
Journal of Machine Learning Research 14 (2013) 1665-1714 Submitted 9/11; Revised 8/12; Published 7/13

Nonparametric Sparsity and Regularization

Lorenzo Rosasco∗ LROSASCO@MIT.EDU

DIBRIS

University of Genova

Via Dodecaneso 35

16146 Genova, ITALY

Silvia Villa SILVIA.VILLA@IIT.IT

Istituto Italiano di Tecnologia

Via Morego 30

16163 Genova, ITALY

Sofia Mosci SOFIA.MOSCI@UNIGE.IT

DIBRIS

University of Genova

Via Dodecaneso 35

16146 Genova, ITALY

Matteo Santoro MATTEO.SANTORO@IIT.IT

Istituto Italiano di Tecnologia

Via Morego 30

16163 Genova, ITALY

Alessandro Verri ALESSANDRO.VERRI@UNIGE.IT

DIBRIS

University of Genova

Via Dodecaneso 35

16146 Genova, ITALY

Editor: John Lafferty

Abstract

In this work we are interested in the problems of supervised learning and variable selection when

the input-output dependence is described by a nonlinear function depending on a few variables.

Our goal is to consider a sparse nonparametric model, hence avoiding linear or additive models.

The key idea is to measure the importance of each variable in the model by making use of par-

tial derivatives. Based on this intuition we propose a new notion of nonparametric sparsity and

a corresponding least squares regularization scheme. Using concepts and results from the theory

of reproducing kernel Hilbert spaces and proximal methods, we show that the proposed learning

algorithm corresponds to a minimization problem which can be provably solved by an iterative

procedure. The consistency properties of the obtained estimator are studied both in terms of pre-

diction and selection performance. An extensive empirical analysis shows that the proposed method

performs favorably with respect to the state-of-the-art methods.
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1. Introduction

It is now common to see practical applications, for example in bioinformatics and computer vision,

where the dimensionality of the data is in the order of hundreds, thousands and even tens of thou-

sands. It is known that learning in such a high dimensional regime is feasible only if the quantity

to be estimated satisfies some regularity assumptions (Devroye et al., 1996). In particular, the idea

behind, so called, sparsity is that the quantity of interest depends only on a few relevant variables

(dimensions). In turn, this latter assumption is often at the basis of the construction of interpretable

data models, since the relevant dimensions allow for a compact, hence interpretable, representation.

An instance of the above situation is the problem of learning from samples a multivariate function

which depends only on a (possibly small) subset of relevant variables. Detecting such variables is

the problem of variable selection.

Largely motivated by recent advances in compressed sensing (Candès and Tao, 2006; Donoho,

2006), the above problem has been extensively studied under the assumption that the function of

interest (target function) depends linearly to the relevant variables. While a naive approach (trying

all possible subsets of variables) would not be computationally feasible it is known that meaningful

approximations can be found either by greedy methods (Tropp and Gilbert, 2007), or convex relax-

ation (ℓ1 regularization a.k.a. basis pursuit or LASSO, Tibshirani, 1996; Chen et al., 1999; Efron

et al., 2004). In this context efficient algorithms (see Schmidt et al., 2007 and Loris, 2009 and refer-

ences therein) as well as theoretical guarantees are now available (see Bühlmann and van de Geer,

2011 and references therein). In this paper we are interested into the situation where the target func-

tion depends non-linearly to the relevant variables. This latter situation is much less understood.

Approaches in the literature are mostly restricted to additive models (Hastie and Tibshirani, 1990).

In such models the target function is assumed to be a sum of (non-linear) univariate functions. So-

lutions to the problem of variable selection in this class of models include Ravikumar et al. (2008)

and are related to multiple kernel learning (Bach et al., 2004). Higher order additive models can

be further considered, encoding explicitly dependence among the variables—for example assuming

the target function to be also sum of functions depending on couples, triplets etc. of variables, as in

Lin and Zhang (2006) and Bach (2009). Though this approach provides a more interesting, while

still interpretable, model, its size/complexity is essentially more than exponential in the initial vari-

ables. Only a few works, that we discuss in details in Section 2, have considered notions of sparsity

beyond additive models.

In this paper, we propose a new approach based on the idea that the importance of a vari-

able, while learning a non-linear functional relation, can be captured by the corresponding partial

derivative. This observation suggests a way to define a new notion of nonparametric sparsity and

a corresponding regularizer which favors functions where most partial derivatives are essentially

zero. The question is how to make this intuition precise and how to derive a feasible computational

learning scheme. The first observation is that, while we cannot measure a partial derivative every-

where, we can do it at the training set points and hence design a data-dependent regularizer. In

order to derive an actual algorithm we have to consider two further issues: How can we estimate

reliably partial derivatives in high dimensions? How can we ensure that the data-driven penalty

is sufficiently stable? The theory of reproducing kernel Hilbert spaces (RKHSs) provides us with

tools to answer both questions. In fact, partial derivatives in a RKHS are bounded linear func-

tionals and hence have a suitable representation that allows efficient computations. Moreover, the

norm in the RKHS provides a natural further regularizer ensuring stable behavior of the empirical,
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derivative based penalty. Our contribution is threefold. First, we propose a new notion of sparsity

and discuss a corresponding regularization scheme using concept from the theory of reproducing

kernel Hilbert spaces. Second, since the proposed algorithm corresponds to the minimization of

a convex, but not differentiable functional, we develop a suitable optimization procedure relying

on forward-backward splitting and proximal methods. Third, we study properties of the proposed

methods both in theory, in terms of statistical consistency, and in practice, by means of an extensive

set of experiments.

Some preliminary results have appeared in a short conference version of this paper (Rosasco

et al., 2010). With respect to the conference version, the current version contains: the detailed

discussion of the derivation of the algorithm with all the proofs, the consistency results of Section 4,

an augmented set of experiments and several further discussions. The paper is organized as follows.

In Section 3 we discuss our approach and present the main results in the paper. In Section 4 we

discuss the computational aspects of the method. In Section 5 we prove consistency results. In

Section 6 we provide an extensive empirical analysis. In Section 7 we conclude with a summary of

our study and a discussion of future work. Finally, a list of symbols and notations can be found at

the end of the paper.

2. Problem Setting and Previous Work

Given a training set zn = (x,y) = (xi,yi)
n
i=1 of input output pairs, with xi ∈ X ⊆R

d and yi ∈ Y ⊆R,

we are interested into learning about the functional relationship between input and output. More pre-

cisely, in statistical learning the data are assumed to be sampled identically and independently from

a probability measure ρ on X ×Y so that if we measure the error by the square loss function, the

regression function fρ(x) =
∫

ydρ(x,y) minimizes the expected risk E( f ) =
∫
(y− f (x))2dρ(x,y).

Finding an estimator f̂ of fρ from finite data is possible, if fρ satisfies some suitable prior

assumption (Devroye et al., 1996). In this paper we are interested in the case where the regression

function is sparse in the sense that it depends only on a subset Rρ of the possible d variables.

Estimating the set Rρ of relevant variables is the problem of variable selection.

2.1 Linear and Additive Models

The sparsity requirement can be made precise considering linear functions f (x) = ∑d
a=1 βaxa with

x = (x1, . . . ,xd). In this case the sparsity of a function is quantified by the so called zero-norm

Ω0( f ) = #{a = 1, . . . ,d | βa 6= 0}. The zero norm, while natural for variable selection, does not

lead to efficient algorithms and is often replaced by the ℓ1 norm, that is Ω1( f ) = ∑d
a=1 |βa|. This

approach has been studied extensively and is now fairly well understood, see Bühlmann and van de

Geer (2011) and references therein. Regularization with ℓ1 regularizers, obtained by minimizing

Ê( f )+λΩ1( f ), Ê( f ) =
1

n

n

∑
i=1

(yi − f (xi))
2,

can be solved efficiently and, under suitable conditions, provides a solution close to that of the

zero-norm regularization.

The above scenario can be generalized to additive models f (x) = ∑d
a=1 fa(x

a), where fa are

univariate functions in some (reproducing kernel) Hilbert spaces Ha, a = 1, . . . ,d. In this case,

Ω0( f ) = #{a ∈ {1, . . . ,d} : ‖ fa‖ 6= 0} and Ω1( f ) = ∑d
a=1 ‖ fa‖ are the analogous of the zero and
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ℓ1 norm, respectively. This latter setting, related to multiple kernel learning (Bach et al., 2004;

Bach, 2008), has been considered for example in Ravikumar et al. (2008), see also Koltchinskii

and Yuan (2010) and references therein. Considering additive models limits the way in which the

variables can interact. This can be partially alleviated considering higher order terms in the model

as it is done in ANOVA decomposition (Wahba et al., 1995; Gu, 2002). More precisely, we can

add to the simplest additive model functions of couples fa,b(x
a,xb), triplets fa,b,c(x

a,xb,xc), etc.

of variables—see Lin and Zhang (2006). For example one can consider functions of the form

f (x) = ∑d
a=1 fa(x

a) +∑a<b fa,b(x
a,xb). In this case the analogous to the zero and ℓ1 norms are

Ω0( f ) = #{a = 1, . . . ,d : ‖ fa‖ 6= 0}+ #{(a,b) : a < b, ‖ fa,b‖ 6= 0} and Ω1( f ) = ∑d
a=1 ‖ fa‖+

∑a<b ‖ fa,b‖, respectively. Note that in this case sparsity will not be in general with respect to the

original variables but rather with respect to the elements in the additive model. Clearly, while this

approach provides a more interesting and yet interpretable model, its size/complexity is essentially

more than exponential in the number of variables. Some proposed attempts to tackle this problem

are based on restricting the set of allowed sparsity patterns and can be found in Bach (2009).

2.2 Nonparametric Approaches

The above discussion naturally raises the question:

What if we are interested into learning and performing variable selection when the functions of

interest are not described by an additive model?

Few papers have considered this question. Here we discuss in some more details Lafferty and

Wasserman (2008), Bertin and Lecué (2008), Miller and Hall (2010) and Comminges and Dalalyan

(2012), to which we also refer for further references.

The first three papers (Lafferty and Wasserman, 2008; Bertin and Lecué, 2008; Miller and Hall,

2010) follow similar approaches focusing on the pointwise estimation of the regression function and

of the relevant variables. The basic idea is to start from a locally linear (or polynomial) pointwise

estimator fn(x) at a point x obtained from the minimizer of

1

n

n

∑
i=1

(yi −〈w,xi − x〉Rd )2KH(xi − x) (1)

where KH is a localizing window function depending on a matrix (or a vector) H of smoothing

parameters. Different techniques are used to (locally) select variables. In the RODEO algorithm

(Lafferty and Wasserman, 2008), the localizing window function depends on one smoothing pa-

rameter per variable and the partial derivative of the local estimator with respect to the smoothing

parameter is used to select variables. In Bertin and Lecué (2008), selection is considering a local

lasso, that is an ℓ1 to the local empirical risk functional (1). In the LABAVS algorithm discussed

in Miller and Hall (2010) several variable selection criterion are discussed including the local lasso,

hard thresholding, and backward stepwise approach. The above approaches typically lead to cum-

bersome computations and do not scale well with the dimensionality of the space and with the

number of relevant variables.

Indeed, in all the above works the emphasis is in the theoretical analysis quantifying the estima-

tion error of the proposed methods. It is shown in Lafferty and Wasserman (2008) that the RODEO

algorithm is a nearly optimal pointwise estimator of the regression function, under assumption on

the marginal distribution and the regression function. These results are further improved in Bertin

and Lecué (2008) where optimal rates are derived under milder assumptions and sparsistency (the
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recovery of Rρ) is also studied. Uniform error estimates are derived in Miller and Hall (2010) (see

Section 2.6 in Miller and Hall (2010) for further discussions and comparison). More recently, an es-

timator based on the comparison of some well chosen empirical Fourier coefficients to a prescribed

significance level is described and studied in Comminges and Dalalyan (2012) where a careful sta-

tistical analysis is proposed considering different regimes for n,d and d∗, where d∗ is the cardinality

of Rρ. Finally, in a slightly different context, DeVore et al. (2011) studies the related problem of

determining the number of function values at adaptively chosen points that are needed in order to

correctly estimate the set of globally relevant variables.

3. Sparsity Beyond Linear Models

In this section we present our approach and summarize our main contributions.

3.1 Sparsity and Regularization Using Partial Derivatives

Our study starts from the observation that, if a function f is differentiable, the relative importance

of a variable at a point x can be captured by the magnitude of the corresponding partial derivative1

∣∣∣∣
∂ f

∂xa
(x)

∣∣∣∣ .

This observation can be developed into a new notion of sparsity and corresponding regularization

scheme that we study in the rest of the paper. We note that regularization using derivatives is not

new. Indeed, the classical splines (Sobolev spaces) regularization (Wahba, 1990), as well as more

modern techniques such as manifold regularization (Belkin and Niyogi, 2008) use derivatives to

measure the regularity of a function. Similarly total variation regularization uses derivatives to

define regular functions. None of the above methods though allows to capture a notion of sparsity

suitable both for learning and variable selection—see Remark 1.

Using partial derivatives to define a new notion of a sparsity and design a regularizer for learning

and variable selection requires considering the following two issues. First, we need to quantify the

relevance of a variable beyond a single input point to define a proper (global) notion of sparsity. If

the partial derivative is continuous2 then a natural idea is to consider

∥∥∥∥
∂ f

∂xa

∥∥∥∥
ρX

=

√∫
X

(
∂ f (x)

∂xa

)2

dρX (x). (2)

where ρX is the marginal probability measure of ρ on X . While considering other Lp norms is

possible, in this paper we restrict our attention to L2. A notion of nonparametric sparsity for a

smooth, non-linear function f is captured by the following functional

ΩD
0 ( f ) = #

{
a = 1, . . . ,d :

∥∥∥∥
∂ f

∂xa

∥∥∥∥
ρX

6= 0

}
, (3)

1. In order for the partial derivatives to be defined at all points we always assume that the closure of X coincides with

the closure of its interior.

2. In the following, see Remark 2, we will see that further appropriate regularity properties on f are needed depending

on whether the support of ρX is connected or not.
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and the corresponding relaxation is

ΩD
1 ( f ) =

d

∑
a=1

∥∥∥∥
∂ f

∂xa

∥∥∥∥
ρX

.

The above functionals encode the notion of sparsity that we are going to consider. While for linear

models, the above definition subsumes the classic notion of sparsity, the above definition is non

constrained to any (parametric) additive model.

