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Abstract

We present a general and detailed development of an algofih nite-horizon tted-Q iteration
with an arbitrary number of reward signals and linear valugcfion approximation using an ar-
bitrary number of state features. This includes a detaieatment of the 3-reward function case
using triangulation primitives from computational georgetnd a method for identifying globally
dominated actions. We also present an example of how ouratiettan be used to construct a real-
world decision aid by considering symptom reduction, wegsin, and quality of life in sequential
treatments for schizophrenia. Finally, we discuss futurections in which to take this work that
will further enable our methods to make a positive impacthan €ld of evidence-based clinical
decision support.

Keywords: reinforcement learning, dynamic programming, decisioking linear regression,
preference elicitation

1. Introduction

Within the eld of personalized medicine, there is increasing interest in inwgstig the role of
sequential decision making for managing chronic disease (Weisz et &, RlaKay, 2009; Kuk
et al., 2010). Reinforcement learning methods (Szepesvari, 2010nSuttbBarto, 1998) are al-
ready being used (Pineau et al., 2007; Murphy et al., 2007; Zhao €08R) to analyze Sequen-
tial Multiple Assignment Randomized Trials (SMART) (Murphy, 2005). A pati progression
through a SMART is divided into stages, each of which consists of a (t§ypigaiform) random
assignment to a treatment, followed by monitoring and recording data on thetjsatiendition.
The patient data collected during each stage are very rich and commonlgersgueral continuous
variables related to symptoms, side-effects, treatment adherence, qtiifey and so on. For the
ith patient in the trial, we obtaintaajectory of observation@ndactionsof the form
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Here,al represents the action (treatment) at timanda} represents measurements made of patient
i after actional , andbeforeactiona). The rst observation®) are baseline measurements made
before any actions are taken.

To analyze these data using reinforcement learning methods, we must tleanfunctions

and a scalar reward signal, respectively. Applying these functions tdataefrom thdath patient
gives a trajectory

These rede ned data are treated as sample trajectories from a knowg palich is typically
uniformly random over possible actions. Once we have these, we will viging patient care
as a Markov decision process (MDP) (Bertsekas and Tsitsiklis, 198@)apply batch off-policy
reinforcement learning methods to learn an optimal policy that takes a pa@atasid indicates
which action appears to be best in view of the data available. In an MDPlwttate transition
dynamics and the reward distributions are assumed to hawddhev property That is, given the
values of the current state, the distribution of next st8te; and current rewarg; is conditionally
independent o§;j;a;;r; for all j < t. Clearly this can be achieved by including past historgjn
but this may not be feasible. For this work, we will assume that practitiorsrssaggest state
features (which may be summaries of history) that are “as good as a corhiglietg/” in terms of
making predictions about future states and rewards: we want featates¢rich enough to provide
good predictions about action values, but that are simple enough to allmwaern from a limited
amount of data. In medical domains, we may additionally want the learned polibg easily
interpreted and implemented. The interplay between predictiveness Bgigynand interpretability
makes the de nition ok a challenging problem that requires a great deal of further investigation
particularly into the consequences of a non-Markov de nition of statewéder, the question of
how s should be de ned can be answered at least in part by the data themsahetker with
expert knowledge and feature/model selection techniques analogousst uked in supervised
learning settings (Keller et al., 2006)we have an adequate de nition of.r

A major dif culty with using trial data in this way is that there is often no obvioustyrect
way to de ner;. Indeed, any de nition of; is an attempt to answer the questidiiHat is the right
guantity to optimize?—a question that is driven by the objectives of individual decision nmker
andcannot be answered by the data alofiétnere are many reasonable reward functions one could
de ne, since each patient record includes a multi-dimensional measureifrteat patient's overall
well-being. For example, data often include a measure of the severity ofrtiggems the patient is
experiencing, as well as a measure of the severity of the side-effesisathy the current treatment.
These different dimensions are typically better addressed by some trésitiimem by others, and
therefore the choice of which dimension to use as the reward will affecetudting learned policy.
For example, a policy that minimizes expected symptom level will tend to chooseaggressive
drugs that are very effective but that have a more severe sidet-pfiele. On the other hand, a
policy that minimizes expected side-effect measurements will choose dratgaréhless effective
but that have milder side-effects.

In clinical practice, doctors, patients, and families decide on a treatmenelghing different
measures of well-being, like symptoms and side-effects, according toctubjpreferences that
are not known to us at the time of data analysis. Continuing our example, jhefseences may
lean more toward symptom reduction or side-effect reduction, dependitige individual decision
makers involved, and an appropriate reward function de nition shouktté¢hese preferences. In
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principle, one could elicit these preferences, use them to de ne theddwaction of each individ-
ual decision maker, and then learn a policy for that reward functionghiemaccurate preference
elicitation can be dif cult to achieve, and even when it is possible it can be a¢mnsuming pro-
cess for the decision maker. Moreover, this approach is problematiudedadoes not give a
complete picture of the quality of the available actions under different tealamices. Indeed, the
decision maker will not know when very small changes in preferencestrggt to different ac-
tions, or when one action is optimal for a broad range of preferenceghen another action is not
optimal for any preference.

Rather than eliciting preference and producing a policy that recommenidgla action per
state, our “inverse preference elicitation” approach is to rst considlesf the actions available at
the current state. For each of the actions, we answer the quéStibat range of preferences makes
this action a good choice?'This provides much richer information about the possible actions at
each stage. Furthermore, even if a preference is speci ed sometomgathods allow the maker to
immediately see if his or her preferences are near a “boundary’—thahether a small change in
preference can lead to a different recommended action. In this casedang to the data analysis
two or more actions perform comparably well, and therefore the nal d@tisould be based on
other less crucial considerations such as dosing schedule and miifferecost. We are interested
in ef cient algorithms that can exactly compute the optimal policy for a rangewhrd functions
to investigate how our choice of reward function in uences the optimal podiog in turn how we
can offer more exible choices among good actions.

2. Related Applications, Existing Methods, and Our Contribuions

Our approach can help explore trade-offs in different application dwzesides sequential med-
ical decision making as well. In e-commerce, one may wish to trade off shartgieo ts with
increased brand-visibility. In robotics, one may wish to trade-off rapill tasnpletion against
wear-and-tear on equipment. Researchers are already considadimgytoff water reserves versus
ood risk in water reservoir control (Castelletti et al., 2010); our agato could provide further
insight here. Even within RL itself, our approach could provide a newpmmtive on trading off
achieving high expected reward with avoiding risk, an issue explored &yngr and Tsitsiklis
(2011). Any problem for which it is dif cult or undesirable to formulate iagle scalar reward to
drive decision making could bene t from our approach.

There is wide interest in making use of multiple reward signals for sequeet@idn making.
Gabor et al. (1998) demonstrated that an MDP with multiple reward signalbeavell-de ned
and solved so long as we are given a xed partial ordering on rewactbvs. Mannor and Shimkin
(2004) offer a formalism where actions are chosen to ensure that tipd¢dam average reward vec-
tor approaches a “target set”. The target set induces an ordeliisgiiess) on reward vectors which
drives the agent's actions. Natarajan and Tadepalli (2005) assuma $ieatar reward function is
constructed by taking a weighted sum of a reward vector, just as we wikky @Bsume that the
weights are given, and that the weights will change over time. Their strege¢gyearn a dictionary
of policies for different weight vectors that should eventually contailicigs that work well for
many different preferences. They note that “An interesting directiofufare research is to investi-
gate the number of different weight vectors needed to learn all the optoheigs within a desired
degree of accuracy,” which we will address as part of this worklyB@ork in this direction (Bar-
rett and Narayanan, 2008) explored the problem of simultaneously comgmgiimal policies for a
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class of reward functions over a small, nite state space in a frameworkeithe model is known.
Subsequent developments were made that focussed on the in nite4snaigmunted setting and
black-box function approximation techniques (Castelletti et al., 2010; Vam@lal., 2011). We
extended the approach of Barrett and Narayanan (2008) to the settmgeal-valued state fea-
tures andinear function approximation, which is a more appropriate framework for anadyial
data (Lizotte et al., 2010). We also introduced an algorithm that is asymptotinallg time- and
space-ef cient than the Barrett & Narayanan approach, and itbesthow it can be directly applied
to batch data. We also gave an algorithm for nding the set of all non-daetihactions in the
single-variable continuous state setting. This paper builds on our prewviaisby contributing:

A general and detailed development of nite-horizon tted-Q iteration withaaitrary num-
ber of reward signals and linear approximation using an arbitrary nunfilséaite features

A detailed treatment of 3-reward function case using triangulation algorittonsdomputa-
tional geometry that has the same asymptotic time complexity as the 2-reward fucesioo

A more concise solution for identifying globally dominated actions under lineactfon
approximation, and method for solving this problem in higher dimensions

A real-world decision aid example that considers symptom reduction, wgédgtand quality
of life when choosing treatments for schizophrenia

3. Background

We begin by de ning the mathematical framework for our problem and daagrits relationship to
the usual MDP formulation. We then discuss how two existing formalismgerse Reinforcement
learningandPOMDP Planningrelate to our approach.

