

structed (Watanabe, 2009; Drton et al., 2009; Lin, 2011; Király et al., 2012).

Based on such researches, the theoretical behavior of the Bayes free energy is clarified. These

results are very important because they indicate the quantitative difference of singular models from

regular ones. However, in general, an RLCT depends on an unknown true distribution. In practical

applications, we do not know a true distribution, hence we cannot directly apply the theoretical

results to statistical model evaluation.

In the present paper, in order to estimate the Bayes free energy without any information about

a true distribution, we propose a widely applicable Bayesian information criterion (WBIC) by the

following definition:

WBIC = E
β
w[nLn(w)], β =

1

logn
, (4)

where E
β
w[ ] shows the expectation value over the posterior distribution on W that is defined by, for

an arbitrary integrable function G(w),

E
β
w[G(w)] =

∫
G(w)

n

∏
i=1

p(Xi|w)β ϕ(w)dw

∫ n

∏
i=1

p(Xi|w)β ϕ(w)dw

. (5)

In this definition, β > 0 is called the inverse temperature. Then the main purpose of this paper is to

show

F = WBIC+Op(
√

logn).

To establish mathematical support of WBIC, we prove three theorems. Firstly, in Theorem 3 we

show that there exists a unique inverse temperature β∗ which satisfies

F = E
β∗
w [nLn(w)].

The optimal inverse temperature β∗ is a random variable which satisfies the convergence in proba-

bility, β∗ logn → 1 as n → ∞. Secondly, in Theorem 4 we prove that, even if a statistical model is

singular,

WBIC = nLn(w0)+λ logn+Op(
√

logn).

In other words, WBIC has the same asymptotic behavior as the Bayes free energy even if a statistical

model is singular. And lastly, in Theorem 5 we prove that, if a statistical model is regular, then

WBIC = nLn(ŵ)+
d

2
logn+Op(1),

which shows WBIC coincides with BIC in regular statistical models. Moreover, it is expected that

a computational cost in numerical calculation of WBIC is far smaller than that of the Bayes free
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Variable Name Equation Number

F Bayes free energy Equation (2)

G Generalization loss Equation (29)

WBIC WBIC Equation (4)

WAIC WAIC Equation (30)

E
β
w[ ] posterior average Equation (5)

β∗ optimal inverse temperature Equation (18)

L(w) log loss function Equation (6)

Ln(w) empirical loss Equation (1)

K(w) Average log likelihood ratio Equation (7)

Kn(w) empirical log likelihood ratio Equation (8)

λ real log canonical threshold Equation (15)

m multiplicity Equation (16)

Q(K(w),ϕ(w)) parity of model Equation (17)

(M ,g(u),a(x,u),b(u)) resolution quartet Theorem 1

Table 1: Variable, Name, and Equation Number

energy. These results show that WBIC is a generalized version of BIC onto singular statistical

models and that RLCTs can be estimated even if a true distribution is unknown.

This paper consists of eight sections. In Section 2, we summarize several notations. In Section 3,

singular learning theory and the standard representation theorem are introduced. The main theorems

and corollaries of this paper are explained in Section 4, which are mathematically proved in Section

5. As the purpose of the present paper is to prove the mathematical support of WBIC, Sections 4

and 5 are the main sections. In section 6, a method how to use WBIC in statistical model evaluation

is illustrated using an experimental result. In section 7 and 8, we discuss and conclude the present

paper.

2. Statistical Models and Notations

In this section, we summarize several notations. Table 1 shows variables, names, and equation

numbers in this paper. The average log loss function L(w) and the entropy of the true distribution S

are respectively defined by

L(w) = −
∫

q(x) log p(x|w)dx, (6)

S = −
∫

q(x) logq(x)dx.

Then L(w) = S+D(q||pw), where D(q||pw) is the Kullback-Leibler distance defined by

D(q||pw) =
∫

q(x) log
q(x)

p(x|w)dx.

Then D(q||pw)≥ 0, hence L(w)≥ S. Moreover, L(w) = S if and only if p(x|w) = q(x).
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In this paper, we assume that there exists a parameter w0 in the interior of W which minimizes

L(w),
L(w0) = min

w∈W
L(w),

where the interior of a set S is the defined by the largest open set that is contained in S. Note that such

w0 is not unique in general, because the map w 7→ p(x|w) is not one-to-one in general in singular

statistical models. We also assume that, for an arbitrary w that satisfies L(w) = L(w0), p(x|w) is

the same probability density function. Let p0(x) be such a unique probability density function. In

general, the set

W0 = {w ∈W ; p(x|w) = p0(x)}
is not a set of single element but an analytic set or an algebraic set with singularities. Let us define

a log density ratio function,

f (x,w) = log
p0(x)

p(x|w) ,

which is equivalent to

p(x|w) = p0(x)exp(− f (x,w)).

Two functions K(w) and Kn(w) are respectively defined by

K(w) =
∫

q(x) f (x,w)dx, (7)

Kn(w) =
1

n

n

∑
i=1

f (Xi,w). (8)

Then it immediately follows that

L(w) = L(w0)+K(w),

Ln(w) = Ln(w0)+Kn(w).

The expectation value over all sets of training samples X1,X2, ...,Xn is denoted by E[ ]. For example,

E[Ln(w)] = L(w) and E[Kn(w)] = K(w). The problem of statistical learning is characterized by the

log density ratio function f (x,w). In fact,

E
β
w[nLn(w)] = nLn(w0)+E

β
w[nKn(w)], (9)

E
β
w[nKn(w)] =

∫
nKn(w)exp(−nβKn(w))ϕ(w)dw∫

exp(−nβKn(w))ϕ(w)dw
. (10)

The main purpose of the present paper is to prove

F = nLn(w0)+E
β
w[nKn(w)]+Op(

√

logn)

for β = 1/ logn.

Definition.

(1) If q(x) = p0(x), then q(x) is said to be realizable by p(x|w). If otherwise, it is said to be

unrealizable.

(2) If the set W0 consists of a single element w0 and if the Hessian matrix

Ji j(w) =
∂2L

∂wi∂w j

(w) (11)
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at w = w0 is strictly positive definite, then q(x) is said to be regular for p(x|w). If otherwise, it is

said to be singular for p(x|w).
Note that the matrix J(w) is equal to the Hessian matrix of K(w) and that J(w0) is equal to

the Fisher information matrix if the true distribution is realizable by a statistical model. Also note

that, if q(x) is realizable by p(x|w), then K(w) is Kullback-Leibler divergence of q(x) and p(x|w).
However, if q(x) is not realizable by p(x|w), then it is not.

3. Singular Learning Theory

In this section we summarize singular learning theory. In the present paper, we assume the following

conditions.

Fundamental Conditions.

(1) The set of parameters W is a compact set in R
d whose interior is not the empty set. Its boundary

is defined by several analytic functions π1(w), π2(w), ..., πk(w), in other words,

W = {w ∈ R
d ;π1(w)≥ 0,π2(w)≥ 0, ...,πk(w)≥ 0}.

(2) The prior distribution satisfies ϕ(w) = ϕ1(w)ϕ2(w), where ϕ1(w)≥ 0 is an analytic function and

ϕ2(w)> 0 is a C∞-class function.

(3) Let s ≥ 6 and

Ls(q) = { f (x);‖ f‖s ≡
(

∫
| f (x)|sq(x)dx

)1/s

< ∞}

be a Banach space. There exists an open set W ′ ⊃ W such that the map W ′ ∋ w 7→ f (x,w) is an

Ls(q)-valued analytic function.

(4) The set Wε is defined by

Wε = {w ∈W ; K(w)≤ ε}.