Second, since ρX is only known through the training set, to obtain a practical algorithm we start

by replacing the L2 norm with an empirical version

∥∥∥∥
∂ f

∂xa

∥∥∥∥
n

=

√
1

n

n

∑
i=1

(
∂ f (xi)

∂xa

)2

and by replacing (2) by the data-driven regularizer,

Ω̂D
1 ( f ) =

d

∑
a=1

∥∥∥∥
∂ f

∂xa

∥∥∥∥
n

. (4)

While the above quantity is a natural estimate of (2) in practice it might not be sufficiently stable to

ensure good function estimates where data are poorly sampled. In the same spirit of manifold regu-

larization (Belkin and Niyogi, 2008), we then propose to further consider functions in a reproducing

kernel Hilbert space (RKHS) defined by a differentiable kernel and use the penalty,

2Ω̂D
1 ( f )+ν‖ f‖2

H ,

where ν is a small positive number. The latter terms ensures stability while making the regularizer

strongly convex. This latter property is a key for well-posedness and generalization, as we discuss

in Section 5. As we will see in the following, RKHS will also be a key tool allowing computations

of partial derivative of potentially high dimensional functions.

The final learning algorithm is given by the minimization of the functional

1

n

n

∑
i=1

(yi − f (xi))
2 + τ

(
2

d

∑
a=1

∥∥∥∥
∂ f

∂xa

∥∥∥∥
n

+ν‖ f‖2
H

)
. (5)

The remainder of the paper is devoted to the analysis of the above regularization algorithm. Before

summarizing our main results we add two remarks.

Remark 1 (Comparison with Derivative Based Regularizers) It is perhaps useful to remark the

difference between the regularizer we propose and other derivative based regularizers. We start by

considering
d

∑
a=1

∥∥∥∥
∂ f

∂xa

∥∥∥∥
2

n

=
1

n

n

∑
i=1

d

∑
a=1

(
∂ f (xi)

∂xa

)2

=
1

n

n

∑
i=1

‖∇ f (xi)‖2,

where ∇ f (x) is the gradient of f at x. This is essentially a data-dependent version of the classical

penalty in Sobolev spaces which writes
∫ ‖∇ f (x)‖2dx, where the uniform (Lebesgue) measure is

considered. It is well known that while this regularizer measure the smoothness it does not yield any
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Figure 1: Difference between ℓ1/ℓ1 and ℓ1/ℓ2 norm for binary matrices (white = 1, black=0), where

in the latter case the ℓ1 norm is taken over the rows (variables) and the ℓ2 norm over the

columns (samples). The two matrices have the same number of nonzero entries, and thus

the same ℓ1/ℓ1 norm, but the value of the ℓ1/ℓ2 norm is smaller for the matrix on the

right, where the nonzero entries are positioned to fill a subset of the rows. The situation

on the right is thus favored by ℓ1/ℓ2 regularization.

sparsity property. A different derivative based regularizer is given by 1
n ∑n

i=1 ∑d
a=1

∣∣∣ ∂ f (xi)
∂xa

∣∣∣ . Though

this penalty (which we call ℓ1/ℓ1) favors sparsity, it only forces partial derivative at points to be

zero. In comparison the regularizer we propose is of the ℓ1/ℓ2 type and uses the square root to

“group” the values of each partial derivative at different points hence favoring functions for which

each partial derivative is small at most points. The difference between penalties is illustrated in

Figure 1. Finally note that we can also consider 1
n ∑n

i=1 ‖∇ f (xi)‖. This regularizer, which is akin

to the total variation regularizer
∫ ‖∇ f (x)‖dx, groups the partial derivatives differently and favors

functions with localized singularities rather than selecting variables.

Remark 2 As it is clear from the previous discussion, we quantify the importance of a variable

based on the norm of the corresponding partial derivative. This approach makes sense only if

∥∥∥ ∂ f

∂xa

∥∥∥
ρX

= 0 ⇒ f is constant with respect to xa.

The previous fact holds trivially if we assume the function f to be continuously differentiable (so

that the derivative is pointwise defined, and is a continuous function) and suppρX to be connected.

If the latter assumption is not satisfied the situation is more complicated, as the following example

shows. Suppose that ρX is the uniform distribution on the disjoint intervals [−2,−1] and [1,2], and

Y = {−1,1}. Moreover assume that ρ(y|x) = δ−1, if x ∈ [−2,−1] and ρ(y|x) = δ1, if x ∈ [1,2].
Then, if we consider the regression function

f (x) =

{
−1 if x ∈ [−2,−1]

1 if x ∈ [1,2]

we get that f ′(x) = 0 on the support of ρX , although the variable x is relevant. To avoid such

pathological situations when suppρX is not connected in R
d we need to impose more stringent

regularity assumptions that imply that a function which is constant on a open interval is constant

everywhere. This is verified when f belongs to the RKHS defined by a polynomial kernel, or, more

generally, an analytic kernel such as the Gaussian kernel.
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3.2 Main Results

We summarize our main contributions.

1. Our main contribution is the analysis of the minimization of (5) and the derivation of a prov-

ably convergent iterative optimization procedure. We begin by extending the representer

theorem (Wahba, 1990) and show that the minimizer of (5) has the finite dimensional repre-

sentation

f̂ τ(x) =
n

∑
i=1

1

n
αik(xi,x)+

n

∑
i=1

d

∑
a=1

1

n
βai

∂k(s,x)

∂sa

∣∣∣∣
s=xi

,

with α,(βai)
n
i=1 ∈R

n for all a = 1, . . . ,d. Then, we show that the coefficients in the expansion

can be computed using forwards-backward splitting and proximal methods (Combettes and

Wajs, 2005; Beck and Teboulle, 2009). More precisely, we present a fast forward-backward

splitting algorithm, in which the proximity operator does not admit a closed form and is

thus computed in an approximated way. Using recent results for proximal methods with

approximate proximity operators, we are able to prove convergence (and convergence rates)

for the overall procedure. The resulting algorithm requires only matrix multiplications and

thresholding operations and is in terms of the coefficients α and β and matrices given by the

kernel and its first and second derivatives evaluated at the training set points.

2. We study the consistency properties of the obtained estimator. We prove that, if the kernel we

use is universal, then there exists a choice of τ = τn depending on n such that the algorithm is

universally consistent (Steinwart and Christmann, 2008), that is

lim
n→∞

P
(

E( f̂ τn)−E( fρ)> ε
)
= 0

for all ε> 0. Moreover, we study the selection properties of the algorithm and prove that, if Rρ

is the set of relevant variables and R̂τn the set estimated by our algorithm, then the following

consistency result holds

lim
n→∞

P
(

R̂τn ⊆ Rρ

)
= 1.

3. Finally we provide an extensive empirical analysis both on simulated and benchmark data,

showing that the proposed algorithm (DENOVAS) compares favorably and often outperforms

other algorithms. This is particularly evident when the function to be estimated is highly

non linear. The proposed method can take advantage of working in a rich, possibly infinite

dimensional, hypotheses space given by a RKHS, to obtain better estimation and selection

properties. This is illustrated in Figure 3.2, where the regression function is a nonlinear

function of 2 of 20 possible input variables. With 100 training samples the algorithms we

propose is the only one able to correctly solve the problem among different linear and non

linear additive models. On real data our method outperforms other methods on several data

sets. In most cases, the performance of our method and regularized least squares (RLS) are

similar. However our method brings higher interpretability since it is able to select a smaller

subset of relevant variable, while the estimator provided by RLS depends on all variables.

4. Computational Analysis

In this section we study the minimization of the functional (5).
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Figure 2: Comparison of predictions for a radial function of 2 out of 20 variables (the 18 irrelevant

variables are not shown in the figure). In the upper left plot is depicted the value of the

function on the test points (left), the noisy training points (center), the values predicted for

the test points by our method (DENOVAS) (right). The bottom plots represent the values

predicted for the test points by state-of-the-art algorithms based on additive models. Left:

Multiple kernel learning based on additive models using kernels. Center: COSSO, which

is a higher order additive model based on ANOVA decomposition (Lin and Zhang, 2006).

Right: Hierarchical kernel learning (Bach, 2009).

4.1 Basic Assumptions

We first begin by listing some basic conditions that we assume to hold throughout the paper.

We let ρ be a probability measure on X ×Y with X ⊂R
d and Y ⊆R. A training set zn =(x,y)=

(xi,yi)
n
i=1 is a sample from ρn. We consider a reproducing kernel k : X ×X → R (Aronszajn, 1950)

and the associated reproducing kernel Hilbert space H . We assume ρ and k to satisfy the following

assumptions.

[A1] There exists κ1 < ∞ such that supx∈X ‖t 7→ k(x, t)‖H < κ1.

[A2] The kernel k is C 2(X ×X ) and there exists κ2 < ∞ such that for all a = 1, . . . ,d we have

supx∈X ‖t 7→ ∂k(s,x)
∂sa

∣∣∣
s=t

‖H < κ2 .

[A3] There exists M < ∞ such that Y ⊆ [−M,M].

4.2 Computing the Regularized Solution

We start our analysis discussing how to compute efficiently a regularized solution of the functional

Ê τ( f ) :=
1

n

n

∑
i=1

(yi − f (xi))
2 + τ

(
2Ω̂D

1 ( f )+ν‖ f‖2
H

)
, (6)
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where Ω̂D
1 ( f ) is defined in (4). The term ‖ f‖2

H
makes the above functional coercive and strongly

convex with modulus3 τν/2, so that standard results (Ekeland and Temam, 1976) ensures existence

and uniqueness of the minimizer f̂ τ, for any ν > 0.

The rest of this section is divided into two parts. First we show how the theory of RKHS

(Aronszajn, 1950) allows to compute derivatives of functions on high dimensional spaces and also

to derive a new representer theorem leading to finite dimensional minimization problems. Second

we discuss how to apply proximal methods (Combettes and Wajs, 2005; Beck and Teboulle, 2009)

to derive an iterative optimization procedure for which we can prove convergence. It is possible to

see that the solution of Problem (6) can be written as

f̂ τ(x) =
n

∑
i=1

1

n
αikxi

(x)+
n

∑
i=1

d

∑
a=1

1

n
βa,i(∂ak)xi

(x), (7)

where α,(βa,i)
n
i=1 ∈ R

n for all a = 1, . . . ,d kx is the function t 7→ k(x, t), and (∂ak)x denotes partial

derivatives of the kernel, see (19). The main outcome of our analysis is that the coefficients α and β

can be provably computed through an iterative procedure. To describe the algorithm we need some

notation. For all a,b = 1, . . . ,d, we define the n×n matrices K,Za,La,b as

Ki, j =
1

n
k(xi,x j), (8)

[Za]i, j =
1

n

∂k(s,x j)

∂sa

∣∣∣∣
s=xi

, (9)

and

[La,b]i, j =
1

n

∂2k(x,s)

∂xa∂sb

∣∣∣∣
x=xi,s=x j

for all i, j = 1, . . . ,n. Clearly the above quantities can be easily computed as soon as we have an

explicit expression of the kernel, see Example 1 in Appendix A. We introduce also the n× nd

matrices

Z = (Z1, . . . ,Zd)

La = (La,1, . . . ,La,d) ∀a = 1, . . . ,d (10)

and the nd ×nd matrix

L =




L1,1 . . . L1,d

. . . . . . . . .
Ld,1 . . . Ld,d


=




La

. . .
Ld


 .

Denote with Bn the unitary ball in R
n,

Bn = {v ∈ R
n |‖v‖n ≤ 1}. (11)

The coefficients in (7) are obtained through Algorithm 1, where β is considered as a nd column

vector β = (β1,1, . . . ,β1,n, . . . ,βd,1, . . . ,βd,n)
T .

3. We say that a function E : H → R∪{+∞} is:

• coercive if lim‖ f‖→+∞ E( f )/‖ f‖=+∞;

• strongly convex of modulus µ if E(t f +(1− t)g)≤ tE( f )+(1− t)E(g)− µ
2 t(1− t)‖ f −g‖2 for all t ∈ [0,1].

1674



NONPARAMETRIC SPARSITY AND REGULARIZATION

Algorithm 1

Given: parameters τ,ν > 0 and step-sizes σ,η > 0

Initialize: α0 = α1 = 0, β0 = β1 = 0, s1 = 1, v̄1 = 0, t = 1

while convergence not reached do

t = t +1

st =
1

2

(
1+
√

1+4s2
t−1

)
(12)

α̃t =

(
1+

st−1 −1

st

)
αt−1 +

1− st−1

st

αt−2, β̃t =

(
1+

st−1 −1

st

)
βt−1 +

1− st−1

st

βt−2,

(13)

αt =
(

1− τν

σ

)
α̃t − 1

σ

(
Kα̃t +Zβ̃t −y

)
(14)

set v0 = v̄t−1, q = 0

while convergence not reached do

q = q+1

for a = 1, . . .d do

vq
a = π τ

σ Bn

(
vq−1

a − 1

η

(
Lavq−1 −

(
ZT

a αt +
(

1− τν

σ

)
Laβ̃t

)))
(15)

end for

end while

set v̄t = vq

βt =
(

1− τν

σ

)
β̃t − v̄t . (16)

end while

return (αt ,βt)

The proposed optimization algorithm consists of two nested iterations, and involves only matrix

multiplications and thresholding operations. Before describing its derivation and discussing its

convergence properties, we add three remarks. First, the proposed procedure requires the choice of

appropriate stopping rules for the inner and outer loops, which will be discussed later, and of the

step-sizes σ and η. The simple a priori choice σ = ‖K‖+ τν, η = ‖L‖ ensures convergence, as

discussed in the Section 4.5, and is the one used in our experiments. Second, the computation of the

solution for different regularization parameters can be highly accelerated by a simple warm starting

procedure, as the one in Hale et al. (2008). Finally, in Section 4.6 we discuss a principled way to

select variable using the norm of the coefficients (v̄t
a)

d
a=1.

4.3 Kernels, Partial Derivatives and Regularization

We start discussing how partial derivatives can be efficiently computed in RKHSs induced by

smooth kernels and hence derive a new representer theorem. Practical computation of the deriva-

tives for a differentiable functions is often performed via finite differences. For functions defined

on a high dimensional space such a procedure becomes cumbersome and ultimately not-efficient.

RKHSs provide an alternative computational scheme.
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Recall that the RKHS associated to a symmetric positive definite function k : X ×X → R is the

unique Hilbert space (H ,〈·, ·〉H ) such that kx = k(x, ·) ∈ H , for all x ∈ X and

f (x) = 〈 f ,kx〉H , (17)

for all f ∈ H ,x ∈ X . Property (17) is called reproducing property and k is called reproducing kernel

(Aronszajn, 1950). We recall a few basic facts. The functions in H can be written as pointwise

limits of finite linear combinations of the type ∑
p
i=1 αikxi

, where αi ∈ R,xi ∈ X for all i. One of the

most important results for kernel methods, namely the representer theorem (Wahba, 1990), shows

that a large class of regularized kernel methods induce estimators that can be written as finite linear

combinations of kernels centered at the training set points. In the following we will make use of the

so called sampling operator, which returns the values of a function f ∈ H at a set of input points

x = (x1, . . . ,xn)
Ŝ : H → R

n, (Ŝ f )i = 〈 f ,kxi
〉, i = 1, . . . ,n. (18)

The above operator is linear and bounded if the kernel is bounded—see Appendix A, which is true

thanks to Assumption (A1).

