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Abstract

The variational Bayesian (VB) approximation is known to be a promising approach to Bayesian

estimation, when the rigorous calculation of the Bayes posterior is intractable. The VB approxima-

tion has been successfully applied to matrix factorization (MF), offering automatic dimensionality

selection for principal component analysis. Generally, finding the VB solution is a non-convex

problem, and most methods rely on a local search algorithm derived through a standard procedure

for the VB approximation. In this paper, we show that a better option is available for fully-observed

VBMF—the global solution can be analytically computed. More specifically, the global solution

is a reweighted SVD of the observed matrix, and each weight can be obtained by solving a quartic

equation with its coefficients being functions of the observed singular value. We further show that

the global optimal solution of empirical VBMF (where hyperparameters are also learned from data)

can also be analytically computed. We illustrate the usefulness of our results through experiments

in multi-variate analysis.

Keywords: variational Bayes, matrix factorization, empirical Bayes, model-induced regulariza-

tion, probabilistic PCA

1. Introduction

The problem of finding a low-rank approximation of a target matrix through matrix factorization

(MF) recently attracted considerable attention. In this paper, we consider fully-observed MF where

∗. This paper is a combined and extended version of our earlier conference papers (Nakajima et al., 2010, 2011).
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the observed matrix has no missing entry.1 This formulation includes multivariate analysis tech-

niques such as principal component analysis (Hotelling, 1933) and reduced rank regression (Rein-

sel and Velu, 1998). Canonical correlation analysis (Hotelling, 1936; Anderson, 1984; Hardoon

et al., 2004) and partial least-squares (Worsley et al., 1997; Rosipal and Krämer, 2006) are also

closely related to MF.

Singular value decomposition (SVD) is a classical method for MF, which gives the optimal

low-rank approximation to the target matrix in terms of the squared error. Regularized variants of

SVD have been studied for the Frobenius-norm penalty (i.e., singular values are regularized by the

ℓ2-penalty) (Paterek, 2007) or the trace-norm penalty (i.e., singular values are regularized by the ℓ1-

penalty) (Srebro et al., 2005). Since the Frobenius-norm penalty does not automatically produce a

low-rank solution, it should be combined with an explicit low-rank constraint, which is non-convex.

In contrast, the trace-norm penalty tends to produce sparse solutions, so a low-rank solution can be

obtained without explicit rank constraints. This implies that the optimization problem of trace-norm

MF is still convex, and thus the global optimal solution can be obtained. Recently, optimization

techniques for trace-norm MF have been extensively studied (Rennie and Srebro, 2005; Cai et al.,

2010; Ji and Ye, 2009; Tomioka et al., 2010).

Bayesian approaches to MF have also been actively explored. A maximum a posteriori (MAP)

estimation, which computes the mode of the posterior distributions, was shown (Srebro et al., 2005)

to be equivalent to the ℓ1-MF when Gaussian priors are imposed on factorized matrices (Salakhutdi-

nov and Mnih, 2008). The variational Bayesian (VB) method (Attias, 1999; Bishop, 2006), which

approximates the posterior distributions by decomposable distributions, has also been applied to

MF (Bishop, 1999; Lim and Teh, 2007; Ilin and Raiko, 2010). The VB-based MF method (VBMF)

was shown to perform well in experiments, and its theoretical properties have been investigated

(Nakajima and Sugiyama, 2011).

However, the optimization problem of VBMF is non-convex. In practice, the VBMF solution is

computed by the iterated conditional modes (ICM) algorithm (Besag, 1986; Bishop, 2006), where

the mean and the covariance of the posterior distributions are iteratively updated until convergence

(Lim and Teh, 2007; Ilin and Raiko, 2010). One may obtain a local optimal solution by the ICM

algorithm, but many restarts would be necessary to find a good local optimum.

In this paper, we show that, despite the non-convexity of the optimization problem, the global

optimal solution of VBMF can be analytically computed. More specifically, the global solution is a

reweighted SVD of the observed matrix, and each weight can be obtained by solving a quartic equa-

tion with its coefficients being functions of the observed singular value. This is highly advantageous

over the standard ICM algorithm since the global optimum can be found without any iterations and

restarts. We also consider an empirical VB scenario where the hyperparameters (prior variances)

are also learned from data. Again, the optimization problem of empirical VBMF is non-convex, but

we show that the global optimal solution of empirical VBMF can still be analytically computed.

The usefulness of our results is demonstrated through experiments.

Our analysis can be seen as an extension of Nakajima and Sugiyama (2011). The major progress

is twofold:

1. Weakened decomposability assumption.

1. This excludes the collaborative filtering setup, which is aimed at imputing missing entries of an observed matrix

(Konstan et al., 1997; Funk, 2006).

2



GLOBAL ANALYTIC SOLUTION OF VARIATIONAL BAYESIAN MATRIX FACTORIZATION

Nakajima and Sugiyama (2011) analyzed the behavior of VBMF under the column-wise in-

dependence assumption (Ilin and Raiko, 2010), that is, the columns of the factorized matrices

are forced to be mutually independent in the VB posterior. This was one of the limitations

of the previous work, since the weaker matrix-wise independence assumption (Lim and Teh,

2007) is rather standard, and sufficient to derive the ICM algorithm. It was not clear how these

different assumptions affect the approximation accuracy to the Bayes posterior. In this paper,

we show that the VB solution under the matrix-wise independence assumption is column-

wise independent, meaning that the stronger column-wise independence assumption does not

degrade the quality of approximation accuracy.

2. Exact analysis for rectangular cases.

Nakajima and Sugiyama (2011) derived bounds of the VBMF solution (more specifically,

bounds of the weights for the reweighed SVD). Those bounds are tight enough to give the

exact analytic solution only when the observed matrix is square. In this paper, we conduct a

more precise analysis, which results in a quartic equation with its coefficients depending on

the observed singular value. Satisfying this quartic equation is a necessary condition for the

weight, and further consideration specifies which of the four solutions is the VBMF solution.

In summary, we derive the exact global analytic solution for general rectangular cases under the

standard matrix-wise independence assumption.

The rest of this paper is organized as follows. We first introduce the framework of Bayesian

matrix factorization and the variational Bayesian approximation in Section 2. Then, we analyze

the VB free energy, and derive the global analytic solution in Section 3. Section 4 is devoted to

explaining the relation between MF and multivariate analysis techniques. In Section 5, we show

practical usefulness of our analytic-form solutions through experiments. In Section 6, we derive

simple analytic-form solutions for special cases, discuss the relation between model pruning and

spontaneous symmetry breaking, and consider the possibility of extending our results to more gen-

eral problems. Finally, we conclude in Section 7.

2. Formulation

In this section, we first formulate the problem of probabilistic MF (Section 2.1). Then, we introduce

the VB approximation (Section 2.2) and its empirical variant (Section 2.3). We also introduce a

simplified variant (Section 2.4), which was analyzed in Nakajima and Sugiyama (2011) and will be

shown to be equivalent to the (non-simple) VB approximation in the subsequent section.

2.1 Probabilistic Matrix Factorization

Assume that we have an observation matrix V ∈ R
L×M, which is the sum of a target matrix U ∈

R
L×M and a noise matrix E ∈ R

L×M:

V =U +E .

In the matrix factorization model, the target matrix is assumed to be low rank, and expressed in the

following factorized form:

U = BA⊤,

3



NAKAJIMA, SUGIYAMA, BABACAN AND TOMIOKA

where A ∈ R
M×H and B ∈ R

L×H . Here, ⊤ denotes the transpose of a matrix or vector. Thus, the

rank of U is upper-bounded by H ≤ min(L,M).

We consider the Gaussian probabilistic MF model (Salakhutdinov and Mnih, 2008), given as

follows:

p(V |A,B) ∝ exp

(
− 1

2σ2
‖V −BA⊤‖2

Fro

)
, (1)

p(A) ∝ exp

(
−1

2
tr
(

AC−1
A A⊤

))
, (2)

p(B) ∝ exp

(
−1

2
tr
(

BC−1
B B⊤

))
, (3)

where σ2 is the noise variance. Here, we denote by ‖·‖Fro the Frobenius norm, and by tr(·) the trace

of a matrix. We assume that L ≤ M. If L > M, we may simply re-define the transpose V⊤ as V so

that L ≤ M holds. Thus this does not impose any restriction. We assume that the prior covariance

matrices CA and CB are diagonal and positive definite, that is,

CA = diag(c2
a1
, . . . ,c2

aH
),

CB = diag(c2
b1
, . . . ,c2

bH
),

for cah
,cbh

> 0,h = 1, . . . ,H. Without loss of generality, we assume that the diagonal entries of the

product CACB are arranged in the non-increasing order, that is, cah
cbh

≥ cah′ cbh′ for any pair h < h′.
Throughout the paper, we denote a column vector of a matrix by a bold small letter, and a row

vector by a bold small letter with a tilde, namely,

A = (a1, . . . ,aH) = (ã1, . . . , ãM)⊤ ∈ R
M×H ,

B = (b1, . . . ,bH) =
(
b̃1, . . . , b̃L

)⊤
∈ R

L×H .

2.2 Variational Bayesian Approximation

The Bayes posterior is written as

p(A,B|V ) =
p(V |A,B)p(A)p(B)

p(V )
, (4)

where p(V ) = 〈p(V |A,B)〉p(A)p(B) is the marginal likelihood. Here, 〈·〉p denotes the expectation

over the distribution p. Since the Bayes posterior (4) is computationally intractable, the VB approx-

imation was proposed (Bishop, 1999; Lim and Teh, 2007; Ilin and Raiko, 2010).