It is assumed that there exist constants ε,c > 0 such that

(∀w ∈Wε) EX [ f (X ,w)]≥ c EX [ f (X ,w)2]. (12)

Remark. (1) These conditions allow that the set of optimal parameters

W0 = {w ∈W ; p(x|w) = p(x|w0)}= {w ∈W ; K(w) = 0}

may contain singularities, and that the Hessian matrix J(w) at w ∈W0 is not positive definite. There-

fore K(w) can not be approximated by any quadratic form in general.

(2) The condition Equation (12) is satisfied if a true distribution is realizable by or regular for a

statistical model (Watanabe, 2010a). If a true distribution is unrealizable by and singular for a sta-

tistical model, there is an example which does not satisfy this condition. In the present paper, we

study the case when Equation (12) is satisfied.

Lemma 1 Assume Fundamental Conditions (1)-(4). Let

β =
β0

logn
,
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where β0 > 0 is a constant and let 0 ≤ r < 1/2. Then, as n → ∞,

∫
K(w)≥1/nr

exp(−nβKn(w))ϕ(w)dw = op(exp(−
√

n)), (13)

∫
K(w)≥1/nr

nKn(w)exp(−nβKn(w))ϕ(w)dw = op(exp(−
√

n)). (14)

The proof of Lemma 1 is given in Section 5.

Let ε> 0 be a sufficiently small constant. Lemma 1 shows that integrals outside of the region Wε

do not affect the expectation value E
β
w[nKn(w)] asymptotically, because in the following theorems,

we prove that integral in the region Wε have larger orders than the integral outside of Wε. To study

integrals in the region Wε, we need algebraic geometrical method, because the set {w;K(w) = 0}
contains singularities in general. There are quite many kinds of singularities, however, the following

theorem makes any singularities be a same standard form.

Theorem 1 (Standard Representation) Assume Fundamental Conditions (1)-(4). Let ε > 0 be a

sufficiently small constant. Then there exists an quartet (M ,g(u),a(x,u),b(u)), where

(1) M is a d-dimensional real analytic manifold,

(2) g is a proper analytic function g : M → W ′
ε , where W ′

ε is the set that is defined by the largest

open set contained in Wε and g : {u ∈ M ;K(g(u)) 6= 0}→ {w ∈W ′
ε ;K(w) 6= 0} is a bijective map,

(3) a(x,u) is an Ls(q)-valued analytic function,

(4) and b(u) is an infinitely many times differentiable function which satisfies b(u)> 0,

such that the following equations are satisfied in each local coordinate of M :

K(g(u)) = u2k,

f (x,g(u)) = uka(x,u),

ϕ(w)dw = ϕ(g(u))|g′(u)|du = b(u)|uh|du,

where k = (k1,k2, ...,kd) and h = (h1,h2, ...,hd) are multi-indices made of nonnegative integers. At

least one of k j is not equal to zero.

Remark. (1) In this theorem, for u = (u1,u2, · · · ,ud) ∈ R
d , notations u2k and |uh| respectively

represent

u2k = u
2k1

1 u
2k2

2 · · ·u2kd

d ,

|uh| = |uh1

1 u
h2

2 · · ·uhd

d |.

The singularity u= 0 in u2k = 0 is said to be normal crossing. Theorem 1 shows that any singularities

can be made normal crossing by using an analytic function w = g(u).
(2) A map w = g(u) is said to be proper if, for an arbitrary compact set C, g−1(C) is also compact.

(3) The proof of Theorem 1 is given in Theorem 6.1 of a book (Watanabe, 2009, 2010a). In order to

prove this theorem, we need the Hironaka resolution of singularities (Hironaka, 1964; Atiyah, 1970)

that is the fundamental theorem in algebraic geometry. The function w = g(u) is often referred to

as a resolution map.

(4) In this theorem, a quartet (k,h,a(x,u),b(u)) depends on a local coordinate in general. For a

given function K(w), there is an algebraic recursive algorithm which enables us to find a resolution
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map w = g(u). However, even for a fixed K(w), a resolution map is not unique, resulting that a

quartet (M ,g(u),a(x,u),b(u)) is not unique.

Definition. (Real Log Canonical Threshold) Let {Uα;α ∈ A} be a system of local coordinates of a

manifold M ,

M =
⋃

α∈A

Uα.

The real log canonical threshold (RLCT) is defined by

λ = min
α∈A

d

min
j=1

(h j +1

2k j

)

, (15)

where we define 1/k j = ∞ if k j = 0. The multiplicity m is defined by

m = max
α∈A

#
{

j;
h j +1

2k j

= λ
}

, (16)

where #S shows the number of elements of a set S.

The concept of RLCT is well known in algebraic geometry and statistical learning theory. In

the following definition we introduce a parity of a statistical model.

Definition. (Parity of Statistical Model) The support of ϕ(g(u)) is defined by

supp ϕ(g(u)) = {u ∈ M ; g(u) ∈Wε, ϕ(g(u))> 0},

where S shows the closure of a set S. A local coordinate Uα is said to be an essential local coordinate

if both equations

λ =
d

min
j=1

(h j +1

2k j

)

,

m = #{ j;(h j +1)/(2k j) = λ},

hold in its local coordinate. The set of all essential local coordinates is denoted by {Uα;α ∈ A∗}.

If, for an arbitrary essential local coordinate, there exist both δ > 0 and a natural number j in the set

{ j ; (h j +1)/(2k j) = λ} such that

(1) k j is an odd number,

(2) {(0,0, ..,0,u j,0,0, ..,0) ; |u j|< δ} ⊂ supp ϕ(g(u)),
then we define Q(K(g(u)),ϕ(g(u))) = 1. If otherwise, Q(K(g(u)),ϕ(g(u))) = 0. If there exists a

resolution map w = g(u) such that Q(K(g(u)),ϕ(g(u))) = 1, then we define

Q(K(w),ϕ(w)) = 1. (17)

If otherwise Q(K(w),ϕ(w)) = 0. If Q(K(w),ϕ(w)) = 1, then the parity of a statistical model is said

to be odd, otherwise even.

It was proved in Theorem 2.4 of a book (Watanabe, 2009) that, for a given set (q, p,ϕ), λ and m

are independent of a choice of a resolution map. Such a value is called a birational invariant. The

RLCT is a birational invariant.

Lemma 2 If a true distribution q(x) is realizable by a statistical model p(x|w), then the value

Q(K(g(u)),ϕ(g(u))) is independent of a choice of a resolution map w = g(u).
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Proof of this lemma is shown in Section 5. Lemma 2 indicates that, if a true distribution is real-

izable by a statistical model, then Q(K(g(u)),ϕ(g(u))) is a birational invariant. The present paper

proposes a conjecture that Q(K(g(u)),ϕ(g(u))) is a birational invariant in general. By Lemma 2,

this conjecture is proved if we can show the proposition that, for an arbitrary nonnegative analytic

function K(w), there exist q(x) and p(x|w) such that K(w) is the Kullback-Leibler distance from

q(x) to p(x|w).
Example. Let w = (a,b,c) ∈ R

3 and

K(w) = (ab+ c)2 +a2b4,

which is the Kullback-Leibler distance of a neural network model in Example 1.6 of a book (Watan-

abe, 2009), where a true distribution is realizable by a statistical model. The prior ϕ(w) is defined

by some nonzero function on a sufficiently large compact set. In a singular statistical model, com-

pactness of the prior is necessary in general, because, if the parameter set is not compact, then it is

not easy to mathematically treat the integration on the neighborhood among the infinite point.