Next, we discuss how the theory of RKHS allows efficient derivative computations. Let

(∂ak)x :=
∂k(s, ·)

∂sa

∣∣∣∣
s=x

(19)

be the partial derivative of the kernel with respect to the first variable. Then, from Theorem 1 in

Zhou (2008) we have that, if k is at least a C 2(X ×X ), (∂ak)x belongs to H for all x ∈ X and

remarkably
∂ f (x)

∂xa
= 〈 f ,(∂ak)x〉H ,

for a = 1, . . . ,d, x ∈ X . It is useful to define the analogous of the sampling operator for derivatives,

which returns the values of the partial derivative of a function f ∈ H at a set of input points x =
(x1, . . . ,xn),

D̂a : H → R
n, (D̂a f )i = 〈 f ,(∂ak)xi

〉, (20)

where a = 1, . . . ,d, i = 1, . . . ,n. It is also useful to define an empirical gradient operator ∇̂ : H →
(Rn)d defined by ∇̂ f = (D̂a f )d

a=1. The above operators are linear and bounded, since assumption

[A2] is satisfied. We refer to Appendix A for further details and supplementary results.

Provided with the above results we can prove a suitable generalization of the representer theo-

rem.

Proposition 3 The minimizer of (6) can be written as

f̂ τ =
n

∑
i=1

1

n
αikxi

+
n

∑
i=1

d

∑
a=1

1

n
βa,i(∂ak)xi

with α ∈ R and β ∈ R
nd .

Proposition 3 is proved in Appendix A and shows that the regularized solution is determined by

the set of n+ nd coefficients α ∈ R
n and β ∈ R

nd . We next discuss how such coefficients can be

efficiently computed.
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4.3.1 NOTATION

In the following, given an operator A we denote by A∗ the corresponding adjoint operator. When A

is a matrix we use the standard notation for the adjoint, that is, the transpose AT .

4.4 Computing the Solution with Proximal Methods

The functional Ê τ is not differentiable, hence its minimization cannot be done by simple gradient

methods. Nonetheless it has a special structure that allows efficient computations using a forward-

backward splitting algorithm (Combettes and Wajs, 2005), belonging to the class of the so called

proximal methods.

Second order methods, see, for example, Chan et al. (1999), could also be used to solve sim-

ilar problems. These methods typically converge quadratically and allows accurate computations.

However, they usually have a high cost per iteration and hence are not suitable for large scale prob-

lems, as opposed to first order methods having much lower cost per iteration. Furthermore, in the

seminal paper by Nesterov (1983) first-order methods with optimal convergence rate are proposed

(Nemirovski and Yudin, 1983). First order methods have since become a popular tool to solve

non-smooth problems in machine learning as well as signal and image processing, see for exam-

ple FISTA —Beck and Teboulle (2009) and references therein. These methods have proved to be

fast and accurate (Becker et al., 2011), both for ℓ1-based regularization—see Combettes and Wajs

(2005), Daubechies et al. (2007), Figueiredo et al. (2007), Loris et al. (2009)—and more general

regularized learning methods—see, for example, Duchi and Singer (2009), Mosci et al. (2010) and

Jenatton et al. (2010).

4.4.1 FORWARD-BACKWARD SPLITTING ALGORITHMS

The functional Ê τ is the sum of the two terms F(·) = Ê(·)+ τν‖·‖2
H

and 2τΩ̂D
1 . The first term is

strongly convex of modulus τν and differentiable, while the second term is convex but not differ-

entiable. The minimization of this class of functionals can be done iteratively using the forward-

backward (FB) splitting algorithm,

f t = prox τ
σ Ω̂D

1

(
f̃ t − 1

2σ
∇F( f̃ t)

)
, (21)

f̃ t = c1,t f t−1 + c2,t f t−2 (22)

where t ≥ 2, f̃ 0 = f 0 = f 1 ∈ H is an arbitrary initialization, c1,t ,c2,t are suitably chosen positive

sequences, and prox τ
σ Ω̂D

1
: H → H is the proximity operator (Moreau, 1965) defined by,

prox τ
σ Ω̂D

1
( f ) = argmin

g∈H

(
τ

σ
Ω̂D

1 (g)+
1

2
‖ f −g‖2

H

)
.

The above approach decouples the contribution of the differentiable and not differentiable terms.

Unlike other simpler penalties used in additive models, such as the ℓ1 norm in the lasso, in our

setting the computation of the proximity operator of Ω̂D
1 is not trivial and will be discussed in the

next paragraph. Here we briefly recall the main properties of the iteration (21), (22) depending

on the choice of c1,t ,c2,t and σ. The basic version of the algorithm (Combettes and Wajs, 2005),

sometimes called ISTA (iterative shrinkage thresholding algorithm (Beck and Teboulle, 2009)), is

obtained setting c1,t = 1 and c2,t = 0 for all t > 0, so that each step depends only on the previous
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iterate. The convergence of the algorithm for both the objective function values and the minimizers

is extensively studied in Combettes and Wajs (2005), but a convergence rate is not provided. In

Beck and Teboulle (2009) it is shown that the convergence of the objective function values is of

order O(1/t) provided that the step-size σ satisfies σ ≥ L, where L is the Lipschitz constant of

∇F/2. An alternative choice of c1,t and c2,t leads to an accelerated version of the algorithm (21),

sometimes called FISTA (fast iterative shrinkage thresholding algorithm (Tseng, 2010; Beck and

Teboulle, 2009)), which is obtained by setting s0 = 1,

st =
1

2

(
1+
√

1+4s2
t−1

)
, c1,t = 1+

st−1 −1

st

, and c2,t =
1− st−1

st

. (23)

The algorithm is analyzed in Beck and Teboulle (2009) and in Tseng (2010) where it is proved

that the objective values generated by such a procedure have convergence of order O(1/t2), if the

step-size satisfies σ ≥ L.

Computing the Lipschitz constant L can be non trivial. Theorems 3.1 and 4.4 in Beck and

Teboulle (2009) show that the iterative procedure (21) with an adaptive choice for the step-size,

called backtracking, which does not require the computation of L, shares the same rate of conver-

gence of the corresponding procedure with fixed step-size. Finally, it is well known that, if the

functional is strongly convex with a positive modulus, the convergence rate of both the basic and

accelerated scheme is indeed linear for both the function values and the minimizers (Nesterov, 1983;

Mosci et al., 2010; Nesterov, 2007).

In our setting we use FISTA to tackle the minimization of Ê τ but, as we mentioned before, we

have to deal with the computation of the proximity operator associated to Ω̂D
1 .

4.4.2 COMPUTING THE PROXIMITY OPERATOR

Since Ω̂D
1 is one-homogeneous, that is, Ω̂D

1 (λ f ) = λΩ̂D
1 ( f ) for λ > 0, the Moreau identity, see

Combettes and Wajs (2005), gives a useful alternative formulation for the proximity operator, that

is

prox τ
σ Ω̂D

1
= I −π τ

σ Cn
, (24)

where Cn = (∂Ω̂D
1 )(0) is the subdifferential4 of Ω̂D

1 at the origin, and π τ
σ Cn

: H → H is the projec-

tion on τ
σ Cn—which is well defined since Cn is a closed convex subset of H . To describe how to

practically compute such a projection, we start observing that the DENOVAS penalty Ω̂D
1 is the sum

of d norms in R
n. Then following Section 3.2 in Mosci et al. (2010) (see also Ekeland and Temam,

1976) we have

Cn = ∂Ω̂D
1 (0) =

{
f ∈ H | f = ∇̂∗v with v ∈ Bd

n

}
,

where Bd
n is the Cartesian product of d unitary balls in R

n,

Bd
n = Bn ×·· ·×Bn︸ ︷︷ ︸

d times

= {v = (v1, . . . ,vd) |va ∈ R
n, ‖va‖n ≤ 1, a = 1, . . . ,d},

4. Recall that the subdifferential of a convex functional Ω : H →R∪{+∞} is denoted with ∂Ω( f ) and is defined as the

set

∂Ω( f ) := {h ∈ H : Ω(g)−Ω( f )≥ 〈h,g− f 〉H , ∀g ∈ H }.
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with Bn defined in (11). Then, by definition, the projection is given by

π τ
σ Cn

( f ) = ∇̂∗v̄,

where

v̄ ∈ argmin
v∈ τ

σ Bd
n

‖ f − ∇̂∗v‖2
H . (25)

Being a convex constrained problem, (25) can be seen as the sum of the smooth term ‖ f − ∇̂∗v‖2
H

and the indicator function of the convex set Bd
n . We can therefore use (21), again. In fact we can fix

an arbitrary initialization v0 ∈ R
nd and consider,

vq+1 = π τ
σ Bd

n

(
vq − 1

η
∇̂(∇̂∗vq − f )

)
, (26)

for a suitable choice of η. In particular, we note that π τ
σ Bd

n
can be easily computed in closed form,

and corresponds to the proximity operator associated to the indicator function of Bd
n . Applying

the results mentioned above, if η ≥ ‖∇̂∇̂∗‖, convergence of the function values of problem (25)

on the sequence generated via (26) is guaranteed. Moreover, thanks to the special structure of the

minimization problem in (25), it is possible to prove (see Combettes et al., 2010; Mosci et al., 2010)

that

‖∇̂∗vq − ∇̂∗v̄‖H → 0, or, equivalently ‖∇̂∗vq −π τ
σ Cn

( f )‖H → 0.

A similar first-order method to compute convergent approximations of ∇̂∗v̄ has been proposed in

Bect et al. (2004).

4.5 Overall Procedure and Convergence Analysis

To compute the minimizer of Ê τ we consider the combination of the accelerated FB-splitting al-

gorithm (outer iteration) and the basic FB-splitting algorithm for computing the proximity operator

(inner iteration). The overall procedure is given by

st =
1

2

(
1+
√

1+4s2
t−1

)
,

f̃ t =

(
1+

st−1 −1

st

)
f t−1 +

1− st−1

st

f t−2,

f t =
(

1− τν

σ

)
f̃ t − 1

σ
Ŝ∗
(
Ŝ f̃ t −y

)
− ∇̂∗v̄t ,

for t = 2,3, . . . , where v̄t is computed through the iteration

vq = π τ
σ Bd

n

(
vq−1 − 1

η
∇̂

(
∇̂∗vq−1 −

(
1− τν

σ

)
f̃ t − 1

σ
Ŝ∗
(
Ŝ f̃ t −y

)))
, (27)

for given initializations.

The above algorithm is an inexact accelerated FB-splitting algorithm, in the sense that the prox-

imal or backward step is computed only approximately. The above discussion on the convergence

of FB-splitting algorithms was limited to the case where computation of the proximity operator is
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done exactly (we refer to this case as the exact case). The convergence of the inexact FB-splitting al-

gorithm does not follow from this analysis. For the basic—not accelerated—FB-splitting algorithm,

convergence in the inexact case is still guaranteed (without a rate) (Combettes and Wajs, 2005), if

the computation of the proximity operator is sufficiently accurate. The convergence of the inexact

accelerated FB-splitting algorithm is studied in Villa et al. (see also Salzo and Villa, 2012) where it

is shown that the same convergence rate of the exact case can be achieved, again provided that the

accuracy in the computation of the proximity operator can be suitably controlled. Such result can

be adapted to our setting to prove the following theorem, as shown in Appendix B.

Theorem 4 Let εt ∼ t−l with l > 3/2, σ ≥ ‖Ŝ∗Ŝ‖+ τν, η ≥ ‖∇̂∇̂∗‖, and f t given by (27) with

v̄t computed through algorithm (27). There exists q̄ such that if v̄t = vq, for q > q̄, the following

condition is satisfied

2τ

σ
Ω̂D

1 ( f t)−2〈∇̂∗v̄t , f t〉 ≤ ε2
t . (28)

Moreover, there exists a constant C > 0 such that

Ê τ( f t)− Ê τ( f̂ τ)≤ C

t2
,

and thus, if ν > 0,

‖ f t − f̂ τ‖H ≤ 2

t

√
C

ντ
. (29)

As for the exact accelerated FB-splitting algorithm, the step-size of the outer iteration has to be

greater than or equal to L = ‖Ŝ∗Ŝ‖+ τν. In particular, we choose σ = ‖Ŝ∗Ŝ‖+ τν and, similarly,

η = ‖∇̂∇̂∗‖.

We add few remarks. First, as it is evident from (29), the choice of ν > 0 allows to obtain

convergence of f t to f̂ τ with respect to the norm in H , and positively influences the rate of conver-

gence. This is a crucial property in variable selection, where it is necessary to accurately estimate

the minimizer of the expected risk f
†
ρ and not only its minimum E( f

†
ρ ). Second, condition (28)

represents an implementable stopping criterion for the inner iteration, once that the representer the-

orem is proved and is always asymptotically satisfied by sequences minimizing the dual problem

(25) (see Proposition 17). Further comments on the stopping rule are given in Section 4.6. Third,

we remark that for proving convergence of the inexact procedure, it is essential that the specific

algorithm proposed to compute the proximal step generates a sequence belonging to Cn. More gen-

erally, each algorithm generating a feasible sequence {vq} for the dual problem and minimizing the

dual function (25) gives admissible approximations of the proximal point (see Villa et al.).

4.6 Further Algorithmic Considerations

We conclude discussing several practical aspects of the proposed method.

4.6.1 THE FINITE DIMENSIONAL IMPLEMENTATION

We start by showing how the representer theorem can be used, together with the iterations described

by (27) and (27), to derive Algorithm 1. This is summarized in the following proposition.
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Proposition 5 For ν > 0 and f 0 = 1
n ∑i α0

i kxi
+ 1

n ∑i ∑a β0
a,i(∂ak)xi

for any α0 ∈ R
n,β0 ∈ R

nd , the

solution at step t for the updating rule (27) is given by

f t =
1

n

n

∑
i=1

αt
ikxi

+
1

n

n

∑
i=1

d

∑
a=1

βt
a,i(∂ak)xi

(30)

with αt and βt defined by the updating rules (14-16), where v̄t in (16) can be estimated, starting

from any v0 ∈ R
nd , using the iterative rule (15).