Let r(A,B), or r for short, be a trial distribution. The following functional with respect to r is

called the free energy:

F(r|V ) =

〈
log

r(A,B)

p(V |A,B)p(A)p(B)

〉

r(A,B)

=

〈
log

r(A,B)

p(A,B|V )

〉

r(A,B)

− log p(V ). (5)
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The first term in Equation (5) is the Kullback-Leibler (KL) distance from the trial distribution to

the Bayes posterior, and the second term is a constant. Therefore, minimizing the free energy (5)

amounts to finding the distribution closest to the Bayes posterior in the sense of the KL distance. In

the VB approximation, the free energy (5) is minimized over some restricted function space.

A standard constraint for the MF model is matrix-wise independence (Bishop, 1999; Lim and

Teh, 2007), that is,

rVB(A,B) = rVB
A (A)rVB

B (B). (6)

This constraint breaks the entanglement between the parameter matrices A and B, and leads to a

computationally-tractable iterative algorithm, called the iterated conditional modes (ICM) algo-

rithm (Besag, 1986; Bishop, 2006). The resulting distribution is called the VB posterior.

Using the variational method, we can show that the VB posterior minimizing the free energy (5)

under the constraint (6) can be written as

rVB(A,B) =
M

∏
m=1

NH(ãm; ˜̂am,ΣA)
L

∏
l=1

NH(b̃l;
˜̂
bl,ΣB), (7)

where the parameters satisfy

Â =
(
˜̂a1, . . . , ˜̂aM

)⊤
=V⊤B̂

ΣA

σ2
, (8)

B̂ =

(
˜̂
b1, . . . ,

˜̂
bL

)⊤
=V Â

ΣB

σ2
, (9)

ΣA = σ2
(

B̂⊤B̂+LΣB +σ2C−1
A

)−1

, (10)

ΣB = σ2
(

Â⊤Â+MΣA +σ2C−1
B

)−1

. (11)

Here, Nd(·;µ,Σ) denotes the d-dimensional Gaussian distribution with mean µ and covariance

matrix Σ. Note that, in the VB posterior (7), the rows {ãm} ({b̃l}) of A (B) are independent of each

other, and share a common covariance ΣA (ΣB) (Bishop, 1999).

The ICM for VBMF iteratively updates the parameters (Â, B̂,ΣA,ΣB) by Equations (8)–(11)

until convergence, allowing one to obtain a local minimum of the free energy (5). Finally, the VB

estimator of U is computed as

ÛVB = B̂Â⊤.

2.3 Empirical VB Approximation

The free energy minimization principle also allows us to estimate the hyperparameters CA and CB

from data. This is called the empirical Bayesian scenario. In this scenario, CA and CB are updated

in each iteration by the following formulas:

c2
ah
= ‖âh‖2/M+(ΣA)hh , (12)

c2
bh
= ‖b̂h‖2/L+(ΣB)hh . (13)
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When the noise variance σ2 is unknown, it can also be estimated based on the free energy

minimization. The update rule for σ2 is given by

σ2 =
‖V‖2

Fro − tr(2V⊤B̂Â⊤)+ tr
(
(Â⊤Â+MΣA)(B̂

⊤B̂+LΣB)
)

LM
, (14)

which should be applied in each iteration of the ICM algorithm.

2.4 SimpleVB Approximation

A simplified variant, called the SimpleVB approximation, assumes column-wise independence of

each matrix (Ilin and Raiko, 2010; Nakajima and Sugiyama, 2011), that is,

rSVB(A,B) =
H

∏
h=1

rSVB
ah

(ah)
H

∏
h=1

rSVB
bh

(bh). (15)

Note that the column-wise independence constraint (15) is stronger than the matrix-wise indepen-

dence constraint (6), that is, any column-wise independent distribution is matrix-wise independent.

The SimpleVB posterior can be written as

rSVB(A,B) =
H

∏
h=1

NM(ah; âSVB
h ,σ2 SVB

ah
IM)

H

∏
h=1

NL(bh; b̂SVB
h ,σ2 SVB

bh
IL),

where the parameters satisfy

âSVB
h =

σ2 SVB
ah

σ2

(
V − ∑

h′ 6=h

b̂SVB
h′ âSVB⊤

h′

)⊤

b̂SVB
h , (16)

b̂SVB
h =

σ2 SVB
bh

σ2

(
V − ∑

h′ 6=h

b̂SVB
h′ âSVB⊤

h′

)
âSVB

h , (17)

σ2 SVB
ah

= σ2
(
‖b̂SVB

h ‖2 +Lσ2 SVB
bh

+σ2c−2
ah

)−1

, (18)

σ2 SVB
bh

= σ2
(
‖âSVB

h ‖2 +Mσ2 SVB
ah

+σ2c−2
bh

)−1

. (19)

Here, Id denotes the d-dimensional identity matrix. The constraint (15) restricts the covariances ΣA

and ΣB in Equation (7) to be diagonal, and thus reduces necessary memory storage and computa-

tional cost (Ilin and Raiko, 2010).

Iterating Equations (16)–(19) until convergence, we can obtain a local minimum of the free

energy. Equations (14), (12), and (13) are similarly applied if the noise variance σ2 is unknown and

in the empirical Bayesian scenario, respectively.

The column-wise independence (15) also simplifies theoretical analysis. Thanks to this sim-

plification, Nakajima and Sugiyama (2011) showed that the SimpleVBMF solution is a reweighted

SVD, and successfully derived theoretical bounds of the weights. Their analysis revealed interest-

ing properties of VBMF, called model-induced regularization. However, it has not been clear how

restrictive the column-wise independence assumption is. In Section 3, we theoretically show that

the column-wise independence assumption has actually no effect, before deriving the exact global

analytic solution.
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3. Theoretical Analysis

In this section, we first prove the equivalence between VBMF and SimpleVBMF (Section 3.1).

After that, starting from a proposition given in Nakajima and Sugiyama (2011), we derive the global

analytic solution for VBMF (Section 3.2). Finally, we derive the global analytic solution for the

empirical VBMF (Section 3.3).

3.1 Equivalence between VBMF and SimpleVBMF

Under the matrix-wise independence constraint (6), the free energy (5) can be written as

FVB = 〈logrA(A)+ logrB(B)− log p(V |A,B)p(A)p(B)〉r(A)r(B)

=
‖V‖2

Fro

2σ2
+

LM

2
logσ2 +

M

2
log

|CA|
|ΣA|

+
L

2
log

|CB|
|ΣB|

+
1

2
tr
{

C−1
A

(
Â⊤Â+MΣA

)
+C−1

B

(
B̂⊤B̂+LΣB

)

+σ−2
(
−2Â⊤V⊤B̂+

(
Â⊤Â+MΣA

)(
B̂⊤B̂+LΣB

))}
+ const., (20)

where | · | denotes the determinant of a matrix. Note that Equations (8)–(11) together form the

stationarity condition of Equation (20) with respect to (Â, B̂,ΣA,ΣB).
We say that two points (Â, B̂,ΣA,ΣB) and (Â′, B̂′,Σ′

A,Σ
′
B) are equivalent if both give the same free

energy and B̂Â⊤ = B̂′Â′⊤ holds. We obtain the following theorem (its proof is given in Appendix A):

Theorem 1 When CACB is non-degenerate (i.e., cah
cbh

> cah′ cbh′ for any pair h < h′), any solution

minimizing the free energy (20) has diagonal ΣA and ΣB. When CACB is degenerate, any solution

has an equivalent solution with diagonal ΣA and ΣB.

The result that ΣA and ΣB become diagonal would be natural because we assumed the inde-

pendent Gaussian priors on A and B: the fact that any V can be decomposed into orthogonal sin-

gular components may imply that the observation V cannot convey any preference for singular-

component-wise correlation. Note, however, that Theorem 1 does not necessarily hold when the

observed matrix has missing entries.

Obviously, any VBMF solution (minimizer of the free energy (20)) with diagonal covariances is

a SimpleVBMF solution (minimizer of the free energy (20) under the constraint that the covariances

are diagonal). Theorem 1 states that, if CACB is non-degenerate, the set of VBMF solutions and the

set of SimpleVBMF solutions are identical. In the case when CACB is degenerate, the set of VBMF

solutions is the union of the set of SimpleVBMF solutions and the set of their equivalent solutions

with non-diagonal covariances. Actually, any VBMF solution can be obtained by rotating its equiv-

alent SimpleVBMF solution (VBMF solution with diagonal covariances) (see Appendix A.4). In

practice, it is however sufficient to focus on the SimpleVBMF solutions, since equivalent solutions

share the same free energy FVB and the same mean prediction B̂Â⊤. In this sense, we can conclude

that the stronger column-wise independence constraint (15) does not degrade approximation accu-

racy, and the VBMF solution under the matrix-wise independence (6) essentially agrees with the

SimpleVBMF solution.

Since we have shown the equivalence between VBMF and SimpleVBMF, we can use the results

obtained in Nakajima and Sugiyama (2011), where SimpleVBMF was analyzed, for pursuing the

global analytic solution for (non-simple) VBMF.
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3.2 Global Analytic Solution for VBMF

Here, we derive an analytic-form expression of the VBMF global solution. We denote by R
d
++ the

set of the d-dimensional vectors with positive elements, and by S
d
++ the set of d × d symmetric

positive-definite matrices. We solve the following problem:

Given (c2
ah
,c2

bh
) ∈ R

2
++ (∀h = 1, . . . ,H), σ2 ∈ R++,

min FVB(Â, B̂,ΣA,ΣB)

s.t. Â ∈ R
M×H , B̂ ∈ R

L×H , ΣA ∈ S
H
++, ΣB ∈ S

H
++,

where FVB(Â, B̂,ΣA,ΣB) is the free energy given by Equation (20). This is a non-convex optimiza-

tion problem, but we show that the global optimal solution can still be analytically obtained.

We start from the following proposition, which is obtained by summarizing Lemma 11,

Lemma 13, Lemma 14, Lemma 15, and Lemma 17 in Nakajima and Sugiyama (2011):

Proposition 2 (Nakajima and Sugiyama, 2011) Let γh (≥ 0) be the h-th largest singular value of

V , and let ωah
and ωbh

be the associated right and left singular vectors:

V =
L

∑
h=1

γhωbh
ω⊤

ah
.