Let a system of local coordinates be

Ui = {(ai,bi,ci) ∈ R
3} (i = 1,2,3,4).

A resolution map g : U1 ∪U2 ∪U3 ∪U4 → R
3 in each local coordinate is defined by

a = a1c1, b = b1, c = c1,

a = a2, b = b2c2, c = a2(1−b2)c2,

a = a3, b = b3, c = a3b3(b3c3 −1),

a = a4, b = b4c4, c = a4b4c4(c4 −1).

This map g is made of recursive blowing-ups whose centers are smooth manifolds, hence it is one-

to-one as a map g : {u;K(g(u))> 0}→ {w;K(w)> 0}. Then

K(a,b,c) = c2
1{(a1b1 +1)2 +a2

1b4
1}= a2

2c2
2(1+b2

2c2
2)

= a2
3b4

3(c
2
3 +1) = a2

4b2
4c4

4(1+b2
4).

Therefore integration over W can be calculated using integration over the manifold. The Jacobian

determinant |g′(u)| is

|g′(u)| = |c1|= |a2c2|
= |a3b2

3|= |a4b4c4|2.
In other words, in each local coordinate,

(k1,k2,k3) = (0,0,1),(1,0,1),(1,2,0),(1,1,2),

(h1,h2,h3) = (0,0,1),(1,0,1),(1,2,0),(2,2,2).

Therefore
(h1 +1

2k1

,
h2 +1

2k2

,
h2 +1

2k2

)

= (∞,∞,1),(1,0,1),(1,
3

4
,∞),(

3

2
,
3

2
,
3

4
).

The smallest value among them is 3/4 which is equal to λ and the multiplicty is m= 1. The essential

local coordinates are U3 and U4. In U3 and U4, the sets {u j ; (h j+1)/(2k j) = 3/4} are respectively

{u2} and {u3}, where 2k j = 4 in both cases. Consequently, both k j are even, thus the parity is given

by Q(K(w),ϕ(w)) = 0.
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Lemma 3 Assume that the Fundamental Conditions (1)-(4) are satisfied and that a true distribution

q(x) is regular for a statistical model p(x|w). If w0 is contained in the interior of W and if ϕ(w0)> 0,

then

λ =
d

2
, m = 1,

and

Q(K(w),ϕ(w)) = 1.

Proof of this lemma is shown in Section 5.

Theorem 2 Assume that the Fundamental Conditions (1)-(4) are satisfied. Then the following

holds.

F = nLn(w0)+λ logn− (m−1) log logn+Rn,

where λ is a real log canonical threshold, m is its multiplicity, and {Rn} is a sequence of random

variables which converges to a random variable in law, when n → ∞.

Theorem 2 was proved in the previous papers. In the case when q(x) is realizable by and singular

for p(x|w), the expectation value of F is given by algebraic analysis (Watanabe, 2001a). The

asymptotic behavior of F as a random variable was shown in a book (Watanabe, 2009). These

results were generalized (Watanabe, 2010a) for the case that q(x) is unrealizable.

Remark. In practical applications, we do not know the true distribution, hence λ and m are un-

known. Therefore, we can not directly apply Theorem 2 to such cases. The main purpose of the

present paper is to make a new method how to estimate F even if the true distribution is unknown.

4. Main Results

In this section, we introduce the main results of the present paper.

Theorem 3 (Unique Existence of the Optimal Parameter) Assume that Ln(w) is not a constant

function of w. Then the followings hold.

(1) The value E
β
w[nLn(w)] is a decreasing function of β.

(2) There exists a unique β∗ (0 < β∗ < 1) which satisfies

F = E
β∗
w [nLn(w)]. (18)

Note that the function Ln(w) is not a constant function in an ordinary statistical model with prob-

ability one. The Proof of Theorem 3 is given in Section 5. Based on this theorem, we define the

optimal inverse temperature.

Definition. The unique parameter β∗ that satisfies Equation (18) is called the optimal inverse tem-

perature.

In general, the optimal inverse temperature β∗ depends on a true distribution q(x), a statistical

model p(x|w), a prior ϕ(w), and training samples. Therefore β∗ is a random variable. In the present

paper, we study its probabilistic behavior. Theorem 4 is a mathematical base for such a purpose.

Theorem 4 (Main Theorem) Assume Fundamental Conditions (1)-(4) and that

β =
β0

logn
,
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where β0 is a constant. Then there exists a random variable Un such that

E
β
w[nLn(w)] = nLn(w0)+

λ logn

β0

+Un

√

λ logn

2β0

+Op(1),

where λ is the real log canonical threshold and {Un} is a sequence of random variables, which

satisfies E[Un] = 0, converges to a Gaussian random variable in law as n → ∞. Moreover, if a true

distribution q(x) is realizable by a statistical model p(x|w), then E[(Un)
2]< 1.

The proof of Theorem 4 is given in Section 5. Theorem 4 with β0 = 1 shows that

WBIC = nLn(w0)+λ logn+Un

√

λ logn

2
+Op(1),

whose first two main terms are equal to those of F in Theorem 2. From Theorem 4 and its proof,

three important corollaries are derived.

Corollary 1 If the parity of a statistical model is odd, Q(K(w),ϕ(w)) = 1, then Un = 0.

Corollary 2 Let β∗ be the optimal inverse temperature. Then

β∗ =
1

logn

(

1+
Un

√

2λ logn
+op

( 1√
logn

))

.

Corollary 3 Let β1 = β01/ logn and β2 = β02/ logn, where β01 and β02 are positive constants. Then

the convergence in probability

E
β1
w [nLn(w)]−E

β2
w [nLn(w)]

1/β1 −1/β2

→ λ (19)

holds as n → ∞, where λ is the real log canonical threshold.

Proofs of these corollaries are given in Section 5. Note that, if the expectation value E
β1
w [ ] is

calculated by some numerical method, then E
β2
w [ ] can be estimated using E

β1
w [ ] by using

E
β2
w [nLn(w)] =

E
β1
w [nLn(w)exp(−(β2 −β1)nLn(w))]

E
β1
w [exp(−(β2 −β1)nLn(w))]

. (20)

Therefore RLCT can be estimated by the same computational cost as WBIC. In Bayes estimation,

the posterior distribution is often approximated by some numerical method. If we know theoret-

ical values of RLCTs, then we can confirm the approximated posterior distribution by comparing

theoretical values with estimated ones.

The well-known Schwarz BIC is defined by

BIC = nLn(ŵ)+
d

2
logn,

where ŵ is the maximum likelihood estimator. WBIC can be understood as the generalized BIC

onto singular statistical models, because it satisfies the following theorem.
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Theorem 5 If a true distribution q(x) is regular for a statistical model p(x|w), then

WBIC = nLn(ŵ)+
d

2
logn+op(1).

Proof of Theorem 5 is given in Section 5. This theorem shows that the difference of WBIC and BIC

is smaller than a constant order term, if a true distribution is regular for a statistical model. This

theorem holds even if a true distribution q(x) is unrealizable by p(x|w).
Remark. Since the set of parameters W was assumed to be compact, it is proved in Main The-

orem 6.4 of a book (Watanabe, 2009) that nLn(w0)− nLn(ŵ) is a constant order random variable

in general. If a true distribution is regular for and realizable by a statistical model, its average is

asymptotically equal to d/2, where d is the dimension of parameter. If a true distribution is singu-

lar for a statistical model, then it is sometimes much larger than d/2, because it is asymptotically

equal to the maximum value of the Gaussian process. Whether replacement of nLn(w0) by nL(ŵ) is

appropriate or not depends on the statistical model and its singularities (Drton, 2009).