3.1 Problem Framework

after which they are no longer under our care. In this nite-horizorusegjal decision making

setting, the optimal policy in general dependd @Bertsekas and Tsitsiklis, 1996), so we explicitly

maintain separate, Q;, andV; functions for each timepoint, and we de 1@  rt. Furthermore,

it is convenient for our purposes to allow the set of possible sfatasd the set of possible actions

A to depend on time. We then designate the learned policy at a particular timeppint®! A;.
We consider sets of MDPs that all have the sdfef, and state transition dynamics, but

whose expected reward functions; a;; d) have an additional parametgrOne may think ofl as

a special part of state that: i) does not evolve with time, and ii) does notfic@éransition dynam-

ics. Each xedd identi es a single MDP by xing a reward function, which has a corresgiog

optimal* state-action value function de ned in the usual way via the Bellman equation:

Qs ad) = (s a;d)+ ES+1jst;at[a£nA?-Xth+l(S+1;a; d)]:

1. In this work, most Q- and V-functions are either optimal or estimateptifnal. We omit the usual superscript in
most cases, and mark estimates with a hat "
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We will also refer to the optimal state value functigfs;d) = maxpa Qi(s;a;d), and thé op-
timal deterministic policyp(s;;d) 2 argmax, 5 Qi(s;a;d). The purpose ofl is to represent the
preferencesf a decision maker: we presume that a decision maker would like to follow tamalp
policy pi(s;d) for the MDP indexed by the value dfthat represents their preferences, that is, the
value ofd for whichr(s;a;d) is a re ection of their reward function.

In order to mathematize the relationship between preferencel,and de ne the structure of

r(s;a;d) to be
d=(dg;disiidp 1)s 1)

D 2
r(s;a;d) = dglo(ssa)+ durg(ssa)+ m+(1 & dadrgp (s a): 2)
d=0

identi ed by a vectord of length D that identi es points on thD 1)-simplex. The vectod
represents a preference that assigns weight to each of the basidgewar example, iflq = 1

for some indexd, thenr(s; a;d) = ryq)(s; @), and the optimal policy:(s; d) will choose actions
that optimize the expected sum of rewards as determinegdpylintuitively, the magnitude ofiq;
determines how mugh(s;d) “cares about” thelth basis reward. Preferences de ned by non-linear
combinations of reward have been considered in non-sequential sé€#iggsrhall 2008), but such
approaches would be much more computationally challenging in the sequestdisiod making
setting in addition to being much more challenging to interpret; we discuss this tioiB&cl.
Throughout, we presume our data are trajectories wherftlome takes the form

3.2 Related Approaches

Inverse Reinforcement LearnirftRL) (e.g., see Ng and Russell, 2000) comprises a collection of
methods that take as input trajectories acquired by observing an ergetten attempt to infer the
reward function of that expert. While IRL methods also operate in a setting withawn rewards,
our goal is quite different since we explicitly assume that our datacdcome from an expert—in
fact actions are often chosen uniformly randomly. Furthermore, weotlattempt to recover the
reward function of any particular agent; we will instead attempt to learn ttisappolicy for a set

of reward functions. IRL methods could be useful if one wanted to attemgtpbicitly learn the
preference (i.e., thd) of a decision-maker under our proposed framework; we leave thistastial
future work.

Partially Observable Markov Decision Process (POMDP) plann{igelbling et al., 1998)
comprises a large collection of methods that are designed to learn policies facthef partial
observability that is, when the current “nominal statedf the system is not observed. In this
framework, the agent maintainsbalief state(i.e., distribution) over the current nominal state and
de nes a value function and policy over these belief states. In the sim@#stgwithk nominal
states, the space of possible belief states is the set of vectors (@@ thg-simplex, and value-based
exact POMDP planners compute the optimal value function for all possibld bdies. In effect,

2. The optimal policy may not be unique, but this does not concern us.
3. The term “nominal state” is used to denote the actual unobserved Btagesystem, so as to distinguish it from the
“belief state,” which comprises the agent's current beliefs about thesy
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the POMDP planner de nes and solves tieief MDPin which the belief states are considered to
be the observed (continuous) state.

Our goal in this work is to learn the optimal value function and policy for alkgue preferences
d, which also happen live on the simplex. The value functions we learn are isimg&ucture to
those of the POMDP planning problem, but there are at least two importéeredites.

First and foremost, the value functions and policies we learn are funatiopeferenceand
of additional state (e.g., patient information) both of which are assumed tbseed. We will
see that in our formulation, for any xed state the optimal value function isguigse linear in
preference. The preference part of the value function has a steusitailar to that of the value
function of a belief MDP, which is piecewise linear in the belief state.

Second, in POMDP planning, value is alwaysomvexunction of belief state, and this property
is crucial in the development of exact and approximate (e.g., Pineau €04, @/ang et al. 2006)
methods. However, we will show in Section 4.2.4 that because our appestimates value func-
tions using regression, the Q-functions in our problemrareconvex ind. Since we do not have
convexity, we will develop alternative methods for representing valuetiimms in Section 4.

Despite these two differences, it is possible to interpret our de nition efggence as a “belief”
that the agent/patient is in exactly onel»fifferent hidden “preference states” each corresponding
to a single basis reward. We will not approach the problem from this powiewef since we prefer
the interpretation that each agent (e.g., patient) has a true obsethaidea corresponding reward
function given by (2), but there may be applications where the hiddesf¢mnce state” interpreta-
tion is preferable. In any case, the two differences mentioned above thegzgven if we interpret
d as a belief over preference states, standard POMDP methods arelicelaip.

4. Fitted-Q Iteration for Multiple Reward Functions

In order to illustrate the intuition behind our approach, we rst describalgarithm for learning
policies for all possiblel in the simplest case: a nite state space witk 2 basis rewards. We then
describe how to accomodate linear function approximation with an arbitranpeuof features in
theD= 2 setting. We then give a generalization to arbitfaryand we provide an explicit algorithm
for theD = 3 case based on methods from computational geometry.

4.1 Optimal Value Functions for All Tradeoffs: Finite State Space D= 2 Basis Rewards

To begin, we assume that tit are all nite, and that state transition probabiliti®$s+ 1j; a)
and expected rewardgy (s; a&); 2 oy (S &) are estimated using empirical averages from the data
set and “plugged in” where appropriate. From an algorithmic standpoittijsrsetting there is no
difference whether these quantities are known or estimated in this way. Vdateepresent our
algorithm as though all expectations can be computed exactly.

First, we consider two basis rewandg; andry;; and corresponding preferenags ( dig; djyy)-
In this setting, the range of possible reward functions can be indexedingle scalad = dpy; by
de ning

r(ssasd)=(1 d) ryg(s;a)+ d rqyg(ssa):

We will show that the optimal state-action value functig(s;;d) is piecewise-linear in the trade-
off parameteird. Where appropriate, we will use the notatidiis; ) to represent the function of
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Figure 1: Computingy/r from Qy for all d by convex hull.

one argument (i.e., o) identi ed by xing s. (We will use notationQ(s;a; ) andri(s;a; )
similarly.) We use an exact piecewise-linear representation of the fundtiéss) for each state
and timepoint, which allows us to exactly compute value backups fat albre ef ciently than
the point-based representations of Barrett and Narayanan (20@8)refresentation also allows
identi cation of the set of dominated actions, that is, the actions that areptiohal for any(s;d)
pair. Value backups for nite state spaces require two operations: maxionizaver actions, and
expectation over future states.

4.1.1 MAXIMIZATION

We begin at time = T, the nal time point? and describe how to take a collection of functions
Qt(sr;ar; ) for all (sr;ar) and produce an explicit piecewise-linear representatiovr¢ér; )

by maximizing overar 2 Ar. In Section 4.1.3, we show how this can be accomplished at earlier
timepointst < T using a divide-and-conquer approach.

The Q-function for the last timepoint is equal to the terminal expected reWwaction rr,
which is linear ind for each state-action pair as de ned in (2), so we h@yésr;ar;d)=(1 d)
rrg(sriar)+ d rypg(sr;ar). To represent eacQr(sr;ar; ), we maintain a list of linear func-
tions, one for each action, for eash. Figure 1(a) shows an example Q-function at a xed state
st at timeT for four different actions, three of which are optimal for sodh@nd one which is not
optimal for anyd. The linear function for each action can be represented by a list ofoffgulgints
(i.e., [0 1]) together with a list of their corresponding values (i[@y(sr;ar;0) Qr(sr;ar;1)]) at
those tradeoff points. Each can also be represented by a(@ifs$r;ar;0); Qr(sr;ar; 1)) in the
plane, as shown in Figure 1(b). These two equivalent representatil@nsan important concep-

4. We will write Qy rather tharQ;= T in this section, and similarly writer; At; etc.
5. We denote an ordered list with objeat®;c by[a b d.
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tual and computational insight that is well-established in the multi-criterion optimizéteyature
(Ehrgott, 2005): the set of actions that are optimal for sd2¢0; 1] are exactly those actions whose
line-representations lie on the upper convex envelope of the Q-functodsequivalently, whose
point-based representations lie on the upper-right convex hull of thef eints in the plane. In
general, we can recover the actions that are optimal on any infdrddlby nding the upper-right
convex hull of the point§ (Qr(sr;a;d); Qr(sr;a;d9) : a2 f 1::jAjg g. This equivalence is impor-
tant because the time complexity of the convex hull operatiompwints in two or three dimensions
is O(nlogn) (de Berg et al., 2008)—as fast as sorting.

We make use of this equivalence to construct our piecewise-linearsergegion o1 (s; ).
Commonly-used convex hull routines produce output that is ordereil,is@asy to recover the
list of actions that are optimal for sontk along with the values ofl where the optimal action
changes. These values are the “knots” in the piecewise-linear repatea. We denote the list
of knots of a piecewise-linear functiof( ) by D(f()). The output of a convex hull algorithm is
an ordered list of points, each of the for(@+r(sr;ar;0);Qr(sr;ar;1)). In this case, the list is
[(0:8;0:2) (0:5;0:6) (0:2;0:7)]. We know from the order of this list that the second knotiis; )
(afterd = 0) occurs where the lines represented 8)8; 0:2) and(0:5;0:6) intersect. Thus we can
compute that the line represented (®8;0:2) is maximal fromd = 0 tod = 0:43, at which point
it intersects the line represented (¥:5; 0:6). After nding the knots, we represent the piecewise-
linear value function in Figure 1(a) by the ordered knotI§¥r(sr; )) =[ 0:00 043 075 100Q]
and value-listf0:80 054 058 (07(], rather than by the list of points. To recover the policy at
this point, we may also retain a list of lists containing the actions that are optimakhtlaot:
[[1][1 2] [2 4] [4]]. This allows us to determine the action or actions that are optimal for any segmen
by taking the intersection of the action lists for the endpoints of the segment. tinxitbecause
Vr(sr: ) is a point-wise maximum of convexunctions, it is convex.

