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Abstract

The glm-ie toolbox contains functionality for estimation and inference in generalised linear mod-

els over continuous-valued variables. Besides a variety of penalised least squares solvers for esti-

mation, it offers inference based on (convex) variational bounds, on expectation propagation and

on factorial mean field. Scalable and efficient inference in fully-connected undirected graphical

models or Markov random fields with Gaussian and non-Gaussian potentials is achieved by casting

all the computations as matrix vector multiplications. We provide a wide choice of penalty func-

tions for estimation, potential functions for inference and matrix classes with lazy evaluation for

convenient modelling. We designed the glm-ie package to be simple, generic and easily expansi-

ble. Most of the code is written in Matlab including some MEX files to be fully compatible to both

Matlab 7.x and GNU Octave 3.3.x. Large scale probabilistic classification as well as sparse linear

modelling can be performed in a common algorithmical framework by the glm-ie toolkit.

Keywords: sparse linear models, generalised linear models, Bayesian inference, approximate

inference, probabilistic regression and classification, penalised least squares estimation, lazy eval-

uation matrix class

1. Introduction

Generalised Linear Models (GLMs) are a widely used class of probabilistic graphical models over

continuous variables allowing a unified treatment of linear, logistic and Poisson regression and

applications range from simple binary pattern classification over continuous regression to image

reconstruction. GLMs combine the computational and analytical simplicity of linear functions with

the expressivity of pointwise nonlinear link functions.

Estimation of the unknown parameters by maximum likelihood and penalised variants thereof

can be done by iteratively reweighted least squares (IRLS). Penalised least squares (PLS) corre-

sponds to maximum a posteriori estimation (MAP) in a Bayesian model.

(Approximate) Bayesian inference as opposed to MAP places the parameter estimate at the

centre of mass rather than at the mode of the posterior distribution.

• We support Expectation Propagation (EP) or TAP (Minka, 2001; Opper and Winther, 2001)

using parallel moment matching (van Gerven et al., 2010),

• Variational Bounding (VB) (Seeger and Nickisch, 2011) based on decoupling (Wipf and Na-

garajan, 2008) and (convex) (Nickisch and Seeger, 2009) optimisation, and

• Mean field (MF) (Miskin and MacKay, 2000) factorial inference.
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While EP yields very accurate approximations for small models, VB allows for efficient compu-

tations in large-scale models by a sequence of variance-smoothed PLS problems, which makes

experimental design for imaging applications (Seeger et al., 2010) possible.

Related codes are the GPML library and the Infer.NET framework both of which do not offer

scalable matrix vector multiplication (MVM) based approximate inference.

2. Implementation and Model Class

The glm-ie toolbox can be obtained from http://mloss.org/software/view/269/ and from

http://hannes.nickisch.org/code/glm-ie/ under the FreeBSD license. Based on simple in-

terfaces for potential, penalty, and estimation functions as well as inference methods and matrix

classes, we offer full compatibility to Matlab 7.x1 and GNU Octave 3.3.x2.

We provide modular, extensible and tested code. The algorithms rely on PLS estimations

based on MVMs in turn. Our documentation comes in two parts: (i) a hypertext document3

doc/index.html with detailed examples and (ii) a technical documentation4 doc/manual.pdf

explaining the interfaces to allow inclusion of new functionality.

The glm-ie toolbox deals with inference and estimation in GLMs of unknown hidden parame-

ters u ∈ Rn, Gaussian observations y ∈ Rm and non-Gaussian potentials T j(s j)

y = Xu+ε, ε∼ N (0,σ2I), s = Bu ∈ Rq,

leading to a posterior of the form

P(u|D) = P(u|X,y,σ) =
1

Z
N (y|Xu,σ2I)

q

∏
j=1

T j(s j), Z=
∫

N (y|Xu,σ2I)
q

∏
j=1

T j(s j)du. (1)

A MAP estimate ûMAP ∈Rn is the parameter value with highest posterior density; finding ûMAP

is equivalent to solving the PLS problem

ûMAP = argmax
u

P(u|D) = argmin
u

‖Xu−y‖2 +2λ ·ρ(s), s = Bu, λ ∈ R+ (2)

with penalty function ρ(s) = −∑
q
j=1 lnT j(s j) derived from the potential function T (s) and weight

λ = σ2. The normalisation constant Z is called the model evidence or equivalently the marginal

likelihood and can be used to compare models and adjust free parameters such as σ.

Our approximate inference algorithms replace the non-Gaussian potentials T j(s j) by Gaussians

N (s j|β jγ j,γ j) ∝ exp(−s2
j/(2γ j)+β js j) resulting in an overall Gaussian approximation P(u|D) ≈

Q(u) = N (u|m,V), where V−1 = A = X⊤X/σ2 +B⊤
Γ
−1B and m = A−1(X⊤y/σ2 +B⊤β) corre-

spond to the mean and (co)variance and Γ := dg(γ1, ..,γq).
Overall, a GLM can be specified by three kinds of objects: (i) potentials T (s) and penalties

ρ(s), (ii) matrices X, B and (iii) PLS algorithms. Together with the responses y, scalar parameters

and optimisation options, these three constituents serve as inputs to the double loop inference engine

dli computing approximations to lnZ, m and V.