Then, the global SimpleVB solution (under the column-wise independence (15)) can be expressed

as

ÛSVB ≡ 〈BA⊤〉rSVB(A,B) =
H

∑
h=1

γ̂SVB
h ωbh

ω⊤
ah
.

Let

γ̃h =

√√√√√(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

+

√√√√
(
(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

)2

−LMσ4.

When

γh ≤ γ̃h,

the SimpleVB solution for the h-th component is γ̂SVB
h = 0. When

γh > γ̃h, (21)

γ̂SVB
h is given as a positive real solution of

γ̂2
h +q1(̂γh) · γ̂h +q0 = 0, (22)

where

q1(̂γh) =

−(M−L)2(γh − γ̂h)+(L+M)

√
(M−L)2(γh − γ̂h)2 + 4σ4LM

c2
ah

c2
bh

2LM
,

q0 =
σ4

c2
ah

c2
bh

−
(

1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h.

8
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When Inequality (21) holds, Equation (22) has only one positive real solution, which lies in

0 < γ̂h < γh.

In Nakajima and Sugiyama (2011), it was shown that any SimpleVBMF solution is a stationary

point, and Equation (22) was derived from the stationarity condition (16)–(19). Bounds of γ̂SVB
h were

obtained by approximating Equation (22) with a quadratic equation (more specifically, by bounding

q1(̂γh) by constants). This analysis revealed interesting properties of VBMF, including the model-

induced regularization effect and the sparsity induction mechanism. Thanks to Theorem 1, almost

the same statements as Proposition 2 hold for VBMF (Lemma 8 in Appendix B).

In this paper, our purpose is to obtain the exact solution, and therefore, we should treat Equa-

tion (22) more precisely. If q1(̂γh) were a constant, Equation (22) would be quadratic with respect

to γ̂h, and its solutions could be easily obtained. However, Equation (22) is not even polynomial, be-

cause q1(̂γh) depends on the square root of γ̂h. With some algebra, we can convert Equation (22) to

a quartic equation, which has four solutions in general. By examining which solution corresponds

to the positive solution of Equation (22), we obtain the following theorem (the proof is given in

Appendix B):

Theorem 3 Let γ̂second
h be the second largest real solution of the following quartic equation with

respect to γ̂h:

f (̂γh) := γ̂4
h +ξ3γ̂3

h +ξ2γ̂2
h +ξ1γ̂h +ξ0 = 0, (23)

where the coefficients are defined by

ξ3 =
(L−M)2γh

LM
,

ξ2 =−
(

ξ3γh +
(L2 +M2)η2

h

LM
+

2σ4

c2
ah

c2
bh

)
,

ξ1 = ξ3

√
ξ0,

ξ0 =

(
η2

h −
σ4

c2
ah

c2
bh

)2

,

η2
h =

(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h.

Then, the global VB solution can be expressed as

ÛVB ≡ 〈BA⊤〉rVB(A,B) = B̂Â⊤ =
H

∑
h=1

γ̂VB
h ωbh

ω⊤
ah
,

where

γ̂VB
h =

{
γ̂second

h if γh > γ̃h,

0 otherwise.

9
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The coefficients of the quartic equation (23) are analytic, so γ̂second
h can also be obtained analyt-

ically, for example, by Ferrari’s method (Hazewinkel, 2002).2 Therefore, the global VB solution

can be analytically computed.3 This is a strong advantage over the standard ICM algorithm since

many iterations and restarts would be necessary to find a good solution by ICM.

Based on the above result, the complete VB posterior can be obtained analytically as follows

(the proof is also given in Appendix B):

Theorem 4 The VB posterior is given by

rVB(A,B) =
H

∏
h=1

NM(ah; âh,σ
2
ah

IM)
H

∏
h=1

NL(bh; b̂h,σ
2
bh

IL),

where, for γ̂VB
h being the solution given by Theorem 3,

âh =±
√

γ̂VB
h δ̂h ·ωah

,

b̂h =±
√

γ̂VB
h δ̂−1

h ·ωbh
,

σ2
ah
=

−
(
η̂2

h −σ2(M−L)
)
+
√
(η̂2

h −σ2(M−L))2 +4Mσ2η̂2
h

2M(̂γVB
h δ̂−1

h +σ2c−2
ah
)

,

σ2
bh
=

−
(
η̂2

h +σ2(M−L)
)
+
√
(η̂2

h +σ2(M−L))2 +4Lσ2η̂2
h

2L(̂γVB
h δ̂h +σ2c−2

bh
)

,

δ̂h =

(M−L)(γh − γ̂VB
h )+

√
(M−L)2(γh − γ̂VB

h )2 + 4σ4LM

c2
ah

c2
bh

2σ2Mc−2
ah

,

η̂2
h =





η2
h if γh > γ̃h,
σ4

c2
ah

c2
bh

otherwise.

3.3 Global Analytic Solution for Empirical VBMF

Solving the following problem gives the empirical VBMF solution:

Given σ2 ∈ R++,

min FVB(Â, B̂,ΣA,ΣB,{c2
ah
,c2

bh
;h = 1, . . . ,H}),

s.t. Â ∈ R
M×H , B̂ ∈ R

L×H , ΣA ∈ S
H
++, ΣB ∈ S

H
++,

(c2
ah
,c2

bh
) ∈ R

2
++ (∀h = 1, . . . ,H),

where FVB(Â, B̂,ΣA,ΣB,{c2
ah
,c2

bh
;h= 1, . . . ,H}) is the free energy given by Equation (20). Although

this is again a non-convex optimization problem, the global optimal solution can be obtained ana-

lytically. As discussed in Nakajima and Sugiyama (2011), the ratio cah
/cbh

is arbitrary in empirical

VB. Accordingly, we fix the ratio to cah
/cbh

= 1 without loss of generality.

2. In practice, one may solve the quartic equation numerically, for example, by the ‘roots’ function in MATLAB R©.

3. In our latest work on performance analysis of VBMF, we have derived a simpler-form solution, which does not

require to solve a quartic equation (Nakajima et al., 2012b).

10
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Nakajima and Sugiyama (2011) obtained a closed form solution of the optimal hyperparame-

ter value ĉah
ĉbh

for SimpleVBMF. Therefore, we can easily obtain the global analytic solution for

empirical VBMF. We have the following theorem (the proof is given in Appendix C):

Theorem 5 The global empirical VB solution is given by

ÛEVB =
H

∑
h=1

γ̂EVB
h ωbh

ω⊤
ah
,

where

γ̂EVB
h =

{
γ̆VB

h if γh > γ
h

and ∆h ≤ 0,

0 otherwise.

Here,

γ
h
= (

√
L+

√
M)σ, (24)

c̆2
ah

c̆2
bh
=

1

2LM

(
γ2

h − (L+M)σ2 +

√(
γ2

h − (L+M)σ2
)2 −4LMσ4

)
, (25)

∆h = M log
( γh

Mσ2
γ̆VB

h +1
)
+L log

( γh

Lσ2
γ̆VB

h +1
)
+

1

σ2

(
−2γhγ̆VB

h +LMc̆2
ah

c̆2
bh

)
, (26)

and γ̆VB
h is the VB solution for cah

cbh
= c̆ah

c̆bh
.

By using Theorem 3 and Theorem 5, the global empirical VB solution can be computed analyt-

ically. This is again a strong advantage over the standard ICM algorithm since ICM would require

many iterations and restarts to find a good local minimum. The calculation procedure for the em-

pirical VB solution is as follows: After obtaining {γh} by singular value decomposition of V , we

first check if γh > γ
h

holds for each h, by using Equation (24). If it holds, we compute γ̆VB
h by using

Equation (25) and Theorem 3. Otherwise, γ̂EVB
h = 0. Finally, we check if ∆h ≤ 0 holds by using

Equation (26).

When the noise variance σ2 is unknown, it may be estimated by minimizing the VB free energy

with respect to σ2. In practice, this single-parameter minimization may be carried out numerically

based on Equation (20) and Theorem 4.

4. Matrix Factorization for Multivariate Analysis

In this section, we explicitly describe the relation between MF and multivariate analysis techniques.

4.1 Probabilistic PCA

The relation to principal component analysis (PCA) (Hotelling, 1933) is straightforward. In proba-

bilistic PCA (Tipping and Bishop, 1999), the observation v ∈R
L is assumed to be driven by a latent

vector ã ∈ R
H in the following form:

v = Bã+ε.

Here, B ∈ R
L×H specifies the linear relationship between ã and v, and ε ∈ R

L is a Gaussian noise

subject to NL(0,σ
2IL). Suppose that we are given M observed samples V = (v1, . . . ,vM) generated

11
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Figure 1: Linear neural network.

from the latent vectors A⊤ = (ã1, . . . , ãM), and each latent vector is subject to ã∼ NH(0, IH). Then,

the probabilistic PCA model is written as Equations (1) and (2) with CA = IH .

If we apply Bayesian inference, the intrinsic dimension H is automatically selected without

predetermination (Bishop, 1999). This useful property is called automatic dimensionality selection

(ADS). It was shown that ADS originates from the model-induced regularization effect (Nakajima

and Sugiyama, 2011).

4.2 Reduced Rank Regression

Reduced rank regression (RRR) (Baldi and Hornik, 1995; Reinsel and Velu, 1998) is aimed at

learning a relation between an input vector x ∈ R
M and an output vector y ∈ R

L by using the

following linear model:

y = BA⊤x+ε, (27)

where A ∈ R
M×H and B ∈ R

L×H are parameter matrices, and ε ∼ NL(0,σ
′2IL) is a Gaussian noise

vector. This can be expressed as a linear neural network (Figure 1). Thus, we can interpret this

model as first projecting the input vector x onto a lower-dimensional latent subspace by A⊤ and

then performing linear prediction by B.