The proof of the above proposition can be found in Appendix B, and is based on the observation

that K,Za,Z,La defined at the beginning of this Section are the matrices associated to the operators

ŜŜ∗ : Rn → R
n, ŜD̂∗

a : Rn → R
n, Ŝ∇̂∗ : Rnd → R

n and D̂a∇̂∗ : Rnd → R
n, respectively. Using the

same reasoning we can make the following two further observations. First, one can compute the

step sizes σ and η as σ = ‖K‖+ τν, and η = ‖L‖. Second, since in practice we have to define

suitable stopping rules, Equations (29) and (28) suggest the following choices5

‖ f t − f t−1‖H ≤ ε(ext) and
2τ

σ
Ω̂D

1 ( f t)−2〈∇̂∗vq, f t〉 ≤ ε(int) .

As a direct consequence of (30) and using the definition of matrices K,Z,L, these quantities can be

easily computed as

‖ f t − f t−1‖2
H = 〈δα,Kδα〉n +2〈δα,Zδβ〉n + 〈δβ,Lδβ〉n ,

2τ

σ
Ω̂D

1 ( f t)−2〈∇̂∗vq, f t〉 =
d

∑
a=1

(
2τ

σ
‖Zaαt +Laβt‖n −2〈vq,ZT

a αt +Laβt〉n

)
.

where we defined δα = αt −αt−1 and δβ = βt −βt−1. Also note that, according to Theorem 4, ε(int)

must depend on the outer iteration as ε(int) = ε2
t ∼ t−2l , l > 3/2.

Finally we discuss a criterion for identifying the variables selected by the algorithm.

4.6.2 SELECTION

Note that in the linear case f (x) = β · x the coefficients β1, . . . ,βd coincide with the partial deriva-

tives, and the coefficient vector β given by ℓ1 regularization is sparse (in the sense that it has zero

entries), so that it is easy to detect which variables are to be considered relevant. For a general

non-linear function, we then expect the vector (‖D̂a f‖2
n)

d
a=1 of the norms of the partial derivatives

evaluated on the training set points, to be sparse as well. In practice since the projection πτ/σBd
n

is

computed only approximately, the norms of the partial derivatives will be small but typically not

zero. The following proposition elaborates on this point.

Proposition 6 Let v = (va)
d
a=1 ∈ Bd

n such that, for any σ > 0

∇̂∗v =− 1

σ
∇(Ê( f̂ τ)+ τν‖ f̂ τ‖2

H ),

then

‖va‖n <
τ

σ
⇒‖D̂a f̂ τ‖n = 0. (31)

5. In practice we often use a stopping rule where the tolerance is scaled with the current iterate, ‖ f t − f t−1‖H ≤
ε(ext)‖ f t‖H and 2τ

σ Ω̂D
1 ( f t)−2〈∇̂∗vq, f t〉 ≤ ε(int)‖∇̂∗vq‖H .

1681



ROSASCO, VILLA, MOSCI, SANTORO AND VERRI

Moreover, if v̄t is given by Algorithm 1 with the inner iteration stopped when the assumptions of

Theorem 4 are met, then there exists ε̃t > 0 (precisely defined in (37)) depending on the tolerance

εt used in the inner iteration and satisfying limt→+∞ ε̃t = 0, such that if m := min{‖D̂a f̂ τ‖n : a ∈
{1, . . . ,d}s.t.‖D̂a f̂ τ‖n > 0}, then

‖v̄t
a‖n ≥

τ

σ
− (ε̃t)

2

2m
⇒‖D̂a f̂ τ‖n = 0. (32)

The above result, whose proof can be found in Appendix B, is a direct consequence of the Euler

equation for Ê τ and of the characterization of the subdifferential of Ω̂D
1 . The second part of the

statement follows by observing that, as ∇̂∗v belongs to the subdifferential of Ω̂D
1 at f̂ τ,∇̂∗v̄t belongs

to the approximate subdifferential of Ω̂D
1 at f̂ τ, where the approximation of the subdifferential is

controlled by the precision used in evaluating the projection. Given the pair ( f t , v̄t) evaluated via

Algorithm 1, we can thus consider to be irrelevant the variables such that ‖v̄t
a‖n < τ/σ−(ε̃t)2/(2m).

Note that the explicit form of ε̃t is given in (37)).

5. Consistency for Learning and Variable Selection

In this section we study the consistency properties of our method.

5.1 Consistency

As we discussed in Section 3.1, though in practice we consider the regularizer Ω̂D
1 defined in (4),

ideally we would be interested into ΩD
1 ( f ) = ∑d

a=1 ‖Da f‖ρX , f ∈ H . The following preliminary

result shows that indeed Ω̂D
1 is a consistent estimator of ΩD

1 when considering functions in H having

uniformly bounded norm.

Theorem 7 Let r < ∞, then under assumption (A2)

lim
n→∞

P

(
sup

‖ f‖H ≤r

|Ω̂D
1 ( f )−ΩD

1 ( f )|> ε

)
= 0 ∀ε > 0.

The restriction to functions such that ‖ f‖H ≤ r is natural and is required since the penalty Ω̂D
1

forces the partial derivatives to be zero only on the training set points. To guarantee that a partial

derivative, which is zero on the training set, is also close to zero on the rest of the input space,

we must control the smoothness of the function class where the derivatives are computed. This

motivates constraining the function class by adding the (squared) norm in H into (5). This is in the

same spirit of the manifold regularization proposed in Belkin and Niyogi (2008).

The above result on the consistency of the derivative based regularizer is at the basis of the

following consistency result.

Theorem 8 Under assumptions (A1), (A2) and (A3), recalling that E( f ) =
∫
(y− f (x))2 dρ(x,y),

lim
n→∞

P

(
E( f̂ τn)− inf

f∈H
E( f )≥ ε

)
= 0 ∀ε > 0,

for any τn satisfying

τn → 0 (
√

nτn)
−1 → 0.
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The proof is given in the appendix and is based on a sample/approximation error decomposition

E( f̂ τ)− inf
f∈H

E( f )≤ |E( f̂ τ)−E τ( f τ)|︸ ︷︷ ︸
sample error

+ |E τ( f τ)− inf
f∈H

E( f )|
︸ ︷︷ ︸

approximation error

,

where

E τ( f ) := E( f )+ τ(2ΩD
1 ( f )+ν‖ f‖2

H ), f τ := argmin
H

E τ.

The control of both terms allows to find a suitable parameter choice which gives consistency. When

estimating the sample error one has typically to control only the deviation of the empirical risk from

its continuous counterpart. Here we need Theorem 7 to also control the deviation of Ω̂D
1 from ΩD

1 .

Note that, if the kernel is universal (Steinwart and Christmann, 2008), then inf f∈H E( f ) = E( fρ)

and Theorem 8 gives the universal consistency of the estimator f̂ τn .

To study the selection properties of the estimator f̂ τn—see next section—it useful to study the

distance of f̂ τn to fρ in the H -norm. Since in general fρ might not belong to H , for the sake

of generality here we compare f̂ τn to a minimizer of inf f∈H E( f ) which we always assume to

exist. Since the minimizers might be more then one we further consider a suitable minimal norm

minimizer f
†
ρ —see below. More precisely given the set

FH := { f ∈ H | E( f ) = inf
f∈H

E( f )}

(which we assume to be not empty), we define

f †
ρ := argmin

f∈FH

{ΩD
1 ( f )+ν‖ f‖2

H }.

Note that f
†
ρ is well defined and unique, since ΩD

1 (·)+ ν‖·‖2
H

is lower semicontinuous, strongly

convex and E is convex and lower semi-continuous on H , which implies that FH is closed and

convex in H . Then, we have the following result.

Theorem 9 Under assumptions (A1), (A2) and (A3), we have

lim
n→∞

P
(
‖ f̂ τn − f †

ρ‖H ≥ ε
)
= 0, ∀ε > 0,

for any τn such that τn → 0 and (
√

nτ2
n)

−1 → 0.

The proof, given in Appendix C, is based on the decomposition in sample error, ‖ f̂ τ − f τ‖H ,

and approximation error, ‖ f τ − f
†
ρ‖H . To bound the sample error we use recent results (Villa et al.,

2012) that exploit Attouch-Wets convergence (Attouch and Wets, 1991, 1993a,b) and coercivity

of the penalty (ensured by the RKHS norm) to control the distance between the minimizers f̂ τ, f τ

by the distance the minima Ê τ( f̂ τ) and E τ( f τ). Convergence of the approximation error is again

guaranteed by standard results in regularization theory (Dontchev and Zolezzi, 1993). We underline

that our result is an asymptotic one, although it would be interesting to get an explicit learning rate,

as we discuss in Section 5.3.
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5.2 Selection Properties

We next consider the selection properties of our method. Following Equation (3), we start by giving

the definition of relevant/irrelevant variables and sparsity in our context.

Definition 10 We say that a variable a = 1, . . . ,d is irrelevant with respect to ρ for a differentiable

function f , if the corresponding partial derivative Da f is zero ρX -almost everywhere, and relevant

otherwise. In other words the set of relevant variables is

R f := {a ∈ {1, . . . ,d} | ‖Da f‖ρX > 0}.

We say that a differentiable function f is sparse if ΩD
0 ( f ) := |R f |< d.

The goal of variable selection is to correctly estimate the set of relevant variables, Rρ := R
f

†
ρ
. In the

following we study how this can be achieved by the empirical set of relevant variables, R̂τn , defined

as

R̂τn := {a ∈ {1, . . . ,d}|‖D̂a f̂ τn‖n > 0}.

Theorem 11 Under assumptions (A1), (A2) and (A3)

lim
n→∞

P
(

Rρ ⊆ R̂τn
)
= 1

for any τn satisfying

τn → 0 (
√

nτ2
n)

−1 → 0.

The above result shows that the proposed regularization scheme is a safe filter for variable selection,

since it does not discard relevant variables, in fact, for a sufficiently large number of training sam-

ples, the set of truly relevant variables, Rρ, is contained with high probability in the set of relevant

variables identified by the algorithm, R̂τn . The proof of the converse inclusion, giving consistency

for variable selection (sometimes called sparsistency), requires further analysis that we postpone to

a future work (see the discussion in the next subsection).

5.3 Learning Rates and Sparsity

The analysis in the previous sections is asymptotic, so it is natural to ask about the finite sample

behavior of the proposed method, and in particular about the implication of the sparsity assumption.

Indeed, for a variety of additive models it is possible to prove that the sample complexity (the num-

ber of samples needed to achieve a given error with a specified probability) depends linearly on the

sparsity level and in a much milder way to the total number of variables, for example, logarithmi-

cally (Bühlmann and van de Geer, 2011). Proving similar results in our setting is considerably more

complex and in this section we discuss the main sources of possible challenges.

Towards this end, it is interesting to contrast the form of our regularizer to that of structured

sparsity penalties for which sparsity results can be derived. Inspecting the proof in Appendix C, one

can see that it possible to define a suitable family of operators Vj,V̂j : H → H , with j = 1, . . . ,d,

such that

ΩD
1 ( f ) =

d

∑
j=1

‖Vj f‖H , Ω̂D
1 ( f ) =

d

∑
j=1

‖V̂j f‖H . (33)
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The operators (Vj) j are positive and self-adjoint and so are the operators (V̂j) j. The latter can

be shown to be stochastic approximation of the operators (Vj) j, in the sense that the equalities

E[V̂ 2
j ] =V 2

j hold true for all j = 1, . . . ,d.

It is interesting to compare the above expression to the one for the group lasso penalty, where

for a given linear model, the coefficients are assumed to be divided in groups, only few of which are

predictive. More precisely, given a collection of groups of indices G = {G1, . . . ,Gr}, which forms a

partition of the set {1, . . . , p}, and a linear model f (x) = 〈β,x〉Rp , the group lasso penalty is obtained

by considering

ΩGL(β) =
r

∑
γ=1

‖β|Gγ
‖
R
|Gγ| ,

where, for each γ, β|Gγ
is the |Gγ| dimensional vector obtained restricting a vector β to the indices

in Gγ. If we let Pγ be the orthogonal projection on the subspace of Rd corresponding Gγ-th group of

indices, we have that 〈Pγβ,P
′
γβ

′〉= 0 for all γ,γ′ ∈ Γ and β,β′ ∈R
p, since the groups form a partition

of {1, . . . , p}. Then it is possible to rewrite the group lasso penalty as

ΩGL(β) =
r

∑
γ=1

‖Pγβ‖R|Gγ| .

The above idea can be extended to an infinite dimensional setting to obtain multiple kernel learning

(MKL). Let H be a (reproducing kernel) Hilbert space which is the sum of Γ disjoint (reproducing

kernel) Hilbert spaces (Hγ,‖·‖γ)γ∈Γ, and Pγ : H → Hγ the projections of H onto Hγ, then MKL is

induced by the penalty

ΩMKL( f ) = ∑
γ∈Γ

‖Pγ f‖γ.

When compared to our derivative based penalty, see (33), one can notice at least two source of

difficulties:

1. the operators (Vj) j are not projections and no simple relation exists among their ranges,

2. in practice we have only access to the empirical estimates (V̂j) j.

Indeed, structured sparsity model induced by more complex index sets have been considered,

see, for example, Jenatton et al. (2010), but the penalties are still induced by operators which are

orthogonal projections. Interestingly, a class of penalties induced by a (possibly countable) family

of bounded operators V = {Vγ}γ∈Γ—not necessarily projections—has been considered in Maurer

and Pontil (2012). This class of penalties can be written as

Ω(V )( f ) = inf{∑
γ∈Γ

‖ fγ‖ | fγ ∈ H ,∑
γ∈Γ

Vγ fγ = f}.

It is easy to see that the above penalty does not include the regularizer (33) as a special case.

In conclusion, rewriting our derivative based regularizer as in (33) highlights similarity and

differences with respect to previously studied sparsity methods: indeed many of these methods are

induced by families of operators. On the other hand, typically, the operators are assumed to satisfy

stringent assumptions which do not hold true in our case. Moreover in our case one would have

to overcome the difficulties arising from the random estimation of the operators. These interesting

questions are outside of the scope of this paper, will be the subject of future work.
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6. Empirical Analysis

The content of this section is divided into three parts. First, we describe the choice of tuning param-

eters. Second, we study the properties of the proposed method on simulated data under different

parameter settings, and third, we compare our method to related regularization methods for learning

and variable selection.

When we refer to our method we always consider a two-step procedure based on variable selec-

tion via Algorithm 1 and regression on the selected variable via (kernel) Regularized Least Squares

(RLS). The kernel used in both steps is the same. Where possible, we applied the same reweighting

procedure to the methods we compared with.

6.1 Choice of Tuning Parameters

When using Algorithm 1, once the parameters n and ν are fixed, we evaluate the optimal value of

the regularization parameter τ via hold out validation on an independent validation set of nval = n

samples. The choice of the parameter ν, and its influence on the estimator is discussed in the next

section.