5. Proofs of Main Results

In this section, we prove the main theorems and corollaries.

5.1 Proof of Lemma 1

Let us define an empirical process,

ηn(w) =
1√
n

n

∑
i=1

(K(w)− f (Xi,w)).

It was proved in Theorem 5.9 and 5.10 of a book (Watanabe, 2009) that ηn(w) converges to a random

process in law and

‖ηn‖ ≡ sup
w∈W

|ηn(w)|

also converges to a random variable in law. If K(w)≥ 1/nr, then

nKn(w) = nK(w)−
√

n ηn(w)

≥ n1−r −
√

n ‖ηn‖.

By the condition 1− r > 1/2 and β = β0/ logn,

exp(
√

n)
∫

K(w)≥1/nr
exp(−nβKn(w))ϕ(w)dw

≤ exp(−n1−rβ+
√

n+
√

nβ‖ηn‖),

which converges to zero in probability, which shows Equation (13). Then, let us prove Equa-

tion (14). Since the set of parameter W is compact, ‖K‖ ≡ supw K(w)< ∞. Therefore,

|nKn(w)| ≤ n‖K‖+
√

n‖ηn‖
= n (‖K‖+‖ηn‖/

√
n).
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Hence

exp(
√

n)
∫

K(w)≥1/nr
|nKn(w)|exp(−nβKn(w))ϕ(w)dw

≤ (‖K‖+‖ηn‖/
√

n)

×exp(−n1−rβ+
√

n+
√

nβ‖ηn‖+ logn),

which converges to zero in probability. (Q.E.D.)

5.2 Proof of Lemma 3

Without loss of generality, we can assume w0 = 0. Since q(x) is regular for p(x|w), there exists w∗

such that

K(w) =
1

2
w · J(w∗)w,

where J(w) is given in Equation (11). Since J(w0) is a strictly positive definite matrix, there exists

ε > 0 such that, if K(w) ≤ ε, then J(w∗) is positive definite. Let ℓ1 and ℓ2 be respectively the

minimum and maximum eigen values of {J(w∗);K(w)≤ ε}. Then

1

4
ℓ1

d

∑
j=1

w2
j ≤

1

2
w · J(w∗)w ≤ ℓ2

d

∑
j=1

w2
j .

By using a blow-up g : U1 ∪ · · · ∪Ud → W which is represented on each local coordinate Ui =
(ui1,ui2, ...,uid),

wi = uii,

w j = uiiui j ( j 6= i),

it follows that
ℓ1 u2

ii

4
(1+∑

j 6=i

u2
i j)≤

u2
ii

2
(û,J(w∗)û)≤ ℓ2 u2

ii(1+∑
j 6=i

u2
i j),

where ûi j = ui j ( j 6= i) and ûii = 1. These inequalities show that ki = 1 in Ui, therefore Q(K(w),ϕ(w))=
1. The Jacobian determinant of the blow-up is

|g′(u)|= |uii|d−1,

hence λ = d/2 and m = 1. (Q.E.D.)

5.3 Proof of Theorem 3

Let us define a function Fn(β) of β > 0 by

Fn(β) =− log

∫ n

∏
i=1

p(Xi|w)βϕ(w)dw.

Then, by the definition, F = Fn(1) and

F ′
n(β) = E

β
w[nLn(w)],

F ′′
n (β) = −E

β
w[(nLn(w))

2]+E
β
w[nLn(w)]

2.
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By the Cauchy-Schwarz inequality and the assumption that Ln(w) is not a constant function,

F ′′
n (β)< 0,

which shows (1). Since Fn(0) = 0,

F = Fn(1) =
∫ 1

0
F ′

n(β)dβ.

By using the mean value theorem, there exists β∗ (0 < β∗ < 1) such that

F = F ′
n(β

∗) = E
β∗
w [nLn(w)].

Here F ′
n(β) is a decreasing function, β∗ is unique, which completes Theorem 3. (Q.E.D.)

5.4 First Preparation for Proof of Theorem 4

In this subsection, we prepare the proof of Theorem 4. By using Equation (9) and Equation (10),

the proof of Theorem 4 results in evaluating E
β
w[nKn(w)]. By Lemma 1,

Eβ
w[nKn(w)] =

Bn +op(exp(−√
n))

An +op(exp(−√
n))

, (21)

where An and Bn are respectively defined by

An =
∫

K(w)<ε
exp(−nβKn(w))ϕ(w)dw, (22)

Bn =
∫

K(w)<ε
nKn(w)exp(−nβKn(w))ϕ(w)dw. (23)

By Theorem 1, an integral over {w ∈ W ;K(w) < ε} is equal to that over M . For a given set of

local coordinates {Uα} of M , there exists a set of C∞ class functions {ϕα(g(u))} such that, for an

arbitrary u ∈ M ,

∑
α∈A

ϕα(g(u)) = ϕ(g(u)).

By using this fact, for an arbitrary integrable function G(w),

∫
K(w)<ε

G(w)ϕ(w)dw = ∑
α∈A

∫
Uα

G(g(u))ϕα(g(u))|g′(u)|du.

Without loss of generality, we can assume that Uα ∩ supp ϕ(g(u)) is isomorphic to [−1,1]d . More-

over, by Theorem 1, there exists a function bα(u)> 0 such that

ϕα(g(u))|g′(u)|= |uh|bα(u),

in each local coordinate. Consequently,

∫
K(w)<ε

G(w)ϕ(w)dw = ∑
α∈A

∫
[−1,1]d

du G(g(u)) |uh| bα(u).
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In each local coordinate,

K(g(u)) = u2k.

We define a function ξn(u) by

ξn(u) =
1√
n

n

∑
i=1

{uk −a(Xi,u)}.

Then

Kn(g(u)) = u2k − 1√
n

ukξn(u).

Note that

uk =
∫

a(x,u)q(x)dx

holds, because

u2k = K(g(u)) =
∫

f (x,g(u))q(x)dx = uk

∫
a(x,u)q(x)dx.

Therefore, for an arbitrary u,

E[ξn(u)] = 0.

The function ξn(u) can be understood as a random process on M . On Fundamental Conditions

(1)-(4), it is proved in Theorem 6.1, Theorem 6.2, and Theorem 6.3 of a book (Watanabe, 2009) that

(1) ξn(u) converges to a Gaussian random process ξ(u) in law and

E[sup
u

ξn(u)
2]→ E[sup

u

ξ(u)2].

(2) If q(x) is realizable by p(x|w), and if u2k = 0, then

E[ξn(u)
2] = EX [a(X ,u)2] = 2. (24)

By using the random process ξn(u), the two random variables An and Bn can be represented by

integrals over M ,

An = ∑
α∈A

∫
[−1,1]d

du exp(−nβu2k +
√

nβukξn(u))|uh|bα(u),

Bn = ∑
α∈A

∫
[−1,1]d

du (nu2k −
√

nukξn(u))

×exp(−nβu2k +
√

nβukξn(u))|uh|bα(u)

To prove Theorem 4, we study asymptotics of these two random variables.

5.5 Second Preparation for Proof of Theorem 4

To evaluate two integrals An and Bn as n → ∞, we have to study the asymptotic behavior of the

following Schwartz distribution,

δ(t −u2k) |u|h
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for t → 0. Without loss of generality, we can assume that, in each essential local coordinate,

λ =
h1 +1

2k1

=
h2 +1

2k2

= · · ·= hm +1

2km

<
h j +1

2k j

,

for an arbitrary j such that m < j ≤ d. A variable u ∈ R
d is denoted by

u = (ua,ub) ∈ R
m ×R

d−m.