Suppose we are given n pairs of input and output vectors:

V n = {(xi,yi) | xi ∈ R
M,yi ∈ R

L, i = 1, . . . ,n}. (28)

Then, the likelihood of the RRR model (27) is expressed as

p(V n|A,B) ∝ exp

(
− 1

2σ′2

n

∑
i=1

‖yi −BA⊤xi‖2

)
. (29)

Let us assume that the samples are centered:

1

n

n

∑
i=1

xi = 0 and
1

n

n

∑
i=1

yi = 0.

Furthermore, let us assume that the input samples are pre-whitened (Hyvärinen et al., 2001), that is,

they satisfy

1

n

n

∑
i=1

xix
⊤
i = IM.

12
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Let

V = ΣXY =
1

n

n

∑
i=1

yix
⊤
i (30)

be the sample cross-covariance matrix, and

σ2 =
σ′2

n
(31)

be a rescaled noise variance. Then the likelihood (29) can be written as

p(V n|A,B) ∝ exp

(
− 1

2σ2
‖V −BA⊤‖2

Fro

)
exp

(
− 1

2σ2

(
1

n

n

∑
i=1

‖yi‖2 −‖V‖2
Fro

))
. (32)

The first factor in Equation (32) coincides with the likelihood of the MF model (1), and the second

factor is constant with respect to A and B. Thus, RRR is reduced to MF.

However, the second factor depends on the rescaled noise variance σ2, and therefore, should be

considered when σ2 is estimated based on the free energy minimization principle. Furthermore, the

normalization constant of the likelihood (29) is slightly different from that of the MF model. Taking

into account of these differences, the VB free energy of the RRR model (29) with the priors (2) and

(3) is given by

FVB−RRR =
〈
logrA(A)+ logrB(B)− log p(V n|A,B)p(A)p(B)

〉
r(A)r(B)

=
∑n

i=1 ‖yi‖2

2nσ2
+

nL

2
logσ2 +

M

2
log

|CA|
|ΣA|

+
L

2
log

|CB|
|ΣB|

+
1

2
tr
{

C−1
A

(
Â⊤Â+MΣA

)
+C−1

B

(
B̂⊤B̂+LΣB

)

+σ−2
(
−2Â⊤V⊤B̂+

(
Â⊤Â+MΣA

)(
B̂⊤B̂+LΣB

))}
+ const. (33)

Note that the difference from Equation (20) exists only in the first two terms. Minimizing Equa-

tion (33), instead of Equation (20), gives an estimator for the rescaled noise variance. For the

standard ICM algorithm, the following update rule should be substituted for Equation (14):

(σ2)RRR =
n−1 ∑n

i=1 ‖yi‖2 − tr(2V⊤B̂Â⊤)+ tr
(
(Â⊤Â+MΣA)(B̂

⊤B̂+LΣB)
)

nL
. (34)

Once the rescaled noise variance σ2 is estimated, Equation (31) gives the original noise variance σ′2

of the RRR model (29).

4.3 Partial Least-Squares

Partial least-squares (PLS) (Worsley et al., 1997; Rosipal and Krämer, 2006) is similar to RRR. In

PLS, the parameters A and B are learned so that the squared Frobenius norm of the difference from

the sample cross-covariance matrix (30) is minimized:

(A,B) := argmin
A,B

‖ΣXY −BA⊤‖2
Fro. (35)

Clearly, PLS can be seen as the maximum likelihood estimation of the MF model (1).

13
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4.4 Canonical Correlation Analysis

For paired samples (28), the goal of canonical correlation analysis (CCA) (Hotelling, 1936; Ander-

son, 1984) is to seek vectors a ∈ R
M and b ∈ R

L such that the correlation between a⊤x and b⊤y is

maximized. a and b are called canonical vectors.

More formally, given the first (h− 1) canonical vectors a1, . . . ,ah−1 and b1, . . . ,bh−1, the h-th

canonical vectors are defined as

(ah,bh) := argmax
a,b

a⊤ΣXYb√
a⊤ΣXXa

√
b⊤ΣYYb

,

s.t. a⊤ΣXXah′ = 0 and b⊤ΣYYbh′ = 0 for h′ = 1, . . . ,h−1,

where ΣXX and ΣYY are the sample covariance matrices of x and y, respectively, and ΣXY is the

sample cross-covariance matrix, defined in Equation (30), of x and y. The entire solution A =

(a1, . . . ,aH) and B = (b1, . . . ,bH) are given as the H largest singular vectors of Σ
−1/2
XX ΣXY Σ

−1/2
YY .

Let us assume that x and y are both pre-whitened, that is, ΣXX = IM and ΣYY = IL. Then the

solutions A and B are given as the singular vectors of ΣXY associated with the H largest singular

values. Since the solutions of Equation (35) are also given by the H dominant singular vectors of

ΣXY (Stewart, 1993), CCA is reduced to the maximum likelihood estimation of the MF model (1).

5. Experimental Results

In this section, we show experimental results on artificial and benchmark data sets, which illustrate

practical usefulness of our analytic solution.

5.1 Experiment on Artificial Data

We compare the standard ICM algorithm and the analytic solution in the empirical VB scenario

with unknown noise variance, that is, the hyperparameters (CA,CB) and the noise variance σ2 are

also estimated from observation. We use the full-rank model (i.e., H = min(L,M)), and expect the

ADS effect to automatically find the true rank H∗.

Figure 2 shows the free energy, the computation time, and the estimated rank over iterations for

an artificial (Artificial1) data set with the data matrix size L = 100 and M = 300, and the true rank

H∗ = 20. We randomly created true matrices A∗ ∈ R
M×H∗

and B∗ ∈ R
L×H∗

so that each entry of A∗

and B∗ follows N1(0,1). An observed matrix V was created by adding a noise subject to N1(0,1)
to each entry of B∗A∗⊤.

The standard ICM algorithm consists of the update rules (8)–(14). Initial values were set in the

following way: Â and B̂ are randomly created so that each entry follows N1(0,1). Other variables

are set to ΣA = ΣB = CA = CB = IH and σ2 = 1. Note that we rescale V so that ‖V‖2
Fro/(LM) = 1,

before starting iterations. We ran the standard ICM algorithm 10 times, starting from different

initial points, and each trial is plotted by a solid line (labeled as ‘ICM(iniRan)’) in Figure 2. The

analytic solution consists of applying Theorem 5 combined with a naive 1-dimensional search for

the estimation of noise variance σ2. The analytic solution is plotted by the dashed line (labeled as

‘Analytic’). We see that the analytic solution estimates the true rank Ĥ = H∗ = 20 immediately

(∼ 0.1 sec on average over 10 trials), while the ICM algorithm does not converge in 60 sec.

Figure 3 shows experimental results on another artificial data set (Artificial2) where L = 70,

M = 300, and H∗ = 40. In this case, all the 10 trials of the ICM algorithm are trapped at local
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Figure 2: Experimental results for Artificial1 data set, where the data matrix size is L = 100 and

M = 300, and the true rank is H∗ = 20.

minima. We empirically observed that the local minima problem tends to be more critical, when H∗

is large (close to H).

We also evaluated the ICM algorithm with different initialization schemes. The line labeled as

‘ICM(iniML)’ indicates the ICM algorithm starting from the maximum likelihood (ML) solution:

(âh, b̂h) = (
√

γ
h
ωah

,
√

γ
h
ωbh

). The initial values for other variables are the same as the random

initialization. Figures 2 and 3 show that the ML initialization generally makes convergence faster

than the random initialization, but suffers from the local minima problem more often.

We observed that starting from a small noise variance tends to alleviate the local minima prob-

lem at the expense of slightly slower convergence. The line labeled as ‘ICM(iniMLSS)’ indicates

the ICM algorithm starting from the ML solution with a small noise variance σ2 = 0.0001. We see

in Figures 2 and 3 that this initialization improves quality of solutions, and successfully finds the

true rank for these artificial data sets. However, we will show in Section 5.2 that this scheme still

suffers from the local minima problem on benchmark data sets.

5.2 Experiment on Benchmark Data

Figures 4–6 show the PCA results on the Glass, the Satimage, and the Spectf data sets available

from the UCI repository (Asuncion and Newman, 2007). Similar tendency to the artificial data

experiment (Figures 2 and 3) is observed: ‘ICM(iniRan)’ converges slowly, and is often trapped
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Figure 3: Experimental results for Artificial2 data set (L = 70, M = 300, and H∗ = 40).

at local minima with wrong ranks;4 ‘ICM(iniML)’ converges slightly faster but to worse local

minima; ‘ICM(iniMLSS)’ tends to give better solutions. Unlike in the artificial data experiment,

‘ICM(iniMLSS)’ fails to find the correct rank with these benchmark data sets. We also conducted

experiments on other benchmark data sets, and found that the ICM algorithm generally converges

slowly, and sometimes suffers from the local minima problem, while our analytic-form gives the

global solution immediately.

Finally, we applied VBMF to a reduced rank regression (RRR) (Reinsel and Velu, 1998) task,

and show the results in Figure 7. We centered the L = 3-dimensional outputs and the M = 7-

dimensional inputs of the Concrete Slump Test data set, and pre-whitened the inputs. We also

standardized the outputs so that the variance of each element is equal to one. Note that we have to

minimize Equation (33), instead of Equation (20), for estimating the noise variance in our proposed

method with the analytic solution, and use Equation (34), instead of Equation (14), for updating the

noise variance in the standard ICM algorithm.

Overall, the proposed global analytic solution is shown to be a useful alternative to the standard

ICM algorithm.

4. Since the true ranks of the benchmark data sets are unknown, we mean by a wrong rank a rank different from the one

given by the global ’Analytic’ solution.