Since we use an iterative procedure to compute the solution, the output of our algorithm will

not be sparse in general and a selection criterion is needed. In Section 4.6 we discussed a principled

way to select variable using the norm of the coefficients (v̄t
a)

d
a=1.

When using MKL, ℓ1 regularization, and RLS we used hold out validation to set the regulariza-

tion parameters, while for COSSO and HKL we used the choices suggested by the authors.

6.2 Analysis of Our Method

In this subsection we empirically investigate the sensitivity of the proposed algorithm to the model’s

parameters.

6.2.1 ROLE OF THE SMOOTHNESS ENFORCING PENALTY ν‖·‖2
H

From a theoretical stand point we have shown that ν has to be nonzero, in order for the proposed

regularization problem (5) to be well-posed. We also mentioned that the combination of the two

penalties Ω̂D
1 and ‖·‖2

H
ensures that the regularized solution will not depend on variables that are

irrelevant for two different reasons. The first is irrelevance with respect to the output. The second

type of irrelevance is meant in an unsupervised sense. This happens when one or more variables

are (approximately) constant with respect to the marginal distribution ρX , so that the support of the

marginal distribution is (approximately) contained in a coordinate subspace. Here we present two

experiments aimed at empirically assessing the role of the smoothness enforcing penalty ‖·‖2
H

and

of the parameter ν. We first present an experiment where the support of the marginal distribution

approximately coincides with a coordinate subspace x2 = 0. Then we systematically investigate the

stabilizing effect of the smoothness enforcing penalty also when the marginal distribution is not

degenerate.

Adaption To The Marginal Distribution We consider a toy problem in 2 dimensions, where

the support of the marginal distribution ρX (x
1,x2) approximately coincides with the coordinate

subspace x2 = 0. Precisely x1 is uniformly sampled from [−1,1], whereas x2 is drawn from a

normal distribution x2 ∼ N (0,0.05). The output labels are drawn from y = (x1)2 +w, where w is a

white noise, sampled from a normal distribution with zero mean and variance 0.1. Given a training
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Figure 3: Effect of the combined regularization Ω̂D
1 (·)+ ν‖·‖2

H
on a toy problem in R

2 where the

support of marginal distribution approximately coincides with the coordinate subspace

x2 = 0. The output labels are drawn from y = (x1)2 +w, with w ∼ N (0,0.1).

set of n = 20 samples i.i.d. drawn from the above distribution (Figure 3 top-left), we evaluate the

optimal value of the regularization parameter τ via hold out validation on an independent validation

set of nval = n = 20 samples. We repeat the process for ν = 0 and ν = 10. In both cases the

reconstruction accuracy on the support of ρX is high, see Figure 3 bottom-right . However, while

ν = 10 our method correctly selects the only relevant variable x1 (Figure 3 bottom-left), when ν = 0

both variables are selected (Figure 3 bottom-center), since functional Ê τ,0 is insensible to errors out

of supp(ρX ), and the regularization term τΩ̂D
1 alone does not penalizes variations out of supp(ρX ) .

Effect of varying ν. Here we empirically investigate the stabilizing effect of the smooth-

ness enforcing penalty when the marginal distribution is not degenerate. The input variables x =
(x1, . . . ,x20) are uniformly drawn from [−1,1]20. The output labels are i.i.d. drawn from y =
λ∑4

a=1 ∑4
b=a+1 xaxb +w, where w ∼ N (0,1), and λ is a rescaling factor that determines the sig-

nal to noise ratio to be 15:1. We extract training sets of size n which varies from 50 to 120 with

steps of 10. We then apply our method with polynomial kernel of degree p = 4, letting vary ν in

{0.5,1,5,20,100}. For fixed n and ν we evaluate the optimal value of the regularization param-

eter τ via hold out validation on an independent validation set of nval = n samples. We measure

the selection error as the mean of the false negative rate (fraction of relevant variables that were

not selected) and false positive rate (fraction of irrelevant variables that were selected). Then, we
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evaluate the prediction error as the root mean square error (RMSE) error of the selected model on

an independent test set of ntest = 500 samples. Finally we average over 20 repetitions.

In Figure 6.2.1 we display the prediction error, selection error, and computing time, versus n for

different values of ν. Clearly, if ν is too small, both prediction and selection are poor. For ν ≥ 1 the

algorithm is quite stable with respect to small variations of ν. However, excessive increase of the

smoothness parameter leads to a slight decrease in prediction and selection performance. In terms

of computing time, the higher the smoothness parameter the better the performance.
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Figure 4: Selection error (left), prediction error (center), and computing time (right) versus n for

different values of ν. The points correspond to the mean over the repetitions. The dotted

line represents the white noise standard deviation. In the left figure the curves corre-

sponding to ν = 5, ν = 10, and ν = 20 are overlapping.

6.2.2 VARYING THE MODEL’S PARAMETERS

We present 3 sets of experiments where we evaluated the performance of our method (DENOVAS)

when varying part of the inputs parameters and leaving the others unchanged. The parameters we

take into account are the following

• n, training set size

• d, input space dimensionality

• |Rρ|, number of relevant variables

• p, size of the hypotheses space, measured as the degree of the polynomial kernel.

In all the following experiments the input variables x = (x1, . . . ,xd) are uniformly drawn from

[−1,1]d . The output labels are computed using a noise-corrupted regression function f that depends

nonlinearly from a set of the input variables, that is, y= λ f (x)+w, where w is a white noise, sampled

from a normal distribution with zero mean and variance 1, and λ is a rescaling factor that determines

the signal to noise ratio. For fixed n,d, and |Rρ| we evaluate the optimal value of the regularization

parameter τ via hold out validation on an independent validation set of nval = n samples.
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Figure 5: Prediction error (top) and selection error (bottom) versus n for different values of d and

number of relevant variables (|Rρ|). The points correspond to the means over the repeti-

tions. The dotted line represents the white noise standard deviation.

Varying n,d, and |Rρ| In this experiment we want to empirically evaluate the effect of the input

space dimensionality, d, and the number of relevant variables, |Rρ|, when the other parameters are

left unchanged. In particular we use d = 10,20,30,40 and |Rρ| = 2,3,4,5,6. For each value of

|Rρ| we use a different regression function, f (x) = λ∑
|Rρ|
a=1 ∑

|Rρ|
b=a+1 cabxaxb, so that for fixed |Rρ| all

2-way interaction terms are present, and the polynomial degree of the regression function is always

2. The coefficients cab are randomly drawn from [.5,1] And λ is determined in order to set the

signal to noise ratio as 15:1. We then apply our method with polynomial kernel of degree p = 2.

The regression function thus always belongs to the hypotheses space.

In Figure 6.2.2, we display the selection error, and the prediction error, respectively, versus n

for different values of d and number of relevant variables |Rρ|. Both errors decrease with n and

increase with d and |Rρ|. In order to better visualize the dependence of the selection performance

with respect to d and |Rρ|, in Figure 6.2.2 we plotted the minimum number of input points that are

necessary in order to achieve 10% of average selection error. It is clear by visual inspection that

|Rρ| has a higher influence than d on the selection performance of our method.

Varying n and p In this experiment we want to empirically evaluate the effect of the size of

the hypotheses space on the performance of our method. We therefore leave unchanged the data

generation setting, made exception for the number of training samples, and vary the polynomial

kernel degree as p = 1,2,3,4,5,6. We let d = 20, Rρ = {1,2}, and f (x) = x1x2, and let vary n from

20 to 80 with steps of 5. The signal to noise ratio is 3:1.

In Figure 6.2.2, we display the prediction and selection error, versus n, for different values of p.

For p ≥ 2, that is when the hypotheses space contains the regression function, both errors decrease

with n and increase with p. Nevertheless the effect of p decreases for large p, in fact for p = 4,5,
and 6, the performance is almost the same. On the other hand, when the hypotheses space is too
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Figure 6: Minimum number of input points (n) necessary to achieve 10% of average selection error

versus the number of relevant variables |Rρ| for different values of d (left), and versus d

for different values of |Rρ| (right).
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Figure 7: Prediction error (left) and selection error (right) versus n for different values of the poly-

nomial kernel degree (p). The points correspond to the means over the repetitions. The

dotted line represents the white noise standard deviation.

small to include the regression function, as for the set of linear functions (p = 1), the selection

error coincides with chance (0.5), and the prediction error is very high, even for large numbers of

samples.

Varying the number of relevant features, for fixed |Rρ|: comparison with ℓ1 regularization on the

feature space In this experiment we want to empirically evaluate the effect of the number of features

involved in the regression function ( that is the number of monomials constituting the polynomial)

on the performance of our method when |Rρ| remains the same as well as all other input parame-

ters. Note that while |Rρ| is the number of relevant variables, here we vary the number of relevant

features (not variables!), which, in theory, has nothing to do with |Rρ|. Furthermore we compare
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Figure 8: Prediction error (left) selection error (right) versus the number of relevant features. The

points correspond to the means over the repetitions. The dotted line represents the white

noise standard deviation.

the performance of our method to that of ℓ1 regularization on the feature space (ℓ1-features). We

therefore leave unchanged the data generation setting, made exception for the regression function.

We set d = 10, Rρ = {1,2,3}, n = 30, and then use a polynomial kernel of degree 2. The signal to

noise ratio is this time 3:1. Note that with this setting the size of the features space is 66. For fixed

number of relevant features the regression function is set to be a randomly chosen linear combina-

tion of the features involving one or two of the first three variables (x1,(x1)2,x1x2,x1x3, etc.), with

the constraint that the combination must be a polynomial of degree 2, involving all 3 variables.

In Figure 6.2.2, we display the prediction and selection error, versus the number of relevant

features. While the performance of ℓ1-features fades when the number of relevant features increases,

our method presents stable performance both in terms of selection and prediction error. From our

simulation it appears that, while our method depends on the number of relevant variables, it is indeed

independent of the number of features.

6.3 Comparison with Other Methods

In this section we present numerical experiments aimed at comparing our method with state-of-the-

art algorithms. In particular, since our method is a regularization method, we focus on alternative

regularization approaches to the problem of nonlinear variable selection. For comparisons with

more general techniques for nonlinear variable selection we refer the interested reader to Bach

(2009).

6.3.1 COMPARED ALGORITHMS

We consider the following regularization algorithms:

• Additive models with multiple kernels, that is Multiple Kernel Learning (MKL)

• ℓ1 regularization on the feature space associated to a polynomial kernel (ℓ1-features)
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• COSSO (Lin and Zhang, 2006) with 1-way interaction (COSSO1) and 2-way interactions

(COSSO2)6

• Hierarchical Kernel Learning (Bach, 2009) with polynomial (HKL pol.) and hermite (HKL

herm.) kernel

• Regularized Least Squares (RLS).

Note that, differently from the first 4 methods, RLS is not a variable selection algorithm, however

we consider it since it is typically a good benchmark for the prediction error.

For ℓ1-features and MKL we use our own Matlab implementation based on proximal meth-

ods (for details see Mosci et al., 2010). For COSSO we used the Matlab code available at www.

stat.wisc.edu/˜yilin or www4.stat.ncsu.edu/˜hzhang which can deal with 1 and 2-way in-

teractions. For HKL we used the code available online at http://www.di.ens.fr/˜fbach/hkl/

index.html. While for MKL and ℓ1-features we are able to identify the set of selected variables,

for COSSO and HKL extracting the sparsity patterns from the available code is not straightforward.

We therefore compute the selection errors only for ℓ1-features, MKL, and our method .

6.3.2 SYNTHETIC DATA

We simulated data with d input variables, where each variable is uniformly sampled from [-2,2].

The output y is a nonlinear function of the first 4 variables, y = f (x1,x2,x3,x4)+ε, where epsilon is

a white noise, ε ∼ N (0,σ2), and σ is chosen so that the signal to noise ratio is 15:1. We consider

the 4 models described in Table 6.3.2.

d
number of

relevant variables
n model ( f )

additive p=2 40 4 100 y = ∑4
a=1(x

a)2

2way p=2 40 4 100 y = ∑4
a=1 ∑4

b=a+1 xaxb

3way p=6 40 3 100 y = (x1x2x3)2

radial 20 2 100 y = 1
π((x

1)2 +(x2)2)e−((x1)2+(x2)2)

Table 1: Synthetic data design

For model selection and testing we follow the same protocol described at the beginning of

Section 6, with n = 100,100 and 1000 for training, validation and testing, respectively. Finally

we average over 20 repetitions. In the first 3 models, for MKL, HKL, RLS and our method we

employed the polynomial kernel of degree p, where p is the polynomial degree of the regression

function f . For ℓ1-features we used the polynomial kernel with degree chosen as the minimum

between the polynomial degree of f and 3. This was due to computational reasons, in fact, with

p = 4 and d = 40, the number of features is highly above 100,000. For the last model, we used the

6. In all toy data, and in part of the real data, the following warning message was displayed:

Maximum number of iterations exceeded; increase options.MaxIter.

To continue solving the problem with the current solution as the starting point,

set x0 = x before calling lsqlin.

In those cases the algorithm did not reach convergence in a reasonable amount of time, therefore the error bars

corresponding to COSSO2 were omitted.
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polynomial kernel of degree 4 for MKL, ℓ1-features and HKL, and the Gaussian kernel with kernel

parameter σ = 2 for RLS and our method.7 COSSO2 never reached convergence. Results in terms

of prediction and selection errors are reported in Figure 6.3.2.

Figure 9: Prediction error (top) and fraction of selected variables (bottom) on synthetic data for

the proposed method (DENOVAS), multiple kernel learning for additive models (MKL),

ℓ1 regularization on the feature space associated to a polynomial kernel (ℓ1-features),

COSSO with 1-way interactions (COSSO1), hierarchical kernel learning with polynomial

kernel (HKL pol.), and regularized least squares (RLS). The dotted line in the upper plot

corresponds to the white noise standard deviation. Selection errors for COSSO, and HKL

are not reported because they are not straightforwardly computable from the available

code.

When the regression function is simple (low interaction degree or low polynomial degree) more

tailored algorithms, such as MKL—which is additive by design—for the experiment “additive p=2”,

or ℓ1-features for experiments “2way p=4”—in this case the dictionary size is less than 1000—

compare favorably with respect to our method. However, when the nonlinearity of the regression

function favors the use of a large hypotheses space, our method significantly outperforms the other

methods. This is particularly evident in the experiment “radial”, which was anticipated in Section 3,

where we plotted in Figure 3.2 the regression function and its estimates obtained with the different

algorithms for one of the 20 repetitions.

