Feature Selection via Dependence Maximization

Le Song
LSONG@CC.GATECH.EDU
Computational Science and Engineering
Georgia Institute of Technology
266 Ferst Drive
Atlanta, GA 30332, USA

\author{

Alex Smola ALEX@ SMOLA.ORG
 Yahoo! Research
 4301 Great America Pky
 Santa Clara, CA 95053, USA
 Arthur Gretton*
 ARTHUR.GRETTON@ GMAIL.COM
 Gatsby Computational Neuroscience Unit
 17 Queen Square
 London WCIN 3AR, UK
 | Justin Bedo ${ }^{\dagger}$ | JUSTIN.BEDO@ NICTA.COM.AU |
| :--- | ---: |
| Statistical Machine Learning Program | |
| National ICT Australia | |
| Canberra, ACT 0200, Australia | |
 Karsten Borgwardt
 KARSTEN.BORGWARDT@TUEBINGEN.MPG.DE
 Machine Learning and Computational Biology Research Group
 Max Planck Institutes
 Spemannstr. 38
 72076 Tübingen, Germany

}

Editor: Aapo Hyvärinen

Abstract

We introduce a framework for feature selection based on dependence maximization between the selected features and the labels of an estimation problem, using the Hilbert-Schmidt Independence Criterion. The key idea is that good features should be highly dependent on the labels. Our approach leads to a greedy procedure for feature selection. We show that a number of existing feature selectors are special cases of this framework. Experiments on both artificial and real-world data show that our feature selector works well in practice.

Keywords: kernel methods, feature selection, independence measure, Hilbert-Schmidt independence criterion, Hilbert space embedding of distribution

1. Introduction

In data analysis we are typically given a set of observations $X=\left\{x_{1}, \ldots, x_{m}\right\} \subseteq \mathcal{X}$ which can be used for a number of tasks, such as novelty detection, low-dimensional representation, or a range of

[^0]supervised learning problems. In the latter case we also have a set of labels $Y=\left\{y_{1}, \ldots, y_{m}\right\} \subseteq \mathscr{Y}$ at our disposition. Tasks include ranking, classification, regression, or sequence annotation. While not always true in practice, we assume in the following that the data X and Y are drawn independently and identically distributed (i.i.d.) from some underlying distribution $\operatorname{Pr}(x, y)$.

We often want to reduce the dimension of the data (the number of features) before the actual learning (Guyon and Elisseeff, 2003); a larger number of features can be associated with higher data collection cost, more difficulty in model interpretation, higher computational cost for the classifier, and sometimes decreased generalization ability. In other words, there often exist motives in addition to finding a well performing estimator. It is therefore important to select an informative feature subset.

The problem of supervised feature selection can be cast as a combinatorial optimization problem. We have a full set of features, denoted by \mathcal{S} (each element in \mathcal{S} corresponds to one dimension of the data). It is our aim to select a subset $\mathcal{T} \subseteq \mathcal{S}$ such that this subset retains the relevant information contained in X. Suppose the relevance of a feature subset (to the outcome) is quantified by $Q(\mathcal{T})$, and is computed by restricting the data to the dimensions in \mathcal{T}. Feature selection can then be formulated as

$$
\begin{equation*}
\mathcal{T}_{0}=\arg \max _{\mathcal{T} \subseteq \mathcal{S}} Q(\mathcal{T}) \text { subject to }|\mathcal{T}| \leq t \tag{1}
\end{equation*}
$$

where $|\cdot|$ computes the cardinality of a set and t is an upper bound on the number of selected features. Two important aspects of problem (1) are the choice of the criterion $Q(\mathcal{T})$ and the selection algorithm.

1.1 Criteria for Feature Selection

A number of quality functionals $Q(\mathcal{T})$ are potential candidates for feature selection. For instance, we could use a mutual information-related quantity or a Hilbert Space-based estimator. In any case, the choice of $Q(\mathcal{T})$ should respect the underlying task. In the case of supervised learning, the goal is to estimate a functional dependence f from training data such that f predicts well on test data. Therefore, a good feature selection criterion should satisfy two conditions:

I: $Q(\mathcal{T})$ is capable of detecting desired (linear or nonlinear) functional dependence between the data and the labels.

II: $Q(\mathcal{T})$ is concentrated with respect to the underlying measure. This guarantees with high probability that detected functional dependence is preserved in test data.

While many feature selection criteria have been explored, not all of them take these two conditions explicitly into account. Examples of criteria that satisfy both conditions include the leave-one-out error bound of SVM (Weston et al., 2000) and the mutual information (Zaffalon and Hutter, 2002). Although the latter has good theoretical justification, it requires density estimation, which is problematic for high dimensional and continuous variables. We sidestep these problems by employing the Hilbert-Schmidt Independence Criterion (HSIC) (Gretton et al., 2005a). Like the mutual information, HSIC is a nonparametric dependence measure, which takes into account all modes of dependence between the variables (not just linear correlation). Unlike some popular mutual information estimates, however, HSIC does not require density estimation as an intermediate step, being based on the covariance between variables mapped to reproducing kernel Hilbert spaces (RKHS).

HSIC has good uniform convergence guarantees, and an unbiased empirical estimate. As we show in Section 2, HSIC satisfies conditions I and II required for $Q(\mathcal{T})$.

1.2 Feature Selection Algorithms

Finding a global optimum for (1) is typically NP-hard (Weston et al., 2003), unless the criterion is easily decomposable or has properties which make approximate optimization easier, for example, submodularity (Nemhauser et al., 1978; Guestrin et al., 2005). Many algorithms transform (1) into a continuous problem by introducing weights on the dimensions (Weston et al., 2000; Bradley and Mangasarian, 1998; Weston et al., 2003; Neal, 1998). These methods perform well for linearly separable problems. For nonlinear problems, however, the optimisation usually becomes non-convex and a local optimum does not necessarily provide good features. Greedy approaches, such as forward selection and backward elimination, are often used to tackle problem (1) directly. Forward selection tries to increase $Q(\mathcal{T})$ as much as possible for each inclusion of features, and backward elimination tries to achieve this for each deletion of features (Guyon et al., 2002). Although forward selection is computationally more efficient, backward elimination provides better features in general since the features are assessed within the context of all others present. See Section 7 for experimental details.

In principle, the Hilbert-Schmidt independence criterion can be employed for feature selection using either a weighting scheme, forward selection or backward selection, or even a mix of several strategies. While the main focus of this paper is on the backward elimination strategy, we also discuss the other selection strategies. As we shall see, several specific choices of kernel function will lead to well known feature selection and feature rating methods. Note that backward elimination using HSIC (BAHSIC) is a filter method for feature selection. It selects features independent of a particular classifier. Such decoupling not only facilitates subsequent feature interpretation but also speeds up the computation over wrapper and embedded methods.

We will see that BAHSIC is directly applicable to binary, multiclass, and regression problems. Most other feature selection methods are only formulated either for binary classification or regression. Multiclass extensions of these methods are usually achieved using a one-versus-the-rest strategy. Still fewer methods handle classification and regression cases at the same time. BAHSIC, on the other hand, accommodates all these cases and unsupervised feature selection in a principled way: by choosing different kernels, BAHSIC not only subsumes many existing methods as special cases, but also allows us to define new feature selectors. This versatility is due to the generality of HSIC. The current work is built on earlier presentations by Song et al. (2007b,a). Compared with this earlier work, the present study contains more detailed proofs of the main theorems, proofs of secondary theorems omitted due to space constraints, and a number of additional experiments.

Our paper is structured as follows. In Section 2, we introduce the Hilbert-Schmidt Independence criterion. We provide both biased and unbiased empirical estimates, as well as more efficient approximate empirical estimates. In addition, we prove the empirical estimate converges in probability, and provide its asymptotic distribution. Section 3 contains a brief description of notation for the remainder of the paper. Section 4 presents our two feature selection algorithms, based respectively on forward selection and backwards elimination. Section 5 presents a number of variants of BAHSIC obtained via different kernel choices, with a focus on using the appropriate kernel for the underlying task (e.g., two-class classification, multiclass classification, and regression). Section 6 gives an overview of a variety of feature selection approaches, which can be shown to employ
particular variants of HSIC as their feature relevance criterion. Finally, Sections 7-9 contain our experiments, where we apply HSIC to a number of domains, including real and artificial benchmarks, brain computer interface data, and microarray data.

2. Measures of Dependence

We begin with the simple example of linear dependence detection, and then generalize to the detection of more general kinds of dependence. Consider spaces $X \subset \mathbb{R}^{d}$ and $\mathcal{Y} \subset \mathbb{R}^{l}$, on which we jointly sample observations (x, y) from a distribution $\operatorname{Pr}(x, y)$. Denote by $\mathcal{C}_{x y}$ the covariance matrix

$$
\begin{equation*}
\mathcal{C}_{x y}=\mathbb{E}_{x y}\left[x y^{\top}\right]-\mathbb{E}_{x}[x] \mathbb{E}_{y}\left[y^{\top}\right], \tag{2}
\end{equation*}
$$

which contains all second order dependence between the random variables. A statistic that efficiently summarizes the degree of linear correlation between x and y is the Frobenius norm of $\mathcal{C}_{x y}$. Given the singular values σ_{i} of $\mathcal{C}_{x y}$ the norm is defined as

$$
\left\|\mathcal{C}_{x y}\right\|_{\text {Frob }}^{2}:=\sum_{i} \sigma_{i}^{2}=\operatorname{tr} \mathcal{C}_{x y} C_{x y}^{\top} .
$$

This quantity is zero if and only if there exists no linear dependence between x and y. This statistic is limited in several respects, however, of which we mention two: first, dependence can exist in forms other than that detectable via covariance (and even when a second order relation exists, the full extent of the dependence between x and y may only be apparent when nonlinear effects are included). Second, the restriction to subsets of \mathbb{R}^{d} excludes many interesting kinds of variables, such as strings and class labels. In the next section, we generalize the notion of covariance to nonlinear relationships, and to a wider range of data types.

2.1 Hilbert-Schmidt Independence Criterion (HSIC)

In general \mathcal{X} and \mathcal{Y} will be two domains from which we draw samples (x, y) : these may be real valued, vector valued, class labels, strings (Lodhi et al., 2002), graphs (Gärtner et al., 2003), dynamical systems (Vishwanathan et al., 2007), parse trees (Collins and Duffy, 2001), images (Schölkopf, 1997), and any other domain on which kernels can be defined. See Schölkopf et al. (2004) and Schölkopf and Smola (2002) for further references.

We define a (possibly nonlinear) mapping $\phi: \mathcal{X} \rightarrow \mathcal{F}$ from each $x \in \mathcal{X}$ to a feature space \mathcal{F} (and an analogous map $\psi: \mathscr{Y} \rightarrow \mathcal{G}$ wherever needed). In this case we may write the inner product between the features via the positive definite kernel functions

$$
k\left(x, x^{\prime}\right):=\left\langle\phi(x), \phi\left(x^{\prime}\right)\right\rangle \text { and } l\left(y, y^{\prime}\right):=\left\langle\psi(y), \psi\left(y^{\prime}\right)\right\rangle .
$$

The kernels k and l are associated uniquely with respective reproducing kernel Hilbert spaces \mathcal{F} and \mathcal{G} (although the feature maps ϕ and ψ may not be unique). For instance, if $X=\mathbb{R}^{d}$, then this could be as simple as a set of polynomials of order up to b in the components of x, with kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle+a\right)^{b}$. Other kernels, like the Gaussian RBF kernel correspond to infinitely large feature spaces. We need never evaluate these feature representations explicitly, however.

We may now define a cross-covariance operator ${ }^{1}$ between these feature maps, in accordance with Baker (1973) and Fukumizu et al. (2004): this is a linear operator $\mathcal{C}_{x y}: \mathcal{G} \longmapsto \mathcal{F}$ such that

$$
\mathcal{C}_{x y}:=\mathbb{E}_{x y}\left[\left(\phi(x)-\mu_{x}\right) \otimes\left(\psi(y)-\mu_{y}\right)\right] \text { where } \mu_{x}=\mathbb{E}_{x}[\phi(x)] \text { and } \mu_{y}=\mathbb{E}_{y}[\psi(y)] .
$$

Here \otimes denotes the tensor product. We need to extend the notion of a Frobenius norm to operators. This leads us to the Hilbert-Schmidt norm, which is given by the trace of $\mathcal{C}_{x y} \mathcal{C}_{x y}^{\top}$. For operators with discrete spectrum this amounts to computing the ℓ_{2} norm of the singular values. We use the square of the Hilbert-Schmidt norm of the cross-covariance operator (HSIC), $\left\|\mathcal{C}_{x y}\right\|_{\text {HS }}^{2}$ as our feature selection criterion $Q(\mathcal{T})$. Gretton et al. (2005a) show that HSIC can be expressed in terms of kernels as

$$
\begin{align*}
& \operatorname{HSIC}(\mathcal{F}, \mathcal{G}, \operatorname{Pr}):=\left\|\mathcal{C}_{x y}\right\|_{\mathrm{HS}}^{2} \tag{3}\\
= & \mathbb{E}_{x x^{\prime} y y^{\prime}}\left[k\left(x, x^{\prime}\right) l\left(y, y^{\prime}\right)\right]+\mathbb{E}_{x x^{\prime}}\left[k\left(x, x^{\prime}\right)\right] \mathbb{E}_{y y^{\prime}}\left[l\left(y, y^{\prime}\right)\right]-2 \mathbb{E}_{x y}\left[\mathbb{E}_{x^{\prime}}\left[k\left(x, x^{\prime}\right)\right] \mathbb{E}_{y^{\prime}}\left[l\left(y, y^{\prime}\right)\right]\right] .
\end{align*}
$$

This allows us to compute a measure of dependence between x and y simply by taking expectations over a set of kernel functions k and l with respect to the joint and marginal distributions in x and y without the need to perform density estimation (as may be needed for entropy based methods).

2.2 Estimating the Hilbert-Schmidt Independence Criterion

We denote by $Z=(X, Y)$ the set of observations $\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$ which are drawn iid from the joint distribution $\operatorname{Pr}_{x y}$. We denote by \mathbb{E}_{Z} the expectation with respect Z as drawn from $\operatorname{Pr}_{x y}$. Moreover, $\mathbf{K}, \mathbf{L} \in \mathbb{R}^{m \times m}$ are kernel matrices containing entries $\mathbf{K}_{i j}=k\left(x_{i}, x_{j}\right)$ and $\mathbf{L}_{i j}=l\left(y_{i}, y_{j}\right)$. Finally, $\mathbf{H}=\mathbf{I}-m^{-1} \mathbf{1 1} \in \mathbb{R}^{m \times m}$ is a centering matrix which projects onto the space orthogonal to the vector 1 .

Gretton et al. (2005a) derive estimators of $\operatorname{HSIC}\left(\mathcal{F}, \mathcal{G}, \operatorname{Pr}_{x y}\right)$ which have $O\left(m^{-1}\right)$ bias and they show that this estimator is well concentrated by means of appropriate tail bounds. For completeness we briefly restate this estimator and its properties below.

Theorem 1 (Biased estimator of HSIC Gretton et al., 2005a) The estimator

$$
\begin{equation*}
\operatorname{HSIC}_{0}(\mathcal{F}, \mathcal{G}, Z):=(m-1)^{-2} \operatorname{tr} \mathbf{K H L H} \tag{4}
\end{equation*}
$$

has bias $O\left(m^{-1}\right)$, that is, $\operatorname{HSIC}\left(\mathcal{F}, \mathcal{G}, \operatorname{Pr}_{x y}\right)-\mathbb{E}_{Z}\left[\operatorname{HSIC}_{0}(\mathcal{F}, \mathcal{G}, Z)\right]=O\left(m^{-1}\right)$.
This bias arises from the self-interaction terms which are present in HSIC_{0}, that is, we still have $O(m)$ terms of the form $\mathbf{K}_{i j} \mathbf{L}_{i l}$ and $\mathbf{K}_{j i} \mathbf{L}_{l i}$ present in the sum, which leads to the $O\left(m^{-1}\right)$ bias. To address this, we now devise an unbiased estimator which removes those additional terms while ensuring proper normalization. Our proposed estimator has the form

$$
\begin{equation*}
\operatorname{HSIC}_{1}(\mathcal{F}, \mathcal{G}, Z):=\frac{1}{m(m-3)}\left[\operatorname{tr}(\tilde{\mathbf{K}} \tilde{\mathbf{L}})+\frac{\mathbf{1}^{\top} \tilde{\mathbf{K}} \mathbf{1} \mathbf{1}^{\top} \tilde{\mathbf{L}} \mathbf{1}}{(m-1)(m-2)}-\frac{2}{m-2} \mathbf{1}^{\top} \tilde{\mathbf{K}} \tilde{\mathbf{L}} \mathbf{1}\right], \tag{5}
\end{equation*}
$$

where $\tilde{\mathbf{K}}$ and $\tilde{\mathbf{L}}$ are related to \mathbf{K} and \mathbf{L} by $\tilde{\mathbf{K}}_{i j}=\left(1-\delta_{i j}\right) \mathbf{K}_{i j}$ and $\tilde{\mathbf{L}}_{i j}=\left(1-\delta_{i j}\right) \mathbf{L}_{i j}$ (i.e., the diagonal entries of $\tilde{\mathbf{K}}$ and $\tilde{\mathbf{L}}$ are set to zero).

[^1]Theorem 2 (Unbiased estimator of HSIC) The estimator HSIC_{1} is unbiased, that is, we have $\mathbb{E}_{Z}\left[\operatorname{HSIC}_{1}(\mathcal{F}, \mathcal{G}, Z)\right]=\operatorname{HSIC}\left(\mathcal{F}, \mathcal{G}, \operatorname{Pr}_{x y}\right)$.

Proof We prove the claim by constructing unbiased estimators for each term in (3). Note that we have three types of expectations, namely $\mathbb{E}_{x y} \mathbb{E}_{x^{\prime} y^{\prime}}$, a partially decoupled expectation $\mathbb{E}_{x y} \mathbb{E}_{x^{\prime}} \mathbb{E}_{y^{\prime}}$, and $\mathbb{E}_{x} \mathbb{E}_{y} \mathbb{E}_{x^{\prime}} \mathbb{E}_{y^{\prime}}$, which takes all four expectations independently.