We define a measure du∗ by

du∗ =

(
m

∏
j=1

δ(u j)) (
d

∏
j=m+1

(u j)
µ j) du

2m (m−1)! (∏m
j=1 k j)

, (25)

where δ( ) is the Dirac delta function, and µ = (µm+1,µ2, ...,µd) is a multi-index defined by

µ j =−2λk j +h j (m+1 ≤ j ≤ d).

Then µ j >−1, hence Equation (25) defines a measure on M . The support of du∗ is {u=(ua,ub) ; ua =
0}.

Definition. Let σ be a d-dimensional variable made of ±1. We use the notation,

σ = (σ1,σ2, ...,σd) ∈ R
d

where σ j =±1. The set of all such variables is denoted by S(d).

S(d) = {σ ; σ j =±1 (1 ≤ j ≤ d)}.

Also we use the notation

σu = (σ1u1,σ2u2, ...,σdud) ∈ R
d .

Then (σu)k = σkuk and (σu)2k = u2k. By using this notation, we can derive the asymptotic behavior

of δ(t −u2k)|uh| for t → 0.

Lemma 4 Let G(u2k,uk,u) be a real-valued C1-class function of (u2k,uk,u) (u∈R
d). The following

asymptotic expansion holds as t →+0,

∫
[−1,1]d

du δ(t −u2k)|u|hG(u2k,uk,u)

= tλ−1(− log t)m−1 ∑
σ∈S(d)

∫
[0,1]d

du∗ G(t,σk
√

t,u)

+O
(

tλ−1(− log t)m−2
)

, (26)

where du∗ is a measure defined by Equation (25).
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(Proof of Lemma 4) Let Y (t) be the left hand side of Equation (26). Then

Y (t) = ∑
σ∈S(d)

∫
[0,1]d

δ(t − (σu)2k)|σu|hG((σu)2k,(σu)k,σu)d(σu)

= ∑
σ∈S(d)

∫
[0,1]d

δ(t −u2k)|u|hG(t,σk
√

t,u)du.

By using Theorem 4.6 of a book (Watanabe, 2009), if u ∈ [0,1]d , then

δ(t −u2k)|u|hdu = tλ−1(− log t)m−1du∗

+O(tλ−1(− log t)m−2).

By applying this relation to Y (t), we obtain Lemma 4. (Q.E.D.)

5.6 Proof of Lemma 2

Let Φ(w)> 0 be an arbitrary C∞ class function on Wε. Let Y (t,Φ) (t > 0) be a function defined by

Y (t,Φ)≡
∫

K(w)<ε
δ(t −K(w)) f (x,w)Φ(w)ϕ(w)dw,

whose value is independent of a choice of a resolution map. By using a resolution map w = g(u),

Y (t,Φ) = ∑
α∈A

∑
σ∈S(d)

∫
[−1,1]d

du δ(t −u2k) uk |u|ha(x,u)Φ(g(u))bα(u)du.

By Lemma 4, and σ = (σa,σb),

Y (t,Φ) = tλ−1/2(log t)m−1 ∑
α∈A∗

∑
σa∈S(m)

(σa)
k ∑

σb∈S(d−m)

(σb)
k

×
∫
[0,1]d

du∗ a(x,σu) Φ(g(σu)) bα(σu)

+O(tλ−1/2(log t)m−2).

By the assumption that a true distribution is realizable by a statistical model, Equation (24) shows

that there exists x such that a(x,u) 6= 0 for u2k = 0. On the support of du∗,

σu = (σaua,σbub) = (0,σbub),

consequently the main order term of Y (t,Φ) is determined by Φ(0,ub).
In order to prove Lemma, it is sufficient to prove that Q(K(g(u)),ϕ(g(u))) = 1 is equivalent to

the proposition that, for an arbitrary Φ, the main term of Y (t,Φ) is equal to zero.

First, assume that Q(K(g(u)),ϕ(g(u))) = 1. Then at least one k j (1 ≤ j ≤ m) is odd, σk
a takes

both values ±1, hence

∑
σa∈S(m)

σk
a = 0,

which shows that the coefficient of the main order term in Y (t,Φ) (t →+0) is zero for an arbitrary

Φ(w). Second, assume that Q(K(g(u)),ϕ(g(u))) = 0. Then all k j (1 ≤ j ≤ m) are even, hence

∑
σa∈S(m)

σk
a = ∑

σa∈S(m)

1 6= 0.

Then there exists a function Φ(w) such that the main order term is not equal to zero. Therefore

Q(K(g(u)),ϕ(g(u))) does not depend on the resolution map. (Q.E.D.)
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5.7 Proof of Theorem 4

In this subsection, we prove Theorem 4 using the foregoing preparations. We need to study An and

Bn in Equation (22) and Equation (23). Firstly, we study An.

An = ∑
α∈A

∫
[−1,1]d

du exp(−nβu2k +β
√

nukξn(u))|u|hbα(u)

= ∑
α∈A

∫
[−1,1]d

du

∫ ∞

0
dt δ(t −u2k)|u|hbα(u)

×exp(−nβu2k +β
√

nukξn(u)).

By substitution t := t/(nβ) and dt := dt/(nβ),

An = ∑
α∈A

∫
[−1,1]d

bα(u)du

∫ ∞

0

dt

nβ
δ
( t

nβ
−u2k

)

|u|h

×exp(−nβu2k +β
√

nukξn(u)).

For simple notations, we use
∫

M
du∗ ≡ ∑

α∈A∗
∑

σ∈S(d)

∫
[0,1]d

bα(u) du∗,

ξ∗n(u) ≡ σkξn(u),

where {Uα ; α ∈ A∗} is the set of all essential local coordinates. Then by using Lemma 4, δ(t/nβ−
u2k) can be asymptotically expanded for nβ → 0, hence

An =
∫

M
du∗

∫ ∞

0

dt

nβ

( t

nβ

)λ−1(

− log(
t

nβ
)
)m−1

×exp(−t +
√

βt ξ∗n(u))+Op(
(log(nβ))m−2

(nβ)λ
)

=
(log(nβ))m−1

(nβ)λ

∫
M

du∗
∫ ∞

0
dt tλ−1 exp(−t) exp(

√

βt ξ∗n(u))

+Op(
(log(nβ))m−2

(nβ)λ
).

Since β = β0/ logn → 0,

exp(
√

βt ξ∗n(u)) = 1+
√

βt ξ∗n(u)+Op(β).

By using the gamma function,

Γ(λ) =
∫ ∞

0
tλ−1 exp(−t) dt,

it follows that

An =
(log(nβ))m−1

(nβ)λ

{

Γ(λ)
(

∫
M

du∗
)

+
√

βΓ(λ+
1

2
)
(

∫
M

du∗ξ∗n(u)
)}

+Op(
(log(nβ))m−2

(nβ)λ
).
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Secondly, Bn can be calculated by the same way,

Bn = ∑
α∈A

∫
[−1,1]d

du

∫ ∞

0
dt δ(t −u2k)|u|hbα(u)

×(nu2k −
√

nukξn(u))exp(−nβu2k +β
√

nukξn(u)).

By substitution t := t/(nβ) and dt := dt/(nβ) and Lemma 4,

Bn =
∫

M
du∗

∫ ∞

0

dt

nβ

( t

nβ

)λ−1(

− log(
t

nβ
)
)m−1

×1

β
(t −

√

βt ξ∗n(u))exp(−t +
√

βt ξ∗n(u))+Op(
(log(nβ))m−2

β(nβ)λ
)

=
(log(nβ))m−1

β(nβ)λ

∫
M

du∗
∫ ∞

0
tλ−1(t −

√

βt ξ∗n(u))exp(−t)

×exp(
√

βt ξ∗n(u))+Op(
(log(nβ))m−2

β(nβ)λ
).