Our representation allows us to evalustt€sr; d) = maxpa, Qr(Sr;ar;d) ef ciently. Because
our knot list and value list are ordered, we can use binary searchitthelargest knot ivr (sr; )
that is less thad. This tells us which linear piece is maximal fdrso we only need to evaluate this
single linear function. Thus computing (sr;d) takesO(logjD(Vr(st; ))j) time, that is, the time
for the cost of the search, rather than @gD(Vr(sr; ))j) time it would take to evaluate all of the
linear functions atl and then take the maximum.

4.1.2 EXPECTATION

We now show how we use our piecewise-linear representativi(st; ) to ef ciently compute a
piecewise-linear representation of

Qr (st var ;)= rr (st var 1;)+ Es:[Vr(Sr; )ist var 4]

using the piecewise-linear representatiol+ef To do so, we must evaluate conditional expectations
of Vr over possible future states.

Consider an example with two terminal stasgs= 1 andsr = 2. Suppose that the probability
of arriving in statej (conditioned on somégsr 1;ar 1)) is given byq;. Since each/r(j; ) is
linear over the intervals betweddVr(j; )), these two functions arsimultaneouslyinear over
the intervals betweeb(V1(1; )) [ D(Vr(2; )), and their weighted average is linear over the same

6. TheQr(sr;ar; ) are each linear, and therefore convex.
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Vr(1;d) Vr(2;d) Qr i(sr par 1;d)
1 : 1 ‘ 1 ‘
=< 05 1 = 05 1 = 05 s
S S S
| | |
0O 0:5 1 0O 0:5 1 0O 0:5 1
d d d

Figure 2: Computing expectations using unions of piecewise-linear eage®ns. The graphs
of Vr(1;d) andVr(2;d) show the timeT value function at two different stateSy = 1
andSy = 2. The graph ofr 1(st 1;ar 1;d) = 0:5 Vy(1;d) + 0:5V1(2;d) shows the
expected action-value function if the two states are each reached withlpiigh0.5
when starting from stat& 1 = s ; and taking actiolAr 1 = ar i1, and there is no
immediate reward.

intervals. Therefore the expectation
Esi [Vr(Sr; )isr ar a]= 1 V(1 )+ g2 Vr(2))

is itself a piecewise-linear function af with knot-list D(Vr(1; )) [ D(Vr(2; )). Since the func-
tion rr 1(sr 1;ar 1;) is linear, it does not contribute additional knots, so we can compute the
piecewise-linear representation@f 1(sr 1;ar 1; ) by computing its value-list at the aforemen-
tioned knots. The value list @t 1(sr 1;ar 1;)is

" ! #

rroa(sr sar pd)+ & aqivr(jid) d2 D(Vr(L) [ D(Vr(2;)) :
J

Letk; = jD(VT(s?; ))j. This construction used(k; + ko) space and requiréd(k; + k) evaluations
of Vr. Note that becaus®r 1(st 1;ar 1; ) is a positive weighted sum of convex functions, it is
convex. Figure 2 illustrates this weighted sum operation.

We contrast the piecewise-linear representation approach with thatratBand Narayanan
(2008). The expectation can also be computed using the point-basedasfation in Figure 1(b):
let X; be the set of points in the point-based representatidf (Fr; ). One can compute the point-
based representation @ 1(sr 1;ar 1; ) by constructing a set of points

f(rer popfer o) + A1 (asbl) + g2 (azibp)g;
wherert q = rr 1(st var 1;0d) 3)
for all (a;b1) 2 X1; (ap;by) 2 Xa:

and then taking the upper-right portion of the convex hull of this set.aBzand Narayanan (2008)
advocate this procedure and prove its correctness; however, tteyhat the set given in (3) has
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jX1jj X2j points that must be constructed and fed into the convex hull algorithm. KirscpXj + 1,
computing the expectation in this way will tak&(kiky) space andD(kikzlogkiks) time, which

is asymptotically much less ef cient than o@(k; + k2) piecewise-linear representation based ap-
proach.

4.1.3 \WLUE BACKUPS FORt< T 1

The maximization procedure described in Section 4.1.1 relies on the linea@y(ef;ar; ). How-
ever, fort < T, we have shown tha(s;a;; ) is piecewise-linear. We now show how to compute
Wt and Q; from Qi1 by rst decomposingQ:+1(s+1;&+1; ) into linear pieces and applying the
expectation and maximization operations to each piece. Recall that

Qi(s;a;d) = ri(s;a;d)+ Es, M+ 1(S+1:d)js; &l

We have shown by construction th@t 1(sr 1;ar 1; ) is convex and piecewise-linear. In general,
Vi(s; ) is computed by taking a point-wise max over functi@hés; a; ), andQ; 1(s 1;a 1;) 1S
computed by taking a positive weighted sum of the convex function$s 1;a 1; ) andV(s; ).
Since both of these operations preserve convexity and piecewiseithnddollows by induction

tify the knots inEs, , [Mi+ 1(S+1; )js; &] and store them:; this is done in the same way as#dr= T.
We then compute the value-list as described above. To convpige ) = maxpa, Qi(s;a; ), we
take the maximum over actions of these piecewise-linear Q-functions usingithlg 2. First, we
decompose the problem of nding maw, Qi(s;a; ) for d 2 [0;1] into sub-problems of nding
maxg A, Qi(s;&; ) over intervals ofiwhere we know th€}(s;;a; ) are simultaneously linear. The
ends of these intervals are given by D(Q:(s;;a; )). We then apply the convex hull algorithm to
each of these intervals to recover any additional knots insgmas (s; a; ).

The full backup procedure is described in Algorithm 1. In practice, @e a&void running
the convex hull algorithm over every interval by checking each intened points: if for some
actiona, we nd that Qi(s;a; ) is maximal at both ends of an interval in the current knot-list,
then max Qi(s;a; ) has no knots inside the interval. Note that though we present our algorithms
assuming the reward functions are linear, they will work for piecewisetineward functions as
well.

4.1.4 OMPLEXITY OF Qi(S;a:; ) AND Vi(s; )

Suppose there ajf§j states an@Aj actions at each stage. For any xeg each functioQr (sr;i; ),
i = 1::jAj, has 2 knotsd = 0 andd = 1. Applying Algorithm 2 to produc&/ (sr; ) from these
functions generates at mg#j 1 new internal knots, and therefore eaéf(sr; ) has at most
(jJAj 1)+ 2 knots. To comput®r 1(sr 1;ar 1; ), we take the expectation &f(sr; ) over
statessr. SinceVr(sr; ) might have different internal knots for evesy, Qr 1(sr 1;ar 1; ) may
have as many ag5j(jAj 1)+ 2 knots. However, the knots i@r 1(sr 1;ar 1; ) will be the
same for allsy ; andar 1. ComputingVr 1(sr 1; ) using Algorithm 2 adds at mogf\j 1 new
knots between each pair of existing knots, for atotdjAf 1j)(jS(jAj 1)+ 1)+ 2. In general,
Qi(si;a; ) may have up t@( ST AT 1) knots, and4(s; ) may have up t@(ST AT O+
knots.

To computeQi(s;a:; ) from ry andVi+ 1, our approach require®(j§7 AT 9*1) time for
each state, for a total (ST V*3Aj(T Y*1) time. In contrast, the approach of Barrett &
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Algorithm 1 Value Backup - Finite State Space

Al Bmeanss A[ B¥
8(sr+1;d); Vr+a(sr+1;d), 0.8sr+1; D(Vr+a(sr+1; ), f0;1g.
for t= T downto 1 do
forall 5 2 § do
forall & 2 A; do
D(Qi(s:a; ) fg
forall 5+12 S+1do
D(Q(sia: ) | DMea(se1; )
end for
forall d2 D(Qi(s;a; )) do
Q(s;and)  r(ssasd+
ds,, P(s+1sa) Vir1(s+1;0)

end for
end for
ComputeD(Vi(s; )) by applying Algorithm 2
toQi(s:a; ); a2 A
end for
end for

Algorithm 2 Max of Piecewise-Linear Functions
Al Bmeansa A[ B¥
input pigcewise—linear functiong( ), i = 1::k de ned on[dp; d1].
D' = "I, D(fi()
peut= el
for i = 2tojD?j do
if argma f;(D';) 6 argma f;(Df") then
ot b D(max; fj(d);d 2 (Df";; Df")
end if
end for

Narayanan require®(jS§2 (T 9*34Aj2(T U+ 1jogjG2 (T D+ 1jAj2(T U+ 1) time for each of logjS
pairs of piecewise-linear functions.

4.2 Optimal Value Functions for All Tradeoffs: Linear Function Appro ximation, D= 2 Basis
Rewards

Here, we demonstrate how our previously developed algorithms for vattlaips over all tradeoffs
can be extended to the case where we have arbitrary features of staldegand we use a linear
approximation of theQ; functions. Again, we rst conside®y andVr, which have the simplest
form, and then describe how to comp@eandV; at earlier time points. This treatment allows for
linear function approximators based on an arbitrary number of state ésatther than the single
continuous state feature described in Lizotte et al. (2010).
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Suppose the expected terminal rewa@dgsr; ar; 0) andQy(sr;ar; 1) are each linear functions
of the form Qr(sr;ar;0) = f{ ., brig andQr(sriar;1) = f{ , bryy. Herefg . is afeature
vector’ that depends on state and action, and the weight vebiggsand br(; de ne the linear
relationships between the feature vector and the expectation of the tworbasisls at timeT.