1. Matlab is available from MathWorks, http://www.mathworks.com/.

2. Octave is available from the Free Software Foundation, http://www.gnu.org/software/octave/.

3. Documentation can be found at http://people.kyb.tuebingen.mpg.de/hn/glm-ie/doc/index.html.

4. Technical docs are available at http://people.kyb.tuebingen.mpg.de/hn/glm-ie/manual.pdf.
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2.1 Potential and Penalty Functions

Several non-Gaussian potentials T (s)5 can be used to shape the posterior distribution of Equa-

tion (1). In addition to the Gaussian potential potGauss, we provide several sparse potentials (ex-

ponential power potExpPow, Laplace potLaplace, Sech-squared6 potSech2, Student’s t potT) and

the logistic potential potLogistic for binary classification.

In MAP estimation, we most naturally use the penalty function ρ(s) =− lnT (s) in Equation (2)

which includes penalty functions like p-norms penAbs, penQuad, penPow. Approximate inference

by variational bounding requires penalty functions derived from a potential function, for example,

penVB or penVBNorm.

2.2 General Matrix Class and Implementations

To facilitate the specification and composition of system matrices X, B (and their respective trans-

poses) in a GLM, the glm-ie toolbox contains a specialised matrix class mat. As MVMs form

the most important computations in both estimation and inference, the class mat provides addi-

tion, transposition, scaling, composition, and concatenation. Thus, expressions like A+B’, A*B, A*x,

a*A, [A,B], [A;B], A(:,1), kron(A,B), repmat(A,[2,3]) are possible even though A or B are

of type mat and have a size that would not fit into memory if stored as a dense array. Combi-

nations are also possible. We provide several matrix classes that are derived from mat and im-

plement their own MVM. Besides 2d convolution matConv2, diagonal matDiag, finite difference

matFD2 and (quadrature mirror) wavelet matrices matWav, we offer three kinds of Fourier matrices

matFFT2line, matFFTNmask and matFFT2nu allowing for nonuniform spacing. Computations only

take place through MVMs; the other operations (addition, composition etc.) are pure bookkeeping.

2.3 Penalised Least Squares Solvers

The glm-ie toolbox contains several solvers for the PLS estimation problem of Equation (2):

• plsCG: Conjugate Gradients (CG) using a standalone solver (Rasmussen, 2006),

• plsCGBT: CG with an Armijo backtracking rule (Lustig et al., 2007),

• plsTN: Truncated Newton or IRLS (Seeger et al., 2009),

• plsLBFGS: uses a wrapper for the famous LBFGSB code (L-BFGS-B, 1997),

• plsBB: first order two-point step size rule (Barzilai and Borwein, 1988), and

• plsSB: Bregman Splitting (Goldstein and Osher, 2009).

The solvers can be used for a standalone estimation task or—together with the penVB penalty

function—as the inner loop of the double loop variational inference algorithm.

5. We use an additional scale parameter τ, that is, the rescaled potential T (τs).
6. The sech-square distribution is another name for the logistic distribution. We use sech-square to avoid a name clash

with the logistic classification potential.
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3. Example and Code

To illustrate the modular structure of the glm-ie toolbox, we provide a simple code example7. We

use a sparse linear model to describe Fourier measurements y = Xu+ε ∈ Cm of an unknown pixel

image u∈Rn where the design matrix X contains a subset of the rows of the Fourier matrix F, that is,

X = MF as specified by a measurement masking matrix M ∈ {0,1}m×n. As a prior, we employ the

knowledge that the filter responses s=Bu of natural images with zero mean filters b j, j=1..q follow

a sparse distribution imitated by the Laplace potential T j(s j) = e−τ|s j|. More specifically, the filter

matrix B contains multiscale derivatives; it is a concatenation of finite differences in both image

directions and wavelet coefficients. This model allows to reconstruct images from undersampled

magnetic resonance imaging scanner measurements, where m < n.

These steps are illustrated below, and following the code, we discuss in some detail, the meaning

and role of each line, and mention in passing some of the alternative possibilities. Note that, full

specification and prediction can be done in as little as nine lines of code:

1 [y,mask] = read_data; su = size(mask); % load measurements y and mask

2 X = matFFTNmask(mask); % construct a partial Fourier matrix

3 s2 = 1e-5; % define the observation noise variance

4 B = [matWav(su); matFD2(su)]; % conc. wavelet and finite difference matrix

5 pen = @(s) penAbs(s); % define l1-norm penalty function (LASSO)

6 [u,phi] = plsLBFGS(u0,X,y,B,opt,s2,pen); % perform PLS estimation

7 pot = @potLaplace; % define a Laplace potential (corresponds to l1-norm)

8 tau = 15; % declare width of the Laplace potential

9 [m,ga,be,z,zu,nlZ] = dli(X,y,s2,B,pot,tau,opts); % double loop VB inference

Data y is loaded in line 1. The observation noise variance σ2 and the design matrix X as declared

in lines 2-3 form the Gaussian part. The filter matrix B for the non-Gaussian part is constructed

in line 4 as the concatenation of two matrices. More involved compositions such as [W; a*D]

are possible. In the next two lines, we perform estimation by optimising equation (2) using the

plsLBFGS solver in line 6 for the penalty function ρ(s) = ∑ j |s j| as declared in line 5. Variational

inference requires a potential T (τs); here T (τs) = exp(−τ|s|), with scale τ, is defined in lines 7-8.

The engine for double loop inference dli is finally called in line 9 yielding the posterior mean

estimate m, the variational parameters γ and β, the marginal variances z = var(Bu), zu = var(u)
and the negative log evidence − lnZ ≡ nlZ of the model.
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