Therefore,

Bn =
(log(nβ))m−1

β(nβ)λ

{

Γ(λ+1)
(

∫
M

du∗
)

+
√

β Γ(λ+
3

2
)
(

∫
M

du∗ξ∗n(u)
)

−
√

β Γ(λ+
1

2
)
(

∫
M

du∗ξ∗n(u)
)}

+Op(
(log(nβ))m−2

β(nβ)λ
).

Let us define a random variable Θ by

Θ =

∫
M du∗ξ∗n(u)∫

M du∗
. (27)

By applying results of An and Bn to Equation (21),

E
β
w[nKn(w)] =

1

β
× Γ(λ+1)+

√

β Θ {Γ(λ+3/2)−Γ(λ+1/2)}
Γ(λ)+

√

β ΘΓ(λ+1/2)
+Op(1).

Note that, if a,b,c,d are constants and β → 0,

c+
√

β d

a+
√

β b
=

c

a
+
√

β
(ad −bc

a2

)

+O(β).

Then by using an identity,

Γ(λ)(Γ(λ+3/2)−Γ(λ+1/2))−Γ(λ+1)Γ(λ+1/2)

Γ(λ)2
=−Γ(λ+1/2)

2Γ(λ)
,

we obtain

E
β
w[nKn(w)] =

1

β

Γ(λ+1)

Γ(λ)
− Θ

√

β

Γ(λ+1/2)

2Γ(λ)
+Op(1).
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A random variable Un is defined by

Un =−ΘΓ(λ+1/2)√
2λΓ(λ)

. (28)

Then it follows that

E
β
w[nKn(w)] =

λ

β
+Un

√

λ

2β
+Op(1).

By the definition of ξn(u), E[Θ] = 0, hence E[Un] = 0. By using Cauchy-Schwarz inequality,

Θ2 ≤
∫

M du∗ ξ∗n(u)
2∫

M du∗
.

Lastly let us study the case that q(x) is realizable by p(x|w). The support of du∗ is contained in

u2k = 0, hence we can apply Equation (24) to Θ,

E[Θ2]≤
∫

M du∗E[ξ∗n(u)
2]∫

M du∗
= 2.

The gamma function satisfies
Γ(λ+1/2)

Γ(λ)
<
√

λ (λ > 0).

Hence we obtain

E[(Un)
2]≤ E[Θ2]

2λ

(Γ(λ+1/2)

Γ(λ)

)2

< 1,

which completes Theorem 4. (Q.E.D.)

5.8 Proof of Corollary 1

By definition Equation (27) and Equation (28), it is sufficient to prove Θ = 0, where

Θ =

∑
α∈A∗

∑
σ∈S(d)

∫
[0,1]d

bα(u) du∗ σk ξn(u)

∑
α∈A∗

∑
σ∈S(d)

∫
[0,1]d

bα(u) du∗
.

The support of the measure du∗ is contained in the set {u = (0,ub)}. We use a notation σ =
(σa,σb) ∈ R

m ×R
d−m. If Q(q, p,ϕ) = 1 then there exists a resolution map w = g(u) such that

σk
a takes values both +1 and −1 in arbitrary local coordinate, hence

∑
σa∈S(m)

σk
a = 0.

It follows that

∑
σ∈S(d)

σkξn(0,ub) = ∑
σb∈S(d−m)

σk
bξn(0,ub) ∑

σa∈S(m)

σk
a = 0,

therefore, Θ = 0, which completes Corollary 1. (Q.E.D.)
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5.9 Proof Corollary 2

By using the optimal inverse temperature β∗, we define T = 1/(β∗ logn). By the definition, F =

E
β∗
w [nLn(w)]. By using Theorem 2 and Theorem 4,

λ logn = T λ logn+Un

√

T λ logn/2+Vn = 0,

where

Vn = Op(log logn).

It follows that

T +
Un

√
T

√

2λ logn
−1+

Vn

logn
= 0.

Therefore,

√
T =− Un

√

8λ logn
+

√

1+
(Un)2

8λ logn
− Vn

logn
.

Since Un = Op(1),
√

T = 1− Un
√

8λ logn
+op(

1
√

λ logn
),

resulting that

β∗ logn = 1+
Un

√

2λ logn
+op(

1
√

λ logn
),

which completes Corollary 2. (Q.E.D.)

5.10 Proof of Corollary 3

By using Theorem 4,

E
β1
w [nLn(w)] = nLn(w0)+

λ

β1

+Op(
√

logn),

E
β2
w [nLn(w)] = nLn(w0)+

λ

β2

+Op(
√

logn).

Since (1/β1 −1/β2) = Op(logn),

λ =
E

β1
w [nLn(w)]−E

β2
w [nLn(w)]

1/β1 −1/β2

+Op(1/
√

logn),

which shows Corollary 3. (Q.E.D.)

5.11 Proof Theorem 5

By using Equation (9) and Equation (10),

E
β
w[nLn(w)] = nLn(w0)+E

β
w[nKn(w)],
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the proof of Theorem 5 results in evaluating E
β
w[nKn(w)]. By Lemma 1 for the case r = 1/4,

E
β
w[nKn(w)] =

Dn +op(exp(−√
n))

Cn +op(exp(−√
n))

,

where Cn and Dn are respectively defined by

Cn =
∫

K<1/n1/4
exp(−nβKn(w))ϕ(w)dw,

Dn =
∫

K<1/n1/4
nKn(w)exp(−nβKn(w))ϕ(w)dw.

If a statistical model is regular, the maximum likelihood estimator ŵ converges to w0 in probability.

Let Jn(w) be d ×d matrices defined by

(Jn)i j(w) =
∂2Kn

∂wi∂w j

(w).

There exists a parameter w∗ such that

Kn(w) = Kn(ŵ)+
1

2
(w− ŵ) · Jn(w

∗)(w− ŵ).

Since ŵ → w0 in probability and K(w)< 1/n1/4, w∗ → w0 in probability. Then

‖Jn(w
∗)− J(w0)‖ ≤ ‖Jn(w

∗)− Jn(w0)‖+‖Jn(w0)− J(w0)‖

≤ ‖w∗−w0‖ sup
K(w)<1/n1/4

∥

∥

∥

∂Jn(w)

∂w

∥

∥

∥
+‖Jn(w0)− J(w0)‖,

which converges to zero in probability as n → ∞. Therefore,

Jn(w
∗) = J(w0)+op(1).

Since the model is regular, J(w0) is a positive definite matrix. Now we define

Cn = exp(−nβKn(ŵ))

×
∫

K(w)<n1/4
exp(−nβ

2
(w− ŵ) · (J(w0)+op(1))(w− ŵ))ϕ(w)dw.