From Equation (2), we have

Qr(sriar;d)=(1 d) f&, brg+d fl. by (4)
=fla (1 d) brg+d byy :
A typical de nition of f s .5, might include a constant component for the intercept, the measure-
ments contained isy, the discrete actioar encoded as dummy variables, and the product of the
measurements isy with the encodedr (Cook and Weisberg, 1999). One could also include other
non-linear functions ofr anday as features if desired. In particular, one could produce exactly the
same algorithm described in Section 4.1 by using feature vectors of IgggithAj that consist of a
separate indicator for each state-action pair. In this case the estimatateperawill be precisely
the sample averages from Section 4.1. Note from (4) that regardless déthition of f the
functionQr(sr;ar;d) is linear ind for any xed sr;ar.

Recall that we have a set of trajectories of the form

ar;sr’

for i = 1::N with which to estimate the optim#) functions. In order to estimat®r(sr;ar;0)
and Qr(sr;ar;1), we compute parameter estimategy and by using ordinary least-squares
regression by rst constructing a design matrix and regression targets

2 3 2 3 2
T 1 1
f s}t r;[@] r;{l}
flo rr r
a2 4 _ o 4. _e w4,
FT: g S%.a.r é, rT[O]_ § : %, rT[l]_ g : %
T N N
LT ol Ty

We then compute parameter estimates
brig =(FTF1) ‘Firrg;
brig=(F1F1) Fifr

using ordinary least squarBsThese estimated parameters are then substituted into de nition (4),
giving Qr(sr;ar;0) andQr(sr;ar; 1). To construct an estima@r (sr; ar; d) for arbitraryd 2 [0; 1],

we could construct a scalar reward usimgj, ry1;, andd, and solve for the corresponditbg (d),
giving

br(d)=(FIFT) FT (1 drg+ drry ;

7. In statistical termsf,;;aT represents a row in the design matrix of the linear model.
8. We could also use ridge regression with a xed ridge parameter. Aliofechniques immediately apply in this case
as well since the parameter estimates remain piecewise lindar in
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Figure 3: Diagram of the regions (y s; ; d) space where different actions are optimal at timen
this exampley s, 2 [ 6;6].

but by linearity,

br(d)=(1 d) (F{F1) Firmg+d (FTFr) "Firmy;
=(1 d bT[0]+d bT[l]:

Thus we only need to solve f&r[o] andBT[l], after which we computéT(sT; ar;d) = f;;aT BT(d)
for any d by taking convex combinations of these coef cient vectors. Thereftaet = T, it is
straightforward to exactly represe@i (sr;ar; d) for all d.
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4.2.1 MAXIMIZATION

For any xed values ofsr andar, QT(ST;aT; ) is a linear function. Therefore, we can use the
convex hull method to identify the actions that maximize value at a gsyeand use it to recover
the knots in the piecewise-linef (sr; ).

Figure 3 is an illustration of the pieces of a hypothetiéglsr; ) that is a maximization over 10
actions. In this example we de ne a scalar state feagureand we construct feature vectors

fsT;aT :[[lysT]laTzl [1yST]1aT=2 [1YST]1aT:10]T; (5)

where 4, -« is the indicator function that takes the value Zif = k and O otherwise. Note that
this choice of features is equivalent to de nifusing a separate linear regression for each action.
Each number in Figure 3 marks the region where that action is optimal afftink®r example, a
vertical slice atys; = 4 of the value function has three linear pieces where actions 10, 1, and 7
are optimal.

In the nite state-space case, we explicitly representetsr; ) separately for each nominal
statesr in the MDP in order to allow computation of expectations over terminal stategninast,
in the linear regression setting, we repres)fé;l(isT; ) for eachobservederminal states%; :::;s'}I in
our data set. That is, we explicitly represent a one-dimensional slice gathe function for each
of theS‘,'T by applying Algorithm 2 to construct a piecewise-linear representatioﬁrf(#r; ).

4.2.2 REGRESSIONON STATE FEATURES

At stageT 1, the regression parameters of ourestin@tel(sT 1;ar 1;d) are given by
br 1(d)=(FT 1Fr 1) 'FT oJ7 «(O;
where, fort 21 1;::;;T 19, we de ne

Ve(d)=((1 d)rg+ drypg) + Ve 1(d);
which are the one-step value estimates for timehere

2 . 3

\(t+l(stl+1;d)

Vir1(S5 45 d
@) - tl(sfl )7
\7t+1(§11;d)

The components of the vect§s 1(d) are not linear ind, so fort < T, solving the regression
only ford= 0 andd = 1 does not completely determif(s;a;;d). However, the components of
¥ 1(d) are each piecewise-linear éh We determine the intervals over which the components are
simultaneously linear and then explicitly represent the state-value functibe kbotgd; d; ::: dk]
between these intervals. The output accompanying this list of knots is a éstiofated parameter
vectorsbr 1(dh) br 1(do) by 1(dk)], each givenbypr 1(d)=(FT ;Fr 1) FT 97 a(dk).

This collection of parameters is analogous to\th&ue listin the nite state-space case, and com-
pletely de nesQT 1(st 1;ar 1; ) forall st 1 andar ;. As before, we can also retain a list of the
optimal actions at each of the knots in order to later recover the policy.
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Algorithm 3 Value Backup - Linear Function ApproximatioD= 2 Basis Rewards
8(s;d); Vrsa(s;d), 0.8s D(Vrs+a(s ), fO;1g.
fort= T downto 1 do

DX fg
for all (si;a;s+1) 2 D do
D% DR D(Vi+1(Si+1i )
end for A
forall d2 D2 do
Y =((1 dryg+ dryg) + G (d)
(d) _(FTF ) lFT (d)
end for
forall s 2 D do
ComputeD(Vi(s; )) by Algorithm 2
end for
end for

4.2.3 \WLUE BACKUPSFORt< T 1

The procedure for computing thé (s;; ) relies on the linearity ofr(s;;ar; ), but fort < T,
Oi(s;a; ) is piecewise-linear in general. Thus to commlt(eé; )= maxaét(s{;a; ) for eachs! in

our data set, we apply Algorithm 2 for eaghusing regression to compu@® 1(s 1;a 1; ) from
these functions then proceeds as we did fottheT 1 case. The entire procedure is described in
Algorithm 3.

4.2.4 NON-CONVEXITY OF Qt(St;at; )

Fort < T, the resulting):(s;a; ) are not necessarily convex in the regression setting, as we alluded
toin Section 3.2. To see this, recall that each elemebt of (d) is a weighted sum of the piecewise-

linearyt 1():

br 1(d)=(FT 1F1 1) FT 97 1(dk);
=wr ¢ ¥r 1(d):

Herewt 1isanl N vector that depends aand on the data, but does not dependloBlements
of wr 1 can be positive or negative, depending on the feature representaéidrand the particular
data set on hand. Therefore, although each elemént af ) is a convex, piecewise-linear function,
the by( ), and therefore th€(s;a; ) may not be convex fot < T. One consequence of this
non-convexity is that both the algorithm by Barrett and Narayanan §2@38well as important
algorithms from the POMDP literature (e.g., Pineau et al., 2003) that oparai@wex piecewise-
linear value functions, cannot represent the func@efs; a; ) fort < T.

4.2.5 OMPLEXITY oF O(s;a; ) AND Vi(s; )

Suppose there afétrajectories angiAj actions at each time point. For any xegd andar, the nal
learned Q functlorQT(sT ar; ) has two knots, one at= 0 and one atl = 1. The terminal value
functlonVT(éT ) is constructed at each of points in state space by applying Algorithm 2 to the
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Qr(s;;a; ) for each observed terminal stafle s2;:::;s\ in D. Each resulting/r (s;; ) has at most
jAj 1 new internal knots, and therefore each has at ifj@#gt 1)+ 2 knots in total. To compute

O 1(sr 1;a; ), we use regression with targets constructed fromNhealue function estimates
\7T(§r? ). In general, the knots for ea&h(sﬁr; ) will be unique. Thus eachr (st 1;a; ), whose
knots are the union of the knots of fﬁ{e(éT; ), will have at mosN (jAj 1)+ 2 knots. Computing
Vr 1(§r 1; ) using Algorithm 2 adds at mog#\j 1 new knots between each pair of knots in the
union, for a total of(jA] 1])(N (Aj 1)+ 1)+ 2 knots. In general®(s;a; ) may have up
to O(NT YjAjT 1) knots, andVi(s; ) may have up t@O(NT Aj(T 9*1) knots. To compute the
expectation described in Section 4.2.2 at timeur approach required(NT HAj(T Y*1) for each
trajectory, for a total oO(N(T D+ AT 0+ 1) time.

4.3 Optimal Value Functions for All Tradeoffs: Linear Function Appro ximation, D > 2 Basis
Rewards

We have seen that, f@ = 2 basis rewards(s;a; ) = T Bt( ) is continuous and piecewise-
linear, but not convex. This remains true @reward functlons an® tradeoffsd = d[o],::"d[D 1
but asD increases, representl@(st a;; ) becomes more dif cult. In the general ca@(st a; )
and bt( ) are linear over pieces that are convex polytopes within the space dbleogseferences.
We prove this below and show how this insight can be used to developsesyagions of) and
\k. As in theD = 2 case, we can construdt(s;a; ) andVi(s; ) forallt T by taking pointwise
maximums and pointwise weighted sums of piecewise-linear functions. All parefdeferred to
Appendix A.