7. Note that here we are interested in evaluating the ability of our method of dealing with a general kernel like the

Gaussian kernel, not in the choice of the kernel parameter itself. Nonetheless, a data driven choice for σ will be

presented in the real data experiments in Section 6.3.3.
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6.3.3 REAL DATA

We consider the 7 benchmark data sets described in Table 6.3.3. We build training and validation

number of number of

data name input variables instances source task

boston housing 13 506 LIACC8 regression

census 16 22784 LIACC regression

delta ailerons 5 7129 LIACC regression

stock 10 950 LIACC regression

image segmentation 18 2310 IDA9 classification

pole telecomm 2610 15000 LIACC regression

breast cancer 32 198 UCI11 regression

Table 2: Real data sets

sets by randomly drawing ntrain and nval samples, and using the remaining samples for testing. For

the first 6 data sets we let ntrain = nval = 150, whereas for breast cancer data we let ntrain = nval = 60.

We then apply the algorithms described in Section 6.3.1. with the validation protocol described in

Section 6. For our method and RLS we used the Gaussian kernel with the kernel parameter σ chosen

as the mean over the samples of the euclidean distance form the 20-th nearest neighbor. Since the

other methods cannot be run with the Gaussian kernel we used a polynomial kernel of degree p = 3

for MKL and ℓ1-features. For HKL we used both the polynomial kernel and the hermite kernel,

both with p = 3. Results in terms of prediction and selection error are reported in Figure 10.

Some of the data, such as the stock data, seem not to be variable selection problem, in fact the

best performance is achieved by our method though selecting (almost) all variables, or, equivalently

by RLS. Our method outperforms all other methods on several data sets. In most cases, the perfor-

mance of our method and RLS are similar. Nonetheless our method brings higher interpretability

since it is able to select a smaller subset of relevant variable, while the estimate provided by RLS

depends on all variables.

We also run experiments on the same 7 data sets with different kernel choices for our method .

We consider the polynomial kernel with degree p = 2,3 and 4, and the Gaussian kernel. Compar-

isons among the different kernels in terms of prediction and selection accuracy are plotted in Figure

11. Interestingly the choice of the Gaussian kernel seems to be the preferable choice in most data

sets.

7. Discussion

Sparsity based method has recently emerged as way to perform learning and variable selection from

high dimensional data. So far, compared to other machine learning techniques, this class of methods

suffers from strong modeling assumptions and is in fact limited to parametric or semi-parametric

models (additive models). In this paper we discuss a possible way to circumvent this shortcoming

and exploit sparsity ideas in a non-parametric context.

We propose to use partial derivatives of functions in a RKHS to design a new sparsity penalty

and a corresponding regularization scheme. Using results from the theory of RKHS and proximal
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Figure 10: Prediction error (top) and fraction of selected variables (center) and computing time

(bottom) on real data for the proposed method (DENOVAS), multiple kernel learning for

univariate additive functions (MKL), ℓ1 regularization on the feature space associated to

a polynomial kernel (ℓ1-features), COSSO with 1-way interactions (COSSO1), hierar-

chical kernel learning with polynomial kernel (HKL pol.), hierarchical kernel learning

with hermite kernel (HKL herm.) and regularized least squares (RLS). Prediction er-

rors for COSSO2 are not reported because it is always outperformed by COSSO1. such

errors were still too large to report in the first three data sets, and were not available

since the algorithm did not reach convergence for image segmentation, pole telecomm

and breast cancer data. To make the prediction errors comparable among experiments,

root mean squared errors (RMSE) were divided by the outputs standard deviation, which

corresponds to the dotted line. Error bars are the standard deviations of the normalized

RMSE. Though the largest normalized RMSE appear out of the figure axis, we preferred

to display the prediction errors with the current axes limits in order to allow the reader

to appreciate the difference between the smallest, and thus most significant, errors. Se-

lection errors for COSSO, and HKL are not reported because they are not straightfor-

wardly computable from the available code. The computing time corresponds to the

entire model selection and testing protocol. Computing time for RLS is not reported

because it was always negligible with respect to the other methods.
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Figure 11: Prediction error (top) and fraction of selected variables (bottom) on real data for our

method with different kernels: polynomial kernel of degree p = 1,2 and 3 (DENOVAS

pol-p), and Gaussian kernel (DENOVAS gauss). Error bars represent the standard de-

viations. In order to make the prediction errors comparable among experiments, root

mean square errors were divided by the outputs standard deviation, which corresponds

to the dotted line.

methods we show that the regularized estimator can be provably computed through an iterative

procedure. The consistency property of the proposed estimator are studied. Exploiting the non-

parametric nature of the method we can prove universal consistency. Moreover we study selection

properties and show that that the proposed regularization scheme represents a safe filter for variable

selection, as it does not discard relevant variables. Extensive simulations on synthetic data demon-

strate the prediction and selection properties of the proposed algorithm. Finally, comparisons to

state-of-the-art algorithms for nonlinear variable selection on toy data as well as on a cohort of

benchmark data sets, show that our approach often leads to better prediction and selection perfor-

mance.

Our work can be considered as a first step towards understanding the role of sparsity beyond ad-

ditive models. It substantially differs with respect to previous approaches based on local polynomial

regression (Lafferty and Wasserman, 2008; Bertin and Lecué, 2008; Miller and Hall, 2010), since

it is a regularization scheme directly performing global variable selection. The RKHSs’ machinery

allows on the one hand to find a computationally efficient algorithmic solution, and on the other

hand to consider very general probability distributions ρ, which are not required to have a positive
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density with respect to the Lebesgue measure (differently from Comminges and Dalalyan, 2012).

Several research directions are yet to be explored.

• From a theoretical point of view it would be interesting to further analyzing the sparsity

property of the obtained estimator in terms of finite sample estimates for the prediction and

the selection error.

• From a computational point of view the main question is whether our method can be scaled

to work in very high dimensions. Current computations are limited by memory constraints.

A variety of method for large scale optimization can be considered towards this end.

• A natural by product of computational improvements would be the possibility of considering

a semi-supervised setting which is naturally suggested by our approach. More generally we

plan to investigate the application of the RKHS representation for differential operators in

unsupervised learning.

• More generally, our study begs the question of whether there are alternative/better ways to

perform learning and variable selection beyond additive models and using non parametric

models.
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Appendix A. Derivatives in RKHS and Representer Theorem

Consider L2(X ,ρX ) = { f : X → R measurable| ∫ | f (x)|2dρX (x) < ∞} and R
n with inner product

normalized by a factor 1/n, ‖·‖n.

The operator Ik : H → L2(X ,ρX ) defined by (Ik f )(x) = 〈 f ,kx〉H , for almost all x ∈ X , is well-

defined and bounded thanks to assumption (A1). The sampling operator (18) can be seen as its

empirical counterpart. Similarly Da : H → L2(X ,ρX ) defined by (Da f )(x) = 〈 f ,(∂ak)x〉, for almost

all x ∈ X and a = 1, . . .d, is well-defined and bounded thanks to assumption (A2). The operator (20)

can be seen as its empirical counterpart. Several properties of such operators and related quantities

are given by the following two propositions.
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Proposition 12 If assumptions (A1) and (A2) are met, the operator Ik and the continuous partial

derivative Da are Hilbert-Schmidt operators from H to L2(X ,ρX ), and

I∗k g(t) =
∫

X
kx(t)g(x)dρX (x), I∗k Ik f (t) =

∫
X

kx(t)〈 f ,kx〉H dρX (x),

D∗
ag(t) =

∫
X
(∂ak)x(t)g(x)dρX (x), D∗

aDb f (t) =
∫

X
(∂ak)x(t)〈 f ,(∂bk)x〉H dρX (x).

Proposition 13 If assumptions (A1) and (A2) are met, the sampling operator Ŝ and the empirical

partial derivative D̂a are Hilbert-Schmidt operators from H to R
n, and

Ŝ∗v =
1

n

n

∑
i=1

kxi
vi, Ŝ∗Ŝ f =

1

n

n

∑
i=1

kxi
〈 f ,kxi

〉H ,

D̂∗
av =

1

n

n

∑
i=1

(∂ak)xi
vi, D̂∗

aD̂b f =
1

n

n

∑
i=1

(∂ak)xi
〈 f ,(∂bk)xi

〉H

where a,b = 1, . . . ,d.

The proof can be found in De Vito et al. (2005) for Ik and Ŝ, where assumption (A1) is used.

The proof for Da and D̂a is based on the same tools and on assumption (A2). Furthermore, a similar

result can be obtained for the continuous and empirical gradient

∇ : H → (L2(X ,ρX ))
d, ∇ f = (Da f )d

a=1,

∇̂ : H → (Rn)d, ∇̂ f = (D̂a f )d
a=1,

which can be shown to be Hilbert-Schmidt operators from H to (L2(X ,ρX ))
d and from H to (Rn)d ,

respectively.

We next restate Proposition 3 in a slightly more abstract form and give its proof.

Proposition 3 (Extended) The minimizer of (6) satisfies f̂ τ ∈ Range(Ŝ∗)+Range(∇̂∗). Henceforth

it satisfies the following representer theorem

f̂ τ = Ŝ∗α+ ∇̂∗β =
n

∑
i=1

1

n
αikxi

+
n

∑
i=1

d

∑
a=1

1

n
βa,i(∂ak)xi

(34)

with α ∈ R
n and β ∈ R

nd .

Proof Being Range(Ŝ∗) + Range(∇̂∗) a closed subspace of H , we can write any function f ∈
H as f = f // + f⊥, where f // ∈ Range(Ŝ∗)+Range(∇̂∗) and 〈 f⊥,g〉H for all g ∈ Range(Ŝ∗)+
Range(∇̂∗). Now if we plug the decomposition f = f //+ f⊥ in the variational problem (6), we

obtain

f̂ τ = argmin
f∈H , f= f //+ f⊥

{
Ê( f //)+2τΩ̂D

1 ( f //)+ τν‖ f //‖2
H + τν‖ f⊥‖2

H

}

which is clearly minimized by f⊥ = 0. The second equality in (34) then derives directly from

definition of Ŝ∗ and ∇̂∗.

We conclude with the following example on how to compute derivatives and related quantities for

the Gaussian Kernel.
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Example 1 Note that all the terms involved in (30) are explicitly computable. As an example we

show how to compute them when k(x,s) = e
− ‖x−s‖2

2γ2 is the Gaussian kernel on R
d . By definition

(∂ak)xi
(x) = 〈 ∂k(s, ·)

∂sa

∣∣∣∣
s=xi

,kx〉H .

Given x ∈ X it holds

∂k(s,x)

∂sa
= e

− ‖x−s‖2

2γ2 ·
(
−sa − xa

γ2

)
=⇒ (∂ak)xi

(x) = e
− ‖x−xi‖2

2γ2 ·
(
−xa

i − xa

γ2

)
.

Moreover, as we mentioned above, the computation of βt
a,i and αt

i requires the knowledge of matrices

K,Za,Z,La. Also their entries are easily found starting from the kernel and the training points. We

only show how the entries of Z and La look like. Using the previous computations we immediately

get

[Za]i, j = e
− ‖x j−xi‖2

2γ2 ·
(
−

xa
i − xa

j

γ2

)
.

In order to compute La we need the second partial derivatives of the kernel:

∂k(s,x)

∂xb∂sa
=





−e
− ‖x−s‖2

2γ2 · sa−xa

γ2 · sb−xb

γ2 if a 6= b

−e
− ‖x−s‖2

2γ2 ·
(
(sa−xa)2

γ2 − 1
γ2

)
if a = b.

so that

[La,b]i, j =





−e
− ‖x j−xi‖2

2γ2 · xa
i −xa

j

γ2 · xb
i −xb

j

γ2 if a 6= b

−e
− ‖x j−xi‖2

2γ2 ·
(

(xa
i −xa

j )
2

γ2 − 1
γ2

)
if a = b.

Appendix B. Proofs of Section 4

In this appendix we collect the proofs related to the derivation of the iterative procedure given in

Algorithm 1. Theorem 4 is a consequence of the general results about convergence of accelerated

and inexact FB-splitting algorithms in Villa et al.. In that paper it is shown that inexact schemes

converge only when the errors in the computation of the proximity operator are of a suitable type

and satisfy a sufficiently fast decay condition. We first introduce the notion of admissible approxi-

mations.

Definition 14 Let ε ≥ 0 and λ > 0. We say that h ∈ H is an approximation of prox
λΩ̂D

1
( f ) with

ε-precision and we write h ≅ε prox
λΩ̂D

1
( f ), if and only if

f −h

λ
∈ ∂ ε2

2λ

Ω̂D
1 (h),
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where ∂ ε2

2λ

denotes the ε-subdifferential.12

We will need the following results from Villa et al..

Theorem 15 Consider the following inexact version of the accelerated FB-algorithm in (21) with

c1,t and c2,t as in (23)

f t
≅εt

prox τ
σ Ω̂D

1

((
I − 1

2σ
∇F
)
(c1,t f t−1 + c2,t f t−2)

)
. (35)

Then, if εt ∼ 1/t l with l > 3/2, there exists a constant C > 0 such that

Ê τ( f t)− inf Ê τ ≤ C

t2
.

Proposition 16 Suppose that Ω : H →R∪{+∞} can be written as Ω=ω◦B, where B : H →G is a

linear and bounded operator between Hilbert spaces and ω : G →R∪{+∞} is a one-homogeneous

function such that ∂ω(0) is bounded. Then for any f ∈ H and any v ∈ ∂ω(0) such that

2λω(B( f −λB∗v))−2〈λB∗v, f 〉 ≤ ε2 (36)

it holds

f −λB∗v ≅ε proxλΩ( f ).

Proposition 17 Under the same assumptions of Proposition 16, for any f ∈H , ε> 0, and sequence

{vq} minimizing the dual problem

‖ f −λB∗v‖H + iS(v),

where iS is the indicator function of S, there exists q̄ such that for any q > q̄, f − λB∗vq satisfies

condition (36).

Proof [Proof of Theorem 4] Since the the regularizer Ω̂D
1 can be written as a composition of ω◦B,

with B = ∇̂ and ω : Rd → [0,+∞), ω(v) = ∑d
a=1 ‖va‖n and {vq} is a minimizing sequence for

problem (25), Proposition 17 ensures that vq satisfies condition (28) if q is big enough. Therefore,

the sequence ∇̂∗vq obtained from vq generates, via (27), admissible approximations of prox τ
σ Ω̂D

1
.

Therefore, if εt is such that εt ∼ 1/t l with l > 3/2, Theorem 15 implies that the inexact version

of the FB-splitting algorithm in (27) shares the 1/t2 convergence rate. Equation (29) directly follows

from the definition of strong convexity,

τν

8
‖ f t − f̂ τ‖2 ≤ Ê τ( f t)/2+ Ê τ( f̂ τ)/2− Ê τ( f t/2+ f̂ τ/2)≤ 1

2
(Ê τ( f t)− Ê τ( f̂ τ)).