By substituting

u =
√

nβ(w− ŵ),

it follows that

Cn = exp(−nβKn(ŵ))(nβ)−d/2

×
∫

exp(−1

2
u · (J(w0)+op(1))u)ϕ(ŵ+

u
√

nβ
)du

=
(2π)d/2 exp(−nβKn(ŵ))(ϕ(ŵ)+op(1))

(nβ)d/2 det(J(w0)+op(1))1/2
.
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H 1 2 3 4 5 6

WBIC1 Ave. 17899.82 3088.90 71.11 78.21 83.23 87.58

WBIC1 Std. 1081.30 226.94 3.67 3.78 3.97 4.09

WBIC2 Ave. 17899.77 3089.03 71.18 75.43 82.54 86.83

WBIC2 Std. 1081.30 226.97 3.54 3.89 4.03 4.08

BIC Ave. 17899.77 3089.03 71.18 83.47 91.86 94.87

BIC Std. 1081.30 226.97 3.54 3.89 4.03 4.08

Table 2: WBIC and BIC in Model Selection

In the same way,

Dn = exp(−nβKn(ŵ))

×
∫

K(w)<1/n1/4

(

nKn(ŵ)+
n

2
(w− ŵ) · (J(w0)+op(1))(w− ŵ)

)

×exp
(

−nβ

2
(w− ŵ) · (J(w0)+op(1))(w− ŵ)

)

ϕ(w)dw

=
(2π)d/2 exp(−nβKn(ŵ))(ϕ(ŵ)+op(1))

(nβ)d/2 det(J(w0)+op(1))1/2

(

nKn(ŵ)+
d

2β
+op(1)

)

.

Here nKn(ŵ) = Op(1), because the true distribution is regular for a statistical model. Therefore,

E
β
w[nLn(w)] = nLn(w0)+nKn(ŵ)+

d

2β
+op(1),

which completes Theorem 5. (Q.E.D.)

6. A Method How to Use WBIC

In this section we show a method how to use WBIC in statistical model evaluation. The main

theorems have already been mathematically proved, hence WBIC has a theoretical support. The

following experiment was conducted not for proving theorems but for illustrating a method how to

use it.

6.1 Statistical Model Selection

Firstly, we study model selection by using WBIC.

Let x ∈ R
M , y ∈ R

N , and w = (A,B), where A is an H ×M matrix and B is an N ×H matrix. A

reduced rank regression model is defined by

p(x,y|w) = r(x)

(2πσ2)N/2
exp

(

− 1

2σ2
‖y−BAx‖2

)

,

where r(x) is a probability density function of x and σ2 is the variance of an output. Let NM(0,Σ)
denote the M-dimensional normal distribution with the average zero and the covariance matrix Σ.

In an experiment, we set σ = 0.1, r(x) = NM(0,32I), where I is the identity matrix, and ϕ(w) =
Nd(0,102I). The true distribution was fixed as p(x,y|w0), where w0 = (A0,B0) was determined so
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that A0 and B0 were respectively an H0×M matrix and an M×H0 matrix. Note that, in reduced rank

regression models, RLCTs and multiplicities were clarified by a research (Aoyagi and Watanabe,

2005) and Q(K(w),ϕ(w)) = 1 for arbitrary q(x), p(x|w), and ϕ(w). In the experiment, M = N = 6

and the true rank was set as H0 = 3. Each element of A0 and B0 was taken from N1(0,0.2
2) and

fixed. From the true distribution p(x,y|w0), 100 sets of n = 500 training samples were generated.

The Metropolis method was employed for sampling from the posterior distribution,

p(w|X1,X2, ...,Xn) ∝ exp(−βnLn(w)+ logϕ(w)),

where β= 1/ logn. Every Metropolis trial was generated from a normal distribution Nd(0,(0.0012)2I),
by which the acceptance probability was 0.1-0.9. First 50000 Metropolis trails were not used. After

50000 trails, R = 2000 parameters {wr;r = 1,2, ...,R} were obtained in every 100 Metropolis steps.

The expectation value of a function G(w) over the posterior distribution was approximated by

E
β
w[G(w)] =

1

R

R

∑
r=1

G(wr).

The six statistical models H = 1,2,3,4,5,6 were compared by the criterion,

WBIC = E
β
w[nLn(w)], (β = 1/ logn).

To compare these values among several models, we show both WBIC1, WBIC2, and BIC in Table

2. In the table, the average and the standard deviation of WBIC1 defined by

WBIC1 = WBIC−nSn,

for 100 independent sets of training samples are shown, where the empirical entropy of the true

distribution

Sn =−1

n

n

∑
i=1

logq(Xi)

does not depend on a statistical model. Although nSn does not affect the model selection, its standard

deviation is in proportion to
√

n. In order to estimate the standard deviation of the essential part of

WBIC, the effect of nSn was removed. In 100 independent sets of training samples, the true model

H = 3 was chosen 100 times in this experiment, which demonstrates a typical application method

of WBIC.

Also WBIC2 in Table 2 shows the average and the standard deviation of

WBIC2 = nLn(ŵ)+λ logn− (m−1) log logn−nSn,

where ŵ is the maximum likelihood estimator, λ is the real log canonical threshold, and m is the

multiplicity. The maximum likelihood estimator ŵ = (Â, B̂) is given in reduced rank regression

(Anderson, 1951),

B̂Â =VV tY X t(XX t)−1,

where t shows the transposed matrix and X , Y , and V are matrices defined as follows.

(1) Xi j is the i-th coefficient of x j

(2) Yi j is the i-th coefficient of y j.
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H 1 2 3 4 5 6

Theory λ 5.5 10 13.5 15 16 17

Theory m 1 1 1 2 1 2

Average λ 5.51 9.95 13.49 14.80 15.72 16.55

Std. Dev. λ 0.17 0.31 0.52 0.65 0.66 0.72

Table 3: RLCTs for the case H0 = 3

(3) The matrix V is made of eigen vectors with respect to the maximum H eigen values of the

matrix,

Y X t(XX t)−1XY t .

If we know the model that is equal to the true distribution, and if we have theoretical real log

canonical threshold and multiplicity, then we can calculate WBIC2.

The value BIC in Table 2 shows the average and the standard deviation of Shwarz BIC,

BIC = nLn(ŵ)+
d

2
logn−nSn,

where d is the essential dimension of the parameter space of the reduced rank regression,

d = H(M+N −H).

We used this dimension because the number of parameters in reduced rank regression is H(M+N)
and it has free dimension H2. These results show that WBIC is a better approximator of the Bayes

free energy than BIC.

6.2 Estimating RLCT

Secondly, we study a method how to estimate an RLCT. By using the same experiment as the

foregoing subsection, we estimated RLCTs of reduced rank regression models by using Corollary

3. Based on Equation (19), the estimated RLCT is given by

λ̂ =
E

β1
w [nLn(w)]−E

β2
w [nLn(w)]

1/β1 −1/β2

,

where β1 = 1/ logn and β2 = 1.5/ logn and we used Equation (20) in the calculation of E
β2
w [ ]. The-

ory λ in Table 3 shows the theoretical values of RLCTs of reduced rank regression. For the cases

when true distributions are unrealizable by statistical models, RLCTs are given by half the dimen-

sion of the parameter space, λ = H(M+N −H)/2. In Table 3, averages and standard deviations of

λ shows estimated RLCTs. The theoretical RLCTs were well estimated. The difference between

theory and experimental results was caused by the effect of the smaller order terms than logn. In

the case the multiplicity m = 2, the term loglogn also affected the results.

7. Discussion

In this section, we discuss the widely applicable information criterion from three different points of

view.
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7.1 WAIC and WBIC

Firstly, let us study the difference between the free energy and the generalization error. In the present

paper, we study the Bayes free energy F as the statistical model selection criterion. Its expectation

value is given by

E[F ] = nS+
∫

q(xn) log
q(xn)

p(xn)
dxn,

where S is the entropy of the true distribution,

q(xn) =
n

∏
i=1

q(xi),

p(xn) =
∫ n

∏
i=1

p(xi|w)ϕ(w)dw,

and dxn = dx1dx2 · · ·dxn. Hence minimization of E[F ] is equivalent to minimization of the Kullback-

Leibler distance from the q(xn) to p(xn).