If we want to replace the expectations by empirical averages, we need to take care to avoid using the same discrete indices more than once for independent random variables. In other words, when taking expectations over n independent random variables, we need n-tuples of indices where each index occurs exactly once. We define the sets \mathbf{i}_{n}^{m} to be the collections of indices satisfying this property. By simple combinatorics one can see that their cardinalities are given by the Pochhammer symbols $(m)_{n}=\frac{m!}{(m-n)!}$. Jointly drawn random variables, on the other hand, share the same index.

For the joint expectation over pairs we have

$$
\begin{equation*}
\mathbb{E}_{x y} \mathbb{E}_{x^{\prime} y^{\prime}}\left[k\left(x, x^{\prime}\right) l\left(y, y^{\prime}\right)\right]=(m)_{2}^{-1} \mathbb{E}_{Z}\left[\sum_{(i, j) \in \dot{i}_{2}^{m}} \mathbf{K}_{i j} \mathbf{L}_{i j}\right]=(m)_{2}^{-1} \mathbb{E}_{Z}[\operatorname{tr} \tilde{\mathbf{K}} \tilde{\mathbf{L}}] . \tag{6}
\end{equation*}
$$

Recall that we set $\tilde{\mathbf{K}}_{i i}=\tilde{\mathbf{L}}_{i i}=0$. In the case of the expectation over three independent terms $\mathbb{E}_{x y} \mathbb{E}_{x^{\prime}} \mathbb{E}_{y^{\prime}}\left[k\left(x, x^{\prime}\right) l\left(y, y^{\prime}\right)\right]$ we obtain

$$
\begin{equation*}
(m)_{3}^{-1} \mathbb{E}_{Z}\left[\sum_{(i, j, q) \in i_{3}^{m}} \mathbf{K}_{i j} \mathbf{L}_{i q}\right]=(m)_{3}^{-1} \mathbb{E}_{\mathbf{Z}}\left[\mathbf{1}^{\top} \tilde{\mathbf{K}} \tilde{\mathbf{L}} \mathbf{1}-\operatorname{tr} \tilde{\mathbf{K}} \tilde{\mathbf{L}}\right] . \tag{7}
\end{equation*}
$$

For four independent random variables $\mathbb{E}_{x} \mathbb{E}_{y} \mathbb{E}_{x^{\prime}} \mathbb{E}_{y^{\prime}}\left[k\left(x, x^{\prime}\right) l\left(y, y^{\prime}\right)\right]$,

$$
\begin{equation*}
(m)_{4}^{-1} \mathbb{E}_{Z}\left[\sum_{(i, j, q, r) \in \dot{i}_{4}^{m}} \mathbf{K}_{i j} \mathbf{L}_{q r}\right]=(m)_{4}^{-1} \mathbb{E}_{Z}\left[\mathbf{1}^{\top} \tilde{\mathbf{K}} \mathbf{1 1} \mathbf{1}^{\top} \tilde{\mathbf{L}} \mathbf{1}-4 \mathbf{1}^{\top} \tilde{\mathbf{K}} \tilde{\mathbf{L}} \mathbf{1}+2 \operatorname{tr} \tilde{\mathbf{K}} \tilde{\mathbf{L}}\right] . \tag{8}
\end{equation*}
$$

To obtain an expression for HSIC we only need to take linear combinations using (3). Collecting terms related to $\operatorname{tr} \tilde{\mathbf{K}} \tilde{\mathbf{L}}, \mathbf{1}^{\top} \tilde{\mathbf{K}} \tilde{\mathbf{L}} \mathbf{1}$, and $\mathbf{1}^{\top} \tilde{\mathbf{K}} \mathbf{1 1} \mathbf{1}^{\top} \tilde{\mathbf{L}} \mathbf{1}$ yields

$$
\begin{equation*}
\operatorname{HSIC}(\mathcal{F}, \mathcal{G}, \operatorname{Pr})=\frac{1}{m(m-3)} \mathbb{E}_{Z}\left[\operatorname{tr} \tilde{\mathbf{K}} \tilde{\mathbf{L}}+\frac{\mathbf{1}^{\top} \tilde{\mathbf{K}} \mathbf{1} \mathbf{1}^{\top} \tilde{\mathbf{L}} \mathbf{1}}{(m-1)(m-2)}-\frac{2}{m-2} \mathbf{1}^{\top} \tilde{\mathbf{K}} \tilde{\mathbf{L}} \mathbf{1}\right] \tag{9}
\end{equation*}
$$

This is the expected value of $\operatorname{HSIC}_{1}[\mathcal{F}, \mathcal{G}, Z]$.
Note that neither HSIC_{0} nor HSIC_{1} require any explicit regularization parameters, unlike earlier work on kernel dependence estimation. Rather, the regularization is implicit in the choice of the kernels. While in general the biased HSIC is acceptable for estimating dependence, bias becomes a significant problem for diagonally dominant kernels. These occur mainly in the context of sequence analysis such as texts and biological data. Experiments on such data (Quadrianto et al., 2009) show that bias removal is essential to obtain good results.

For suitable kernels $\operatorname{HSIC}\left(\mathcal{F}, \mathcal{G}, \operatorname{Pr}_{x y}\right)=0$ if and only if x and y are independent. Hence the empirical estimate HSIC_{1} can be used to design nonparametric tests of independence. A key feature is that HSIC_{1} itself is unbiased and its computation is simple. Compare this to quantities based on the mutual information, which requires sophisticated bias correction strategies (e.g., Nemenman et al., 2002).

Previous work used HSIC to measure independence between two sets of random variables (Feuerverger, 1993; Gretton et al., 2005a). Here we use it to select a subset \mathcal{T} from the first full set of random variables \mathcal{S}. We next describe properties of HSIC which support its use as a feature selection criterion.

2.3 HSIC Detects Arbitrary Dependence (Property I)

Whenever \mathcal{F}, \mathcal{G} are RKHSs with characteristic kernels k, l (in the sense of Fukumizu et al., 2008; Sriperumbudur et al., 2008, 2010), then $\operatorname{HSIC}\left(\mathcal{F}, \mathcal{G}, \operatorname{Pr}_{x y}\right)=0$ if and only if x and y are independent. ${ }^{2}$ In terms of feature selection, a characteristic kernel such as the Gaussian RBF kernel or the Laplace kernel permits HSIC to detect any dependence between X and \mathcal{Y}. HSIC is zero only if features and labels are independent. Clearly we want to reach the opposite result, namely strong dependence between features and labels. Hence we try to select features that maximize HSIC. Likewise, whenever we want to select a subset of features from X we will try to retain maximal dependence between X and its reduced version.

Note that non-characteristic and non-universal kernels can also be used for HSIC, although they may not guarantee that all dependence is detected. Different kernels incorporate distinctive prior knowledge into the dependence estimation, and they focus HSIC on dependence of a certain type. For instance, a linear kernel requires HSIC to seek only second order dependence, whereas a polynomial kernel of degree b restricts HSIC to test for dependences of degree (up to) b. Clearly HSIC is capable of finding and exploiting dependence of a much more general nature by kernels on graphs, strings, or other discrete domains. We return to this issue in Section 5, where we describe the different kernels that are suited to different underlying classification tasks.

2.4 HSIC is Concentrated (Property II)

HSIC_{1}, the estimator in (5), can be alternatively formulated using U-statistics (Hoeffding, 1948). This reformulation allows us to derive a uniform convergence bound for HSIC_{1}. Thus for a given set of features, the feature quality evaluated using HSIC_{1} closely reflects its population counterpart HSIC.

Theorem 3 (U-statistic of HSIC) HSIC_{1} can be rewritten in terms of a U-statistic

$$
\begin{equation*}
\operatorname{HSIC}_{1}(\mathcal{F}, \mathcal{G}, Z)=(m)_{4}^{-1} \sum_{(i, j, q, r) \in i_{4}^{m}} h(i, j, q, r), \tag{10}
\end{equation*}
$$

where the kernel h of the U-statistic is defined by

$$
\begin{align*}
h(i, j, q, r) & =\frac{1}{24} \sum_{(s, t, u, v)}^{(i, q, q)} \mathbf{K}_{s t}\left[\mathbf{L}_{s t}+\mathbf{L}_{u v}-2 \mathbf{L}_{s u}\right] \tag{11}\\
& =\frac{1}{6} \sum_{(s \prec t),(u \prec v)}^{(i, j, q, r)} \mathbf{K}_{s t}\left[\mathbf{L}_{s t}+\mathbf{L}_{u v}\right]-\frac{1}{12} \sum_{(s, t, u)}^{(i, j, q, r)} \mathbf{K}_{s t} \mathbf{L}_{s u} . \tag{12}
\end{align*}
$$

Here the first sum represents all $4!=24$ quadruples (s, t, u, v) which can be selected without replacement from (i, j, q, r). Likewise the sum over (s, t, u) is the sum over all triples chosen without replacement. Finally, the sum over $(s \prec t),(u \prec v)$ has the additional condition that the order imposed by (i, j, q, r) is preserved. That is (i, q) and (j, r) are valid pairs, whereas (q, i) or (r, q) are not.

[^2]Proof Combining the three unbiased estimators in (6-8) we obtain a single U-statistic

$$
\begin{equation*}
\operatorname{HSIC}_{1}(\mathcal{F}, \mathcal{G}, Z)=(m)_{4}^{-1} \sum_{(i, j, q, r) \in \mathbf{i}_{4}^{m}}\left(\mathbf{K}_{i j} \mathbf{L}_{i j}+\mathbf{K}_{i j} \mathbf{L}_{q r}-2 \mathbf{K}_{i j} \mathbf{L}_{i q}\right) \tag{13}
\end{equation*}
$$

In this form, however, the kernel $h(i, j, q, r)=\mathbf{K}_{i j} \mathbf{L}_{i j}+\mathbf{K}_{i j} \mathbf{L}_{q r}-2 \mathbf{K}_{i j} \mathbf{L}_{i q}$ is not symmetric in its arguments. For instance $h(i, j, q, r) \neq h(q, j, r, i)$. The same holds for other permutations of the indices. Thus, we replace the kernel with a symmetrized version, which yields

$$
\begin{equation*}
h(i, j, q, r):=\frac{1}{4!} \sum_{(s, t, u, v)}^{(i, j, q, r)}\left(\mathbf{K}_{s t} \mathbf{L}_{s t}+\mathbf{K}_{s t} \mathbf{L}_{u v}-2 \mathbf{K}_{s t} \mathbf{L}_{s u}\right) \tag{14}
\end{equation*}
$$

where the sum in (14) represents all ordered quadruples (s, t, u, v) selected without replacement from (i, j, q, r).

This kernel can be simplified, since $\mathbf{K}_{s t}=\mathbf{K}_{t s}$ and $\mathbf{L}_{s t}=\mathbf{L}_{t s}$. The first one only contains terms $\mathbf{L}_{s t} \mathbf{K}_{s t}$, hence the indices (u, v) are irrelevant. Exploiting symmetry we may impose $(s \prec t)$ without loss of generality. The same holds for the second term. The third term remains unchanged, which completes the proof.

We now show that $\operatorname{HSIC}_{1}(\mathcal{F}, \mathcal{G}, Z)$ is concentrated and that it converges to $\operatorname{HSIC}\left(\mathcal{F}, \mathcal{G}, \operatorname{Pr}_{x y}\right)$ with rate $1 / \sqrt{m}$. The latter is a slight improvement over the convergence of the biased estimator $\operatorname{HSIC}_{0}(\mathcal{F}, \mathcal{G}, Z)$, proposed by Gretton et al. (2005a).

Theorem 4 (HSIC is Concentrated) Assume k, l are bounded almost everywhere by 1 , and are non-negative. Then for $m>1$ and all $\delta>0$, with probability at least $1-\delta$ for all $\mathrm{Pr}_{x y}$

$$
\left|\operatorname{HSIC}_{1}(\mathcal{F}, \mathcal{G}, Z)-\operatorname{HSIC}\left(\mathcal{F}, \mathcal{G}, \operatorname{Pr}_{x y}\right)\right| \leq 8 \sqrt{\log (2 / \delta) / m}
$$

Proof [Sketch] By virtue of (10) we see immediately that HSIC_{1} is a U-statistic of order 4, where each term is contained in $[-2,2]$. Applying Hoeffding's bound for U -statistics as in Gretton et al. (2005a) proves the result.
If k and l were just bounded by 1 in terms of absolute value the bound of Theorem 4 would be worse by a factor of 2 .

2.5 Asymptotic Normality

Theorem 4 gives worst case bounds on the deviation between HSIC and HSIC_{1}. In many instances, however, an indication of this difference in typical cases is needed. In particular, we would like to know the limiting distribution of HSIC_{1} for large sample sizes. We now show that HSIC_{1} is asymptotically normal, and we derive its variance. These results are also useful since they allow us to formulate statistics for a significance test.

Theorem 5 (Asymptotic Normality) If $\mathbb{E}\left[h^{2}\right]<\infty$, and data and labels are not independent, ${ }^{3}$ then as $m \rightarrow \infty$, HSIC $_{1}$ converges in distribution to a Gaussian random variable with mean
3. This is a subtle but important point: if the data and labels are independent, then the U-statistic is degenerate, and the null distribution takes a different form. See Gretton et al. (2008) and (Serfling, 1980, Section 5.5).
$\operatorname{HSIC}\left(\mathcal{F}, \mathcal{G}, \operatorname{Pr}_{x y}\right)$ and estimated variance

$$
\begin{equation*}
\sigma_{\mathrm{HSIC}_{1}}^{2}=\frac{16}{m}\left(R-\mathrm{HSIC}_{1}^{2}\right) \text { where } R=\frac{1}{m} \sum_{i=1}^{m}\left((m-1)_{3}^{-1} \sum_{(j, q, r) \in \mathrm{i}_{3}^{m} \backslash\{i\}} h(i, j, q, r)\right)^{2} \text {, } \tag{15}
\end{equation*}
$$

where $\mathbf{i}_{n}^{m} \backslash\{i\}$ denotes the set of all n-tuples drawn without replacement from $\{1, \ldots, m\} \backslash\{i\}$.
Proof [Sketch] This follows directly from Serfling (1980, Theorem B, p. 193), which shows asymptotic normality of U-statistics.
Unfortunately (15) is expensive to compute by means of an explicit summation: even computing the kernel h of the U-statistic itself is a nontrivial task. For practical purposes we need an expression which can exploit fast matrix operations. As we shall see, $\sigma_{\mathrm{HSIC}_{1}}^{2}$ can be computed in $O\left(m^{2}\right)$, given the matrices $\tilde{\mathbf{K}}$ and $\tilde{\mathbf{L}}$. To do so, we first form a vector \mathbf{h} with its i th entry corresponding to $\sum_{(j, q, r) \in \in_{3}^{m} \backslash\{i\}} h(i, j, q, r)$. Collecting terms in (11) related to matrices $\tilde{\mathbf{K}}$ and $\tilde{\mathbf{L}}, \mathbf{h}$ can be written as

$$
\begin{aligned}
\mathbf{h}= & (m-2)^{2}(\tilde{\mathbf{K}} \circ \tilde{\mathbf{L}}) \mathbf{1}+(m-2)((\operatorname{tr} \tilde{\mathbf{K}} \tilde{\mathbf{L}}) \mathbf{1}-\tilde{\mathbf{K}} \tilde{\mathbf{L}} \mathbf{1}-\tilde{\mathbf{L}} \tilde{\mathbf{K}} \mathbf{1})-m(\tilde{\mathbf{K}} \mathbf{1}) \circ(\tilde{\mathbf{L}} \mathbf{1}) \\
& +\left(\mathbf{1}^{\top} \tilde{\mathbf{L}} \mathbf{1}\right) \tilde{\mathbf{K}} \mathbf{1}+\left(\mathbf{1}^{\top} \tilde{\mathbf{K}} \mathbf{1}\right) \tilde{\mathbf{L}} \mathbf{1}-\left(\mathbf{1}^{\top} \tilde{\mathbf{K}} \tilde{\mathbf{L}} \mathbf{1}\right) \mathbf{1}
\end{aligned}
$$

where \circ denotes elementwise matrix multiplication. Then R in (15) can be computed as $R=$ $(4 m)^{-1}(m-1)_{3}^{-2} \mathbf{h}^{\top} \mathbf{h}$. Combining this with the the unbiased estimator in (5) leads to the matrix computation of $\sigma_{\mathrm{HSIC}_{1}}^{2}$.

2.6 Computation

In this section, we first analyze the complexity of computing estimators for Hilbert-Schmidt Independence Criterion. We then propose efficient methods for approximately computing these estimators which are linear in the number of examples.

2.6.1 Exact Computation of HSIC_{0} and HSIC_{1}

Note that both HSIC_{0} and HSIC_{1} are simple to compute, since only the kernel matrices \mathbf{K} and \mathbf{L} are needed, and no density estimation is involved. Assume that computing an entry in \mathbf{K} and \mathbf{L} takes constant time, then computing the full matrix takes $O\left(m^{2}\right)$ time. In term of the sample size m, we have the following analysis of the time complexity of HSIC_{0} and HSIC_{1} (by considering summation and multiplication as atomic operations):
$\mathbf{H S I C}_{\mathbf{0}}$ Centering \mathbf{L} takes $O\left(m^{2}\right)$ time. Since $\operatorname{tr}(\mathbf{K H L H})$ is equivalent to $\mathbf{1}^{\top}(\mathbf{K} \circ \mathbf{H L H}) \mathbf{1}$, it also takes $O\left(m^{2}\right)$ time. Overall, computing HSIC_{0} takes $O\left(m^{2}\right)$ time.
$\mathbf{H S I C}_{\mathbf{1}}$ Each of the three terms in HSIC_{1}, namely $\operatorname{tr}(\tilde{\mathbf{K}} \tilde{\mathbf{L}}), \mathbf{1}^{\top} \tilde{\mathbf{K}} \mathbf{1 1}{ }^{\top} \tilde{\mathbf{L}} \mathbf{1}$ and $\mathbf{1}^{\top} \tilde{\mathbf{K}} \tilde{\mathbf{L}} \mathbf{1}$, takes $O\left(m^{2}\right)$ time. Overall, computing HSIC ${ }_{1}$ also takes $O\left(m^{2}\right)$ time.