De nition 1 (Linear functions over convex polytopes) A function f: RP ! R is linear over a
convex polytop&® RP if
ow2 RP: f(d)= d'w8d2 R:

SinceR is a convex polytope, it can be decomposed into a nite collectiosimiplicesT;, each
with D vertices, such thaR = [ ;T; (Grinbaum, 1967). Each simplex is itself a convex polytope.
For a simplexT with verticesd!; d?;:::;dP, the weight vectow of a linear functionf(d) = d'w

de ned overT can be computed from the valugsy?;::;;y° ! thatf takes on the vertices, together
with the locations of the vertices themselves. This is accomplished by solvinggtesrsof linear
equations fomv:

32 3 2 .3

1 1 1

3[201 3{21] 3[2 1 Wig) y;

o Y93 - Up 1 Wiy y

R ST I b ©
do dy = dpy  Wo g ¥

Thus, a linear function over a convex polytope can be representegiasewise-linear function
over simplices.

De nition 2 (piecewise-linear functions over collections of convex pgtopes)
A function f:RP! R is piecewise-lineaover a collectiorC of convex polytopes if

8R 2 C9wgr 2 RP: f(d)= d"wg 8d2 R:

9. Equation (6) has a unique solution only if the determinant of the matrix ied@tion is non-zero, that is, only if
there are no collinearities in the verticeslof
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Algorithm 4 Algorithm sketch for max
Identify the convex polytopeB where f; is maximal. EacHR is the intersection ofAj half-
spaces.
Decompose eadR; into simplices
Evaluatefax at each vertex in each resulting simplex
Recover thavs as needed using Equation (6)

Algorithm 5 Algorithm sketch for sum

Identify the convex polytopes of the forlh\ V over which the sum is linear
Decompose each of these polytopes into simplices

Evaluatefs,m at each vertex in each resulting simplex

Recover thevs as needed using Equation (6).

Thus we can completely represent a piecewise-linear function as a callet{i® ; wr) pairs.

Lemma 3 (Max of linear functions) Given a set of functiorfsfy; fy;:::; fygthat are all linear over
the same convex polytopg, the function

fnax(d) = max(f1(d); f2(d);:::; fn(d))
is piecewise-linear over the collection of convex polytdpesf Ry; Ry;:::; Ryg given by
\N
R =R\ d2RP:fi(d) fj(d) ;i= 1:N:
j=1

Note further thatsi’ilRi = R, and that the functiorfyax is convex (and therefore continuous)

on R, since eachf; is convex. These properties immediately suggest a strategy for computing a
representation ofyax described in Algorithm 4. Figure 4 gives a pictorial representation of this
strategy, which allows us to perform the max-over-actions portion of avéduation backup for

D > 2. We now address how to perform the weighted-sum-over-states poftiba backup.

Lemma 4 [Sum of piecewise-linear functions] Given two functionswdpich is piecewise-linear
over a collectiorG of polytopes, andgwhich is piecewise-linear over a collecti@a of polytopes,
their linear combination

fsum(d) = @101(d) + a202(d)
is piecewise-linear over the collection
G+2=fU\ Vg stU2G;V2G:

This property suggests a strategy for representing described in Algorithm 5. Figure 5 gives
a pictorial representation of this strategy, which allows us to perform thghtesl-sum-over-states
portion of a value iteration backup f@&r> 2.

We can now use these strategies to construct a complete algorithm forsthcase. At time
T, we have

Qr(sriar;d)= f{ . dg byg+ diyy by + i+ dp 3 bro 1y

= dTWT;
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"I$HSHY "H#$HS%

Figure 4: Pictorial representation of taking max of linear function®fer3 basis rewards. The rst
row of triangles represents three linear functidpsf,, and f3; darker shading indicates
higher function values. The second row shows the convex polytRpeser which f;
is maximal, the decomposition of each of these polytopes into simplicesnd their
corresponding weight vectovg. The continuous piecewise-linear functifpuxis shown
at the bottom.

where

brig = (FTF7) ‘Firr;

Wri) = f 5., D110y
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1"#$#"% 1"#$#"%
!' A
ISH#"#"'% 1"#'#$% ISH#"#"'% 1"#'4#$%
"#$#"% 1"#$#"%
|
0*
I$H#"#"'% 1"#'#$% IS#"#"% 1"#"#$5%

Figure 5: Pictorial representation of taking sum of piecewise-lineartiiume for D = 3 basis re-
wards. The top row shows the two functions to be added; darker shiadiicgtes higher
function values. In the second row, the left diagram shows the pieegsuich the sum
is linear. The right diagram of the second row shows the resulting conisnpiecewise-
linear function.

Thus for anysr; ar, the functionQr (sr;ar; ) = f o aTbT( ) is linear over the piecR = fd: dyg; >

Og\f d:&4djg = 1g, which is the uni({D 1)-simplex. This is because each elemeribqﬁ]( ) is
linear ind. It follows thatVy(sr; ) = maxaQT(sT;a; ) is piecewise-linear over the sets described
in Lemma 3. To represent the stafjevalue functions/r(sr; ), we apply Algorithm 4 to the Q-
functlonsQT(sT a; ) of each actiora for eachsr in our data set. Given this value function at tife
we can comput®r 1( ; ,bT 1(d)) by computing each element bf 1(d) as the weighted sum of
Vr(sr; ) evaluated at the points in our data set by repeated application of Algorithm 5. As in the
D= 2 case, these weights are given by the columns of the m@#i¥ 1) FI. At this point, note
that for anysr 1;ar 1, the functionQT 1(st 1;ar 1; ) is piecewise-linear over treame pieces-
they are the pieces identi ed in Lemma 4. Thus to compte; we can simply apply Algorithm 4
to each of these pieces. Backups to earlier timepoints proceed analogously

4.3.1 GOMPLEXITY

Note that the primitive operations required for tted-Q iteration—pointwise mad pointwise
weighted sum—are precisely the same as in the simpler settings discussedhmartiez functions
we are operating on a® 1)-dimensional.
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Suppose there affé trajectories anglAj actions at each time point. For any xesl andar,
the nal learned Q- functlonQT(sT ar; ) has 1 piecd?; corresponding to the unfD 1)-simplex.
The terminal value functlok!T(§T ) is constructed at each &f points in state space by applying
Algorithm 4 to theQr(s}; ar; ) for each observed terminal stafe 3;:::;s) in D and each action
ar. Each resultlng/T(§T ) has at mos}Aj piecesRy;::;;Rjaj, supposing each action has a piece
where it is optimal. To comput@T 1(st 1;d; ), we use regression with targets constructed from
the N value function est|m¢':1t€*ei§T(§T ). In general, the pieces for eal&;‘m(§T ) may be unique.
Thus eactOr 1(st 1;@; ) has pieces formed from all possible intersections between pieces of the
N differentVr(s;; ), so there may be up §é\jN such pieces. Applying Algorithm 4 again within
each of these pieces means that e\ﬁphl(sz 1, ) may havgAjN*1 pieces. In genera@t(s; a;)
may have up t(D(jAjéiLfNi) pieces, andi(s; ) may have up th(jAjéiLotNi) pieces.

A more detailed complexity analysis would depend on how the pieces areseeped, and
on how Algorithms 4 and 5 are implemented using computational geometry primitiveshave
already seen that fdd = 2 basis rewards we can do much better than this worst-case bound. In-
tuitively this is because most of the intersections between pieces df &ilh%erentVT(ér; ) are in
fact empty. A general treatment of implementing Algorithms 4 and 5 is beyondctipe ©f this
paper; however, we now present a detailed algorithm designed f@rth@ case that is also much
less computationally intensive than the above double-exponential boggdsts.

4.4 Optimal Value Functions for All Tradeoffs: Linear Function Appro ximation, D= 3 Basis
Rewards

We now consider thB = 3 case speci cally. The rst “algorithmic trick” we will use is to represent
functions ofd using two rather than three dimensions, that is,

re(S; @ dio digy) = digireo (S @) + digryg(ssa) + (1 dig  dp) (s a):

This follows from the constraint thé; d;; = 1. Note that the set of poin{slq}; diyy) : digp + diy

1, dg 0; dy Oisaconvex polytope iR2. In fact it is a simplex, and therefore we can repre-
sent the linear functio®r(sr;ar; ) by storing the corners of the simpldx=[( 1;0) (0; 1) (0;0)]
together with the parameter vectors

br(1,0)=(FIFT) Flryg;
br(0;1)=(F1F1) Firgy;
br(0;0)=(F{F1) Firyy:

We can compute a weight-vector representation of the function using Eqijio

Consider two linear function®r(sr;1; ) andOr(sr;2; ) overT . To take their pointwise max-
imum, we must identify the pieces over which the maximum is linear, as describezhima 3.
The boundary of these two pieces is a lindlf If this line intersectdT , it will divide T into the
two pieces. If it does not, then one function must be greater than the otbealb of T. Iden-
tifying the pieces can be accomplished by nding where (if anywhere) thieidg line given by

Or(sr;1; ) = Or(sr;2; ) intersectsT ; this is illustrated in Figure 6. We represéht(sr; ) by
recording the pieceR on either side of the dividing line. Each piece is identi ed by a set of ver-
tices, along with the value of the max at each vertex. (Note that certain \wewittdoelong to both
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!$#u%

Figure 6: Identifying the pieces over which the max of two linear functions éalin

pieces.) If there are more than 2 actions, we can take further maxesameidenti ed sub-piece,
partitioning as necessary. This completes the max-over-actions step dt.time

To computeQT 1(st 1;ar 1; ), we compute each elementfm‘ 1( ) at each verter by taking
aweighted sum over next stateskfsr; ), again with weights given by columns @ TF1) FT.
From Lemma 4 we know that we need to identify all of the pieces formed by ettng the linear
pieces of the functions to be summed. Naively, one might compute the intersettbmpairs of
pieces, but foD= 3 basis rewards we can instead us®astrained Delaunay triangulatiofCDT),
which essentially gives us only the non-empty intersections and does so mmrehef ciently
than enumerating all pairs. Figure 7 gives a schematic diagram of thisdun@ceThe input to
a standard Delaunay triangulation algorithm is a list of points in space. Tipeitoig a list of
simplices (in this case triangles) that partition space and whose vertices gmthe input points.
The particular triangles chosen satisfy certain properties (de Berg 2088), but the main appeal
for our purposes is the algorithm{(nlogn) running time (Chew, 1987), whereis the number of
points to be triangulated. A constrained version of the algorithm allows usditiathlly specify
edges between points that must be present in the output. The constraisash\wf the algorithm
will add points as needed to satisfy this requirement; again Figure 7 illustraged tie simplices
(triangles) will form the pieces for the elementsaf 1( ), which will de ne our estimate€r 1.