12. Recall that the ε-subdifferential ∂ε of a convex functional Ω : H → R∪{+∞} is defined as the set

∂εΩ( f ) := {h ∈ H : Ω(g)−Ω( f )≥ 〈h,g− f 〉H − ε, ∀g ∈ H }, ∀ f ∈ H .
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Proof [Proof of Proposition 5] We first show that the matrices K,Za,La defined in (8), (9), and (10),

are the matrices associated to the operators ŜŜ∗ : Rn → R
n, ŜD̂∗

a : Rn → R
n and D̂a∇̂∗ : Rnd → R

n,

respectively. For K, the proof is trivial and derives directly from the definition of adjoint of Ŝ—see

Proposition 13. For Za and Z, from the definition of D̂∗
a we have that

(
ŜD̂∗

aα
)

i
=

1

n

n

∑
j=1

α j(∂ak)x j
(xi) =

n

∑
j=1

(Za)i, jα j = (Zaα)i,

so that Ŝ∇̂∗β = ∑d
a=1 ŜD̂∗

a(βa,i)
n
i=1 = ∑d

a=1 Za(βa,i)
n
i=1 = Zβ. For La, we first observe that

〈(∂ak)x,(∂bk)x′〉H =
∂(∂bk)x′(t)

∂ta

∣∣∣∣
t=x

=
∂2k(s, t)

∂ta∂sb

∣∣∣∣
t=x,s=x′

,

so that operator D̂aD̂∗
b : Rn → R

n is given by

((
D̂aD̂∗

b

)
v
)

i
= 〈(∂ak)xi

, D̂∗
bv〉H =

1

n

n

∑
j=1

〈(∂ak)xi
,(∂bk)x j

〉H v j = (La,b)i, jv j

for i = 1, . . . ,n, for all v ∈ R
n. Then, since D̂a∇̂∗β = ∑d

a=1 D̂aD̂∗
b(βa,i)

n
i=1, we have that La is the

matrix associated to the operator D̂a∇̂∗ : Rnd → R
n, that is

(D̂a∇̂∗β)i =
n

∑
j=1

d

∑
b=1

(La,b)i, jβb, j,

for i= 1, . . . ,n, for all β∈R
nd . To prove equation (30), first note that, as we have done in Proposition

3 extended, (30) can be equivalently rewritten as f t = Ŝ∗αt + ∇̂∗βt . We now proceed by induction.

The base case, namely the representation for t = 0 and t = 1, is clear. Then, by the inductive

hypothesis we have that f t−1 = Ŝ∗αt−1 + ∇̂∗βt−1, and f t−2 = Ŝ∗αt−2 + ∇̂∗βt−2 so that f̃ t = Ŝ∗α̃t +
∇̂∗β̃t with α̃t and β̃t defined by (12) and (13). Therefore, using (21), (27), (24) it follows that f t can

be expressed as:

(
I −π τ

σ Cn

)(
Ŝ∗
((

1− τν

σ

)
α̃t − 1

σ

(
Kα̃t +Zβ̃t −y

))
+
(

1− τν

σ

)
∇̂∗β̃t

)

and the proposition is proved, letting α̃t , β̃t and v̄t as in Equations (14), (16) and (25).

For the projection, we first observe that operator D̂aŜ∗ : Rn → R
n is given by

(D̂aŜ∗α)i = (〈Ŝ∗α,(∂ak)xi
〉H ) =

1

n

n

∑
j=1

α j(∂ak)xi
(x j) =

n

∑
j=1

α j(Za) j,i = ZT
a α.

Then, we can plug the representation (34) in (27) to obtain (15).

Proof [Proof of Proposition 6] Since f̂ τ is the unique minimizer of the functional Ê τ, it satisfies the

Euler equation for Ê τ

0 ∈ ∂(Ê( f̂ τ)+2τΩ̂D
1 ( f̂ τ)+ τν‖ f̂ τ‖2

H ).
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where, for an arbitrary λ > 0, the subdifferential of λΩ̂D
1 at f is given by

∂λΩ̂D
1 ( f ) ={∇̂∗v,v=(va)

d
a=1∈(Rn)d | va = λD̂a f/‖D̂a f‖n if ‖D̂a f‖n>0,

and ‖va‖n ≤ λ otherwise,∀a = 1, . . . ,d}.

Using the above characterization and the fact that Ê + τν‖·‖2
H

is differentiable, the Euler equa-

tion is equivalent to

∇̂∗v =− 1

2σ
∇(Ê + τν‖·‖2

H )( f̂ τ),

for any σ > 0 , and for some v = (va)
d
a=1 ∈ (Rn)d with v = (va)

d
a=1 ∈ (Rn)d such that

va =
τ

σ

D̂a f̂ τ

‖D̂a f̂ τ‖n

if ‖D̂a f̂ τ‖n > 0,

va ∈ τ

σ
Bn otherwise.

In order to prove (31), we proceed by contradiction and assume that ‖D̂a f̂ τ‖n > 0. This would imply

‖va‖n = τ/σ, which contradicts the assumption, hence ‖D̂a f̂ τ‖n = 0.

We now prove (32). First, according to Definition 14 (see also Theorem 4.3 in Villa et al.

and Beck and Teboulle (2009) for the case when the proximity operator is evaluated exactly), the

algorithm generates by construction sequences f̃ t and f t such that

f̃ t − f t − 1

2σ
∇F( f̃ t) ∈ 1

2σ
∂σ(εt)22τΩ̂D

1 ( f t) =
τ

σ
∂ σ

2τ (εt)2Ω̂D
1 ( f t).

where ∂ε denotes the ε-subdifferential.13 Plugging the definition of f t from (27) in the above equa-

tion, we obtain ∇̂∗v̄t ∈ τ
σ ∂ σ

2τ (εt)2Ω̂D
1 ( f t). Now, we can use a kind of transportation formula (Hiriart-

Urruty and Lemaréchal, 1993) for the ε-subdifferential to find ε̃t such that ∇̂∗v̄t ∈ τ
σ ∂ σ

2τ (ε̃t)2Ω̂D
1 ( f τ).

By definition of ε-subdifferential:

Ω̂D
1 ( f )− Ω̂D

1 ( f t)≥ 〈σ

τ
∇̂∗v̄t , f − f t〉H − σ

2τ
(εt)

2, ∀ f ∈ H .

Adding and subtracting Ω̂D
1 ( f̂ τ) and 〈σ

τ ∇̂∗vt , f̂ τ〉 to the previous inequality we obtain

Ω̂D
1 ( f )− Ω̂D

1 ( f̂ τ)≥ 〈σ

τ
∇̂∗v̄t , f − f̂ τ〉H − σ

2τ
(ε̃t)

2 ,

with

(ε̃t)
2 = (εt)

2 +
2τ

σ

(
Ω̂D

1 ( f̂ τ)− Ω̂D
1 ( f t)−〈2∇̂∗v̄t , f̂ τ − f t〉H

)
.

From the previous equation, using (29) we have

(ε̃t)
2 ≤ (εt)

2 +

√
C

ντ

(
τ

σ ∑
a

√
‖D̂∗

aD̂‖+1

)
4

t
, (37)

13. Recall that the ε-subdifferential, ∂ε, of a convex functional Ω : H → R∪{+∞} is defined as the set

∂εΩ( f ) := {h ∈ H : Ω(g)−Ω( f )≥ 〈h,g− f 〉H − ε, ∀g ∈ H }, ∀ f ∈ H .
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which implies σ
τ ∇̂∗v̄t ∈ ∂σ(ε̃t)2/2τΩ̂D

1 ( f̂ τ). Now, relying on the structure of Ω̂D
1 , it is easy to see that

∂εΩ̂D
1 ( f )⊆ {∇̂∗v,v=(va)

d
a=1∈(Rn)d | ‖va‖n ≥ 1− ε/‖D̂a f‖n if ‖D̂a f‖n>0}.

Thus, if ‖D̂a f̂ τ‖n > 0 we have ‖v̄t‖n ≥ τ
σ(1−

(ε̃t)
2

2‖D̂a f̂ τ‖n
).

Appendix C. Proofs of Section 5

We start proving the following preliminary probabilistic inequalities.

Lemma 18 For 0 < η1,η2,η3,η4 ≤ 1, n ∈ N, it holds

(1) P
(∣∣∣‖y‖2

n −
∫

X×Y y2dρ(x,y)
∣∣∣≤ ε(n,η1)

)
≥1−η1 with ε(n,η1)=

2
√

2√
n

M2 log
2

η1

,

(2) P
(
‖Ŝ∗y− I∗k fρ‖H ≤ ε(n,η2)

)
≥1−η2 with ε(n,η2)=

2
√

2√
n

κ1M log
2

η2

,

(3) P
(
‖Ŝ∗Ŝ− I∗k Ik‖ ≤ ε(n,η3)

)
≥1−η3 with ε(n,η3)=

2
√

2√
n

κ2
1 log

2

η3

,

(4) P
(
‖D̂∗

aD̂a −D∗
aDa‖ ≤ ε(n,η4)

)
≥1−η4 with ε(n,η4)=

2
√

2√
n

κ2
2 log

2

η4

.

Proof From standard concentration inequalities for Hilbert space valued random variables—see,

for example, Pinelis and Sakhanenko (1985)—we have that, if ξ is a random variable with values in

a Hilbert space H bounded by L and ξ1, . . . ,ξn are n i.i.d. samples, then

‖1

n

n

∑
i=1

ξi −E(ξ)‖ ≤ ε(n,η) =
2
√

2√
n

L log
2

η

with probability at least 1−η, η ∈ [0,1]. The proof is a direct application of the above inequalities

to the random variables,
(1) ξ =y2 ξ ∈ R with supzn

‖ξ‖ ≤ M2,

(2) ξ =kxy ξ ∈ H ⊗R with supzn
‖ξ‖ ≤ κ1M,

(3) ξ =〈·,kx〉H kx ξ ∈ H S(H ) with supzn
‖ξ‖H S(H )≤ κ2

1,

(4) ξ =〈·,(∂ak)x〉H (∂ak)x ξ ∈ H S(H ) with supzn
‖ξ‖H S(H )≤ κ2

2.

where H S(H ),‖·‖H S(H ) are the space of Hilbert-Schmidt operators on H and the corresponding

norm, respectively (note that in the final bound we upper-bound the operator norm by the Hilbert-

Schmidt norm).

C.1 Proofs of the Consistency of the Regularizer

We restate Theorem 7 in an extended form.

Theorem 7 (Extended) Let r < ∞, then under assumption (A2), for any η > 0,

P

(
sup

‖ f‖H ≤r

|Ω̂D
1 ( f )−ΩD

1 ( f )| ≥ rd
2
√

2

(n)1/4
κ2

√
log

2d

η

)
< η. (38)
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Consequently

lim
n→∞

P

(
sup

‖ f‖H ≤r

|Ω̂D
1 ( f )−ΩD

1 ( f )|> ε

)
= 0, ∀ε > 0.

Proof

For f ∈ H consider the following chain of inequalities,

|Ω̂D
1 ( f )−ΩD

1 ( f )| ≤
d

∑
a=1

∣∣‖D̂a f‖n −‖Da f‖ρX

∣∣

≤
d

∑
a=1

(∣∣∣‖D̂a f‖2
n −‖Da f‖2

ρX

∣∣∣
)1/2

=
d

∑
a=1

(∣∣〈 f ,(D̂∗
aD̂a −Da

∗Da) f 〉H

∣∣)1/2

≤
d

∑
a=1

‖D̂∗
aD̂a −Da

∗Da‖1/2‖ f‖H ,

that follows from |√x−√
y| ≤

√
|x− y|, the definition of D̂a,Da and basic inequalities. Then, using

d times inequality (d) in Lemma 18 with η/d in place of η4, and taking the supremum on f ∈ H
such that ‖ f‖H ≤ r, we have with probability 1−η,

sup
‖ f‖H ≤r

|Ω̂D
1 ( f )−ΩD

1 ( f )| ≤ rd
2
√

2

(n)1/4
κ2

√
log

2d

η
.

The last statement of the theorem easily follows.

C.1.1 CONSISTENCY PROOFS

To prove Theorem 8, we need the following lemma.

Lemma 19 Let η ∈ (0,1]. Under assumptions (A1) and (A3), we have

sup
‖ f‖H ≤r

|Ê( f )−E( f )| ≤ 2
√

2√
n

(
κ2

1r2 +2κ1Mr+M2
)

log
6

η
,

with probability 1−η.

Proof Recalling the definition of Ik we have that,

E( f ) =
∫

X×Y
(Ik f (x)− y)2dρ(x,y)

=
∫

X
(Ik f (x))2dρX (x)+

∫
X×Y

y2dρ(x,y)−2

∫
X×Y

Ik f (x)ydρ(x,y)

=
∫

X
(Ik f (x))2dρX (x)+

∫
X×Y

y2dρ(x,y)−2

∫
X

Ik f (x) fρ(x)dρX (x)

= 〈 f , I∗k Ik f 〉H +
∫

X×Y
y2dρ(x,y)−2〈 f , I∗k fρ〉H .
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Similarly Ê( f ) = 〈 f , Ŝ∗Ŝ f 〉H +‖y‖2
n −2〈 f , Ŝ∗ fρ〉H . Then, for all f ∈ H , we have the bound

|Ê( f )−E( f )| ≤ ‖Ŝ∗Ŝ− I∗k Ik‖‖ f‖2
H +2‖Ŝ∗y− I∗k fρ‖H ‖ f‖H +

∣∣∣∣‖y‖2
n −

∫
X×Y

y2dρ(x,y)

∣∣∣∣

The proof follows applying Lemma 18 with probabilities η1 = η2 = η3 = η/3.

We now prove Theorem 8. We use the following standard result in regularization theory (see,

for example, Dontchev and Zolezzi, 1993) to control the the approximation error.

Proposition 20 Let τn → 0, be a positive sequence. Then we have that

E τn( f τn)− inf
f∈H

E( f )→ 0.

Proof [Proof of Theorem 8] We recall the standard sample/approximation error decomposition

E( f̂ τ)− inf
f∈H

E( f )≤ |E( f̂ τ)−E τ( f τ)|+ |E τ( f τ)− inf
f∈H

E( f )| (39)

where E τ( f ) = E( f )+2τΩD
1 ( f )+ τν‖ f‖2

H
.

We first consider the sample error. Toward this end, we note that

τν‖ f̂ τ‖2
H ≤ Ê τ( f̂ τ)≤ Ê τ(0) = ‖y‖2

n =⇒‖ f̂ τ‖H ≤ ‖y‖n√
τν

≤ M√
τν

,

and similarly ‖ f τ‖H ≤ (
∫

X y2dρ)1/2/
√

τν ≤ M√
τν

.