2.6.2 Approximate Computation of HSIC_{0} and HSIC_{1}

Further speedup is also possible via a low rank approximation of the kernel matrices. Particularly, using incomplete Cholesky decomposition, Gretton et al. (2005a) derive an efficient approximation of HSIC_{0}. Formally, it can be summarized as the following lemma:

Lemma 6 (Efficient Approximation to $\mathbf{H S I C}_{\mathbf{0}}$) Let $\mathbf{K} \approx \mathbf{A A}^{\top}$ and $\mathbf{L} \approx \mathbf{B B}^{\top}$, where $\mathbf{A} \in \mathbb{R}^{m \times d_{f}}$ and $\mathbf{B} \in \mathbb{R}^{m \times d_{g}}$. Then HSIC_{0} can be approximated in $O\left(m\left(d_{f}^{2}+d_{g}^{2}\right)\right)$ time.

Note that in this case the dominant computation comes from the incomplete Cholesky decomposition, which can be carried out in $O\left(m d_{f}^{2}\right)$ and $O\left(m d_{g}^{2}\right)$ time respectively (Fine and Scheinberg, 2000).

The three terms in HSIC_{1} can be computed analogously. Denote by $\mathbf{D}_{\mathbf{K}}=\operatorname{diag}\left(\mathbf{A A}^{\top}\right)$ and $\mathbf{D}_{\mathbf{L}}=\operatorname{diag}\left(\mathbf{B B}^{\top}\right)$ the diagonal matrices of the approximating terms. The latter can be computed in $O\left(m d_{f}\right)$ and $O\left(m d_{g}\right)$ time respectively. We have

$$
\mathbf{1}^{\top} \tilde{\mathbf{K}} \mathbf{1}=\mathbf{1}^{\top}\left(\mathbf{A A}^{\top}-\mathbf{D}_{\mathbf{K}}\right) \mathbf{1}=\left\|\mathbf{1}^{\top} \mathbf{A}\right\|^{2}+\mathbf{1}^{\top} \mathbf{D}_{\mathbf{K}} \mathbf{1} .
$$

Computation requires $O\left(m d_{f}\right)$ time. The same holds when computing $\mathbf{1}^{\top} \tilde{\mathbf{L}}$. To obtain the second term we exploit that

$$
\mathbf{1}^{\top} \tilde{\mathbf{K}} \tilde{\mathbf{L}} \mathbf{1}=\mathbf{1}^{\top}\left(\mathbf{A} \mathbf{A}^{\top}-\mathbf{D}_{\mathbf{K}}\right)\left(\mathbf{B} \mathbf{B}^{\top}-\mathbf{D}_{\mathbf{K}}\right) \mathbf{1}=\left(\left(\mathbf{A}\left(\mathbf{A}^{\top} \mathbf{1}\right)\right)-\mathbf{D}_{\mathbf{K}} \mathbf{1}\right)^{\top}\left(\left(\mathbf{B}\left(\mathbf{B}^{\top} \mathbf{1}\right)\right)-\mathbf{D}_{\mathbf{L}} \mathbf{1}\right) .
$$

This can be computed in $O\left(m\left(d_{f}+d_{g}\right)\right)$. Finally, to compute the third term we use

$$
\begin{aligned}
\operatorname{tr} \tilde{\mathbf{K}} \tilde{\mathbf{L}} & =\operatorname{tr}\left(\mathbf{A} \mathbf{A}^{\top}-\mathbf{D}_{\mathbf{K}}\right)\left(\mathbf{B} \mathbf{B}^{\top}-\mathbf{D}_{\mathbf{L}}\right) \\
& =\left\|\mathbf{A}^{\top} \mathbf{B}\right\|_{\text {Frob }}^{2}-\operatorname{tr} \mathbf{B}^{\top} \mathbf{D}_{\mathbf{K}} \mathbf{B}-\operatorname{tr} \mathbf{A}^{\top} \mathbf{D}_{\mathbf{L}} \mathbf{A}+\operatorname{tr} \mathbf{D}_{\mathbf{K}} \mathbf{D}_{\mathbf{L}} .
\end{aligned}
$$

This can be computed in $O\left(m d_{f} d_{g}\right)$ time. It is the most costly of all operations, since it takes all interactions between the reduced factorizations of \mathbf{K} and \mathbf{L} into account. Hence we may compute HSIC_{1} efficiently (note again that dominant computation comes from the incomplete Cholesky decomposition):

Lemma 7 (Efficient Approximation of HSIC_{1}) Let $\mathbf{K} \approx \mathbf{A} \mathbf{A}^{\top}$ and $\mathbf{L} \approx \mathbf{B} \mathbf{B}^{\top}$, where $\mathbf{A} \in \mathbb{R}^{m \times d_{f}}$ and $\mathbf{B} \in \mathbb{R}^{m \times d_{g}}$. Then HSIC_{1} can be approximated in $O\left(m\left(d_{f}^{2}+d_{g}^{2}\right)\right)$ time.

2.6.3 VARIANCE OF HSIC_{1}

To compute the variance of HSIC_{1} we also need to deal with $(\tilde{\mathbf{K}} \circ \tilde{\mathbf{L}}) \mathbf{1}$. For the latter, no immediate linear algebra expansion is available. However, we may use of the following decomposition. Assume that \mathbf{a} and \mathbf{b} are vectors in \mathbb{R}^{m}. In this case

$$
\left(\left(\mathbf{a a}^{\top}\right) \circ\left(\mathbf{b} \mathbf{b}^{\top}\right)\right) \mathbf{1}=(\mathbf{a} \circ \mathbf{b})(\mathbf{a} \circ \mathbf{b})^{\top} \mathbf{1}
$$

which can be computed in $O(m)$ time. Hence we may compute

$$
\left(\left(\mathbf{A A}^{\top}\right) \circ\left(\mathbf{B} \mathbf{B}^{\top}\right)\right) \mathbf{1}=\sum_{i=1}^{d_{f}} \sum_{j=1}^{d_{g}}\left(\left(\mathbf{A}_{i} \circ \mathbf{B}_{j}\right)\left(\mathbf{A}_{i} \circ \mathbf{B}_{j}\right)^{\top}\right) \mathbf{1}
$$

which can be carried out in $O\left(m d_{f} d_{g}\right)$ time. To take care of the diagonal corrections note that $\left(\mathbf{A} \mathbf{A}^{\top}-\mathbf{D}_{\mathbf{K}}\right) \circ \mathbf{D}_{\mathbf{L}}=\mathbf{0}$. The same holds for \mathbf{B} and $\mathbf{D}_{\mathbf{K}}$. The remaining term $\mathbf{D}_{\mathbf{K}} \mathbf{D}_{\mathbf{L}} \mathbf{1}$ is obviously also computable in $O(m)$ time.

3. Notation

In the following sections, we will deal mainly with vectorial data. Whenever we have vectorial data, we use \mathbf{X} as a shorthand to denote the matrix of all vectorial observations $\mathbf{x}_{i} \in \mathbb{R}^{d}$ (the i th row of \mathbf{X} corresponds to \mathbf{x}_{i}^{\top}). Likewise, whenever the labels can be bundled into a matrix \mathbf{Y} or a vector \mathbf{y} (for binary classification), we will use the latter for a more concise notation. Also, we will refer to the j th column of \mathbf{X} and \mathbf{Y} as $\mathbf{x}_{* j}$ and $\mathbf{y}_{* j}$ respectively as needed.

Furthermore, we denote the mean and standard deviation of the j th feature (dimension) by $\bar{x}_{j}=\frac{1}{m} \sum_{i}^{m} x_{i j}$ and $s_{j}=\left(\frac{1}{m} \sum_{i}^{m}\left(x_{i j}-\bar{x}_{j}\right)^{2}\right)^{1 / 2}$ respectively $\left(x_{i j}\right.$ is the value of the j th feature of data $\left.\mathbf{x}_{i}\right)$. For binary classification problems we denote by m_{+}and m_{-}the numbers of positive and negative observations. Moreover, \bar{x}_{j+} and \bar{x}_{j-} correspond respectively to the means of the positive and negative classes at the j th feature (the corresponding standard deviations are s_{j+} and s_{j-}). More generally, let m_{y} be the number of samples with class label equal to y (this notation is also applicable to multiclass problems). Finally, let $\mathbf{1}_{n}$ be a vector of all ones with length n and $\mathbf{0}_{n}$ be a vector of all zeros.

For non-vectorial or scalar data, we will use lower case letters to denote them. Very often the labels are scalars, we use y to denote them. The mean and standard deviation of the labels are \bar{y} and s_{y} respectively.

4. Feature Selection via HSIC

Having defined our feature selection criterion, we now describe algorithms that conduct feature selection on the basis of this dependence measure. Denote by \mathcal{S} the full set of features, \mathcal{T} a subset of features $(\mathcal{T} \subseteq \mathcal{S})$. We want to find \mathcal{T} such that the dependence between features in \mathcal{T} and the labels is maximized. Moreover, we may choose between different feature selection strategies, that is, whether we would like to build up a catalog of features in an incremental fashion (forward selection) or whether we would like to remove irrelevant features from a catalog (backward selection). For certain kernels, such as a linear kernel, both selection methods are equivalent: the objective function decomposes into individual coordinates, and thus feature selection can be done without recursion in one go. Although forward selection is computationally more efficient, backward elimination in general yields better features (especially for nonlinear features), since the quality of the features is assessed within the context of all other features (Guyon and Elisseeff, 2003).

4.1 Backward Elimination Using HSIC (BAHSIC)

BAHSIC works by generating a list \mathcal{S}^{\dagger} which contains the features in increasing degree of relevance. At each step \mathcal{S}^{\dagger} is appended by a feature from \mathcal{S} which is not contained in \mathcal{S}^{\dagger} yet by selecting the features which are least dependent on the reference set (i.e., Y or the full set X).

Once we perform this operation, the feature selection problem in (1) can be solved by simply taking the last t elements from \mathcal{S}^{\dagger}. Our algorithm produces \mathcal{S}^{\dagger} recursively, eliminating the least relevant features from \mathcal{S} and adding them to the end of S^{\dagger} at each iteration. For convenience, we also denote HSIC as $\operatorname{HSIC}(\sigma, S)$, where \mathcal{S} are the features used in computing the data kernel matrix \mathbf{K}, and σ is the parameter for the data kernel (for instance, this might be the size of a Gaussian kernel $\left.k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\sigma\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)\right)$.

Step 3 of the algorithm denotes a policy for adapting the kernel parameters. Depending on the availability of prior knowledge and the type of preprocessing, we explored three types of policies

1. If we have prior knowledge about the nature of the nonlinearity in the data, we can use a fixed kernel parameter throughout the iterations. For instance, we can use a polynomial kernel of fixed degree, for example, $\left(\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle+1\right)^{2}$, to select the features for the XOR data set in Figure 2(a).
2. If we have no prior knowledge, we can optimize HSIC over a set of kernel parameters. In this case, the policy corresponds to $\arg \max _{\sigma \in \Theta} \operatorname{HSIC}(\sigma, S)$, where Θ is a set of parameters that ensure the kernel is bounded. For instance, σ can be the scale parameter of a Gaussian kernel, $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\sigma\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)$. Optimizing over the scaling parameter allows us to adapt to the scale of the nonlinearity present in the (feature-reduced) data.
3. Adapting kernel parameters via optimization is computational intensive. Alternatively we can use a policy that produces approximate parameters in each iteration. For instance, if we normalize each feature separately to zero mean and unit variance, we know that the expected value of the distance between data points, $\mathbb{E}\left[\left(\mathbf{x}-\mathbf{x}^{\prime}\right)^{2}\right]$, is $2 d$ (d is the dimension of the data). When using a Gaussian kernel, we can then use a policy that assigns σ to $1 /(2 d)$ as the dimension of the data is reduced.

We now consider in more detail what it means to optimize the kernel. In the case of a radial basis kernel on the observations and a linear kernel on binary labels, the example in Section 5.2 is instructive: optimizing the bandwidth of the kernel k on the observations corresponds to finding the optimum lengthscale for which smooth functions may be found to maximize the linear covariance with the labels. This optimum lengthscale will change as the dimensionality of the observation feature space changes (as feature selection progresses). For a related discussion, see (Sriperumbudur et al., 2009, Section 5): in this case, the kernel bandwidth which maximizes a kernel distance measure between two distributions P and Q corresponds to the lengthscale at which P and Q differ. When P is the joint distirbution $P=\operatorname{Pr}(x, y)$, and Q the product of the marginals $Q=\operatorname{Pr}(x) \operatorname{Pr}(y)$, the kernel distance measure in Sriperumbudur et al. (2009) corresponds to HSIC (see Gretton et al., 2007b, Section 7.3). Note further that when a radial basis kernel (such as the Gaussian) is used, the unbiased HSIC_{1} is zero both for bandwidth zero, and as the bandwidth approaches infinity (in the former case, the off-diagonal kernel values are zero; in the latter, the off-diagonal kernel values are all equal). Thus HSIC_{1} must have a maximum between these two extremes in bandwidth, and this maximum is bounded since the kernel is bounded. Again, see Sriperumbudur et al. (2009) for a related discussion when comparing arbitrary distributions P and Q.

```
Algorithm 1 BAHSIC
Input: The full set of features \(\mathcal{S}\)
Output: An ordered set of features \(S^{\dagger}\)
    \(S^{\dagger} \leftarrow \varnothing\)
    repeat
        \(\sigma \leftarrow \Xi\)
        \(I \leftarrow \arg \max _{I} \sum_{j \in I} \operatorname{HSIC}(\sigma, \mathcal{S} \backslash\{j\}), I \subset \mathcal{S}\)
        \(\mathcal{S} \leftarrow \mathcal{S} \backslash I\)
        \(S^{\dagger} \leftarrow\left(S^{\dagger}, I\right)\)
    until \(\mathcal{S}=\varnothing\)
```

Step 4 of the algorithm is concerned with the selection of a set I of features to eliminate. While one could choose a single element of \mathcal{S}, this would be inefficient when there are a large number of irrelevant features. On the other hand, removing too many features at once risks the loss of relevant features. In our experiments, we found a good compromise between speed and feature quality was to remove 10% of the current features at each iteration.

In BAHSIC, the kernel matrix \mathbf{L} for the labels is fixed through the whole process. It can be precomputed and stored for speedup if needed. Therefore, the major computation comes from repeated calculation of the kernel matrix \mathbf{K} for the dimension-reduced data. If we remove $1-\beta$ of the data at every step and under the assumption that beyond computing the dot product the actual evaluation of an entry in \mathbf{K} requires only constant time irrespective of the dimension of the data, then the i th iteration of BAHSIC takes $O\left(\beta^{i-1} d m^{2}\right)$ time: d is the total number of features, hence $\beta^{i-1} d$ features remain after $i-1$ iterations and we have m^{2} elements in the kernel matrix in total. If we want to reduce the number of features to t we need at most $\tau=\log _{\beta}(t / d)$ iterations. This brings the total time complexity to $O\left(\frac{1-\beta^{\tau}}{1-\beta} d m^{2}\right)=O\left(\frac{d-t}{1-\beta} m^{2}\right)$ operations. When using incomplete Cholesky factorization we may reduce computational complexity somewhat further to $O\left(\frac{d-t}{1-\beta} m\left(d_{f}^{2}+d_{g}^{2}\right)\right)$ time. This saving is significant as long as $d_{f} d_{g}<m$, which may happen, for instance whenever \mathbf{Y} is a binary label matrix. In this case $d_{g}=1$, hence incomplete factorizations may yield significant computational gains.

4.2 Forward Selection Using HSIC (FOHSIC)

FOHSIC uses the converse approach to backward selection: it builds a list of features in decreasing degree of relevance. This is achieved by adding one feature at a time to the set of features S^{\dagger} obtained so far using HSIC as a criterion for the quality of the so-added features. For faster selection of features, we can choose a group of features (for instance, a fixed proportion γ) at step 4 and add them in one shot at step 6. The adaptation of kernel parameters in step 3 follows the same policies as those for BAHSIC. The feature selection problem in (1) can be solved by simply taking the first t elements from \mathcal{S}^{\dagger}.

```
Algorithm 2 FOHSIC
Input: The full set of features \(\mathcal{S}\)
Output: An ordered set of features \(\mathcal{S}^{\dagger}\)
    \(S^{\dagger} \leftarrow \varnothing\)
    repeat
        \(\sigma \leftarrow \Xi\)
        \(I \leftarrow \arg \max _{I} \sum_{j \in I} \operatorname{HSIC}\left(\sigma, S^{\dagger} \cup\{j\}\right), \quad I \subset \mathcal{S}\)
        \(\mathcal{S} \leftarrow \mathcal{S} \backslash I\)
        \(S^{\dagger} \leftarrow\left(S^{\dagger}, I\right)\)
    until \(\mathcal{S}=\varnothing\)
```


4.2.1 Time Complexity

Under the same assumption as BAHSIC, the i th iteration of FOHSIC takes $O\left((1-\gamma)^{i-1} d m^{2}\right)$ time. The total number of iterations τ to obtain t features is $t=\left[1-(1-\gamma)^{\tau}\right] d$, that is $\tau=\frac{\log (d-t)-\log d}{\log (1-\gamma)}$
iterations. Performing τ steps will therefore take $\sum_{i=0}^{\tau-1} d(1-\gamma)^{i}=d\left(1-(1-\gamma)^{\tau}\right) / \gamma=t / \gamma$ operations. This means that FOHSIC takes $O\left(\mathrm{tm}^{2} / \gamma\right)$ time to extract t features.

5. Variants of BAHSIC

So far we discussed a set of algorithms to select features once we decided to choose a certain family of kernels k, l to measure dependence between two sets of observations. We now proceed to discussing a number of design choices for k and l. This will happen in two parts: in the current section we discuss generic choices of kernels on data and labels. Various combinations of such kernels will then lead to new algorithms that aim to discover different types of dependence between features and labels (or between a full and a restricted data set we are interested in unsupervised feature selection). After that (in Section 6) we will study specific choices of kernels which correspond to existing feature selection methods.