The output of the CDT algorithm is a set of pieces over which we know timeotihe piecewise-
linear functions will be linear. There are in fact more pieces than are striettgssary, because
linear pieces that have more than three vertices (e.g., quadrilateralg)idesldip by the algorithm.
Nonetheless, the output is convenient because we can determine theweeitghw for any simplex
using Equation (6). Once we have determined these pieces and vergoesmwatd/r (sr; ) ateach
terminal state and each vertex. Each elemebtrofi( ) is a piecewise-linear function whose pieces
are given by the CDT algorithm, and whose values are given by the gt weighted sum of
\7T(sT; ) evaluated at the vertices. This givé$ 1. The max operation to obtaWMy ; can again
be achieved by taking the max over each piec®pf, and so on backward to= 1. A complete
description is given in Algorithm 6

The problem of nding intersections between lines and computing triangukatsonell-studied
in the eld of computational geometry (de Berg et al., 2008). Though thesielgms may appear
trivial, it is very important to avoid situations where there is “ill-conditioningdrexample, if we
were to use oating point arithmetic to de ne three lines that should intersettteasame point,
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TS, 191

Figure 7: Computing the sum of three piecewise-linear functions. The éxamaple value func-
tions each have two linear pieces. The boundary between two piecesiis ki@ dotted
line. We take all of the vertices, plus the boundaries, and give them astmpucon-
strained Delaunay triangulation procedure. The output is shown.

we may nd that the “intersection point” is different depending on which ilines is used to
compute it. This can lead to many spurious points and edges being generatedoeoceed with
value iteration. We take advantage oGAL, the Computational Geometry Algorithms Library
(CGAL, 2011), which is designed speci cally to avoid these problems.

Algorithm 6 Value Backup - Linear Function ApproximatioD= 3 Basis Rewards
8(s;d); Vr+1(s;d), 0.8s D(Vr+a(s; ), F[(1;0);(0;2);(0;0)]g.
fort= T downto 1 do

D% fg
forall (s;a;s+1) 2 D do
D% DR D(Vis+1(Si+1i )
end for i
D% constrained_Delaunay_Triangulati@?:)
for all d2 vertice¢D?) do
yi(d) = digripo + Ay + (1 digp  diag)regz + Ve 2(d)
bi(d) = (F{Fy) *Fyi(d)
end for
forall 2 D do
ComputeD(V(s; )) by Algorithm 4
end for
end for

4.4.1 GOMPLEXITY FORD = 3

Any triangulation ofn points in the plane contairS(n) triangles (Brass, 2005), so the operation
D  constrained_Delaunay_Triangulat{@%) increases the size & only linearly. It follows
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that eactQr 1(sr 1;a; ) hasO(N jAj) pieces rather than thHAjN given by the worst case analysis
in Section 4.3.1. Therefor@t(s; a; ) may have up t©(NT YjAjT 1) pieces, andi(s; ) may have
up toO(NT HAj(T Y*1) pieces. Note that these rates are the same as fdD the special case
discussed in Section 4.2.5. Intuitively this is because the triangulatiomoiints ind-dimensional
space ha®©(n%=2%), triangles (Brass, 2005), that is, the same asymptotic growth rat@ for2
(one-dimensional preference space) &nd 3 (two-dimensional preference space).

5. Dominated Actions

The ability to comput€) andV for all preferences achieves our goal of informing the decision maker
about the quality of available actions under different preferences$,ofimforming the decision
maker about how the recommended pollcy changes with preferenceditioado achieving these
primary goals, our representations @fandV allow us to compute whether or not an action is
dominated(not optimal for a given state no matter what the preference) and whietheglobally
dominated(not optimal forany state-preference pair.) The notion of domination arises in POMDP
planning as well, where certain actions may not be optimal for any belief &att¢he notion of
global domination has no direct analog in the POMDP setting since it is a pyapeadditional
observed statethat is not part of a typical POMDP.

The concept of domination is central to the eld of multi-criterion optimization ¢fett; 2005),
and is important in the medical decision making setting because it identi es trebaions that
are not appropriate no matter what the decision maker's preferencers. may also consider
actions that are dominated for all patient states in a population of interesis ttia¢ actions that
are globally dominated. Knowing this set of actions would be useful foeldging aformulary—a
list of treatments that should generally be made available to a patient population.

The general problem of analytically identifying the set of globally dominatdiias is dif -
cult, as we will illustrate, but we rst provide solutions for low-dimensionablplems and discuss
the identi cation of globally dominated actions in higher dimensional settings. &pproach for
determining if actions are dominated is to look fmrti cates of non-domination for each action.
A point (s a; d) whereQ(s; a; d) = Vi(s;d) is a certi cate that actiom is not dominated at state
s, and that actiom is therefore not globally dominatéd.All proofs are deferred to Appendix A.

5.1 Finite Case D= 2 Basis Rewards

We showed in Section 4.1 how to exactly represenQffs ; a; ) andVi(s; ) functions for alls; and
a for D= 2 when the state space is nite by representing them as lists of knots (v§divg&not-
values (vertex-values). In addition to storing this information, we may alse #te set of actions
that are optimal at each knot, that is, we may stréd) = fa, : Q(s;a ;d) = V(s;d)gfor eachd
in the knot list of\;(s; ). Note thatA (d) may contain more than one action. Suppdsanddy. 1
are adjacent knots iB(V;(s; )). For alld s.t.dg < d< dk+1, we haveA (d)= A (d)\ A (di+1).
Thus the set of actions that have a non-domination certi cate at stetgiven by
DM (s )i
! A (dW);
k=1

10. Note that in this work we determine which actions esématedo be dominated, since we are using estim&des
andV; to make this determination. Assessing our con dence that an action is makgominated based on available
data will require incorporation of appropriate statistical methods (Latedr,e2009).
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and any actions not in the above union are dominateg. aNote that recording this additional
information does not increase the time complexity of the method. It also allows nd ®very
globally dominated action by computing the above union at each nite state, t#kéngnion of
those sets, and identifying actions not present in the union.

5.2 Regression Casd) = 2 Basis Rewards, One State Feature

We now show how to identify all of the globally dominated actions in the lineartfan@pprox-
imation setting. We rst discuss the case with a single state featyreD = 2 basis rewards, and
the last timepoin . We also construct feature vectdrg.,. so that the&; functions are built using

separate regressions for each action; for example see (5). We cadetime Bﬁ(d) tobethe2 1
sub-vector obt(ﬂ) that aligns Witp the sub-vector &f ., thatis non-zero fog; = a. We also de ne

the matrixB$ = A%(O) B%(l) for each action, so that

. d
Qr(sr;ar;d)= 1 ys BY 1.d - (7)

To nd the globally dominated actions, we will search for certi cates of rdwmination in(y s; ; d)
space and identify the actions that do not have a certi cate. Figure 3sshavexample of this
setting. In the example, actions 1, 4, 6, 7, 8, 9, and 10 have region® wiesr are optimal, and
hence certi cates of non-domination. Actions 2, 3, and 5 have no cetégahat is, they are not
optimal for any combination of s, andd.

EachBg is a constant given the data and the regression algorithm. The formaéérly shows
thatQT( ;a; ) is a bilinear function ofy s, andd. To analytically identify the set of dominated
actions, we analyze the boundaries between the regions where one feasidngher value than
another. These boundaries occur whgsé ;a;; ) = Qt( ;ap; ) for some actionga; anday, that is,
where

d d
1 ys B?lldz 1 ys B?-Zld;
which describes the hyperboladrandy s; given by
ar a d —_ .

Along these boundaries, “triple-points” occur(§ts; ; d) points where three or more actions have
exactly the same value. At these points, either all of the actions involvedotiread, or none of
them are. We now show that if there exists a certi cate of non-dominatioadbona, but there
exists no certi cate form on the boundary of the domain @f (sr;d), then there exists a certi cate
for a at a triple-point.

Lemma 5 (Lizotte et al., 2010) If action a is optimal at time T for some poify s;;d) but is not
optimal for any(y s ; d) on the boundary of the domain, then a is optimal for s¢yne; d) that is a
triple-point.

From Lemma 5 we know that to nd all actions that are optimal for sqyg ;d) we need only
check the boundaries and the triple points. The boundaries can beedhesing Algorithm 2.
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(Note that becaus®r( ;a; ) is bilinear ind and iny s, We can also use Algorithm 2 to identify for
any xed dthe actions that are optimal for somg,.) We can then enumerate tHéj triple-points
and check them to detect any regions that do not intersect the bouoidtdrg domain, like for
example the region where action 1 is optimal in Figure 3 where we have ideittieettiple-points
with white dots. This procedure reveals all actions that are optimal for $gmed), and thereby
identi es any actions that are not optimal for ays; ; d).