There is a different model evaluation criterion, which is the generalization loss defined by

G =−
∫

q(x) log p∗(x)dx, (29)

where p∗(x) is the Bayes predictive distribution defined by p∗(x) = E
β
w[p(x|w)], with β = 1. The

expectation value of G satisfies

E[G ] = S+E

[

∫
q(x) log

q(x)

p∗(x)
dx
]

.

Hence minimization of E[G ] is equivalent to minimization of the Kullback-Leibler distance from

q(x) to p∗(x). Both of F and G are important in statistics and learning theory, however, they are

different criteria.

The well-known model selection criteria AIC and BIC are respectively defined by

AIC = Ln(ŵ)+
d

n
, (30)

BIC = nLn(ŵ)+
d

2
logn.

If a true distribution is realizable by and regular for a statistical model, then

E[AIC] = E[G ]+o(
1

n
),

E[BIC] = E[F ]+O(1).

These relations can be generalized onto singular statistical models. We define WAIC and WBIC by

WAIC = Tn +Vn/n,

WBIC = E
β
w[nLn(w)], β = 1/ logn,
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where

Tn = −1

n

n

∑
i=1

log p∗(Xi|w),

Vn =
n

∑
i=1

{

Ew[(log p(Xi|w))2]−Ew[log p(Xi|w)]2
}

.

Then, even if a statistical model is unrealizable by and singular for a statistical model,

E[WAIC] = E[G ]+O(
1

n2
), (31)

E[WBIC] = E[F ]+O(log logn), (32)

where Equation (31) was proved in a book (Watanabe, 2009, 2010b), whereas Equation (32) has

been proved in the present paper. In fact, the difference between the average leave-one-out cross

validation and the average generalization error is in proportion to 1/n2 and the difference between

the leave-one-out cross validation and WAIC is also in proportion to 1/n2. The difference between

E[WBIC] and E[F ] is caused by the multiplicity m. If a statistical model is realizable by and regular

for a statistical model, WAIC and WBIC respectively coincide with AIC and BIC,

WAIC = AIC+op(
1

n
),

WBIC = BIC+op(1).

Theoretical comparison of WAIC and WBIC in singular model selection is an important problem

for future study.

7.2 Other Methods How to Evaluate Free Energy

Secondly, we discuss several methods how to numerically evaluate the Bayes free energy. There are

three methods other than WBIC.

Firstly, let {β j; j = 0,1,2, ...,J} be a sequence which satisfies

0 = β0 < β1 < · · ·< βJ = 1.

Then the Bayes free energy satisfies

F =−
J

∑
j=1

logE
β j−1
w [exp(−n(β j −β j−1)Ln(w))].

This method can be used without asymptotic theory. We can estimate F , if the number J is suf-

ficiently large and if all expectation values over the posterior distributions {Eβ j−1
w [ ]} are precisely

calculated. The disadvantage of this method is its huge computational costs for accurate calculation.

In the present paper, this method is referred to as ‘all temperatures method’.

Secondly, the importance sampling method is often used. Let H(w) be a function which ap-

proximates nLn(w). Then, for an arbitrary function G(w), we define an expectation value Êw[ ]
by

Êw[G(w)] =

∫
G(w)exp(−H(w))ϕ(w)dw∫

exp(−H(w))ϕ(w)dw
.
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Method Asymptotics RLCT Comput. Cost

All Temperatures Not used Not Used Huge

Importance Sampling Not used Not Used Small

Two-Step Used Used Small

WBIC Used Not Used Small

Table 4: Comparison of Several Methods

Then

F = − log Êw[exp(−nLn(w)+H(w))]

− log

∫
exp(−H(w))ϕ(w)dw,

where the last term is the free energy of H(w). Hence if we find H(w) whose free energy is analyti-

cally calculated and if it is easy to generate random samples from Êw[ ], then F can be numerically

evaluated. The accuracy of this method strongly depends on the choice of H(w).

Thirdly, a two-step method was proposed (Drton, 2010). Assume that we have theoretical values

about RLCTs for all cases about true distribution and statistical models. Then, in the first step, a null

hypothesis model is chosen by using BIC. In the second step, the optimal model is chosen by using

RLCTs with the assumption that the null hypothesis model is a true distribution. If the selected

model is different from the null hypothesis model, then the same procedure is recursively applied

until the null hypothesis model becomes the optimal model. In this method, asymptotic theory is

necessary but RLCTs do not contain fluctuations because they are theoretical values.

Compared with these methods, WBIC needs asymptotic theory but it does not theoretical results

about RLCT. The theoretical comparison of these methods is summarized in Table 4.

The effectiveness of a model selection method strongly depends on a statistical condition which

is determined by a true distribution, a statistical model, a prior distribution, and a set of training

samples. Under some condition, one method may be more effective, however, under the other con-

dition, another may be. The proposed method WBIC gives a new approach in numerical calculation

of the Bayes free energy which is more useful with cooperation with the conventional method. It is

a future study to clarify which method is recommended in what statistical conditions.

Remark. It is one of the most important problems in Bayes statistics how to make accurate

Markov Chain Monte Carlo (MCMC) process. There are several MCMC methods, for example,

the Metropolis method, the Gibbs sampler method, the Hybrid Monte Carlo method, and the ex-

change Monte Carlo method. Numerical calculation of WBIC depends on the accuracy of MCMC

process.

7.3 Algebraic Geometry and Statistics

Lastly, let us discuss a relation between algebraic geometry and statistics. In the present paper, we

define the parity of a statistical Q(K(w),ϕ(w)) and proved that it affects the asymptotic behavior of

WBIC. In this subsection we show three mathematical properties of the parity of a statistical model.

Firstly, the parity has a relation to the analytic continuation of K(w)1/2. For example, by using

blow-up, (a,b)= (a1,a1b1)= (a2b2,b2), it follows that analytic continuation of (a2+b2)1/2 is given
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by

(a2 +b2)1/2 = a1

√

1+b2
1 = b2

√

a2
2 +1,

which takes both positive and negative values. On the other hand, (a4 +b4)1/2 takes only nonnega-

tive value. The parity indicates such difference.

Secondly, the parity has a relation to statistical model with a restricted parameter set. For exam-

ple, a statistical model

p(x|a) = 1√
2π

exp(−(x−a)2

2
)

whose parameter set is given by {a ≥ 0} is equivalent to a statistical model p(x|b2) and {b ∈R}. In

other words, a statistical model which has restricted parameter set is statistically equivalent to an-

other even model which has unrestricted parameter set. We have a conjecture that an even statistical

model has some relation to a model with a restricted parameter model.

And lastly, the parity has a relation to the difference of K(w) and Kn(w). As is proven (Watanabe,

2001a), the relation

− log

∫
exp(−nKn(w))ϕ(w)dw =− log

∫
exp(−nK(w))ϕ(w)dw+Op(1)

holds independent of the parity of a statistical model. On the other hand, if β = 1/ logn, then

E
β
w[nKn(w)] =

∫
nK(w)exp(−nβK(w))ϕ(w)dw∫

exp(−nβK(w))ϕ(w)

+Un

√

logn+Op(1).

If the parity is odd, then Un = 0, otherwise Un is not equal to zero in general. This fact shows that

the parity shows difference in a fluctuation of the likelihood function.

8. Conclusion

We proposed a widely applicable Bayesian information criterion (WBIC) which can be used even

if a true distribution is unrealizable by and singular for a statistical model and proved that WBIC

has the same asymptotic expansion as the Bayes free energy. Also we developed a method how to

estimate real log canonical thresholds even if a true distribution is unknown.
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