5.1 Kernels on Data

There exists a great number of kernels on data. Obviously, different kernels will correspond to a range of different assumptions on the type of dependence between the random variables x and y. Hence different kernels induce distinctive similarity measure on the data.

5.1.1 Linear Kernel

The simplest choice for k is to take a linear kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle$. This means that we are just using the underlying Euclidean space to define the similarity measure. Whenever the dimensionality d of \mathbf{x} is very high, this may allow for more complexity in the function class than what we could measure and assess otherwise. An additional advantage of this setting is that the kernel decomposes into the sum of products between individual coordinates. This means that any expression of the type $\operatorname{tr} \mathbf{K M}$ can be maximized with respect to the subset of available features via

$$
\sum_{j=1}^{d} \mathbf{x}_{* j}^{\top} \mathbf{M} \mathbf{x}_{* j} .
$$

This means that the optimality criterion decomposes into a sum over the scores of individual coordinates. Hence maximization with respect to a subset of size t is trivial, since it just involves finding the t largest contributors. Using (9) we can see that for HSIC_{1} the matrix \mathbf{M} is given by

$$
\mathbf{M}=\frac{1}{m(m-3)}\left[\tilde{\mathbf{L}}+\left(\mathbf{1 1}^{\top}-\mathbf{I}\right) \frac{\mathbf{1}^{\top} \tilde{\mathbf{L}} \mathbf{1}}{(m-1)(m-2)}-\frac{2}{m-2}\left(\tilde{\mathbf{L}} \mathbf{1} \mathbf{1}^{\top}-\operatorname{diag}(\tilde{\mathbf{L}} \mathbf{1})\right)\right]
$$

These terms are essentially rank-1 and diagonal updates on $\tilde{\mathbf{L}}$, which means that they can be computed very efficiently. Note also that in this case FOHSIC and BAHSIC generate the optimal feature selection with respect to the criterion applied.

5.1.2 Polynomial Kernel

Clearly in some cases the use of linear features can be quite limiting. It is possible, though, to use higher order correlations between data for the purpose of feature selection. This is achieved by
using a polynomial kernel

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left(\left\langle\mathbf{x}, \mathbf{x}^{\prime}\right\rangle+a\right)^{b} \text { for some } a \geq 0 \text { and } b \in \mathbb{N} .
$$

This kernel incorporates all polynomial interactions up to degree b (provided that $a>0$). For instance, if we wanted to take only mean and variance into account, we would only need to consider $b=2$ and $a=1$. Placing a higher emphasis on means is achieved by increasing the constant offset a.

5.1.3 Radial Basis Function Kernel

Note that polynomial kernels only map data into a finite dimensional space: while potentially huge, the dimensionality of polynomials of bounded degree is finite, hence criteria arising from such kernels will not provide us with guarantees for a good dependence measure. On the other hand, many radial basis function kernels, such as the Gaussian RBF kernel map \mathbf{x} into an infinite dimensional space. One may show that these kernels are in fact characteristic (Fukumizu et al., 2008; Sriperumbudur et al., 2008, 2010). That is, we use kernels of the form

$$
k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\kappa\left(\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|\right) \text { where } \kappa(\xi)=\exp (-\xi) \text { or } \kappa(\xi)=\exp \left(-\xi^{2}\right)
$$

to obtain Laplace and Gaussian kernels respectively. Since the spectrum of the corresponding matrices decays rapidly (Bach and Jordan, 2002, Appendix C), it is easy to compute incomplete Cholesky factorizations of the kernel matrix efficiently.

5.1.4 String and Graph Kernel

One of the key advantages of our approach is that it is not limited to vectorial data. For instance, we can perform feature selection on documents or graphs. For many such situations we have

$$
k\left(x, x^{\prime}\right)=\sum_{a \sqsubseteq x} w_{a} \#_{a}(x) \#_{a}\left(x^{\prime}\right),
$$

where $a \sqsubseteq x$ is a substring of x (Vishwanathan and Smola, 2003; Leslie et al., 2002). Similar decompositions can be made for graphs, where kernels on random walks and paths can be defined. As before, we could use BAHSIC to remove or FOHSIC to generate a list of features such that only relevant ones remain. That said, given that such kernels are additive in their features, we can use the same argument as made above for linear kernels to determine meaningful features in one go.

5.2 Kernels on Labels

The kernels on the data described our inherent assumptions on which properties of x (e.g., linear, polynomial, or nonparametric) are relevant for estimation. We now describe the complementary part, namely a set of possible choices for kernels on labels. Note that these kernels can be just as general as those defined on the data. This means that we may apply our algorithms to classification, regression, Poisson models, ranking, etc., in the same fashion. This is a significant difference to previous approaches which only apply to specialized settings such as binary classification. For completeness we begin with the latter.

5.2.1 Binary Classification

The simplest kernel we may choose is

$$
\begin{equation*}
l\left(y, y^{\prime}\right)=y y^{\prime} \text { where } y, y^{\prime} \in\{ \pm 1\} . \tag{16}
\end{equation*}
$$

In this case the label kernel matrix $\mathbf{L}=\mathbf{y} \mathbf{y}^{\top}$ has rank 1 and it is simply the outer product of the vector of labels. Note that we could transform l by adding a positive constant c, such as to obtain $l\left(y, y^{\prime}\right)=y y^{\prime}+c$ which yields $l\left(y, y^{\prime}\right)=2 \delta_{y, y^{\prime}}$ for $c=1$. This transformation, however, is immaterial: once \mathbf{K} has been centered it is orthogonal to constant matrices.

A second transformation, however, leads to nontrivial changes: we may change the relative weights of positive and negative classes. This is achieved by transforming $y \rightarrow c_{y} y$. For instance, we may pick $c_{+}=m_{+}^{-1}$ and $c_{-}=m_{-}^{-1}$. That is, we choose

$$
\begin{equation*}
\mathbf{y}=\left(m_{+}^{-1} \mathbf{1}_{m_{+}}^{\top}, m_{-}^{-1} \mathbf{1}_{m_{-}}^{\top}\right)^{\top} \text { which leads to } l\left(y, y^{\prime}\right)=m_{y}^{-1} m_{y^{\prime}}^{-1} y y^{\prime} . \tag{17}
\end{equation*}
$$

That is, we give different weight to positive and negative class according to their sample size. As we shall see in the next section, this corresponds to making the feature selection independent of the class size and it will lead to criteria derived from Maximum Mean Discrepancy estimators (Gretton et al., 2007a).

At this point, it is worth examining in more detail what it means to maximize HSIC in binary classification, as required in Step 3 of Algorithms 1 and 2 (see Section 4). When a linear kernel is used on the observations, HSIC is related to a number of well-established dependence measures, as we will establish in Section 6. Hence, we focus for the moment on the case where the feature space \mathcal{F} for the observations is nonlinear (eg, an RBF kernel), and we use the linear kernel (16) on the labels. HSIC being the squared Hilbert-Schmidt norm of the covariance operator between the feature spaces \mathcal{F} and \mathcal{G}, it corresponds to the sum of the squared singular values of this operator. The maximum singular value (COCO; see Gretton et al., 2005b) corresponds to the largest covariance between the mappings $f_{1}(X)$ and $g_{1}(Y)$ of X and Y. Given a linear kernel is used on the labels, $g_{1}(Y)$ will be a linear function on the label space. The nature of $f_{1}(X)$ will depend on the choice of observation kernel k. For a Gaussian kernel, $f_{1}(X)$ will be a smooth mapping.

We illustrate this property with a simple toy example in Figure 1. Figure 1(a) plots our observations, where one class has a bimodal distribution in feature X, with cluster centres at ± 1. The second class has a single peak at the origin. The maximum singular vector $f_{1}(X)$ is shown in Figure 1(b), and is computed using a Gaussian kernel on the observations in accordance with Gretton et al. (2005b). The resulting mapped points in Figure 1(c) have a strong linear relation with the labels (which can only be linearly transformed). Thus, when a nonlinear kernel is used on the observations, the features that maximize HSIC are those that can be smoothly mapped to have a strong linear correlation with the labels. The family of smooth mappings is determined by the choice of kernel on the observations: as we see from Figure 1(b), too large or small a kernel can result in a mapping that does not reflect the lengthscale of the underlying difference in features. This demonstrates the need for the kernel bandwidth selection step described in Section 4.

Figure 1: Maximum eigenfunction of the covrariance operator. Figure 1(a) contains the original data, where blue points have the label +1 and red points are labeled -1 . The feature of interest is plotted along the x-axis, and an irrelevant feature on the y-axis. Figure 1(b) contains the largest eigefunction of the covariance operator on the relevant feature alone, for three different kernel sizes: the smallest kernel shows overfitting, and the largest is too smooth. Figure 1(c) contains the mapped points for a "good" kernel choice $\sigma=0.1$, illustrating a strong linear relation between the mapped points and the labels for this choice of σ.

5.2.2 Multiclass Classification

Here we have a somewhat larger choice of options to contend with. Clearly the simplest kernel would be

$$
\begin{equation*}
l\left(y, y^{\prime}\right)=c_{y} \boldsymbol{\delta}_{y, y^{\prime}} \text { where } c_{y}>0 . \tag{18}
\end{equation*}
$$

For $c_{y}=m_{y}^{-1}$ we obtain a per-class normalization. Clearly, for n classes, the kernel matrix \mathbf{L} can be represented by the outer product of a rank- n matrix, where each row is given by $c_{y_{i}} \mathbf{y}_{y_{i}}^{\top}$, where \mathbf{e}_{y} denotes the y-th unit vector in \mathbb{R}^{n}. Alternatively, we may adjust the inner product between classes to obtain

$$
\begin{aligned}
l\left(y, y^{\prime}\right) & =\left\langle\psi(y), \psi\left(y^{\prime}\right)\right\rangle \\
\text { where } \psi(y) & =\mathbf{e}_{y} \frac{m}{m_{y}\left(m-m_{y}\right)}-\mathbf{z} \text { and } \mathbf{z}=\left(\left(m-m_{1}\right)^{-1}, \ldots,\left(m-m_{n}\right)^{-1}\right)^{\top} .
\end{aligned}
$$

This corresponds to assigning a "one versus the rest" feature to each class and taking the inner product between them. As before in the binary case, note that we may drop \mathbf{z} from the expansion, since constant offsets do not change the relative values of HSIC for feature selection. In this case we recover (18) with $c_{y}=m^{2} m_{y}^{-2}\left(m-m_{y}\right)^{-2}$.

5.2.3 Regression

This is one of the situations where the advantages of using HSIC are clearly apparent: we are able to adjust our method to such situations simply by choosing appropriate kernels. Clearly, we could just use a linear kernel $l\left(y, y^{\prime}\right)=y y^{\prime}$ which would select simple correlations between data and labels.

Another choice is to use an RBF kernel on the labels, such as

$$
\begin{equation*}
l\left(y, y^{\prime}\right)=\exp \left(-\bar{\sigma}\left\|y-y^{\prime}\right\|^{2}\right) \tag{20}
\end{equation*}
$$

This will ensure that we capture arbitrary nonlinear dependence between \mathbf{x} and y. The price is that in this case \mathbf{L} will have full rank, hence computation of BAHSIC and FOHSIC are correspondingly more expensive.

6. Connections to Other Approaches

We now show that several feature selection criteria are special cases of BAHSIC by choosing appropriate preprocessing of data and kernels. We will directly relate these criteria to the biased estimator HSIC_{0} in (4). Given the fact that HSIC_{0} converges to HSIC_{1} with rate $O\left(m^{-1}\right)$ it follows that the criteria are well related. Additionally we can infer from this that by using HSIC_{1} these other criteria could also be improved by correcting their bias. In summary BAHSIC is capable of finding and exploiting dependence of a much more general nature (for instance, dependence between data and labels with graph and string values).

6.1 Pearson Correlation

Pearson's correlation is commonly used in microarray analysis (van't Veer et al., 2002; Ein-Dor et al., 2006). It is defined as

$$
\begin{align*}
R_{j} & :=\frac{1}{m} \sum_{i=1}^{m}\left(\frac{x_{i j}-\bar{x}_{j}}{s_{x_{j}}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right) \text { where } \tag{21}\\
\bar{x}_{j} & =\frac{1}{m} \sum_{i=1}^{m} x_{i j} \text { and } \bar{y}=\frac{1}{m} \sum_{i=1}^{m} y_{i} \text { and } s_{x_{j}}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(x_{i j}-\bar{x}_{j}\right)^{2} \text { and } s_{y}^{2}=\frac{1}{m} \sum_{i=1}^{m}\left(y_{i}-\bar{y}\right)^{2} .
\end{align*}
$$

This means that all features are individually centered by \bar{x}_{j} and scaled by their coordinate-wise variance $s_{x_{j}}$ as a preprocessing step. Performing those operations before applying a linear kernel yields the equivalent HSIC_{0} formulation:

$$
\begin{align*}
\operatorname{tr} \mathbf{K H L H} & =\operatorname{tr}\left(\mathbf{X X}^{\top} \mathbf{H y y}^{\top} \mathbf{H}\right)=\left\|\mathbf{H} \mathbf{X}^{\top} \mathbf{H y}\right\|^{2} \tag{22}\\
& =\sum_{j=1}^{d}\left(\sum_{i=1}^{m}\left(\frac{x_{i j}-\bar{x}_{j}}{s_{x_{j}}}\right)\left(\frac{y_{i}-\bar{y}}{s_{y}}\right)\right)^{2}=\sum_{j=1}^{d} R_{j}^{2} . \tag{23}
\end{align*}
$$

Hence HSIC_{1} computes the sum of the squares of the Pearson Correlation (pc) coefficients. Since the terms are additive, feature selection is straightforward by picking the list of best performing features.

6.2 Mean Difference and Its Variants

The difference between the means of the positive and negative classes at the j th feature, $\left(\bar{x}_{j+}-\bar{x}_{j-}\right)$, is useful for scoring individual features. With different normalization of the data and the labels, many variants can be derived. In our experiments we compare a number of these variants. For example, the centroid (lin) (Bedo et al., 2006), t-statistic (t), signal-to-noise ratio (snr), moderated t-score (m-t) and B-statistics (lods) (Smyth, 2004) all belong to this family. In the following we make those connections more explicit.

Centroid Bedo et al. (2006) use $v_{j}:=\lambda \bar{x}_{j+}-(1-\lambda) \bar{x}_{j-}$ for $\lambda \in(0,1)$ as the score for feature j. ${ }^{4}$ Features are subsequently selected according to the absolute value $\left|v_{j}\right|$. In experiments the authors typically choose $\lambda=\frac{1}{2}$.
For $\boldsymbol{\lambda}=\frac{1}{2}$ we can achieve the same goal by choosing $\mathbf{L}_{i i^{\prime}}=\frac{y_{i} y_{i^{\prime}}}{m_{y i^{\prime}} m_{y^{\prime}}}\left(y_{i}, y_{i^{\prime}} \in\{ \pm 1\}\right)$, in which case $\mathbf{H L H}=\mathbf{L}$, since the label kernel matrix is already centered. Hence we have

$$
\operatorname{tr} \mathbf{K H L H}=\sum_{i, i^{\prime}=1}^{m} \frac{y_{i} y_{i^{\prime}}}{m_{y_{i}} m_{y_{i^{\prime}}}} \mathbf{x}_{i}^{\top} \mathbf{x}_{i^{\prime}}=\sum_{j=1}^{d}\left(\sum_{i, i^{\prime}=1}^{m} \frac{y_{i} y_{y^{\prime}} x_{i j} x_{i^{\prime} j}}{m_{y_{i}} m_{y_{i^{\prime}}}}\right)=\sum_{j=1}^{d}\left(\bar{x}_{j+}-\bar{x}_{j-}\right)^{2} .
$$

This proves that the centroid feature selector can be viewed as a special case of BAHSIC in the case of $\lambda=\frac{1}{2}$. From our analysis we see that other values of λ amount to effectively rescaling the patterns \mathbf{x}_{i} differently for different classes, which may lead to undesirable features being selected.
t-Statistic The normalization for the j th feature is computed as

$$
\begin{equation*}
\bar{s}_{j}=\left[\frac{s_{j+}^{2}}{m_{+}}+\frac{s_{j-}^{2}}{m_{-}}\right]^{\frac{1}{2}} \tag{24}
\end{equation*}
$$

In this case we define the t-statistic for the j th feature via $t_{j}=\left(\bar{x}_{j+}-\bar{x}_{j-}\right) / \bar{s}_{j}$.
Compared to the Pearson correlation, the key difference is that now we normalize each feature not by the overall sample standard deviation but rather by a value which takes each of the two classes separately into account.

Signal to noise ratio is yet another criterion to use in feature selection. The key idea is to normalize each feature by $\bar{s}_{j}=s_{j+}+s_{j-}$ instead. Subsequently the $\left(\bar{x}_{j+}-\bar{x}_{j-}\right) / \bar{s}_{j}$ are used to score features.

Moderated t-score is similar to t-statistic and is used for microarray analysis (Smyth, 2004). Its normalization for the j th feature is derived via a Bayes approach as

$$
\tilde{s}_{j}=\frac{m \bar{s}_{j}^{2}+m_{0} \bar{s}_{0}^{2}}{m+m_{0}}
$$

where \bar{s}_{j} is from (24), and \bar{s}_{0} and m_{0} are hyperparameters for the prior distribution on \bar{s}_{j} (all \bar{s}_{j} are assumed to be iid). \bar{s}_{0} and m_{0} are estimated using information from all feature dimensions.
4. The parameterization in Bedo et al. (2006) is different but it can be shown to be equivalent.