We have the following bound,

E( f̂ τ)−E τ( f τ)≤ (E( f̂ τ)− Ê( f̂ τ))+ Ê( f̂ τ)−E τ( f τ)

≤ (E( f̂ τ)− Ê( f̂ τ))+ Ê τ( f̂ τ)−E τ( f τ)

≤ (E( f̂ τ)− Ê( f̂ τ))+ Ê τ( f τ)−E τ( f τ)

≤ (E( f̂ τ)− Ê( f̂ τ))+(Ê( f τ)−E( f τ))+ τ(Ω̂D
1 ( f τ)−ΩD

1 ( f τ))

≤ 2 sup
‖ f‖H ≤ M√

τν

|Ê( f )−E( f )|+ τ sup
‖ f‖H ≤ M√

τν

|Ω̂D
1 ( f )−ΩD

1 ( f )|.

Let η′ ∈ (0,1]. Using Lemma 19 with probability η = 3η′/(3+ d), and inequality (38) with η =
dη′/(3+d), and if η′ is sufficiently small we obtain

E( f̂ τ)−E τ( f τ)≤ 4
√

2√
n

M2

(
κ2

1

τν
+

2κ1√
τν

+1

)
log

6+2d

η′ + τ
2
√

2

(n)1/4
d

M√
τν

κ2

√
log

6+2d

η′ .

with probability 1−η′. Furthermore, we have the bound

E( f̂ τ)−E τ( f τ)≤ c

(
Mκ2

1

n1/2τν
+

τ1/2dκ2

n1/4
√

ν

)
log

6+2d

η′ (40)
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where c does not depend on n,τ,ν,d. The proof follows, if we plug (40) in (39) and take τ = τn

such that τn → 0 and (τn

√
n)−1 → 0, since the approximation error goes to zero (using Proposition

20) and the sample error goes to zero in probability as n → ∞ by (40).

We next consider convergence in the RKHS norm. The following result on the convergence of

the approximation error is standard (Dontchev and Zolezzi, 1993).

Proposition 21 Let τn → 0, be a positive sequence. Then we have that

‖ f †
ρ − f τn‖H → 0.

We can now prove Theorem 9. The main difficulty is to control the sample error in the H -norm.

This requires showing that controlling the distance between the minima of two functionals, we can

control the distance between their minimizers. Towards this end it is critical to use the results in

Villa et al. (2012) based on Attouch-Wets convergence. We need to recall some useful quantities.

Given two subsets A and B in a metric space (H ,d), the excess of A on B is defined as e(A,B) :=
sup f∈A d( f ,B), with the convention that e( /0,B) = 0 for every B. Localizing the definition of the

excess we get the quantity er(A,B) : e(A∩B(0,r),B) for each ball B(0,r) of radius r centered at the

origin. The r-epi-distance between two subsets A and B of H , is denoted by dr(A,B) and is defined

as

dr(A,B) := max{er(A,B),er(B,A)}.
The notion of epi-distance can be extended to any two functionals F,G : H → R by

dr(G,F) := dr(epi(G),epi(F)),

where for any F : H → R, epi(F) denotes the epigraph of F defined as

epi(F) := {( f ,α),F( f )≤ α}.

We are now ready to prove Theorem 9, which we present here in an extended form.

Theorem 9 (Extended) Under assumptions (A1), (A2) and (A3),

P
(
‖ f̂ τ − f †

ρ‖H ≥ A(n,τ)1/2 +‖ f τ − f †
ρ‖H ,

)
< η

where

A(n,τ) = 4
√

2M

(
4κ2

1M√
nτ2ν2

+
4κ1√

nτν
√

τν
+

1√
nτν

+
2dκ2

n1/4ν
√

τν

)

for 0 < η ≤ 1. Moreover,

lim
n→∞

P
(
‖ f̂ τn − f †

ρ‖H ≥ ε
)
= 0, ∀ε > 0,

for any τn such that τn → 0 and (
√

nτ2
n)

−1 → 0.

Proof [Proof of Theorem 9]

We consider the decomposition of ‖ f̂ τ − f
†
ρ‖H into a sample and approximation term,

‖ f̂ τ − f †
ρ‖H ≤ ‖ f̂ τ − f τ‖H +‖ f τ − f †

ρ‖H . (41)
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From Theorem 2.6 in Villa et al. (2012) we have that

ψ⋄
τν(‖ f̂ τ − f τ‖H )≤ 4dM/

√
τν(tE τE τ, tE τÊ τ)

where ψ⋄
τν(t) := inf{ τν

2
s2 + |t − s| : s ∈ [0,+∞)}, and tE τ is the translation map defined as

tE τG( f ) = G( f + f τ)−E τ( f τ)

for all G : H → R.

From Theorem 2.7 in Villa et al. (2012), we have that

dM/
√

τν(tE τE τ, tE τÊ τ)≤ sup
‖ f‖H ≤M/

√
τν

|tE τE τ( f )− tE τÊ τ( f )|.

We have the bound,

sup
‖ f‖H ≤M/

√
τν

|tE τE τ( f )− tE τÊ τ( f )| ≤ sup
‖ f‖H ≤M/

√
τν+‖ f τ‖H

|E τ( f )− Ê τ( f )|

≤ sup
‖ f‖H ≤2M/

√
τν

|E( f )− Ê( f )|+ τ sup
‖ f‖H ≤2M/

√
τν

|ΩD
1 ( f )− Ω̂D

1 ( f )|.

Using Theorem 7 (equation (38)) and Lemma 19 we obtain with probability 1−η′, if η′ is small

enough,

dM/
√

τν(tE τE τ, tE τÊ τ) ≤ 2
√

2√
n

(
κ2

1

4M2

τν
+4κ1

M2

√
τν

+M2

)
log

6+2d

η′ + τ
2M√

τν
d

2
√

2

n1/4
κ2

√
log

6+2d

η′

≤ 2
√

2M

(
4κ2

1M√
nτν

+
4κ1M√
n
√

τν
+

M√
n
+ τ

2dκ2

n1/4
√

τν

)
log

6+2d

η′ . (42)

From the definition of ψ⋄
τν it is possible to see that we can write explicitly (ψ⋄

τν)
−1 as

(ψ⋄
τν)

−1(y) =

{√
2y
τν if y < 1

2τν

y+ 1
2τ otherwise.

Since τ = τn → 0 by assumption, for sufficiently large n, the bound in (42) is smaller than 1/2τν,

and we obtain that with probability 1−η′,

‖ f̂ τ − f τ‖H ≤
(

4
√

2M

(
4κ2

1M√
nτ2ν2

+
4κ1√

nτν
√

τν
+

1√
nτν

+
2dκ2

n1/4ν
√

τν

))1/2
√

log
6+2d

η′ . (43)

If we now plug (43) in (41) we obtain the first part of the proof. The rest of the proof follows

by taking the limit n → ∞, and by observing that, if one chooses τ = τn such that τn → 0 and

(τ2
n

√
n)−1 → 0, the assumption of Proposition 21 is satisfied and the bound in (43) goes to 0, so that

the limit of the sum of the sample and approximation terms goes to 0.
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C.1.2 PROOFS OF THE SELECTION PROPERTIES

In order to prove our main selection result, we will need the following lemma.

Lemma 22 Under assumptions (A1), (A2) and (A3) and defining A(n,τ) as in Theorem 9 extended,

we have, for all a = 1, . . . ,d and for all ε > 0,

P
(∣∣∣‖D̂a f̂ τ‖2

n −‖Da f †
ρ‖2

ρX

∣∣∣≥ ε
)
< (6+2d)exp

(
−ε−b(τ)

a(n,τ)

)
,

where a(n,τ) = 2max{ 2
√

2M2κ2
2√

nτν
,2κ2

2A(n,τ)} and limτ→0 b(τ) = 0.

Proof We have the following set of inequalities
∣∣∣‖D̂a f̂ τ‖2

n −‖Da f †
ρ‖2

ρX

∣∣∣= |〈 f̂ τ, D̂∗
aD̂a f̂ τ〉H −〈 f †

ρ ,D
∗
aDa f †

ρ 〉H +

〈 f̂ τ,D∗
aDa f̂ τ〉H −〈 f̂ τ,D∗

aDa f̂ τ〉H +

〈 f †
ρ ,D

∗
aDa f̂ τ〉H −〈 f †

ρ ,D
∗
aDa f̂ τ〉H |

=
∣∣∣〈 f̂ τ,(D̂∗

aD̂a −D∗
aDa) f̂ τ〉H + 〈 f̂ τ − f †

ρ ,D
∗
aDa( f̂ τ − f †

ρ )〉H

∣∣∣

≤ ‖D̂∗
aD̂a −D∗

aDa‖
M2

τν
+κ2

2‖ f̂ τ − f †
ρ‖2

H

≤ ‖D̂∗
aD̂a −D∗

aDa‖
M2

τν
+2κ2

2‖ f̂ τ − f τ‖2
H +2κ2

2‖ f τ − f †
ρ‖2

H .

Using Theorem 9 extended, equation (43), and Lemma 18 with probability η4 = η/(3+d), we

obtain with probability 1−η

∣∣∣‖D̂a f̂ τ‖2
n −‖Da f †

ρ‖2
ρX

∣∣∣≤ 2
√

2M2κ2
2√

nτν
log

6+2d

η
+2κ2

2A(n,τ) log
6+2d

η
+2κ2

2‖ f τ − f †
ρ‖2

H .

We can further write
∣∣∣‖D̂a f̂ τ‖2

n −‖Da f †
ρ‖2

ρX

∣∣∣≤ a(n,τ) log
6+2d

η
+b(τ),

where a(n,τ) = 2max{ 2
√

2M2κ2
2√

nτν
,2κ2

2A(n,τ)} and limτ→0 b(τ) = 0 according to Proposition 21. The

proof follows by writing ε = a(n,τ) log 6+2d
η +b(τ) and inverting it with respect to η.

Finally we can prove Theorem 11.

Proof [Proof of Theorem 11] We have

P
(

Rρ ⊆ R̂τ
)
= 1−P

(
Rρ 6⊆ R̂τ

)
= 1−P


 ⋃

a∈Rρ

{a /∈ R̂τ}


≥ 1− ∑

a∈Rρ

P
(

a /∈ R̂τ
)

Let us now estimate P
(

a /∈ R̂τ
)

or equivalently P
(

a ∈ R̂τ
)
= P

(
‖D̂a f̂ τ‖2

n > 0
)
, for a ∈ Rρ. Let

C < mina∈Rρ ‖Da f
†
ρ‖2

ρX
. From Lemma 22, there exist a(n,τ) and b(τ) satisfying limτ→0 b(τ) = 0,

such that ∣∣∣‖Da f †
ρ‖2

ρX
−‖D̂a f̂ τ‖2

n

∣∣∣≤ ε
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with probability 1− (6+2d)exp
(
− ε−b(τ)

a(n,τ)

)
, for all a = 1, . . . ,d. Therefore, for ε =C, for a ∈ Rρ, it

holds

‖D̂a f̂ τ‖2
n ≥ ‖Da f †

ρ‖2
ρX

−C > 0.

with probability 1− (6+2d)exp
(
−C−b(τ)

a(n,τ)

)
. We than have

P
(

a ∈ R̂τ
)
= P
(
‖D̂a f̂ τ‖2

n > 0
)
≥ 1− (6+2d)exp

(
−C−b(τ)

a(n,τ)

)
,

so that P
(

a /∈ R̂τ
)
≤ (6+2d)exp

(
−C−b(τ)

a(n,τ)

)
. Finally, if we let τ = τn satisfying the assumption, we

have limn b(τn)→ 0, limn a(n,τn)→ 0, so that

lim
n→∞

P
(

Rρ ⊆ R̂τn
)

≥ lim
n→∞

[
1−|Rρ|(6+2d)exp

(
−C− c(τn)

a(n,τn)

)]

= 1−|Rρ|(6+2d) lim
n→∞

exp

(
−C−b(τn)

a(n,τn)

)

= 1.
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Spaces and distribu-

tions

X ⊆ R
d input space

Y ⊆ R output space

ρ probability distribution on X ×Y

ρX marginal distribution of ρ

L2(X ,ρX ) { f : X → R : measurable and s.t.
∫

X f (x)2 dρX (x)<+∞}

H RKHS ⊆ { f : X → Y }

Norms and scalar prod-

ucts

‖·‖n and 〈·, ·〉n
1√
n
· euclidean norm and scalar product

‖·‖ρX and 〈·, ·〉ρX norm and scalar product in L2(X ,ρX )

‖·‖H and 〈·, ·〉H norm and scalar product in H

Functionals and Opera-

tors

ΩD
1 : H → [0,+∞) ΩD

1 ( f ) =
d

∑
a=1

√∫
X

(
∂ f (x)
∂xa dρX (x)

)2

Ω̂D
1 : H → [0,+∞) Ω̂D

1 ( f ) =
d

∑
a=1

√
1
n

n

∑
i=1

(
∂ f (xi)

∂xa

)2

E : H → [0,+∞) E( f ) =
∫

X ( f (x)− y)2 dρ(x,y)

Eτ : H → [0,+∞) Eτ( f ) =
∫

X ( f (x)− y)2 dρ(x,y)+ τ(2ΩD
1 ( f )+ν‖ f‖2

H
)

Ê : H → [0,+∞) Ê( f ) =
n

∑
i=1

1
n ( f (xi)− yi)

2

Êτ : H → [0,+∞) Êτ( f ) =
n

∑
i=1

1
n ( f (xi)− yi)

2 + τ(2Ω̂D
1 ( f )+ν‖ f‖2

H
)

Ik : H → L2(X ,ρX ) (Ik f )(x) = 〈 f ,kx〉H

Ŝ : H → R
n Ŝ f = ( f (x1), . . . , f (xn))

Da : H → L2(X ,ρX ) (Da f )(x) = 〈 f ,(∂ak)x〉

D̂a : H → R
n D̂a( f ) =

(
∂ f
∂xa (x1), . . . ,

∂ f
∂xa (xn)

)

∇ :H →(L2(X ,ρX ))
d ∇ f = (Da f )d

a=1

∇̂ : H → (Rn)d ∇̂ f = (D̂a f )d
a=1

Functions

kx : X → R t 7→ k(x, t)

f
†
ρ argmin f∈argminE{ΩD

1 ( f )+ν‖ f‖2
H
}

(∂ak)x : X → R t 7→ ∂k(s,t)
∂sa

∣∣∣
s=x

f τ the minimizer in H of Eτ

f̂ τ the minimizer in H of Êτ

Sets

Rρ {a ∈ {1, . . .d} :
∂ f

†
ρ

∂xa 6= 0}

R̂τ {a ∈ {1, . . .d} :
∂ f τ

∂xa 6= 0}

Bn {v ∈ R
n : ‖v‖n ≤ 1}

Bd
n {v ∈ R

n : ‖v‖n ≤ 1}d

Table 3: List of symbols and notations
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