16



GLOBAL ANALYTIC SOLUTION OF VARIATIONAL BAYESIAN MATRIX FACTORIZATION

0 50 100 150 200 250

0

0.5

1

1.5

2

2.5

Iteration

F
/
(L

M
)

 

 

Analytic
ICM(iniML)
ICM(iniMLSS)
ICM(iniRan)

(a) Free energy

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3

Iteration

T
im

e(
se

c)

 

 

Analytic
ICM(iniML)
ICM(iniMLSS)
ICM(iniRan)

(b) Computation time

0 50 100 150 200 250
0

5

10

15

Iteration

Ĥ
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Figure 4: PCA results for the Glass data set (L = 9,M = 214).

6. Discussion

In this section, we first derive simple analytic-form solutions for special cases, where the model-

induced regularization and the prior-induced regularization can be clearly distinguished

(Section 6.1). Then, we discuss the relation between model pruning by VB and spontaneous sym-

metry breaking (Section 6.2). Finally, we consider possibilities of extending our results to more

general cases (Section 6.3).

6.1 Special Cases

Here, we consider two special cases, where simple-form solutions are obtained.

6.1.1 FLAT PRIOR

When cah
cbh

→ ∞ (i.e., the prior is almost flat), a simple-form exact solution for SimpleVBMF has

been obtained in Nakajima and Sugiyama (2011). Thanks to Theorem 1, the same applies to VBMF

under the standard matrix-wise independence assumption. This solution can be obtained also by

factorizing the quartic equation (23) as follows:

lim
cah

cbh
→∞

f (̂γh) =

(
γ̂h +

M

L

(
1−σ2L

γ2
h

)
γh

)(
γ̂h +

(
1−σ2M

γ2
h

)
γh

)

·
(

γ̂h −
(

1−σ2M

γ2
h

)
γh

)(
γ̂h −

M

L

(
1−σ2L

γ2
h

)
γh

)
= 0.
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Figure 5: PCA results for the Satimage data set (L = 36,M = 6435).
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Figure 6: PCA results for the Spectf data set (L = 44,M = 267).
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Figure 7: RRR results for the Concrete Slump Test data set (L = 3,M = 7).

Since Theorem 3 states that its second largest solution gives the VB estimator for

γh > limcah
cbh

→∞ γ̃h =
√

Mσ2, we have the following corollary:

Corollary 1 The global VB solution with the almost flat prior (i.e., cah
cbh

→ ∞) is given by

lim
cah

cbh
→∞

γ̂VB
h = γ̂PJS

h =





max

{
0,

(
1− Mσ2

γ2
h

)
γh

}
if γh > 0,

0 otherwise.

(36)

Equation (36) is the positive-part James-Stein (PJS) shrinkage estimator (James and Stein,

1961), operated on each singular component separately. This is actually the upper-bound of the

VB solution for arbitrary cah
cbh

> 0. The counter-intuitive fact—a shrinkage is observed even in

the limit of flat priors—can be explained by strong non-uniformity of the volume element of the

Fisher metric, that is, the Jeffreys prior (Jeffreys, 1946), in the parameter space. This effect is called

model-induced regularization (MIR), because it is induced not by priors but by the structure of the

model likelihood function (Nakajima and Sugiyama, 2011). MIR was shown to generally appear in

Bayesian estimation when the model is non-identifiable (i.e., the mapping between parameters and

distribution functions is not one-to-one) (Watanabe, 2009). The mechanism how non-identifiability

causes MIR and ADS in VBMF was explicitly illustrated in Nakajima and Sugiyama (2011).

6.1.2 SQUARE MATRIX

Also when L = M (i.e., the observation matrix V is square), a simple-form solution can be obtained.

Since ξ3 = ξ1 = 0 (see Theorem 3) in this case, the quartic equation (23) can be solved as a quadratic

19



NAKAJIMA, SUGIYAMA, BABACAN AND TOMIOKA

equation with respect to γ̂2
h (Nakajima and Sugiyama, 2011). We can also find the solution by

factorizing the quartic equation (23) for γh >
√

Mσ2 as follows:

f square(̂γh) =

(
γ̂h + γ̂PJS

h +
σ2

cah
cbh

)(
γ̂h + γ̂PJS

h − σ2

cah
cbh

)

·
(

γ̂h − γ̂PJS
h +

σ2

cah
cbh

)(
γ̂h − γ̂PJS

h − σ2

cah
cbh

)
= 0.

Using Theorem 3, we have the following corollary:

Corollary 2 When L = M, the global VB solution is given by

γ̂
VB−square
h = max

{
0, γ̂PJS

h − σ2

cah
cbh

}
. (37)

Equation (37) shows that, in this case, MIR and prior-induced regularization (PIR) can be com-

pletely decomposed—the estimator is equipped with the model-induced PJS shrinkage (̂γPJS
h ) and

the prior-induced trace-norm shrinkage (−σ2/(cah
cbh

)).
The empirical VB solution is also simplified in this case. The following corollary is obtained

simply by combining Theorem 1 in this paper and Corollary 2 in Nakajima and Sugiyama (2011):

Corollary 3 When L = M, the global empirical VB solution is given by

γ̂EVB
h =





(
1− Mσ2

γ2
h

−ρ−

)
γh if γh > γ

h
and ∆′

h ≤ 0,

0 otherwise,

where

γ
h
= 2

√
Mσ,

∆′
h = log

(
γ2

h

Mσ2
(1−ρ−)

)
− γ2

h

Mσ2
(1−ρ−)+

(
1+

γ2
h

2Mσ2
ρ2
+

)
,

ρ± =

√√√√1

2

(
1− 2Mσ2

γ2
h

±
√

1− 4Mσ2

γ2
h

)
.

By using Corollary 2 and Corollary 3, respectively, we can easily compute the VB and the

empirical VB solutions in this case without a quartic solver.

6.2 Model Pruning and Spontaneous Symmetry Breaking

Mackay (2001) pointed out that there are cases when VB prunes model components inappropriately,

giving a toy example of a mixture of Gaussians. There, appropriateness is measured in terms

of the similarity to the rigorous Bayesian estimation. He plotted the free energy of the mixture

of Gaussians as a function of hidden responsibility variables—the probabilities that each sample

belongs to each Gaussian component—and argued that VB sometimes favors simpler models too

much. In this case, degrees of freedom are pruned when spontaneous symmetry breaking occurs.
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Figure 8: Bayes posteriors (top row) and the VB posteriors (bottom row) of a scalar factorization

model (i.e., a MF model for L = M = H = 1) with σ2 = 1 and ca = cb = 100 (almost

flat priors), when the observed values are V = 0 (left), V = 1 (middle), and V = 2 (right),

respectively. In the top row, the asterisks indicate the MAP estimators, and the dashed

lines the ML estimators (the modes of the contour). In the bottom row, the asterisks

indicate the VB estimators. All graphs are quoted from Nakajima and Sugiyama (2011).

In VBMF, degrees of freedom are pruned when spontaneous symmetry breaking does not occur.

Figure 8 shows the Bayes posteriors (top row) and the VB posteriors (bottom row) of a scalar

factorization model (i.e., a MF model for L = M = H = 1) with σ2 = 1 and ca = cb = 100 (almost

flat priors). As we can see in the top row, the Bayes posterior has two modes unless V = 0, and

the distance between the two modes increases as |V | increases. Since the VB posterior tries to

approximate the Bayes posterior with a single uncorrelated distribution, it stays at the origin when

|V | is not sufficiently large. When |V | is large enough, the VB posterior approximates one of the

modes, as seen in the graphs in the right column (for the case when V = 2) of Figure 8 (note that

there also exists an equivalent VB solution located at (A,B)≈ (−
√

1.5,−
√

1.5)).

Equation (36) implies that symmetry breaking occurs when V > γ̃h ∼
√

Mσ2 = 1, which co-

incides with the average contribution of noise to the observed singular values over all singular

components. In this way, VBMF discards singular components dominated by noise. EVBMF has
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a different transition point, and tends to give a sparser solution (see Section 4 in Nakajima and

Sugiyama (2011) for further discussion).

Given that the rigorous Bayesian estimator in MF is not sparse (see Figure 10 in Nakajima

and Sugiyama, 2011), one might argue that the sparsity of VBMF is inappropriate. On the other

hand, given that model pruning by VB has been acknowledged as a practically useful property, one

might also argue that appropriateness should be measured in terms of performance. Motivated by

the latter idea, we have conducted performance analysis of EVBMF in our latest work (Nakajima

et al., 2012b), and shown that model pruning by EVBMF works perfectly under some condition.

Conducting performance analysis in other models would be our future work.

6.3 Extensions

In this paper, we derived the global analytic solution of VBMF, by fully making use of the assump-

tions that the likelihood and priors are both spherical Gaussian, and that the observed matrix has no

missing entry. They were necessary to solve the free energy minimization problem as a reweighted

SVD. In this subsection, we discuss possibilities to extend our results to more general problems.

6.3.1 ROBUST PCA

VBMF gives a low-rank solution, which can be seen as a singular-component-wise sparse solution.

We can extend our analysis so that a wider variety of sparsity can be handled.

Robust PCA (Candes et al., 2009) has recently gathered a great deal of attention. Equipped

with an element-wise sparse term in addition to a low-rank term, robust PCA separates the low

dimensional data structure from spiky noise. Its VB variant has also been proposed (Babacan et al.,

2012). To obtain the VB solution of robust PCA, we have proposed a novel algorithm where the

analytic VBMF solution is applied to partial problems (Nakajima et al., 2012a). Although the global

optimality is not guaranteed, this algorithm has been experimentally shown to give a better solution

than the standard ICM algorithm. In addition, our proposed algorithm can handle a variety of sparse

terms beyond robust PCA.

6.3.2 TENSOR FACTORIZATION

We have shown that the VB solution under matrix-wise independence essentially agrees with the

SimpleVB solution under column-wise independence. We expect that similar redundancy would

be found also in other models, for example, tensor factorization (Kolda and Bader, 2009; Carroll

and Chang, 1970; Harshman, 1970; Tucker, 1996). In our preliminary study so far, we saw that

the analytic VB solution for tensor factorization is not attainable, at least in the same way as MF.