This effectively borrows information from the ensemble of features to aid with the scoring of an individual feature. More specifically, \bar{s}_{0} and m_{0} can be computed as (Smyth, 2004)

$$
\begin{align*}
& m_{0}=2 \Gamma^{\prime-1}\left(\frac{1}{d} \sum_{j=1}^{d}\left(z_{j}-\bar{z}\right)^{2}-\Gamma^{\prime}\left(\frac{m}{2}\right)\right), \tag{25}\\
& \bar{s}_{0}^{2}=\exp \left(\bar{z}-\Gamma\left(\frac{m}{2}\right)+\Gamma\left(\frac{m_{0}}{2}\right)-\ln \left(\frac{m_{0}}{m}\right)\right)
\end{align*}
$$

where $\Gamma(\cdot)$ is the gamma function, ' denotes derivative, $z_{j}=\ln \left(\bar{s}_{j}^{2}\right)$ and $\bar{z}=\frac{1}{d} \sum_{j=1}^{d} z_{j}$.
B-statistic is the logarithm of the posterior odds (lods) that a feature is differentially expressed.
Lönnstedt and Speed (2002) and Smyth (2004) show that, for large number of features, Bstatistic is given by

$$
B_{j}=a+b \tilde{t}_{j}^{2}
$$

where both a and b are constant $(b>0)$, and \tilde{t}_{j} is the moderated- t statistic for the j th feature. Here we see that B_{j} is monotonic increasing in \tilde{f}_{j}, and thus results in the same gene ranking as the moderated t statistic.

The reason why these connections work is that the signal-to-noise ratio, moderated t-statistic, and B-statistic are three variants of the t-test. They differ only in their respective denominators, and are thus special cases of HSIC_{0} if we normalize the data accordingly.

6.3 Maximum Mean Discrepancy

For binary classification, an alternative criterion for selecting features is to check whether the distributions $\operatorname{Pr}(x \mid y=1)$ and $\operatorname{Pr}(x \mid y=-1)$ differ and subsequently pick those coordinates of the data which primarily contribute to the difference between the two distributions.

More specifically, we could use Maximum Mean Discrepancy (MMD) (Gretton et al., 2007a), which is a generalization of mean difference for Reproducing Kernel Hilbert Spaces, given by

$$
\operatorname{MMD}=\left\|\mathbb{E}_{x}[\phi(x) \mid y=1]-\mathbb{E}_{x}[\phi(x) \mid y=-1]\right\|_{\mathscr{H}}^{2} .
$$

A biased estimator of the above quantity can be obtained simply by replacing expectations by averages over a finite sample. We relate a biased estimator of MMD to HSIC_{0} again by setting m_{+}^{-1} as the labels for positive samples and $-m_{-}^{-1}$ for negative samples. If we apply a linear kernel on labels, \mathbf{L} is automatically centered, that is, $\mathbf{L} \mathbf{1}=\mathbf{0}$ and $\mathbf{H L H}=\mathbf{L}$. This yields

$$
\begin{align*}
\operatorname{tr} \mathbf{K H L H} & =\operatorname{tr} \mathbf{K L} \tag{26}\\
& =\frac{1}{m_{+}^{2}} \sum_{i, j}^{m_{+}} k\left(x_{i}, x_{j}\right)+\frac{1}{m_{-}^{2}} \sum_{i, j}^{m_{-}} k\left(x_{i}, x_{j}\right)-\frac{2}{m_{+} m_{-}} \sum_{i}^{m_{+}} \sum_{j}^{m_{-}} k\left(x_{i}, x_{j}\right) \\
& =\left\|\frac{1}{m_{+}} \sum_{i}^{m_{+}} \phi\left(x_{i}\right)-\frac{1}{m_{-}} \sum_{j}^{m_{-}} \phi\left(x_{j}\right)\right\|_{\mathcal{H}}^{2} .
\end{align*}
$$

The quantity in the last line is an estimator of MMD with bias $O\left(m^{-1}\right)$ (Gretton et al., 2007a). This implies that HSIC_{0} and the biased estimator of MMD are identical up to a constant factor. Since the bias of HSIC_{0} is also $O\left(m^{-1}\right)$, this effectively show that scaled MMD and HSIC_{1} converges to each other with rate $O\left(m^{-1}\right)$.

6.4 Kernel Target Alignment

Alternatively, one could use Kernel Target Alignment (KTA) (Cristianini et al., 2003) to test directly whether there exists any correlation between data and labels. KTA has been used for feature selection in this context. Formally it is defined as $\operatorname{tr}(\mathbf{K L}) /\|\mathbf{K}\|\|\mathbf{L}\|$, that is, as the normalized cosine between the kernel matrix and the label matrix.

The nonlinear dependence on \mathbf{K} makes it somewhat hard to optimize for. Indeed, for computational convenience the normalization is often omitted in practice (Neumann et al., 2005), which leaves us with trKL, the corresponding estimator of MMD. ${ }^{5}$ Note the key difference, though, that normalization of \mathbf{L} according to label size does not occur. Nor does KTA take centering into account. Both normalizations are rather important, in particular when dealing with data with very uneven distribution of classes and when using data that is highly collinear in feature space. On the other hand, whenever the sample sizes for both classes are approximately matched, such lack of normalization is negligible and we see that both criteria are similar.

Hence in some cases in binary classification, selecting features that maximizes HSIC also maximizes MMD and KTA. Note that in general (multiclass, regression, or generic binary classification) this connection does not hold. Moreover, the use of HSIC offers uniform convergence bounds on the tails of the distribution of the estimators.

6.5 Shrunken Centroid

The shrunken centroid (pam) method (Tibshirani et al., 2002, 2003) performs feature ranking using the differences from the class centroids to the centroid of all the data, that is

$$
\left(\bar{x}_{j+}-\bar{x}_{j}\right)^{2}+\left(\bar{x}_{j-}-\bar{x}_{j}\right)^{2},
$$

as a criterion to determine the relevance of a given feature. It also scores each feature separately.
To show that this criterion is related to HSIC we need to devise an appropriate map for the labels y. Consider the feature map $\psi(y)$ with $\psi(1)=\left(m_{+}^{-1}, 0\right)^{\top}$ and $\psi(-1)=\left(0, m_{-}^{-1}\right)^{\top}$. Clearly, when applying \mathbf{H} to \mathbf{Y} we obtain the following centered effective feature maps

$$
\bar{\psi}(1)=\left(m_{+}^{-1}-m^{-1},-m^{-1}\right) \text { and } \bar{\psi}(-1)=\left(-m^{-1}, m_{-}^{-1}-m^{-1}\right) .
$$

Consequently we may express trKHLH via

$$
\begin{align*}
\operatorname{tr} \mathbf{K H L H} & =\left\|\frac{1}{m_{+}} \sum_{i=1}^{m_{+}} \mathbf{x}_{i}-\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}\right\|^{2}+\left\|\frac{1}{m_{-}} \sum_{i=1}^{m_{-}} \mathbf{x}_{i}-\frac{1}{m} \sum_{i=1}^{m} \mathbf{x}_{i}\right\|^{2} \tag{27}\\
& =\sum_{j=1}^{d}\left(\left(\frac{1}{m_{+}} \sum_{i=1}^{m_{+}} x_{i j}-\frac{1}{m} \sum_{i=1}^{m} x_{i j}\right)^{2}+\left(\frac{1}{m_{-}} \sum_{i=1}^{m-} x_{i j}-\frac{1}{m} \sum_{i=1}^{m} x_{i j}\right)^{2}\right) \tag{28}\\
& =\sum_{j=1}^{d}\left(\left(\bar{x}_{j+}-\bar{x}_{j}\right)^{2}+\left(\bar{x}_{j-}-\bar{x}_{j}\right)^{2}\right) .
\end{align*}
$$

5. The denominator provides a trivial constraint in the case where the features are individually normalized to unit norm for a linear kernel, since in this case $\|\mathbf{K}\|=d$: that is, the norm of the kernel matrix scales with the dimensionality d of remaining features in X. The normalization in the denominator can have a more meaningful effect, however, for instance in the taxonomy fitting work of Blaschko and Gretton (2009), where the quality-of-fit score could otherwise be made arbitrarily large independent of the data.

This is the information used by the shrunken centroid method, hence we see that it can be seen to be a special case of HSIC when using a linear kernel on the data and a specific feature map on the labels. Note that we could assign different weights to the two classes, which would lead to a weighted linear combination of distances from the centroid. Finally, it is straightforward how this definition can be extended to multiclass settings, simply by considering the map $\psi: y \rightarrow m_{y}^{-1} \mathbf{e}_{y}$.

6.6 Ridge Regression

BAHSIC can also be used to select features for regression problems, except that in this case the labels are continuous variables. We could, in principle, use an RBF kernel or similar on the labels to address the feature selection issue. What we show now is that even for a simple linear kernel, interesting results can be obtained. More to the point, we show that feature selection using ridge regression can also be seen to arise as a special case of HSIC feature selection. We assume here that \mathbf{y} is centered.

In ridge regression (Hastie et al., 2001), we estimate the outputs \mathbf{y} using the design matrix \mathbf{V} and a parameter vector \mathbf{w} by minimizing the following regularized risk functional

$$
J=\|\mathbf{y}-\mathbf{V} \mathbf{w}\|^{2}+\lambda\|\mathbf{w}\|^{2} .
$$

Here the second term is known as the regularizer. If we choose $\mathbf{V}=\mathbf{X}$ we obtain the family of linear models. In the general (nonlinear) case \mathbf{V} may be an arbitrary matrix, where each row consists of a set of basis functions, for example, a feature map $\phi(\mathbf{x})$. One might conclude that small values of J correspond to good sets of features, since there a \mathbf{w} with small norm would still lead to a small approximation error. It turns out that J is minimized for $\mathbf{w}=\left(\mathbf{V}^{\top} \mathbf{V}+\lambda \mathbf{I}\right)^{-1} \mathbf{y}$. Hence the minimum is given by

$$
\begin{align*}
J^{*} & =\mathbf{y}^{\top} \mathbf{y}-\mathbf{y}^{\top} \mathbf{V}\left(\mathbf{V}^{\top} \mathbf{V}+\lambda \mathbf{I}\right)^{-1} \mathbf{V}^{\top} \mathbf{y} \tag{29}\\
& =\text { constant }-\operatorname{tr}\left[\mathbf{V}\left(\mathbf{V}^{\top} \mathbf{V}+\lambda \mathbf{I}\right)^{-1} \mathbf{V}^{\top}\right] \mathbf{y} \mathbf{y}^{\top} .
\end{align*}
$$

Whenever we are only given $\mathbf{K}=\mathbf{V}^{\top} \mathbf{V}$ we have the following equality

$$
J^{*}=\text { constant }-\operatorname{tr}\left[\mathbf{K}(\mathbf{K}+\lambda \mathbf{I})^{-1}\right] \mathbf{y} \mathbf{y}^{\top} .
$$

This means that the matrices

$$
\overline{\mathbf{K}}:=\mathbf{V}\left(\mathbf{V}^{\top} \mathbf{V}+\lambda \mathbf{I}\right)^{-1} \mathbf{V}^{\top} \text { and } \overline{\mathbf{K}}:=\mathbf{K}(\mathbf{K}+\lambda \mathbf{I})^{-1}
$$

are equivalent kernel matrices to be used in BAHSIC. Note that obviously instead of using $\mathbf{y y}{ }^{\top}$ as a kernel on the labels \mathbf{L} we could use a nonlinear kernel in conjunction with the matrices arrived at from feature selection by ridge regression. It also generalizes the setting of Hastie et al. (2001) to situations other than regression.

6.7 Quadratic Mutual Information

Torr (2003) introduces the quadratic mutual information for feature selection. That is, he uses the L_{2} distance between the joint and the marginal distributions on x and y as a criterion for how dependent the two distributions are:

$$
\begin{equation*}
I(x, y)=\iint(\operatorname{Pr}(x, y)-\operatorname{Pr}(x) \operatorname{Pr}(y))^{2} \mathrm{~d} x \mathrm{~d} y . \tag{30}
\end{equation*}
$$

In general, (30) is not efficiently computable. That said, when using a Parzen windows estimate of the joint and the marginals, it is possible to evaluate $I(x, y)$ explicitly. Since we only have a finite number of observations, one uses the estimates

$$
\begin{aligned}
\hat{p}(x) & =\frac{1}{m} \sum_{i=1}^{m} \kappa_{x}\left(x_{i}-x\right), \\
\hat{p}(y) & =\frac{1}{m} \sum_{i=1}^{m} \kappa_{y}\left(y_{i}-y\right), \\
\hat{p}(x, y) & =\frac{1}{m} \sum_{i=1}^{m} \kappa_{x}\left(x_{i}-x\right) \kappa_{y}\left(y_{i}-y\right) .
\end{aligned}
$$

Here κ_{x} and κ_{y} are appropriate kernels of the Parzen windows density estimator. Denote by

$$
\kappa_{i j}=\int \kappa_{x}\left(x_{i}-x\right) \kappa_{x}\left(x_{j}-x\right) d x \text { and } \mathrm{v}_{i j}=\int \kappa_{y}\left(y_{i}-y\right) \kappa_{y}\left(y_{j}-y\right) d y
$$

inner products between Parzen windows kernels. In this case we have

$$
\|\hat{p}(x, y)-\hat{p}(x) \cdot \hat{p}(y)\|^{2}=m^{-2}\left[\operatorname{tr} \kappa v-2 \mathbf{1}^{\top} \kappa v \mathbf{1}+\mathbf{1}^{\top} \kappa \mathbf{1 1}^{\top} v \mathbf{1}\right]=m^{-2} \kappa \mathbf{H} v \mathbf{H} .
$$

In other words, we obtain the same criterion as what can be derived from a biased estimator of HSIC. The key difference, though, is that this analogy only works whenever κ and v can be seen to be arising from an inner product between Parzen windows kernel estimates. This is not universally true: for instance, for graphs, trees, or strings no simple density estimates can be found. This is a serious limitation. Moreover, since we are using a plug-in estimate of the densities, we inherit an innate slow-down of convergence due to the convergence of the density estimators. This issue is discussed in detail in Anderson et al. (1994).

6.8 Recursive Feature Elimination with Support Vectors

Another popular feature selection algorithm is to use Support Vector Machines and to determine the relevance of features by the size of the induced margin as a solution of the dual optimization problem (Guyon et al., 2002). While the connection to BAHSIC is somewhat more tenuous in this context, it is still possible to recast this algorithm in our framework. Before we do so, we describe the basic idea of the method, using v-SVM instead of plain C-SVMs: for v-SVM without a constant offset b we have the following dual optimization problem (Schölkopf et al., 1999).

$$
\begin{equation*}
\underset{\alpha}{\operatorname{minimize}} \frac{1}{2} \alpha^{\top}(\mathbf{K} \circ \mathbf{L}) \alpha \text { subject to } \alpha^{\top} \mathbf{1}=v m \text { and } \alpha_{i} \in[0,1] . \tag{31}
\end{equation*}
$$

This problem is first solved with respect to α for the full set of features. Features are then selected from (31) by removing coordinates such that the objective function decreases least (if at all). For computational convenience, α is not recomputed for a number of feature removals, since repeated solving of a quadratic program tends to be computationally expensive.

We now show that this procedure can be viewed as a special case of BAHSIC, where now the class of kernels, parameterized by σ is the one of conformal kernels. Given a base kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$ Amari and Wu (1999) propose the following kernel:

$$
\bar{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\alpha(\mathbf{x}) \alpha\left(\mathbf{x}^{\prime}\right) k\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \text { where } \alpha(\mathbf{x}) \geq 0
$$

It is easy to see that

$$
\alpha^{\top}(\mathbf{K} \circ \mathbf{L}) \alpha=\mathbf{y}^{\top}[\operatorname{diag} \alpha] \mathbf{K}[\operatorname{diag} \alpha] \mathbf{y}=\mathbf{y}^{\top} \overline{\mathbf{K}} \mathbf{y},
$$

where $\overline{\mathbf{K}}$ is the kernel matrix arising from the conformal kernel $\bar{k}\left(\mathbf{x}, \mathbf{x}^{\prime}\right)$. Hence for fixed α the objective function is given by a quantity which can be interpreted as a biased version of HSIC. Re-optimization with respect to α is consistent with the kernel adjustment step in Algorithm 1. The only difference being that here the kernel parameters are given by α rather than a kernel width σ. That said, it is also clear from the optimization problem that this style of feature selection may not be as desirable, since the choice of kernel parameters emphasizes only points close to the decision boundary.

7. Experiments

We analyze BAHSIC and related algorithms in an extensive set of experiments. The current section contains results on synthetic and real benchmark data, that is, data from Statlib, the UCI repository, and data from the NIPS feature selection challenge. Sections 8 and 9 then discusses applications to biological data, namely brain signal analysis and feature selection for microarrays.

Since the number of possible choices for feature selection within the BAHSIC family is huge, it is clearly impossible to investigate and compare all of them to all possible other feature selectors. In the present section we pick the following three feature selectors as representative examples. A wider range of kernels and choices is investigated in Section 8 and 9 in the context of biomedical applications.

In this section, we presents three concrete examples of BAHSIC which are used for our later experiments. We apply a Gaussian kernel $k\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left(-\sigma\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right)$ on data, while varying the kernels on labels. These BAHSIC variants are dedicated respectively to the following settings:

Binary classification (BIN) Use the feature map in (17) and apply a linear kernel.
Multiclass classification (MUL) Use the feature map in (18) and apply a linear kernel.
Regression problem (REG) Use the kernel in (20), that is, a Gaussian RBF kernel on Y.
For the above variants a further speedup of BAHSIC is possible by updating entries in the data kernel matrix incrementally. We use the fact that distance computation of a RBF kernel decomposes into individual coordinates, that is, we use that $\left\|\mathbf{x}_{i}-\mathbf{x}_{i^{\prime}}\right\|^{2}=\sum_{j=1}^{d}\left\|x_{i j}-x_{i^{\prime} j}\right\|^{2}$. Hence $\left\|\mathbf{x}_{i}-\mathbf{x}_{i^{\prime}}\right\|^{2}$ needs to be computed only once, and subsequent updates are effected by subtracting $\left\|x_{i j}-x_{i^{\prime} j}\right\|^{2}$.

We will use BIN, MUL and REG as the particular instances of BAHSIC in our experiments. We will refer to them commonly as BAHSIC since the exact meaning will be clear depending on the data sets encountered. Furthermore, we also instantiate FOHSIC using the same kernels as BIN, MUL and REG, and we adopt the same convention when we refer to it in our experiments.