To compute the triple points, we must solve the following system of bilinear equsafioy s,
andd:

d
1 Ysr (B$l B$2) 1 d = 01

T

There are many ways of interpreting this system of equations; it desdhibastersection of two
hyperbolas, as pointed out in our earlier work (Lizotte et al., 2010). ¥¢eribe a more concise
solution here. Note that any solutidy s;;d) must have the property that the vecfary ;] is

orthogonal to the two vectors given §Bs B%P) 1dd and (B¥ BY) 1dd . Since
[1ys]is two-dimensional, this implies that these two vectors are collinear. Thertfereector
d .
1 d must satisfy
e By 0 =iE ey 4 ©)
1 d T ™ 1 d -

Equation (9) describes thgeneralized eigenvalue problgi@olub and Van Loan, 1996). Common
software packages can solve foandd.’* We have described the process of identifying globally
dominated actions for bilinear functions; we can immediately extend this algordhpidcewise
bilinear functions by applying it between pairs of knots.

5.3 Regression Casq State Features, Arbitrary D

Lizotte et al. (2010) conjectured that an analogue of Lemma 5 holds in hiljinensions, and that
identifying all globally dominated actions for more state variables and/or cefuaictions would
require computing intersections of surfaces in higher dimensions. We thia conjecture, and we
propose a solution method for nding globally dominated actions for

Or(ys )= 1 yl Bid

wherey ¢ is p-dimensional, and is theD-dimensional vector of preferences de ned as usual. We
consider nding non-dominated actions over a “domain of interest,” of thenfS D, whereSis

a rectangle irRP, andD is a convex subset of valid preferences. To prove our method isctorre
we require the following conjecture.

11. In practice one solveg8% BP)x=| (B} B$3)x and then projects onto the subspacg; = 1 Xy by dividing
it by X0 T X
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Conjecture 6 If the system of polynomial equations of the form

1yl (B B®)d=0 (10)
1yl (B2 B¥)d=0

1yl (B} B}d=0

has a nite number of solution points, those points taken together are a cantfvector-valued
function of the coef cients of the system.

Conjecture 6 is true for a single polynomial of one variable over the compéx Jherka and
Sergott, 1977), and holds for tliz= 2 case. We believe the conjecture holds because it is known
that systems of multivariate polynomials can be reduced to solving a collectiordependent
problems each involving a single polynomial of one variable. This reductes the methods of
eliminationandextension{Cox et al., 1997).

Proposition 7 Assume Conjecture 6. If there exists a pdyt_ ;d) in the interior of the domain
of interest where action a is optimal, but a is not optimal at any péynt ;d) where p+ D+ 1
actions are simultaneously optimal, then there exists a {gigt d) on the boundary of the domain
of interest where action a is optimal.

We refer to a point wherk actions are simultaneously optimal aslattiple point.” To nd
the set of globally non-dominated actions, we rst solve (10) and chede#oif any of thgp+
D+ 1)-tuple points are optimal. If so, all of the point's associated actions not jotb@aminated.
The system (10) of polynomial equations can be solved by computer alggbtems or using
numerical approximation techniques (Cox et al., 1997; Sturmfels, 2002jed&irsively applying
the proposition to the boundaries of the original domain, we can ensuneghdentify every action
that is not globally dominated: rst, we ndD+ p+ 1)-tuple points inside the origindD + p)-
dimensional domain of interest and check whether any of these are optineathev treat each
of the(D+ p 1)-dimensional boundaries as our new domains of interest, and loqiferp)-
tuple points in each of these, and so on until we check each ofthZro-dimensional points at
the corners of our original domain. Again, we have described the gsaaieidentifying globally
dominated actions for functions lineardnwe can immediately extend this algorithm to piecewise-
linear functions by applying it within linear regions.

6. Application to Medical Decision Making

An important application of this work is the improvement of the use of sequangdlical data
for constructing clinical decision support systems. In this section, weybdiscuss how such
systems are currently constructed, how preferences are curredtlysadd in the medical decision
making community, and how the methods presented in this paper provide aanoveseful way of
incorporating preferences in clinical decision support systems. Wepttesent an example using
real data that illustrates how our methods can be used to inform clinicalateaigking.
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6.1 Clinical Decision Support, Evidence-Based Medicine, and Prefemees

Currently, most clinical decision support systems are constructed ugdegtepinion (e.g., Work-
ing Group for the Canadian Psychiatric Association and the Canadian AdlfamdResearch on
Schizophrenia, 1998; Miller et al., 1999). Although accumulated cliniga¢ggnce is invaluable in
making good treatment decisions, data-derived scienti ¢ evidence is glayimcreasingly promi-
nent role. Sackett (1996) state that “The practice of evidence basdidineemeans integrating
individual clinical expertise with the best available external clinical evigeinom systematic re-
search.”

In order to be effective, any evidence-based decision suppddreysust leave room for indi-
vidual clinical expertise to inform the nal decision. The methods we haesgnted are able to
do this by presenting treatment recommendations in a way that incorporats®denaker prefer-
ences. There is extensive literature on “preference elicitation,” bothnnatind outside the eld of
medical decision making. In the medical decision making eld, howevergepeete elicitation is
usually done at the population level and used to produce generic clinicilmes, rather than to
make recommendations tailored to individual patients (e.g., Bonnichsen, Ratik et al., 2011).
In other elds, preference elicitation is done before presenting anyrmdition about the available
treatments (Boutilier, 2002; Thall, 2008). It is assumed that preferdinitaion is able to reliably
extract the preferences of the decision maker; in our setting, prefeedicitation would attempt to
nd the d that represents the preference of a decision maker, run tted-Q itenagiogr(s;a;; d),
and recommend a single treatment. This approach leaves no room for ualiglthical expertise.

Our methods provide a novel alternative to preference elicitation. Rathertiing to deter-
mine which of the uncountable number of possible preferences a user maigdtwe present, for
each available action, the set of preferences for which that action is opfitva is, we present the
policy as a function of preference. We call this approach “inversterce elicitation” because
rather than eliciting a preference and recommending a treatment, we caregasihjuitively show
for each treatment the set of preferences that are consistent with éismmendation. By using
this approach, the time a user would have spent having his or her pregegeéicited is now spent
directly considering the evidence for how preferences in uencemeasended treatment.

6.2 Example: CATIE Study

We illustrate inverse preference elicitation using data from the Clinical Anthostyc Trials of In-
tervention Effectiveness (CATIE) study. The CATIE study was desigto compare sequences
of antipsychotic drug treatments for the care of schizophrenia patients.fullhstudy design is
quite complex (Stroup et al., 2003; Swartz et al., 2003); we have therefmsen a simpli ed sub-
set of the CATIE data in order to more clearly illustrate the potential of the methaebented in
this paper. CATIE was an 18-month study that was divided into two main plafsgeatment.
Upon entry into the study, most patients began “Phase 1,” in which they rardomized to one
of ve possible treatments with equal probability: olanzapine, risperidquoetiapine, ziprasidone,
or perphenazine. As they progressed through the study, patientgiwencthe opportunity at each
monthly visit to discontinue their Phase 1 treatment and begin “Phase 2” antagagment. The set
of possible Phase 2 treatments depended on the reason for discontihase Ptreatment. If the
Phase 1 treatment was deemed to be ineffective at reducing symptoms dinéthtse 2 treatment
was chosen randomly as follows: clozapine with probabili#f,lor uniformly randomly from the
set {olanzapine, risperidone, quetiapine} with probabilit211f the Phase 1 treatment was deemed
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to produce unacceptable side-effects, their Phase 2 treatment was cmiformly randomly from
the set {olanzapine, risperidone, quetiapine, ziprasidone}.

In previous work, we used batch off-policy reinforcement learningrtalyze data from this
study using a single reward function (Shortreed et al., 2010). We ngawtgio new analyses using
the new methods we have presented to examine multiple rewards simultanetedbasis rewards
we consider are measures of symptoms, side-effects, and quality of life.

Symptoms: PANSBor our symptom measurement, we use the Positive and Negative Syndrome
Scale (PANSS) which is a numerical representation of the level of ptig@ymptoms experienced
by a patient (Kay et al., 1987). A higher value of PANSS re ects the gmes of more severe
symptoms. PANSS is a well-established measure that we have used in pregituen the CATIE
study (Shortreed et al., 2010), and is measured for each CATIE phtdnat the beginning of the
study and at several times over the course of the study. Since havieg R&SS is worse, for
our rst basis reward g we use 100 minus the percentile of a patient's PANSS at the end of their
time in the study. We use the distribution of PANSS at the beginning of the stuithe asference
distribution for the percentile.

Body Weight: BMI Weight gain is an important and problematic side-effect of many antipsy-
chotic drugs (Allison et al., 1999). Patients in the CATIE study had their Bddgs Index (BMI)
(National Institutes of Health., 1998) measured at study intake and s&waza over the course of
the study. Since in this population having a larger BMI is worse, for ounrsgbasis rewardy
we use 100 minus the percentile of a patient's BMI at the end of their time in thg. Seluse the
distribution of BMI at the beginning of the study as the reference distribiitiothe percentile.

Quality of Life: HQLS Measures of quality of life are intended to assess to what degree a
patient's disease is impacting his or her daily life, in terms of a patient's relatipns¥ith others,
ability to work, emotional state, and ability to carry out daily activities (Cramal.g2000). Patients
in CATIE were administered the Heinrichs-Carpenter Quality of Life (HQU®¢inrichs et al.,
1984) scale at intake and repeatedly as they progressed throughdiie Stace having a higher
HQLS is better, for our third basis rewarg) we use the percentile of a patient's HQLS at the end
of their time in the study. We use the distribution of HQLS at the beginning of thay sta the
reference distribution for the percentile.