However, we have found that the optimal solution has diagonal covariances for the core tensor

in Tucker decomposition (Nakajima, 2012), which would allow us to greatly simplify inference

algorithms and reduce necessary memory storage and computational costs.

6.3.3 CORRELATED PRIORS

Our analysis assumed uncorrelated priors. With correlated priors, the posterior is no longer uncor-

related and thus it is not straightforward in general to obtain the global solution from the results

obtained in this paper. One exception is the following: Suppose there exists an H ×H non-singular

matrix T such that both of C′
A = TCAT⊤ and C′

B = (T−1)⊤CBT−1 are diagonal. We can show that
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the free energy (20) is invariant under the following transformation for any T :

A → AT⊤, ΣA → T ΣAT⊤, CA → TCAT⊤,

B → BT−1, ΣB → (T−1)T ΣBT−1, CB → (T−1)⊤CBT−1.

Accordingly, the following procedure gives the global solution analytically: the analytic solution

given the diagonal (C′
A,C

′
B) is first computed, and the above transformation is then applied.

Handling priors correlated over rows of A and B is more challenging and remains as future

work. Such a prior allows model correlations in the observation space, and can capture useful

characteristics of data, for example, short-term correlation in time-series data and correlation among

neighboring pixels in image data.

6.3.4 MISSING ENTRIES PREDICTION

Missing entries prediction is another prototypical application of MF (Konstan et al., 1997; Funk,

2006; Lim and Teh, 2007; Ilin and Raiko, 2010; Salakhutdinov and Mnih, 2008), where finding the

global VBMF solution seems a very hard problem. However, one may use our analytic solution as

a subroutine, for example, in the soft-thresholding step of SOFT-IMPUTE (Mazumder et al., 2010).

Along this line, Seeger and Bouchard (2012) have recently proposed an algorithm, which tends to

give a better local solution than the standard ICM algorithm for missing entries prediction. They

also proposed a way to cope with non-Gaussian likelihood functions.

7. Conclusion

Overcoming the non-convexity of VB methods has been one of the important challenges in the

Bayesian machine learning community, since it sometimes prevented us from applying the VB

methods to highly complex real-world problems. In this paper, we focused on the matrix factor-

ization (MF) problem with no missing entry, and showed that this weakness could be overcome by

analytically computing the global optimal solution. We further derived the global optimal solution

analytically for the empirical VBMF method, where hyperparameters are also optimized based on

data samples. Since no hand-tuning parameter remains in empirical VBMF, our analytic-form solu-

tion is practically useful and computationally highly efficient. Numerical experiments showed that

the proposed approach is promising.

We discussed the possibility that our analytic solution can be used as a building block of novel

algorithms for more general problems. Tackling such possible extensions and conducting perfor-

mance analysis of those methods are our future work.

Acknowledgments

The authors thank anonymous reviewers for their helpful comments, which significantly improved

the paper. Shinichi Nakajima and Masashi Sugiyama thank the support from Grant-in-Aid for Scien-

tific Research on Innovative Areas: Prediction and Decision Making, 23120004. S. Derin Babacan

was supported by a Beckman Postdoctoral Fellowship. Ryota Tomioka was supported by Grant-in-

Aid for Young Scientists (B) 22700138.

23



NAKAJIMA, SUGIYAMA, BABACAN AND TOMIOKA

Appendix A. Proof of Theorem 1

In the same way as in the analysis for the SimpleVB approximation (see the proof of Lemma 10

in Nakajima and Sugiyama, 2011), we can show that any minimizer of the free energy (20) is a

stationary point. Therefore, Equations (8)–(11) hold for any solution.

We consider the following three cases:

Case 1 When no pair of diagonal entries of CACB coincide.

Case 2 When all diagonal entries of CACB coincide.

Case 3 When (not all but) some pairs of diagonal entries of CACB coincide.

In the following, we prove that, in Case 1, ΣA and ΣB are diagonal for any solution (Â, B̂,ΣA,ΣB),
and that, in other cases, any solution has its equivalent solution with diagonal ΣA and ΣB.

Our proof relies on a technique related to the following proposition:

Proposition 6 (Ruhe, 1970) Let λh(Φ),λh(Ψ) be the h-th largest eigenvalues of positive-definite

symmetric matrices Φ,Ψ ∈ R
H×H , respectively. Then, it holds that

tr{Φ−1Ψ} ≥
H

∑
h=1

λh(Ψ)

λh(Φ)
.

We use the following lemma (its proof is given in Appendix D.1):

Lemma 7 Let Γ,Ω,Φ ∈ R
H×H be a non-degenerate diagonal matrix, an orthogonal matrix, and a

symmetric matrix, respectively. Let {Λ(k),Λ′(k) ∈ R
H×H ;k = 1, . . . ,K} be arbitrary diagonal matri-

ces. If

G(Ω) = tr

{
ΓΩΦΩ⊤+

K

∑
k=1

Λ(k)ΩΛ′(k)Ω⊤
}

(38)

is minimized (as a function of Ω, given Γ,Φ,{Λ(k),Λ′(k)}) when Ω = IH , then Φ is diagonal. Here,

K can be any natural number including K = 0 (when only the first term exists).

A.1 Proof for Case 1

Here, we consider the case when cah
cbh

> cah′ cbh′ for any pair h < h′. We will show that any

minimizer has diagonal covariances in this case.

Assume that (A∗,B∗,Σ∗
A,Σ

∗
B) is a minimizer of the free energy (20), and consider the following

variation from it with respect to an arbitrary H ×H orthogonal matrix Ω:

Â = A∗C−1/2

A Ω⊤C
1/2

A , (39)

B̂ = B∗C1/2

A Ω⊤C
−1/2

A , (40)

ΣA =C
1/2

A ΩC
−1/2

A Σ∗
AC

−1/2

A Ω⊤C
1/2

A , (41)

ΣB =C
−1/2

A ΩC
1/2

A Σ∗
BC

1/2

A Ω⊤C
−1/2

A . (42)
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Note that this variation does not change B̂Â⊤, and that (Â, B̂,ΣA,ΣB) = (A∗,B∗,Σ∗
A,Σ

∗
B) holds if

Ω = IH . Then, the free energy (20) can be written as a function of Ω:

FVB(Ω) =
1

2
tr
{

C−1
A C−1

B ΩC
1/2

A

(
B∗⊤B∗+LΣ∗

B

)
C

1/2

A Ω⊤
}
+ const. (43)

(the terms except the second term in the curly braces in Equation (20) are constant).

We define

Φ =C
1/2

A

(
B∗⊤B∗+LΣ∗

B

)
C

1/2

A ,

and rewrite Equation (43) as

FVB(Ω) =
1

2
tr
{

C−1
A C−1

B ΩΦΩ⊤
}
+ const. (44)

The assumption that (A∗,B∗,Σ∗
A,Σ

∗
B) is a minimizer requires that Equation (44) is minimized

when Ω = IH . Then, Lemma 7 (for K = 0) implies that Φ is diagonal.5 Therefore,

C
−1/2

A ΦC
−1/2

A (= ΦC−1
A ) = B∗⊤B∗+LΣ∗

B

is also diagonal. Consequently, Equation (10) implies that Σ∗
A is diagonal.

Next, consider the following variation with respect to an arbitrary H ×H orthogonal matrix Ω′,

Â = A∗C1/2
B Ω′⊤C

−1/2
B ,

B̂ = B∗C−1/2
B Ω′⊤C

1/2
B ,

ΣA =C
−1/2
B Ω′C1/2

B Σ∗
AC

1/2
B Ω′⊤C

−1/2
B ,

ΣB =C
1/2
B Ω′C−1/2

B Σ∗
BC

−1/2
B Ω′⊤C

1/2
B .

Then, the free energy as a function of Ω′ is given by

FVB(Ω′) =
1

2
tr
{

C−1
A C−1

B Ω′C1/2
B

(
A∗⊤A∗+MΣ∗

A

)
C

1/2
B Ω′⊤

}
+ const.

From this, we can similarly prove that Σ∗
B is also diagonal, which completes the proof for Case 1.

A.2 Proof for Case 2

Here, we consider the case when CACB = cIH for some positive c ∈ R. In this case, there exist

solutions with non-diagonal covariances. However, any of them belongs to an equivalent class

involving a solution with diagonal covariances.

We can easily show that the free energy (20) is invariant of Ω under the transformation (39)–

(42). This arbitrariness forms an equivalent class of solutions. Since there exists Ω that diagonalizes

any given Σ∗
A through Equation (41), each equivalent class involves a solution with diagonal ΣA. In

the following, we will prove that any solution with diagonal ΣA has diagonal ΣB.

5. Proposition 6 implies that the diagonal entries of Φ are arranged in non-increasing order.
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Assume that (A∗,B∗,Σ∗
A,Σ

∗
B) is a solution with diagonal Σ∗

A, and consider the following variation

from it with respect to an arbitrary H ×H orthogonal matrix Ω:

Â=A∗C−1/2

A Γ−1/2Ω⊤Γ1/2C
1/2

A ,

B̂=B∗C1/2

A Γ1/2Ω⊤Γ−1/2C
−1/2

A ,

ΣA=C
1/2

A Γ1/2ΩΓ−1/2C
−1/2

A Σ∗
AC

−1/2

A Γ−1/2Ω⊤Γ1/2C
1/2

A ,

ΣB=C
−1/2

A Γ−1/2ΩΓ1/2C
1/2

A Σ∗
BC

1/2

A Γ1/2Ω⊤Γ−1/2C
−1/2

A .