7.1 Artificial Data

We constructed 3 artificial data sets, as illustrated in Figure 2, to illustrate the difference between BAHSIC variants with linear and nonlinear kernels. Each data set has 22 dimensions-only the first two dimensions are related to the prediction task and the rest are just Gaussian noise. These data sets are (i) Binary XOR data: samples belonging to the same class have multimodal distributions;

Figure 2: Artificial data sets and the performance of different methods when varying the number of observations. The first row contains plots for the first 2 dimension of the (a) binary (b) multiclass and (c) regression data. Different classes are encoded with different colours. The second row plots the median rank (y -axis) of the two relevant features as a function of sample size (x -axis) for the corresponding data sets in the first row. The third row plots median rank (y-axis) of the two relevant features produced in the first iteration of BAHSIC as a function of the sample size. (Blue circle: Pearson's correlation; Green triangle: RELIEF; Magenta downward triangle: mutual information; Black triangle: FOHSIC; Red square: BAHSIC. Note that RELIEF only works for binary classification.)
(ii) Multiclass data: there are 4 classes but 3 of them are collinear; (iii) Nonlinear regression data: labels are related to the first two dimension of the data by $y=x_{1} \exp \left(-x_{1}^{2}-x_{2}^{2}\right)+\varepsilon$, where ε denotes additive Gaussian noise. We compare BAHSIC to FOHSIC, Pearson's correlation, mutual information (Zaffalon and Hutter, 2002), and RELIEF (RELIEF works only for binary problems).

We aim to show that when nonlinear dependencies exist in the data, BAHSIC with nonlinear kernels is very competent in finding them.

We instantiate the artificial data sets over a range of sample sizes (from 40 to 400), and plot the median rank, produced by various methods, for the first two dimensions of the data. All numbers in Figure 2 are averaged over 10 runs. In all cases, BAHSIC shows good performance. More specifically, we observe:

Binary XOR Both BAHSIC and RELIEF correctly select the first two dimensions of the data even for small sample sizes; while FOHSIC, Pearson's correlation, and mutual information fail. This is because the latter three evaluate the goodness of each feature independently. Hence they are unable to capture nonlinear interaction between features.

Multiclass Data BAHSIC, FOHSIC and mutual information select the correct features irrespective of the size of the sample. Pearson's correlation only works for large sample size. The collinearity of 3 classes provides linear correlation between the data and the labels, but due to the interference of the fourth class such correlation is picked up by Pearson's correlation only for a large sample size.

Nonlinear Regression Data The performance of Pearson's correlation and mutual information is slightly better than random. BAHSIC and FOHSIC quickly converge to the correct answer as the sample size increases.

In fact, we observe that as the sample size increases, BAHSIC is able to rank the relevant features (the first two dimensions) almost correctly in the first iteration. In the third row of Figure 2, we show the median rank of the relevant features produced in the first iteration as a function of the sample size. It is clear from the pictures that BAHSIC effectively selects features in a single iteration when the sample size is large enough. For the regression case, we also see that BAHSIC with several iterations, indicated by the red square in Figure 2(f), slightly improves the correct ranking over BAHSIC with a single iteration, given by the blue square in Figure 2(i).

While this does not prove BAHSIC with nonlinear kernels is always better than that with a linear kernel, it illustrates the competence of BAHSIC in detecting nonlinear features. This is obviously useful in a real-world situations. The second advantage of BAHSIC is that it is readily applicable to both classification and regression problems, by simply choosing a different kernel on the labels.

7.2 Public Benchmark Data

In this section, we compare our method, BAHSIC, to several state-of-the-art feature selectors on a large collection of public benchmark datasets. BAHSIC achieves the overall best performance in three experimental settings, i.e., feature selection for binary, multiclass and regression problems.

7.2.1 ALGORITHMS

In this experiment, we show that the performance of BAHSIC can be comparable to other state-of-the-art feature selectors, namely SVM Recursive Feature Elimination (RFE) (Guyon et al., 2002), RELIEF (Kira and Rendell, 1992), L_{0}-norm SVM (L_{0}) (Weston et al., 2003), and R2W2 (Weston et al., 2000). We used the implementation of these algorithms as given in the Spider machine learning toolbox, since those were the only publicly available implementations. ${ }^{6}$ Furthermore, we

[^3]also include filter methods, namely FOHSIC, Pearson's correlation (PC), and mutual information (MI), in our comparisons.

7.2.2 Data Sets

We used various real world data sets taken from the UCI repository, ${ }^{7}$ the Statlib repository, ${ }^{8}$ the LibSVM website, ${ }^{9}$ and the NIPS feature selection challenge ${ }^{10}$ for comparison. Due to scalability issues in Spider, we produced a balanced random sample of size less than 2000 for data sets with more than 2000 samples.

7.2.3 Experimental Protocol

We report the performance of an SVM using a Gaussian kernel on a feature subset of size 5 and 10 -fold cross-validation. These 5 features were selected per fold using different methods. Since we are comparing the selected features, we used the same family of classifiers for all methods: an SVM with a Gaussian kernel. To address issues of automatic bandwidth selection (after all, we are interested in adjusting the function class to the data at hand) we chose σ to be the median distance between points in the sample (Schölkopf and Smola, 2002) and we fixed the regularization parameter to $C=100$. On classification data sets, we measured the performance using the error rate, and on regression data sets we used the percentage of variance not-explained (also known as $1-r^{2}$). The results for binary data sets are summarized in the first part of Table 1 . Those for multiclass and regression data sets are reported respectively in the second and the third parts of Table 1.

To provide a concise summary of the performance of various methods on binary data sets, we measured how the methods compare with the best performing one in each data set in Table 1. We recorded the best absolute performance of all feature selectors as the baseline, and computed the distance of each algorithm to the best possible result. In this context it makes sense to penalize catastrophic failures more than small deviations. In other words, we would like to have a method which is at least almost always very close to the best performing one. Taking the ℓ_{2} distance achieves this effect, by penalizing larger differences more heavily. It is also our goal to choose an algorithm that performs homogeneously well across all data sets. The ℓ_{2} distance scores are listed for the binary data sets in Table 1. In general, the smaller the ℓ_{2} distance, the better the method. In this respect, BAHSIC and FOHSIC have the best performance. We did not produce the ℓ_{2} distance for multiclass and regression data sets, since the limited number of such data sets did not allow us to draw statistically significant conclusions.

Besides using 5 features, we also plot the performance of the learners as a function of the number of selected features for 9 data sets (covertype, ionosphere, sonar, satimage, segment, vehicle, housing, bodyfat and abalone) in Figure 3. Generally speaking, the smaller the plotted number the better the performance of the corresponding learner. For multiclass and regression data sets, it is clear that the curves for BAHSIC very often lie along the lower bound of all methods. For binary classification, however, SVM-RFE as a member of our framework performs the best in general. The advantage of BAHSIC becomes apparent when a small percentage of features is selected. For instance, BAHSIC is the best when only 5 features are selected from data set 1 and 2. Note that

[^4]| Data | BAHSIC | FOHSIC | PC | MI | RFE | RELIEF | L_{0} | R2W2 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| covertype | 26.3 ± 1.5 | 37.9 ± 1.7 | 40.3 ± 1.3 | $\mathbf{2 6 . 7} \pm \mathbf{1 . 1}$ | 33.0 ± 1.9 | 42.7 ± 0.7 | 43.4 ± 0.7 | 44.2 ± 1.7 |
| ionosphere | 12.3 ± 1.7 | 12.8 ± 1.6 | 12.3 ± 1.5 | 13.1 ± 1.7 | 20.2 ± 2.2 | 11.7 ± 2.0 | 35.9 ± 0.4 | 13.7 ± 2.7 |
| sonar | 27.9 ± 3.1 | 25.0 ± 2.3 | 25.5 ± 2.4 | 26.9 ± 1.9 | $\mathbf{2 1 . 6} \pm 3.4$ | 24.0 ± 2.4 | 36.5 ± 3.3 | 32.3 ± 1.8 |
| heart | $\mathbf{1 4 . 8} \pm \mathbf{2 . 4}$ | $\mathbf{1 4 . 4} \pm \mathbf{2 . 4}$ | 16.7 ± 2.4 | 15.2 ± 2.5 | 21.9 ± 3.0 | 21.9 ± 3.4 | 30.7 ± 2.8 | 19.3 ± 2.6 |
| breastcancer | 3.8 ± 0.4 | 3.8 ± 0.4 | 4.0 ± 0.4 | 3.5 ± 0.5 | $\mathbf{3 . 4} \pm \mathbf{0 . 6}$ | 3.1 ± 0.3 | 32.7 ± 2.3 | $3.4 \pm$ 0.4 |
| australian | 14.3 ± 1.3 | 14.3 ± 1.3 | 14.5 ± 1.3 | 14.5 ± 1.3 | 14.8 ± 1.2 | 14.5 ± 1.3 | 35.9 ± 1.0 | 14.5 ± 1.3 |
| splice | 22.6 ± 1.1 | 22.6 ± 1.1 | 22.8 ± 0.9 | 21.9 ± 1.0 | 20.7 ± 1.0 | 22.3 ± 1.0 | 45.2 ± 1.2 | 24.0 ± 1.0 |
| svmguide3 | $\mathbf{2 0 . 8} \pm \mathbf{0 . 6}$ | $\mathbf{2 0 . 9} \pm \mathbf{0 . 6}$ | 21.2 ± 0.6 | $\mathbf{2 0 . 4} \pm \mathbf{0 . 7}$ | 21.0 ± 0.7 | 21.6 ± 0.4 | 23.3 ± 0.3 | 23.9 ± 0.2 |
| adult | 24.8 ± 0.2 | 24.4 ± 0.6 | 18.3 ± 1.1 | 21.6 ± 1.1 | 21.3 ± 0.9 | 24.4 ± 0.2 | 24.7 ± 0.1 | $100.0 \pm 0.0^{*}$ |
| cleveland | 19.0 ± 2.1 | 20.5 ± 1.9 | 21.9 ± 1.7 | 19.5 ± 2.2 | 20.9 ± 2.1 | 22.4 ± 2.5 | 25.2 ± 0.6 | 21.5 ± 1.3 |
| derm | 0.3 ± 0.3 | 0.3 ± 0.3 | $\mathbf{0 . 3} \pm \mathbf{0 . 3}$ | 0.3 ± 0.3 | $\mathbf{0 . 3} \pm \mathbf{0 . 3}$ | 0.3 ± 0.3 | 24.3 ± 2.6 | $\mathbf{0 . 3} \pm \mathbf{0 . 3}$ |
| hepatitis | 13.8 ± 3.5 | 15.0 ± 2.5 | 15.0 ± 4.1 | 15.0 ± 4.1 | 15.0 ± 2.5 | 17.5 ± 2.0 | 16.3 ± 1.9 | 17.5 ± 2.0 |
| musk | 29.9 ± 2.5 | 29.6 ± 1.8 | 26.9 ± 2.0 | 31.9 ± 2.0 | 34.7 ± 2.5 | $\mathbf{2 7 . 7} \pm \mathbf{1 . 6}$ | 42.6 ± 2.2 | 36.4 ± 2.4 |
| optdigits | $\mathbf{0 . 5} \pm \mathbf{0 . 2}$ | $\mathbf{0 . 5} \pm \mathbf{0 . 2}$ | 0.5 ± 0.2 | 3.4 ± 0.6 | 3.0 ± 1.6 | 0.9 ± 0.3 | 12.5 ± 1.7 | 0.8 ± 0.3 |
| specft | 20.0 ± 2.8 | 20.0 ± 2.8 | 18.8 ± 3.4 | 18.8 ± 3.4 | 37.5 ± 6.7 | 26.3 ± 3.5 | 36.3 ± 4.4 | 31.3 ± 3.4 |
| wdbc | 5.3 ± 0.6 | 5.3 \pm 0.6 | 5.3 ± 0.7 | 6.7 ± 0.5 | 7.7 ± 1.8 | 7.2 ± 1.0 | 16.7 ± 2.7 | 6.8 ± 1.2 |
| wine | $1.7 \pm \mathbf{1 . 1}$ | $1.7 \pm \mathbf{1 . 1}$ | $1.7 \pm \mathbf{1 . 1}$ | 1.7 ± 1.1 | 3.4 ± 1.4 | 4.2 ± 1.9 | 25.1 ± 7.2 | $\mathbf{1 . 7} \pm \mathbf{1 . 1}$ |
| german | 29.2 ± 1.9 | 29.2 ± 1.8 | 26.2 ± 1.5 | 26.2 ± 1.7 | 27.2 ± 2.4 | 33.2 ± 1.1 | 32.0 ± 0.0 | 24.8 ± 1.4 |
| gisette | 12.4 ± 1.0 | 13.0 ± 0.9 | 16.0 ± 0.7 | 50.0 ± 0.0 | 42.8 ± 1.3 | 16.7 ± 0.6 | 42.7 ± 0.7 | $100.0 \pm 0.0^{*}$ |
| arcene | 22.0 ± 5.1 | 19.0 ± 3.1 | 31.0 ± 3.5 | 45.0 ± 2.7 | 34.0 ± 4.5 | 30.0 ± 3.9 | 46.0 ± 6.2 | 32.0 ± 5.5 |
| madelon | 37.9 ± 0.8 | $\mathbf{3 8 . 0} \pm \mathbf{0 . 7}$ | 38.4 ± 0.6 | 51.6 ± 1.0 | 41.5 ± 0.8 | 38.6 ± 0.7 | 51.3 ± 1.1 | $100.0 \pm 0.0^{*}$ |
| ℓ_{2} | 11.2 | 14.8 | 19.7 | 48.6 | 42.2 | 25.9 | 85.0 | 138.3 |
| satimage | 15.8 ± 1.0 | 17.9 ± 0.8 | 52.6 ± 1.7 | 22.7 ± 0.9 | 18.7 ± 1.3 | | 22.1 ± 1.8 | - |
| segment | 28.6 ± 1.3 | 33.9 ± 0.9 | $\mathbf{2 2 . 9} \pm \mathbf{0 . 5}$ | 27.1 ± 1.3 | 24.5 ± 0.8 | - | 68.7 ± 7.1 | - |
| vehicle | 36.4 ± 1.5 | 48.7 ± 2.2 | 42.8 ± 1.4 | 45.8 ± 2.5 | $\mathbf{3 5 . 7} \pm \mathbf{1 . 3}$ | - | 40.7 ± 1.4 | - |
| svmguide2 | $\mathbf{2 2 . 8} \pm 2.7$ | $\mathbf{2 2 . 2} \pm \mathbf{2 . 8}$ | 26.4 ± 2.5 | 27.4 ± 1.6 | 35.6 ± 1.3 | - | 34.5 ± 1.7 | - |
| vowel | 44.7 ± 2.0 | 44.7 ± 2.0 | 48.1 ± 2.0 | 45.4 ± 2.2 | 51.9 ± 2.0 | - | 85.6 ± 1.0 | - |
| usps | 43.4 ± 1.3 | 43.4 ± 1.3 | 73.7 ± 2.2 | 67.8 ± 1.8 | 55.8 ± 2.6 | - | 67.0 ± 2.2 | - |
| housing | 18.5 ± 2.6 | 18.9 ± 3.6 | 25.3 ± 2.5 | 18.9 ± 2.7 | - | - | - | - |
| bodyfat | 3.5 ± 2.5 | 3.5 ± 2.5 | 3.4 ± 2.5 | 3.4 ± 2.5 | - | - | - | - |
| abalone | 55.1 ± 2.7 | 55.9 ± 2.9 | 54.2 ± 3.3 | 56.5 ± 2.6 | - | - | - | - |

Table 1: Classification error (\%) or percentage of variance not-explained (\%). The best result, and those results not significantly worse than it, are highlighted in bold (Matlab signrank test with 0.05 significance level). $100.0 \pm 0.0^{*}$: program is not finished in a week or crashed. -: not applicable.
in these cases, the performance produced by BAHSIC is very close to that using all features. In a sense, BAHSIC is able to shortlist the most informative features.

8. Analysis of Brain Computer Interface Data

In this experiment, we show that BAHSIC selects features that are meaningful in practice. Here we use it to select a frequency band for a brain-computer interface (BCI) data set from the Berlin BCI group (Dornhege et al., 2004). The data contains EEG signals (118 channels, sampled at 100 Hz) from five healthy subjects ('aa', 'al', 'av', 'aw' and 'ay') recorded during two types of motor imaginations. The task is to classify the imagination for individual trials.

Figure 3: The performance of a classifier or a regressor (vertical axes) as a function of the number of selected features (horizontal axes). Note that the maximum of the horizontal axes are equal to the total number of features in each data set. (a-c) Balanced error rate by a SVM classifier on the binary data sets Covertype (1), Ionosphere (2) and Sonar (3) respectively; (d-f) balanced error rate by a one-versus-the-rest SVM classfier on multiclass data sets Satimage (22), Segment (23) and Vehicle (24) respectively; (g-i) percentage of variance not-explained by a SVR regressor on regression data set Housing (25), Body fat (26) and Abalone (27) respectively.

Our experiment proceeds in 3 steps: (i) A Fast Fourier transformation (FFT) is performed on each channel and the power spectrum is computed. (ii) The power spectra from all channels are averaged to obtain a single spectrum for each trial. (iii) BAHSIC is used to select the top 5 discriminative frequency components based on the power spectrum. The 5 selected frequencies and their 4 nearest neighbours are used to reconstruct the temporal signals (with all other Fourier coefficients

Figure 4: HSIC, encoded by the colour value for different frequency bands. The x-axis corresponds to the upper cutoff and the y-axis denotes the lower cutoff (clearly no signal can be found where the lower bound exceeds the upper bound). Red corresponds to strong dependence, whereas blue indicates that no dependence was found. The figures are for subject (a) 'aa', (b) 'al', (c) 'av', (d) 'aw' and (e) 'ay'.
eliminated). The result is then passed to a normal CSP method (Dornhege et al., 2004) for feature extraction and then classified using a linear SVM.

Automatic filtering using BAHSIC is then compared to other filtering approaches: normal CSP method with manual filtering ($8-40 \mathrm{~Hz}$), the CSSP method (Lemm et al., 2005) and the CSSSP method (Dornhege et al., 2006). All results presented in Table 2 are obtained using 50×2-fold cross-validation. Our method is very competitive and obtains the first and second place for 4 of the 5 subjects. While the CSSP and the CSSSP methods are specialized embedded methods (w.r.t. the CSP method) for frequency selection on BCI data, our method is entirely generic. BAHSIC decouples feature selection from CSP, while proving competitive.

In Figure 4, we use HSIC to visualize the responsiveness of different frequency bands to motor imagination. The horizontal and the vertical axes in each subfigure represent the lower and upper bounds for a frequency band, respectively. HSIC is computed for each of these bands. Dornhege et al. (2006) report that the μ rhythm (approx. 12 Hz) of EEG is most responsive to motor imagination, and that the β rhythm (approx. 22 Hz) is also responsive. We expect that HSIC will create a strong peak at the μ rhythm and a weaker peak at the β rhythm, and the absence of other responsive frequency components will create block patterns. Both predictions are confirmed in Figure 4. Furthermore, the large area of the red region for subject 'al' indicates good responsiveness of his μ rhythm. This also corresponds well with the lowest classification error obtained for him in Table 2.

Method	aa	al	av	aw	ay
CSP(8-40Hz)	17.5 ± 2.5	3.1 ± 1.2	32.1 ± 2.5	7.3 ± 2.7	$\mathbf{6 . 0} \pm \mathbf{1 . 6}$
CSSP	14.9 ± 2.9	2.4 ± 1.3	33.0 ± 2.7	$\mathbf{5 . 4} \pm \mathbf{1 . 9}$	6.2 ± 1.5
CSSSP	$\mathbf{1 2 . 2} \pm \mathbf{2 . 1}$	2.2 ± 0.9	31.8 ± 2.8	6.3 ± 1.8	12.7 ± 2.0
BAHSIC	13.7 ± 4.3	$\mathbf{1 . 9} \pm \mathbf{1 . 3}$	$\mathbf{3 0 . 5} \pm \mathbf{3 . 3}$	6.1 ± 3.8	9.0 ± 6.0

Table 2: Classification errors (\%) on BCI data after selecting a frequency range.

9. Analysis of Microarray Data

The fact that BAHSIC may be instantiated in numerous ways may create problems for application, that is, it is not immediately clear which criteria we might want to choose. Here we provide guidelines for choosing a specific member of the BAHSIC family by using gene selection as an illustration.

9.1 Data Sets

While some past work focused on analysis of a specific single microarray data set we decided to perform a large scale comparison of a raft of techniques on many data sets. We believe that this leads to a more accurate description of the performance of feature selectors. We ran our experiments on 28 data sets, of which 15 are two-class data sets and 13 are multiclass data sets. These data sets are assigned a reference number for convenience. Two-class data sets have a reference number less than or equal to 15 , and multiclass data sets have reference numbers of 16 and above. Only one data set, yeast, has feature dimension less than 1000 (79 features). All other data sets have dimensions ranging from approximately 2000 to 25000 . The number of samples varies between approximately 50 and 300 samples. A summary of the data sets and their sources is as follows:

- The six data sets studied in Ein-Dor et al. (2006). Three deal with breast cancer (van't Veer et al., 2002; van de Vijver et al., 2002; Wang et al., 2005) (numbered 1, 2 and 3), two with lung cancer (Bhattacharjee et al., 2001; Beer et al., 2002) (4, 5), and one with hepatocellular carcinoma (Iizuka et al., 2003) (6). The B cell lymphoma data set (Rosenwald et al., 2002) is not used because none of the tested methods produce classification errors lower than 40%.
- The six data sets studied in Warnat et al. (2005). Two deal with prostate cancer (Dhanasekaran et al., 2001; Welsh et al., 2001) (7, 8), two with breast cancer (Gruvberger et al., 2001; West, 2003) (9,10), and two with leukaemia (Bullinger et al., 2004; Valk et al., 2004) $(16,17)$.
- Five commonly used bioinformatics benchmark data sets on colon cancer (Alon et al., 1999) (11), ovarian cancer (Berchuck et al., 2005) (12), leukaemia (Golub et al., 1999)(13), lymphoma (Alizadeh et al., 2000)(18), and yeast (Brown et al., 2000)(19).
- Nine data sets from the NCBI GEO database. The GDS IDs and reference numbers for this paper are GDS1962 (20), GDS330 (21), GDS531 (14), GDS589 (22), GDS968 (23), GDS1021 (24), GDS1027 (25), GDS1244 (26), GDS1319 (27), GDS1454 (28), and GDS1490 (15), respectively.

9.2 Classification Error and Robustness of Genes

We used stratified 10 -fold cross-validation and SVMs to evaluate the predictive performance of the top 10 features selected by various members of BAHSIC. For two-class data sets, a nonlinear SVM with an Gaussian RBF kernel, $k\left(x, x^{\prime}\right)=\exp \left(-\frac{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}{2 \sigma^{2}}\right)$, was used. The regularization constant C and the kernel width σ were tuned on a grid of $\left\{0.1,1,10,10^{2}, 10^{3}\right\} \times\left\{1,10,10^{2}, 10^{3}\right\}$. Classification performance is measured as the fraction of misclassified samples. For multiclass data sets, all procedures are the same except that we used the SVM in a one-versus-the-rest fashion. A new BAHSIC member are also included in the comparison, with kernels $\left(\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|+\varepsilon\right)^{-1}$ (dis; ε is a small positive number to avoid singularity) on the data.

The classification results for binary and multiclass data sets are reported in Table 3 and Table 4 , respectively. In addition to error rate we also report the overlap between the top 10 gene lists created in each fold. The multiclass results are presented separately since some older members of the BAHSIC family, and some competitors, are not naturally extensible to multiclass data sets. From the experiments we make the following observations:

When comparing the overall performance of various gene selection algorithms, it is of primary interest to choose a method which works well everywhere, rather than one which sometimes works well and sometimes performs catastrophically. It turns out that the linear kernel (lin) outperforms all other methods in this regard, both for binary and multiclass problems.

To show this, we measure how various methods compare with the best performing one in each data set in Tables 3 and 4. The deviation between algorithms is taken as the square of the difference in performance. This measure is chosen because gene expression data is relative expensive to obtain, and we want an algorithm to select the best genes from them. If an algorithm selects genes that are far inferior to the best possible among all algorithms (catastrophic case), we downgrade the algorithm more heavily. Squaring the performance difference achieves exactly this effect, by penalising larger differences more heavily. In other words, we want to choose an algorithm that performs homogeneously well in all data sets. To provide a concise summary, we add these deviations over the data sets and take the square root as the measure of goodness. These scores (called ℓ_{2} distance) are listed in Tables 3 and 4. In general, the smaller the ℓ_{2} distance, the better the method. It can been seen that the linear kernel has the smallest ℓ_{2} distance on both the binary and multiclass data sets.

9.3 Subtype Discrimination using Nonlinear Kernels

We now investigate why it is that nonlinear kernels (RBF and dis) provide better genes for classification in three data sets from Table 4 (data sets 18 Alizadeh et al., 2000, 27 (GDS1319), and 28 (GDS1454)). These data sets all represent multiclass problems, where at least two of the classes are subtypes with respect to the same supertype. ${ }^{11}$ Ideally, the selected genes should contain information discriminating the classes. To visualise this information, we plot in Figure 5 the expression value of the top-ranked gene against that of a second gene ranked in the top 10 . This second gene is chosen so that it has minimal correlation with the first gene. We use colours and shapes to distinguish data from different classes (data sets 18 and 28 each contain 3 classes, therefore we use

[^5]3 different colour and shape combinations for them; data set 27 has 4 classes, so we use 4 such combinations).

We found that genes selected using nonlinear kernels provide better separation between the two classes that correspond to the same supertype (red dots and green diamonds), while the genes selected with the linear kernel do not separate these subtypes well. In the case of data set 27, the increased discrimination between red and green comes at the cost of a greater number of errors in another class (black triangle), however these mistakes are less severe than the errors made between the two subtypes by the linear kernel. This eventually leads to better classification performance for the nonlinear kernels (see Table 4).

The principal characteristic of the data sets is that the blue square class is clearly separated from the rest, while the difference between the two subtypes (red dots and green diamonds) is less clear. The first gene provides information that distinguishes the blue square class, however it provides almost no information about the separation between the two subtypes. The linear kernel does not search for information complementary to the first gene, whereas nonlinear kernels are able to incorporate complementary information. In fact, the second gene that distinguishes the two subtypes (red dots and green diamonds) does not separate all classes. From this gene alone, the blue square class is heavily mixed with other classes. However, combining the two genes together results in better separation between all classes.

Figure 5: Nonlinear kernels (MUL and dis) select genes that discriminate subtypes (red dots and green diamonds) where the linear kernel fails. The two genes in the first row are representative of those selected by the linear kernel, while those in the second row are produced with a nonlinear kernel for the corresponding data sets. Different colors and shapes represent data from different classes. (a,d) data set 18; (b,e) data set 28; and (e,f) data set 27.

9.4 Rules of Thumb and Implication to Gene Activity

To conclude these experiments, considering the fact that the linear kernel performed best in our feature selection evaluation, yet also taking into account the existence of nonlinear interaction between genes (as demonstrated in Section 9.3), we propose the following two rules of thumb for gene selection:

1. Always apply a linear kernel for general purpose gene selection.
2. Apply a Gaussian kernel if nonlinear effects are present, such as multimodality or complementary effects of different genes.

This result should come as no surprise, due to the high dimensionality of microarray data sets, but we corroborate our claims by means of an extensive experimental evaluation. These experiments also imply a desirable property of gene activity as a whole: it correlates well with the observed outcomes. Multimodal and highly nonlinear situations exist, where a nonlinear feature selector is needed (as can be seen in the outcomes on data sets 18, 27 and 28), yet they occur relatively rarely in practice.

10. Conclusion

This paper provides a unifying framework for a raft of feature selection methods. This allows us to give tail bounds and asymptotic expansions for feature selectors. Moreover, we are able to design new feature selectors which work well in practice by means of the Hilbert-Schmidt Independence Criterion (HSIC).

The idea behind the resulting algorithm, BAHSIC, is to choose the feature subset that maximises the dependence between the data and labels. The absence of bias and good convergence properties of the empirical HSIC estimate provide a strong theoretical justification for using HSIC in this context. Although BAHSIC is a filter method, it still demonstrates good performance compared with more specialised methods in both artificial and real world data. It is also very competitive in terms of runtime performance. ${ }^{12}$

A variant of BAHSIC can also be used to perform feature selection for unlabeled data. In this case, we want to select a subset \mathcal{T} of variables such that it is strongly correlated with the full data set. In other words, we want to find a compressed representation of the data itself in the hope that it is useful for a subsequent learning tasks. BAHSIC readily accommodates this by simply using the full data set X as the labels. Clearly, we want to maximize dependence between the selected variables and X without adding many variables which are simply very much correlated to each other. This ingredient is not yet explicitly formulated in the BAHSIC framework. We will investigate this in the future.

Acknowledgments

We thank Vishy Vishwanathan and Bernhard Schölkopf for helpful discussions. NICTA is funded through the Australian Government's Baking Australia's Ability initiative, in part through the Australian Research Council.
12. Code is available as part of the Elefant package at http://elefant. developer.nicta.com.au.

Data Set	pc	snr	pam	t	m-t	lods	lin	RBF	dis	rfe
1	12.7\|3	11.4\|3	11.4\|4	12.9\|3	12.9\|4	12.9\|4	15.5\|3	19.1\|1	13.9\|2	14.3\|0
2	$33.2 \mid 1$	33.9\|2	33.9\|1	29.5\|1	29.5\|1	$27.8 \mid 1$	32.9\|2	$31.5 \mid 3$	32.8\|2	$34.2 \mid 0$
3	$37.4 \mid 0$	$37.4 \mid 0$	$37.4 \mid 0$	34.6\|6	$34.6 \mid 6$	34.6\|6	37.4\|1	$37.4 \mid 0$	$37.4 \mid 0$	$37.4 \mid 0$
4	$41.6 \mid 0$	$38.8 \mid 0$	$41.6 \mid 0$	40.7\|1	40.7\|0	37.8 ${ }^{0}$	41.6\|0	$41.6 \mid 0$	39.7\|0	41.6\|0
5	$27.8 \mid 0$	26.7\|0	27.8\|0	26.7\|2	$26.7 \mid 2$	$26.7 \mid 2$	27.8\|0	27.8\|0	$27.6 \mid 0$	27.8\|0
6	30.0\|2	25.0 $\mid 0$	$31.7 \mid 0$	$25.0 \mid 5$	$25.0 \mid 5$	$25.0 \mid 5$	30.0\|0	$31.7 \mid 0$	30.0\|1	30.0\|0
7	$2.0 \mid 6$	$2.0 \mid 5$	$2.0 \mid 5$	28.7\|4	26.3\|4	26.3\|4	$2.0 \mid 3$	$2.0 \mid 4$	$30.0 \mid 0$	$2.0 \mid 0$
8	3.3\|3	$0.0 \mid 4$	$\mathbf{0 . 0} \mid 4$	0.0\|4	$3.3 \mid 6$	$3.3 \mid 6$	$3.3 \mid 2$	3.3\|1	$6.7 \mid 2$	0.0 \|0
9	10.0\|6	10.0\|6	$8.7 \mid 4$	34.0\|5	$37.7 \mid 6$	$37.7 \mid 6$	12.0\|3	10.0\|5	12.0\|1	10.0\|0
10	16.0\|2	18.0\|2	14.0\|2	14.0 ${ }^{8}$	$22.0 \mid 9$	$22.0 \mid 9$	16.0\|2	16.0\|0	18.0\|0	$32.5 \mid 0$
11	$12.9 \mid 5$	12.9\|5	$12.9 \mid 5$	19.5\|0	22.10	33.610	11.2\|4	$9.5 \mid 6$	16.0\|4	19.0\|0
12	30.3\|2	36.0\|2	31.3\|2	26.7\|3	$35.7 \mid 0$	$35.7 \mid 0$	18.7\|1	35.0\|0	33.0\|1	29.7\|0
13	$8.4 \mid 5$	11.1\|0	$7.0 \mid 5$	22.1\|3	27.9\|6	15.4\|1	$7.0 \mid 2$	$9.6 \mid 0$	11.1\|0	4.3\|1
14	20.8\|1	20.8\|1	20.2\|0	$20.8 \mid 3$	$20.8 \mid 3$	$20.8 \mid 3$	20.8\|0	$20.2 \mid 0$	19.7\|0	20.8\|0
15	$\mathbf{0 . 0}{ }^{\text {\| }}$	0.7\|1	0.0\|5	$4.0 \mid 1$	0.7\|8	$0.7 \mid 8$	0.0\|3	$0.0 \mid 2$	$2.0 \mid 2$	$\mathbf{0 . 0} \mid 1$
best	$3 \mid 2$	4\|1	5\|1	5\|6	3\|10	$5 \mid 9$	$3 \mid 0$	4\|2	$1 \mid 0$	$5 \mid 0$
ℓ_{2}	16.9	20.9	17.3	43.5	50.5	50.3	13.2	22.9	35.4	26.3

Table 3: Two-class data sets: classification error (\%) and number of common genes (overlap) for 10-fold cross-validation using the top 10 selected features. Each row shows the results for a data set, and each column is a method. Each entry in the table contains two numbers separated by "|": the first number is the classification error and the second number is the number of overlaps. For classification error, the best result, and those results not significantly worse than it, are highlighted in bold (Matlab signrank test with 0.05 significance level; a table containing the standard errors is provided in the supplementary material). For the overlap, largest overlaps for each data set are highlighted (no significance test is performed). The second last row summarises the number of times a method was the best. The last row contains the ℓ_{2} distance of the error vectors between a method and the best performing method on each data set. We use the following abbreviations: pc - Pearson's correlation, snr - signal-to-noise ratio, pam - shrunken centroid, t - t -statistics, $\mathrm{m}-\mathrm{t}$ - moderated t -statistics, lods - B-statistics, lin - centroid, dis $-\left(\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|+\varepsilon\right)^{-1}$, rfe - svm recursive feature elimination)

Table 4: Multiclass data sets: in this case columns are the data sets, and rows are the methods. The remaining conventions follow Table 3.

Appendix A. Feature Weighting Using HSIC

Besides the backward elimination algorithm, feature selection using HSIC can also proceed by converting problem (1) into a continuous optimization problem. By adding a penalty on the number of nonzero terms, such as a relaxed ℓ_{0} "norm" of a weight vector over the features we are able to solve the problem with continuous optimization methods. Unfortunately, this approach does not perform as well as the the backward elimination procedure proposed in the main text. For completeness and since related methods are somewhat popular in the literature, the approach is described below.

We introduce a weighting $\mathbf{w} \in \mathbb{R}^{n}$ on the dimensions of the data: $x \longmapsto \mathbf{w} \circ x$, where \circ denotes element-wise product. Thus feature selection using HSIC becomes an optimization problem with respect to \mathbf{w} (for convenience we write HSIC as a function of $\mathbf{w}, \operatorname{HSIC}(\mathbf{w})$). To obtain a sparse solution of the selected features, the zero "norm" $\|\mathbf{w}\|_{0}$ is also incorporated into our objective function (clearly $\|.\|_{0}$ is not a proper norm). $\|\mathbf{w}\|_{0}$ computes the number of non-zero entries in \mathbf{w} and the sparsity is achieved by imposing heavier penalty on solutions with large number of non-zero entries. In summary, feature selection using HSIC can be formulated as:

$$
\begin{equation*}
\mathbf{w}=\arg \max _{\mathbf{w}} \operatorname{HSIC}(\mathbf{w})-\lambda\|\mathbf{w}\|_{0} \text { where } \mathbf{w} \in[0, \infty)^{n} . \tag{32}
\end{equation*}
$$

The zero "norm" is not a continuous function. However, it can be approximated well by a concave function (Fung et al., 2002) ($\alpha=5$ works well in practice):

$$
\begin{equation*}
\|\mathbf{w}\|_{0} \approx \mathbf{1}^{\top}(\mathbf{1}-\exp -\alpha \mathbf{w}) \tag{33}
\end{equation*}
$$

While the optimization problem in (32) is non-convex, we may use relatively more efficient optimization procedures for the concave approximation of the ℓ_{0} norm. For instance, we may use the convex-concave procedure (CCCP) of Yuille and Rangarajan (2003). For a Gaussian kernel HSIC can be decomposed into the sum of a convex and a concave function:

$$
\operatorname{HSIC}(\mathbf{w})-\lambda\|\mathbf{w}\|_{0} \approx \operatorname{tr}\left(\mathbf{K}\left(\mathbf{I}-m^{-1} \mathbf{1 1}^{\top}\right) \mathbf{L}\left(\mathbf{I}-m^{-1} \mathbf{1 1}^{\top}\right)\right)-\lambda \mathbf{1}^{\top}\left(\mathbf{1}-e^{-\alpha \mathbf{w}}\right)
$$

Depending on the choice of \mathbf{L} we need to assign all terms involving exp with positive coefficients into the convex and all terms involving negative coefficients to the concave function.