Here, Γ = diag(γ1, . . . ,γH) is an arbitrary non-degenerate (γh 6= γh′ for h 6= h′) positive-definite diag-

onal matrix. Then, the free energy can be written as a function of Ω:

FVB(Ω) =
1

2
tr
{

ΓΩΓ−1/2C
−1/2

A

(
A∗⊤A∗+MΣ∗

A

)
C
−1/2

A Γ−1/2Ω⊤

+c−1Γ−1ΩΓ1/2C
1/2

A

(
B∗⊤B∗+LΣ∗

B

)
C

1/2

A Γ1/2Ω⊤
}
. (45)

We define

ΦA = Γ−1/2C
−1/2

A

(
A∗⊤A∗+MΣ∗

A

)
C
−1/2

A Γ−1/2,

ΦB = c−1Γ1/2C
1/2

A

(
B∗⊤B∗+LΣ∗

B

)
C

1/2

A Γ1/2,

and rewrite Equation (45) as

FVB(Ω) =
1

2
tr
{

ΓΩΦAΩ⊤+Γ−1ΩΦBΩ⊤
}
. (46)

Since Σ∗
A is diagonal, Equation (10) implies that ΦB is diagonal. The assumption that

(A∗,B∗,Σ∗
A,Σ

∗
B) is a solution requires that Equation (46) is minimized when Ω = IH . Accordingly,

Lemma 7 implies that ΦA is diagonal. Consequently, Equation (11) implies that Σ∗
B is diagonal.

Thus, we have proved that any solution has its equivalent solution with diagonal covariances,

which completes the proof for Case 2.

A.3 Proof for Case 3

Finally, we consider the case when cah
cbh

= ca′h
cbh′ for (not all but) some pairs h 6= h′. First, in

the same way as for Case 1, we can prove that ΣA and ΣB are block diagonal where the blocks

correspond to the groups sharing the same cah
cbh

. Next, we can apply the proof for Case 2 to each

block, and show that any solution has its equivalent solution with diagonal ΣA and ΣB. Combining

these results completes the proof of Theorem 1.

A.4 General Expression

In summary, for any minimizer of Equation (20), the covariances can be written in the following

form:

ΣA =C
1/2

A ΘC
−1/2

A ΓΣA
C
−1/2

A Θ⊤C
1/2

A (=C
−1/2
B ΘC

1/2
B ΓΣA

C
1/2
B Θ⊤C

−1/2
B ), (47)

ΣB =C
−1/2

A ΘC
1/2

A ΓΣB
C

1/2

A Θ⊤C
−1/2

A (=C
1/2
B ΘC

−1/2
B ΓΣB

C
−1/2
B Θ⊤C

1/2
B ). (48)
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Here, ΓΣA
and ΓΣB

are positive-definite diagonal matrices, and Θ is a block diagonal matrix such

that the blocks correspond to the groups sharing the same cah
cbh

, and each block consists of an

orthogonal matrix. Furthermore, if there exists a solution with (ΣA,ΣB) written in the form of Equa-

tions (47) and (48) with a certain set of (ΓΣA
,ΓΣB

,Θ), then there also exist its equivalent solutions

with the same (ΓΣA
,ΓΣB

) for any Θ. Focusing on the solution with Θ = IH as the representative of

each equivalent class, we can assume that ΣA and ΣB are diagonal without loss of generality.

Appendix B. Proof of Theorem 3 and Theorem 4

Combining Theorem 1 and Proposition 2, we have the following lemma:

Lemma 8 Let γh (≥ 0) be the h-th largest singular value of V , and let ωah
and ωbh

be the associated

right and left singular vectors:

V =
L

∑
h=1

γhωbh
ω⊤

ah
.

Then, the global VB solution (under the matrix-wise independence (6)) can be expressed as

ÛVB ≡ 〈BA⊤〉rVB(A,B) =
H

∑
h=1

γ̂VB
h ωbh

ω⊤
ah
.

Let

γ̃h =

√√√√√(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

+

√√√√
(
(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

)2

−LMσ4. (49)

When

γh ≤ γ̃h,

the VB solution for the h-th component is γ̂VB
h = 0. When

γh > γ̃h, (50)

γ̂VB
h is given as a positive real solution of

γ̂2
h +q1(̂γh) · γ̂h +q0 = 0, (51)

where

q1(̂γh) =

−(M−L)2(γh − γ̂h)+(L+M)

√
(M−L)2(γh − γ̂h)2 + 4σ4LM

c2
ah

c2
bh

2LM
, (52)

q0 =
σ4

c2
ah

c2
bh

−
(

1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h. (53)

When Inequality (50) holds, Equation (51) has only one positive real solution, which lies in

0 < γ̂h < γh. (54)
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To obtain an analytic-form solution, we will find the positive solution of Equation (51) for

γh > γ̃h. Because q1(̂γh) depends on the square root of γ̂h, Equation (51) is not polynomial. However,

since it has only one non-polynomial term, we can easily convert it to a polynomial form in the

following way.

Substituting Equations (52) and (53), we can rewrite Equation (51) as

−(M2 +L2)

2LM
γ̂2

h+
(M−L)2γh

2LM
γ̂h+

√
ξ0=




(M+L)

√
{(M−L)(γh − γ̂h)}2

+ 4σ4ML

c2
ah

c2
bh

2LM


γ̂h. (55)

Squaring both sides of Equation (55) removes the square root in the right-hand side, and leads to

the quartic equation (23),

f (̂γh) := γ̂4
h +ξ3γ̂3

h +ξ2γ̂2
h +ξ1γ̂h +ξ0 = 0, (23)

where

ξ3 =
(L−M)2γh

LM
, (56)

ξ2 =−
(

ξ3γh +
(L2 +M2)η2

h

LM
+

2σ4

c2
ah

c2
bh

)
, (57)

ξ1 = ξ3

√
ξ0, (58)

ξ0 =

(
η2

h −
σ4

c2
ah

c2
bh

)2

, (59)

η2
h =

(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h. (60)

Since we derived Equation (23) from Equation (51), any solution satisfying Equation (51) satis-

fies Equation (23). However, the converse does not necessarily hold, because squaring both sides of

Equation (55) can create solutions that do not satisfy the original equation (51). By examining the

possible range of the positive solution of Equation (51), we obtain the following lemma (the proof

is given in Appendix D.2):

Lemma 9 Assume that Inequality (50) holds. Any positive solution of Equation (51) lying in the

range (54) satisfies the quartic equation (23), and lies in the following range:

0 < γ̂h < ξ
1/4

0 . (61)

Conversely, any positive solution of the quartic equation (23) lying in the range (61) satisfies Equa-

tion (51), and lies in the range (54).

Lemma 8 and Lemma 9 imply that finding the VB solution is achieved by finding a positive

solution of the quartic equation (23) lying in the range (61). Investigating the shape of the quar-

tic function f (̂γh), defined in Equation (23), we have the following lemma (the proof is given in

Appendix D.3):
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Lemma 10 Assume that Inequality (50) holds. The quartic equation (23) has two positive real

solutions. The smaller one lies in the range (61), and the larger one lies outside the range.

Combining Lemma 8, Lemma 9, and Lemma 10 completes the proof of Theorem 3.

The following lemma is obtained by summarizing Lemma 11, Lemma 12, Lemma 14, Lemma 15,

and Lemma 17 in Nakajima and Sugiyama (2011), and then combining with Theorem 1 in this pa-

per:6

Lemma 11 Let

(η̂2
h)

null =
σ4

c2
ah

c2
bh

,

(σ2
ah
)null =

−
(
(η̂2

h)
null −σ2(M−L)

)
+
√
((η̂2

h)
null −σ2(M−L))2 +4Mσ2(η̂2

h)
null

2Mσ2c−2
ah

,

(σ2
bh
)null =

−
(
(η̂2

h)
null +σ2(M−L)

)
+
√
((η̂2

h)
null +σ2(M−L))2 +4Lσ2(η̂2

h)
null

2L(̂γhδ̂h +σ2c−2
bh
)

.

When γh ≤ γ̃h, the means and the variances of the VB posterior for the h-th component are given by

(âh, b̂h,(ΣA)h,h,(ΣB)h,h) =
(
0,0,(σ2

ah
)null,(σ2

bh
)null
)
.

For γh > γ̃h, let

δ̂h =

(M−L)(γh − γ̂h)+

√
(M−L)2(γh − γ̂h)2 + 4σ4LM

c2
ah

c2
bh

2σ2Mc−2
ah

, (62)

σ2
ah
=

−
(
η̂2

h −σ2(M−L)
)
+
√
(η̂2

h −σ2(M−L))2 +4Mσ2η̂2
h

2M(̂γhδ̂−1
h +σ2c−2

ah
)

,

σ2
bh
=

−
(
η̂2

h +σ2(M−L)
)
+
√
(η̂2

h +σ2(M−L))2 +4Lσ2η̂2
h

2L(̂γhδ̂h +σ2c−2
bh
)

.

When γh > γ̃h, the means and the variances of the VB posterior for the h-th component are given by

(âh, b̂h,(ΣA)h,h,(ΣB)h,h) = (±
√

γ̂hδ̂hωah
,±
√

γ̂hδ̂−1
h ωbh

,σ2
ah
,σ2

bh
).

Combining Theorem 3 and Lemma 11 completes the proof of Theorem 4.

Appendix C. Proof of Theorem 5

Summarizing Lemma 22, Lemma 23, and Lemma 24 in Nakajima and Sugiyama (2011), and then

combining with Theorem 1 in this paper, we have the following lemma:

6. We also used Equation (147) in Nakajima and Sugiyama (2011), which is identical to Equation (62) in this paper.
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Lemma 12 If γh ≥ γ
h
, the VB free energy (20) can have two local minima, i.e., cah

cbh
→ 0 and

cah
cbh

= c̆ah
c̆bh

. Otherwise, cah
cbh

→ 0 is the only local minimum.

It was also shown in Nakajima and Sugiyama (2011) that the (scaled) free energy difference

between the two local minima is given by ∆h (the positive local minimum with cah
cbh

= c̆ah
c̆bh

gives

lower free energy than the null local minimum with cah
cbh

→ 0 if and only if ∆h ≤ 0).7 Thus, we

have the following lemma:

Lemma 13 The hyperparameter ĉah
ĉbh

that globally minimizes the VB free energy (20) is given by

ĉah
ĉbh

= c̆ah
c̆bh

if γh > γ
h

and ∆h ≤ 0. Otherwise ĉah
ĉbh

→ 0.