References

A. Alizadeh, M. Eisen, R. Davis, et al. Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature, 403:503-511, 2000.
U. Alon, N Barkai, D. A. Notterman, K. Gish, S. Ybarra, D. Mack, and A. J. Levine. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligo-nucleotide arrays. In Proc. Natl. Acad. Sci. USA, pages 6745-6750, 1999.

Shun-ichi Amari and S. Wu. An information-geometrical method for improving performance of support vector machine classifiers. In D. Willshaw and A. Murray, editors, Proceedings of ICANN'99, volume 1, pages 85-90. IEE Press, 1999.
N. Anderson, P. Hall, and D. Titterington. Two-sample test statistics for measuring discrepancies between two multivariate probability density functions using kernel-based density estimates. Journal of Multivariate Analysis, 50:41-54, 1994.
F. R. Bach and M. I. Jordan. Kernel independent component analysis. Journal of Machine Learning Research, 3:1-48, 2002.
C. Baker. Joint measures and cross-covariance operators. Transactions of the American Mathematical Society, 186:273-289, 1973.
J. Bedo, C. Sanderson, and A. Kowalczyk. An efficient alternative to SVM based recursive feature elimination with applications in natural language processing and bioinformatics. In Artificial Intelligence, 2006.
D. G. Beer, S. L. Kardia, S. L. Huang, et al. Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med., 8:816-824, 2002.
A. Berchuck, E. Iversen, and J. Lancaster. Patterns of gene expression that characterize long-term survival in advanced stage serous ovarian cancers. Clin. Cancer Res., 11:3686-3696, 2005.
A. Bhattacharjee, W. G. Richards, W. G. Staunton, et al. Classification of human lung carcinomas by mrna expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl. Acad. Sci., 98:13790-13795, 2001.
M. Blaschko and A. Gretton. Learning taxonomies by dependence maximization. In Advances in Neural Information Processing Systems 21, pages 153-160. MIT Press, 2009.
P. S. Bradley and O. L. Mangasarian. Feature selection via concave minimization and support vector machines. In J. Shavlik, editor, Proc. Intl. Conf. Machine Learning, pages 82-90, San Francisco, California, 1998. Morgan Kaufmann Publishers. ftp://ftp.cs.wisc.edu/math-prog/tech-reports/9803.ps.Z.
M. Brown, W. Grundy, D. Lin, N. Cristianini, C. Sugnet, T. Furey, M. Ares, and D. Haussler. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl. Acad. Sci., 97:262-267, 2000.
L. Bullinger, K. Dohner, E. Bair, S. Frohling, R. F. Schlenk, R. Tibshirani, H. Dohner, and J. R. Pollack. Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia. New England Journal of Medicine, 350(16):1605-1616, Apr 2004.
M. Collins and N. Duffy. Convolution kernels for natural language. In T. G. Dietterich, S. Becker, and Z. Ghahramani, editors, Advances in Neural Information Processing Systems 14, pages 625632, Cambridge, MA, 2001. MIT Press.
N. Cristianini, J. Kandola, A. Elisseeff, and J. Shawe-Taylor. On optimizing kernel alignment. Technical report, UC Davis Department of Statistics, 2003.
S. M. Dhanasekaran, T. R. Barrette, D. Ghosh, R. Shah, S. Varambally, K. Kurachi, K. J. Pienta, M. A. Rubin, and A. M. Chinnaiyan. Delineation of prognostic biomarkers in prostate cancer. Nature, 412(6849):822-826, Aug 2001.
G. Dornhege, B. Blankertz, G. Curio, and K. Müller. Boosting bit rates in non-invasive EEG singletrial classifications by feature combination and multi-class paradigms. IEEE Trans. Biomed. Eng., 51:993-1002, 2004.
G. Dornhege, B. Blankertz, M. Krauledat, F. Losch, G. Curio, and K. Müller. Optimizing spatiotemporal filters for improving BCI. In Advances in Neural Information Processing Systems 18, 2006.
L. Ein-Dor, O. Zuk, and E. Domany. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc. Natl. Acad. Sci. USA, 103(15):5923-5928, Apr 2006.

Andrey Feuerverger. A consistent test for bivariate dependence. International Statistical Review, 61(3):419-433, 1993.
S. Fine and K. Scheinberg. Efficient SVM training using low-rank kernel representation. Technical report, IBM Watson Research Center, New York, 2000.
K. Fukumizu, F. R. Bach, and M. I. Jordan. Dimensionality reduction for supervised learning with reproducing kernel Hilbert spaces. Journal of Machine Learning Research, 5:73-99, 2004.
K. Fukumizu, A. Gretton, X. Sun, and B. Schölkopf. Kernel measures of conditional dependence. In Advances in Neural Information Processing Systems 20, pages 489-496, Cambridge, MA, 2008. MIT Press.
G. Fung, O. L. Mangasarian, and A. J. Smola. Minimal kernel classifiers. Journal of Machine Learning Research, 3:303-321, 2002.
T. Gärtner, P.A. Flach, and S. Wrobel. On graph kernels: Hardness results and efficient alternatives. In B. Schölkopf and M. K. Warmuth, editors, Proc. Annual Conf. Computational Learning Theory, pages 129-143. Springer, 2003.
T. R. Golub, D. K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J. P. Mesirov, H. Coller, M. L. Loh, J. R. Downing, M. A. Caligiuri, C. D. Bloomfield, and E. S. Lander. Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science, 286 (5439):531-537, Oct 1999.
A. Gretton, O. Bousquet, A.J. Smola, and B. Schölkopf. Measuring statistical dependence with Hilbert-Schmidt norms. In S. Jain, H. U. Simon, and E. Tomita, editors, Proceedings of the International Conference on Algorithmic Learning Theory, pages 63-77. Springer-Verlag, 2005a.
A. Gretton, A. Smola, O. Bousquet, R. Herbrich, A. Belitski, M. Augath, Y. Murayama, J. Pauls, B. Schölkopf, and N. Logothetis. Kernel constrained covariance for dependence measurement. In AISTATS 10, pages 112-119, 2005b.
A. Gretton, K. Borgwardt, M. Rasch, B. Schölkopf, and A. Smola. A kernel method for the twosample problem. In Advances in Neural Information Processing Systems 15, pages 513-520, Cambridge, MA, 2007a. MIT Press.
A. Gretton, K. Borgwardt, M. Rasch, B. Schlkopf, and A. Smola. A kernel approach to comparing distributions. Proceedings of the 22nd Conference on Artificial Intelligence (AAAI-07), pages 1637-1641, 2007b.
A. Gretton, K. Fukumizu, C.-H. Teo, L. Song, B. Schölkopf, and A. Smola. A kernel statistical test of independence. In Advances in Neural Information Processing Systems 20, pages 585-592, Cambridge, MA, 2008. MIT Press.
S. Gruvberger, M. Ringner, Y. Chen, S. Panavally, L. H. Saal, A. Borg, M. Ferno, C. Peterson, and P. S. Meltzer. Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res, 61(16):5979-5984, Aug 2001.
C. Guestrin, A. Krause, and A. Singh. Near-optimal sensor placements in gaussian processes. In International Conference on Machine Learning ICML'05, 2005.
I. Guyon and A. Elisseeff. An introduction to variable and feature selection. Journal of Machine Learning Research, 3:1157-1182, March 2003.
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422, 2002.
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer, New York, 2001.

Wassily Hoeffding. A class of statistics with asymptotically normal distribution. The Annals of Mathematical Statistics, 19(3):293-325, 1948.
N. Iizuka, M. Oka, H. Yamada-Okabe, et al. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet, 361:923929, 2003.
K. Kira and L. Rendell. A practical approach to feature selection. In Proc. 9th Intl. Workshop on Machine Learning, pages 249-256, 1992.
S. Lemm, B. Blankertz, G. Curio, and K.-R. Müller. Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans. Biomed. Eng., 52:1541-1548, 2005.
C. Leslie, E. Eskin, J. Weston, and W. S. Noble. Mismatch string kernels for SVM protein classification. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, volume 15, Cambridge, MA, 2002. MIT Press.
H. Lodhi, C. Saunders, J. Shawe-Taylor, N. Cristianini, and C. Watkins. Text classification using string kernels. Journal of Machine Learning Research, 2:419-444, February 2002.

Ingrid Lönnstedt and Terry Speed. Replicated microarray data. Statistica Sinica, 12:31-46, 2002.
Radford M. Neal. Assessing relevance determination methods using delve. In Neural Networks and Machine Learning, pages 97-129. Springer, 1998.

I Nemenman, F Shafee, and W Bialek. Entropy and inference, revisited. In Neural Information Processing Systems, volume 14, Cambridge, MA, 2002. MIT Press.
G. Nemhauser, L. Wolsey, and M. Fisher. An analysis of the approximations for maximizing submodular set functions. Mathematical Programming, 14:265-294, 1978.
J. Neumann, C. Schnörr, and G. Steidl. Combined SVM-based feature selection and classification. Machine Learning, 61:129-150, 2005.
N. Quadrianto, L. Song, and A. Smola. Kernelized sorting. In Advances in Neural Information Processing Systems 22, 2009.
A. Rosenwald, G. Wright, G. Chan, et al. The use of molecular profiling to predict survival after chemotherapy for diffuse large-b-cell lymphoma. N. Engl. J. Med., 346:1937-1947, 2002.
B. Schölkopf. Support Vector Learning. R. Oldenbourg Verlag, Munich, 1997. Download: http://www.kernel-machines.org.
B. Schölkopf, P. L. Bartlett, A. J. Smola, and R. C. Williamson. Shrinking the tube: a new support vector regression algorithm. In M. S. Kearns, S. A. Solla, and D. A. Cohn, editors, Advances in Neural Information Processing Systems 11, pages 330-336, Cambridge, MA, 1999. MIT Press.
B. Schölkopf, K. Tsuda, and J.-P. Vert. Kernel Methods in Computational Biology. MIT Press, Cambridge, MA, 2004.

Bernhard Schölkopf and Alex Smola. Learning with Kernels. MIT Press, Cambridge, MA, 2002.
R. Serfling. Approximation Theorems of Mathematical Statistics. Wiley, New York, 1980.
G.K. Smyth. Linear models and empirical bayes methods for assessing differential expressionin microarray experiments. Statistical Applications in Genetics and Molecular Biology, 3, 2004.
L. Song, J. Bedo, K.M. Borgwardt, A. Gretton, and A.J. Smola. Gene selection via the BAHSIC family of algorithms. Bioinformatics (ISMB), 23(13):i490-i498, 2007a.
L. Song, A. Smola, A. Gretton, K. Borgwardt, and J. Bedo. Supervised feature selection via dependence estimation. In ICML, pages 823-830. Omnipress, 2007b.
B. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriet, and B. Schölkopf. Injective Hilbert space embeddings of probability measures. In Proc. Annual Conf. Computational Learning Theory, pages 111-122, 2008.
B. Sriperumbudur, K. Fukumizu, A. Gretton, G. Lanckriet, and B. Schoelkopf. Kernel choice and classifiability for RKHS embeddings of probability distributions. In Advances in Neural Information Processing Systems 22, Red Hook, NY, 2009. Curran Associates Inc.
B. Sriperumbudur, A. Gretton, K. Fukumizu, G. Lanckriet, and B. Schölkopf. Hilbert space embeddings and metrics on probability measures. Journal of Machine Learning Research, 11:15171561, 2010.
I. Steinwart. On the influence of the kernel on the consistency of support vector machines. Journal of Machine Learning Research, 2:67-93, 2001.
R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Diagnosis of multiple cancer types by shrunken centroids of gene expression. In National Academy of Sciences, volume 99, pages 6567-6572, 2002.
R. Tibshirani, T. Hastie, B. Narasimhan, and G. Chu. Class prediction by nearest shrunken centroids, with applicaitons to dna microarrays. Stat Sci, 18:104-117, 2003.
P.H.S. Torr. Solving Markov random fields using semidefinite programming. In Proceedings of International Workshop on Artificial Intelligence and Statistics, 2003.
P. J. Valk, R. G. Verhaak, M. A. Beijen, C. A. Erpelinck, S. Barjesteh van Waalwijk van DoornKhosrovani, J. M. Boer, H. B. Beverloo, M. J. Moorhouse, P. J. van der Spek, B. Lowenberg, and R. Delwel. Prognostically useful gene-expression profiles in acute myeloid leukemia. New England Journal of Medicine, 350(16):1617-1628, Apr 2004.
M. J. van de Vijver, Y. D. He, L. J. van 't Veer, H. Dai, A. A. Hart, D. W. Voskuil, G. J. Schreiber, J. L. Peterse, C. Roberts, M. J. Marton, M. Parrish, D. Atsma, A. Witteveen, A. Glas, L. Delahaye, T. van der Velde, H. Bartelink, S. Rodenhuis, E. T. Rutgers, S. H. Friend, and R. Bernards. A gene-expression signature as a predictor of survival in breast cancer. New England Journal of Medicine, 247:1999-2009, 2002.
L. J. van't Veer, H. Dai, M. J. van de Vijver, Y. D. He, A. A. M. Hart, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 415:530-536, 2002.
S. V. N. Vishwanathan and A. J. Smola. Fast kernels for string and tree matching. In S. Becker, S. Thrun, and K. Obermayer, editors, Advances in Neural Information Processing Systems 15, pages 569-576. MIT Press, Cambridge, MA, 2003.
S. V. N. Vishwanathan, A. J. Smola, and R. Vidal. Binet-Cauchy kernels on dynamical systems and its application to the analysis of dynamic scenes. International Journal of Computer Vision, 73 (1):95-119, 2007.

Yixin Wang, Jan G M Klijn, Yi Zhang, Anieta M Sieuwerts, Maxime P Look, Fei Yang, Dmitri Talantov, Mieke Timmermans, Marion E Meijer van Gelder, Jack Yu, Tim Jatkoe, Els M J J Berns, David Atkins, and John A Foekens. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet, 365(9460):671-679, February 2005.
P. Warnat, R. Eils, and B. Brors. Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes. BMC Bioinformatics, 6:265, Nov 2005.
J. B. Welsh, L. M. Sapinoso, A. I. Su, S. G. Kern, J. Wang-Rodriguez, C. A. Moskaluk, J. r. Frierson HF, and G. M. Hampton. Analysis of gene expression identifies candidate markers and pharmacological targets in prostate cancer. Cancer Res, 61(16):5974-5978, Aug 2001.
M. West. Bayesian factor regression models in the "large p, small n " paradigm. Bayesian Statistics, 7:723-732, 2003.
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for SVMs. In Advances in Neural Information Processing Systems 13, pages 668-674, 2000.
J. Weston, A. Elisseeff, B. Schölkopf, and M. Tipping. Use of zero-norm with linear models and kernel methods. Journal of Machine Learning Research, 3:1439-1461, 2003.
A.L. Yuille and A. Rangarajan. The concave-convex procedure. Neural Computation, 15:915-936, 2003.
M. Zaffalon and M. Hutter. Robust feature selection using distributions of mutual information. In A. Darwiche and N. Friedman, editors, Proceedings of the 18th International Conference on Uncertainty in Artificial Intelligence (UAI-2002), pages 577-584, San Francisco, CA., 2002. Morgan Kaufmann.

[^0]: *. Also at Intelligent Systems Group, Max Planck Institutes, Spemannstr. 38, 72076 Tübingen, Germany.
 \dagger. Also at the the Australian National University, Canberra, ACT 0200, Australia.

[^1]: 1. We abuse the notation here by using the same subscript in the operator $\mathcal{C}_{x y}$ as in the covariance matrix of (2), even though we now refer to the covariance between feature maps.
[^2]: 2. This result is more general than the earlier result of Gretton et al. (2005a, Theorem 4), which states that when \mathcal{F}, \mathcal{G} are RKHSs with universal kernels k, l in the sense of Steinwart (2001), on respective compact domains \mathcal{X} and \mathcal{Y}, then $\operatorname{HSIC}\left(\mathcal{F}, \mathcal{G}, \operatorname{Pr}_{x y}\right)=0$ if and only if x and y are independent. Universal kernels are characteristic on compact domains, however characteristic kernels also exist on non-compact domains.
[^3]: 6. The Spider toolbox can be found at http://www.kyb.tuebingen.mpg.de/bs/people/spider.
[^4]: 7. UCI repository can be found at http://www.ics.uci.edu/~mlearn/MLSummary.html.
 8. Statlib repository can be found at http://lib.stat.cmu.edu/datasets/.
 9. LibSVM can be found at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
 10. NIPS feature selection challenge can be found at http://clopinet.com/isabelle/Projects/NIPS2003/.
[^5]: 11. For data set 18, the 3 subtypes are diffuse large B-cell lymphoma and leukemia, follicular lymphoma, and chronic lymphocytic leukemia; For data set 27 , the 4 subtypes are various C blastomere mutant embryos: wild type, pie1 , pie-1+pal-1, and mex-3+skn-1; For data set 28 , the 3 subtypes are normal cell, IgV unmutated B-cell, and IgV mutated B-cell.