Combining Lemma 13 and Theorem 3 completes the proof of Theorem 5.

Appendix D. Proof of Lemmas

In this appendix, we prove lemmas used in the previous appendices.

D.1 Proof of Lemma 7

Let

Φ = Ω′Γ′Ω′⊤ (63)

be the eigenvalue decomposition of Φ. Let γ,γ ′,{λ(k)},{λ′(k)} be the vectors consist of the diago-

nal entries of Γ,Γ′,{Λ(k)},{Λ′(k)}, respectively, i.e,

Γ = diag(γ), Γ′ = diag(γ ′), Λ(k) = diag(λ(k)), Λ′(k) = diag(λ′(k)).

Then, Equation (38) can be written as

G(Ω) = tr

{
ΓΩΦΩ⊤+

K

∑
k=1

Λ(k)ΩΛ′(k)Ω⊤
}

= γ⊤Qγ ′+
K

∑
k=1

λ(k)⊤Rλ′(k), (64)

where

Q = (ΩΩ′)∗ (ΩΩ′), R = Ω∗Ω.

Here, ∗ denotes the Hadamard product.8

Using this expression, we will prove that Φ is diagonal if Ω = IH minimizes Equation (64). Let

us consider a bilateral perturbation Ω = ∆ such that the 2× 2 matrix ∆(h,h′) consisting of the h-th

and the h′-th columns and rows form an 2×2 orthogonal matrix

∆(h,h′) =

(
cosθ −sinθ

sinθ cosθ

)
,

7. Equation (26) was obtained as Equation (172) in Nakajima and Sugiyama (2011).

8. Note that Q as well as R is the Hadamard square of an orthogonal matrix, which is known to be doubly stochastic (i.e.,

any of the columns and the rows sums up to one) (Marshall et al., 2009). Therefore, it can be seen that Q reassigns

the components of γ to those of γ ′ when calculating the element-wise product in the first term of Equation (64). The

same applies to R and {λ(k),λ′(k)} in the second term. Naturally, rearranging the components of γ in non-decreasing

order and the components of γ ′ in non-increasing order minimizes γ⊤Qγ ′, which proves Proposition 6 (Ruhe, 1970;

Marshall et al., 2009).
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and the rest entries coincide with those of the identity matrix. Then, the elements of Q become

Qi, j =





(Ω′
h, j cosθ−Ω′

h′, j sinθ)2 if i = h,

(Ω′
h, j sinθ+Ω′

h′, j cosθ)2 if i = h′,

Ω′2
i, j otherwise,

and Equation (64) can be written as a function of θ:

G(θ) =
H

∑
j=1

{
γh(Ω

′
h, j cosθ−Ω′

h′, j sinθ)2 + γh′(Ω
′
h, j sinθ+Ω′

h′, j cosθ)2
}

γ′j

+
K

∑
k=1

(
λ
(k)
h λ

(k)
h′

)(
cos2 θ sin2 θ

sin2 θ cos2 θ

)(
λ
(k)
h

λ
(k)
h′

)
+ const.. (65)

Since Equation (65) is differentiable at θ = 0, our assumption that Equation (64) is minimized

when Ω = IH requires that θ = 0 is a stationary point of Equation (65) for any h 6= h′. Therefore, it

holds that

0 =
∂G

∂θ

∣∣∣∣
θ=0

= 2(γh′ − γh)∑
j

Ω′
h, jγ

′
jΩ

′
h′, j = 2(γh′ − γh)Φh,h′ . (66)

In the last equation, we used Equation (63). Since we assume that Γ is non-degenerate (γh 6= γh′ for

h 6= h′), Equation (66) implies that Φ is diagonal, which completes the proof of Lemma 7.

D.2 Proof of Lemma 9

Assume that Inequality (50) holds, i.e.,

γh > γ̃h. (50)

By using Equation (60), we have

η2
h −

σ4

c2
ah

c2
bh

=

(
1− σ2L

γ2
h

)(
1− σ2M

γ2
h

)
γ2

h −
σ4

c2
ah

c2
bh

= γ−2
h

(
γ2

h − γ̃2
h

)(
γ2

h − γ́2
h

)
, (67)

where

γ́h =

√√√√√(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

−

√√√√
(
(L+M)σ2

2
+

σ4

2c2
ah

c2
bh

)2

−LMσ4. (68)

Comparing Equations (49) and (68) leads to

γ̃h > γ́h,

and therefore, Equation (67) is positive, i.e.,

η2
h −

σ4

c2
ah

c2
bh

> 0. (69)
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Combining Equations (59) and (60), and Inequality (69) leads to

0 < ξ
1/4

0 < ηh < γh. (70)

Combining Equations (53), (59), and (60) leads to

q0 =−
√

ξ0. (71)

Let us first assume that we have a positive solution of Equation (51) lying in the range (54),

0 < γ̂h < γh. (54)

Since Equation (23) was derived from Equation (51), this solution naturally satisfies Equation (23).

For the solution, Equation (52) implies that

q1(̂γh)> 0.

Inequalities (70) and Equation (71) imply that

q0 < 0.

Therefore, by ignoring the positive second term in the left-hand side of Equation (51), we find that

the solution lies in the range (61),

0 < γ̂h <
√−q0 = ξ

1/4

0 . (61)

Here, we used Equation (71) in the last equality.

Conversely, assume that we have a positive solution of Equation (23) lying in the range (61).

Since Equation (23) was derived by squaring both sides of Equation (55), the solution satisfies

Equation (55) if the both sides of Equation (55) have the same sign. Clearly, the right-hand side of

Equation (55) is positive. We will show that the left-hand side of Equation (55),

g(̂γh) =−(M2 +L2)

2LM
γ̂2

h +
(M−L)2γh

2LM
γ̂h +

√
ξ0,

is also positive.

Note that g(̂γh) is strictly concave because it is a quadratic function with a negative coefficient

of the quadratic term. Since we are assuming that the solution lies in the range (61), the following

holds:

g(̂γh)> min
{

g(0),g(ξ
1/4

0 )
}

> min

{√
ξ0,

(M−L)2γh

2LM
ξ

1/4

0 (γh −ξ
1/4

0 )

}

> 0.

We used Inequalities (70) in the last inequality. Thus, we have shown that the left-hand side, g(̂γh),
of Equation (55) is also positive, and therefore, the solution satisfies Equation (55). This means that

the solution also satisfies its equivalent equation (51). Since Inequalities (70) imply that the range

(61) is included in the range (54), the solution trivially lies in the range (54), which completes the

proof of Lemma 9.
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D.3 Proof of Lemma 10

We will investigate the shape of the quartic function (23),

f (̂γh) := γ̂4
h +ξ3γ̂3

h +ξ2γ̂2
h +ξ1γ̂h +ξ0. (23)

Since the coefficient of the quartic term is positive (equal to one), f (̂γh) goes to infinity as

γ̂h →−∞ or γ̂h → ∞. Since Equation (59) implies that ξ0 > 0, it holds that f (0)> 0.

By using Equation (58), we have

f (ξ
1/4

0 ) = ξ0 +ξ3ξ
3/4

0 +ξ2

√
ξ0 +ξ1ξ

1/4

0 +ξ0

= ξ0 +ξ3ξ
3/4

0 +ξ2

√
ξ0 +ξ3ξ

3/4

0 +ξ0

=
√

ξ0

(
2
√

ξ0 +2ξ3ξ
1/4

0 +ξ2

)
.

By using Inequalities (70) and Equation (57), this can be bounded as

f (ξ
1/4

0 )<
√

ξ0

(
2η2

h +2ξ3ηh −ξ3γh −
(L2 +M2)η2

h

LM

)

=
√

ξ0

(
2ξ3ηh −ξ3γh −

(L−M)2η2
h

LM

)

=

√
ξ0ξ3

γh

(
2ηhγh − γ2

h −η2
h

)

=−
√

ξ0ξ3

γh

(γh −ηh)
2

< 0.

Here, we used Equation (56) in the third equality, and Inequalities (70) in the last inequality.

In summary, we have the following:

lim
γ̂h→−∞

f (̂γh) = ∞,

f (0)> 0, (72)

f (ξ
1/4

0 )< 0, (73)

lim
γ̂h→∞

f (̂γh) = ∞. (74)

Furthermore, since Equation (57) implies that ξ2 < 0, f (̂γh) has a negative curvature at the origin,

i.e., (∂2 f/∂2γ̂h)(0) < 0. This means that f (̂γh) has one inflection point each in the positive region

γ̂h > 0 and in the negative region γ̂h < 0. The shape of the quartic function f (̂γh) is shown in

Figure 9. Note that the points at which f (̂γh) crosses the horizontal axis are the solutions of the

quartic equation (23).

Inequality (73) and Equation (74) imply that at least one solution exists in the region

γ̂h > ξ
1/4

0 .
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f(γ̂h) := γ̂4

h
+ ξ3γ̂

3

h
+ ξ2γ̂

2

h
+ ξ1γ̂h + ξ0

γ̂h

Inflection points
γ̂
second

h

Figure 9: The shape of a quartic function f (̂γh) := γ̂4
h + ξ3γ̂3

h + ξ2γ̂2
h + ξ1γ̂h + ξ0, where ξ2 < 0,

ξ0(= f (0)) > 0, and f (ξ
1/4

0 ) < 0. The range 0 < γ̂h < ξ
1/4

0 , where the second largest

positive real solution γ̂second
h exists, is highlighted.

Inequalities (72) and (73) imply that at least one solution exists in the region

0 < γ̂h < ξ
1/4

0 .

Since f (̂γh) has only one inflection point in the positive region, it has no more solution in the

positive region without contradiction with Inequality (72) (see Figure 9), which completes the proof

of Lemma 10.
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