6.3 Symptoms versus Weight Gain

We begin by presenting the output of our algorithm b= 2, using PANSS as described above
for rg, and BMI forry. In Figures 8, 9 and 10 we will present plots of the piecewise linear value
functionVi(s; ) for t = 1;2 and for various representative valuessof When we plot;(s;d) as

a function ofd, we simultaneously show the learned optimal action using the style and colour of
the plotted line. Thus from our plots one can see both the learned valuealehthed policy as a
function ofd, which enables us to easily see for each action the range of preferienaehich that
action looks best.

6.3.1 FHASE 2 ANALYSES

Following the approach of our previous work (Shortreed et al., 2048)use PANSS at entry to
Phase 2 as a continuous state variapkeo that we can allow symptom severity to in uence optimal
action choice. We convert the PANSS scores at entry to Phase 2 inemgils just as we did for the
PANSS reward signal. Furthermore, we learn value functions for theedPh&f cacy patients and
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the Phase 2 Tolerability patients separately, since these two groups Haverdisets of possible
actions.

We have relatively little data for Phase 2 Ef cacy subgroup of patientserdfiore for this
subgroup, we combine the actions of giving {olanzapine, risperidangyetiapine} into one “not-
clozapine” action:AF™F = f CLOZ;not-CLOZg. The other three drugs are much more similar to
each other than they are to clozapine, which is much more toxic and is curcensidered a “last
resort” for use when symptoms are not effectively managed by othémteass (McDonagh et al.,
2010). The feature vectors we use for Stage 2 Ef cacy patients aes gy

fEE = [1 la=cLoz; 2 2 la=cLoz: 11o; lex; sty lstz lsts lstdl '

Here,s; is the PANSS percentile at entry to Phase 2. Featytelan is an indicator that the action

at the second stage was clozapine, as opposed to one of the other ttsatvkieralso have other
features that do not in uence the optimal action choice but that are ohwgexperts to improve

the value estimate'$. 11p is an indicator variable of whether the patient has had tardive dyskinesia
(a motor-control side-effect) gk indicates whether the patient has been recently hospitalized, and
1st1 through k4 indicate the type of facility at which the patient is being treated (e.g., hospital,
specialist clinic)

For Phase 2 Tolerability patients, the possible action#df = f OLAN; QUET; RISP, ZIPyg,
and the feature vectors we use are given by

foom = [1; La=0LAN; lap=QUET; la=RisP S2; S2lay= 0LAN; S2lay= QUET; S2lay=Risp: i

11p; 1ex; 1st1; 1st2 1sts; 1std™:

Here we have three indicator features for different treatments at Phakg-oian, la,=Risp,
1a,= queT, With ziprasidone represented by turing all of these indicators off. Aganinclude
the product of each of these indicators with the PANSS percestilEhe remainder of the features
are the same as for the Phase 2 Ef cacy patients.

Figure 8 shows a plot of the piecewise linear value funcliefs,; ) for patients who are in
Phase 2 of the study because of a lack of ef cacy of the Phase 1 tre@titvenplotVs(sp; ) for
three xed values of, corresponding to having low PANSS, moderate PANSS, or high PANSS at
entry to Phase 2. (These correspond to setjirg 25, s, = 50 ands, = 75, respectively.) For
all three states shown in the plot, the learned policy indicates that clozapire liesh action for
a reward based only on PANSS (i.e., b= 0), but not-clozapine (olanzapine or risperidone or
guetiapine) is best for a reward based only on BMI (i.e.dfer 1.) We have indicated the values of
d at which the decision changes from one action to the other by dropping @oletted line. We see
that, except for those with a strong preference for controlling BMI,agbirze appears to be the best
choice among patients who found their Phase 1 treatment to be ineffeatietadlling symptoms.

It is clear from the plot that neither action is globally dominated since neithesrigrdhted at any
of our example states.

Figure 9 shows a plot of the piecewise linear value funcigfs,; ) for patients who are in
phase 2 of the study because they could not tolerate the side-effectsiroPtiase 1 treatment.
Again we plot\,(sp; ) for three different Phase 2 entry percentiles of PAN§S: 25,s, = 50 and

12. See Section 4.2 by Shortreed et al. (2010) for a more thorougisgisn of these kinds of features. When we display
value functions and learned policies in our examples, we set all of thémaiars to 0 since they are not needed by
the learned policy to select actions in the future.
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Value Functions for Phase 2: Lack of Ef cacy
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Figure 8: Multiple rewards analysis showing learned value function asocaged learned policy
for Phase 2 Ef cacy patients. Three value functions are shown, withgkeciated action
chosen by the learned policy, fer= 25,5, = 50, ands, = 75.

s, = 75. Possible treatments are olanzapine, quetiapine, risperidone arsldope If we use a
reward based only on PANSS (i.e., for= 0), the learned policy indicates that olanzapine is the
best action for those with high or moderate incoming PANSS, and that rigperid best for those
with lower incoming PANSS. Ziprasidone is best for a reward based onBMn(i.e., ford = 1)
independent of PANSS level. This result agrees with existing researgfemht gain associated
with these atypical antipsychotics (Allison et al., 1999). Again, we have atelitthe values o

at which the decision changes from one action to another by dropping daletted line. In this
analysis, we found that quetiapine was globally dominated.

6.3.2 HASE 1 ANALYSIS

For Phase 1 patients, the possible actionsAre f OLAN; PERPQUET;RISP,ZIPg, and the
feature vectors we use are given by

TOL 1. : : :
foa = [1 la=oLaN; lay=PERA la=QUET; lay=RiSP;::

S1; S1la=oLan; Sila=PeERA S1la;= QUET: S1la=RIsSP;:::

11p; 1ex; 1st1 1st2 1st3 1stdl":

We have four indicator features for different treatments at Phasg=251hN, la,=pPERP la;= QUET
and k,-risp, With ziprasidone represented by turing all of these indicators off. \Weidecthe
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Value Functions for Phase 2. Lack of Tolerability
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Figure 9: Multiple rewards analysis showing learned value function asocaged learned policy
for Phase 2 Tolerability patients. Three value functions are shown, withgbeciated
action chosen by the learned policy, far= 25,s, = 50, ands, = 75.

product of each of these indicators with the PANSS percestilat entry to the study, and the
remainder of the features are the same as for the Phase 2 feature .vg@ioese are collected
before the study begins and are therefore available at Phase 1 as well.)

Figure 10 shows a plot of the piecewise linear value funditds;; ) for patients entering Phase
1 (the beginning) of the study. Again we p\ii(ss; ) for three xed values of; = 25,s; = 50 and
s1 = 75. Possible treatments are perphenazine, olanzapine, quetiapinédaspe&nd ziprasidone.
For all three states shown in the plot, the learned policy indicates that olarzajhe best action
for a reward based only on PANSS (i.e., tbr 0). Ziprasidone is best for a reward based only on
BMI (i.e., for d = 1), also independent of PANSS level. Again, the result agrees well witstireg
research (Allison et al., 1999). In this analysis, we found perpheeazid quetiapine to be globally
dominated.

6.4 Symptoms vs. Weight Gain vs. Quality of Life

We now present the output of our algorithm f@r= 3, using PANSS forg, BMI for rp;;, and
HQLS forrp;. We use the methods described in Section 4.4 to compute the value functioms whic
map a state; and a three-element preference veatdo an estimated value. Rather than display
the shape of this value function using a surface or contour plot, we hesteé to show only the
regions of preference space where each action is optimal (i.e., thedgaotiey) mapped onto an
equilateral triangle. This simpli es the presentation, but still allows us to easdyfer each action
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Value Functions for Phase 1
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Figure 10: Multiple rewards analysis showing learned value function ssac#ated learned policy
for Phase 1 patients. Three value functions are shown, with the asslomiditen chosen
by the learned policy, fog, = 25,5, = 50, ands, = 75.

the set of preferences for which that action looks B&gh all examples, we show the policy for
PANSS percentilg = 50.

6.4.1 MHASE 2 ANALYSES

We use the same state representation as foDthe2 example. Because we are using the exact
samerjg; andrpy; as we did for théd = 2 example as well, we can exactly recover the learned policy
of our previousD = 2 analysis from oub = 3 analysis simply by considering all preferences of the
formd=(d;1 d;0), thatis, the preferences along the upper-left edge of the triangle.

Figure 11 shows the learned policy for patients wsgh= 50 whose Phase 1 treatment was
not ef cacious. As in theD = 2 case, we combine the actions of giving {olanzapine, risperidone,
or quetiapine} into one “not-clozapine” action. We see that clozapineapp®est if the reward
is based only on PANSS or on HQLS, and “not-clozapine” appearsdrggtif the preference
assigns a relatively large weight to BMI. If we consider the upper-lgdtecof the triangle where
the preferences assign zero weight to HQLS, we get precisely the saitye ghown in Figure 8.
We also see that clozapine appears best for all preferences tlsdeoanly PANSS and HQLS
(bottom edge) and for most preferences that consider only HQLS a&fld(Boper-right edge.)
We hypothesize that this is because there is a strong association betwéreh aoschizophrenia

13. In addition to the policy, we have indicated the linear regions produgehebDelaunay triangulations using faint
lines in order to give a sense of their complexity.
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Reward: BMI
d=(0;1,0)
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Figure 11: Multiple rewards analysis using PANSS, BMI, and HQLS, shgwearned policy for
Phase 2 Ef cacy patients witl = 50.

symptoms and quality of life; thus treatments that work well for PANSS shoutdradsk somewhat
well for HQLS. We note however that clozapine occupies a narroweyeran the upper-right edge
than it does on the upper-left edge. In this analysis it is clear that neittiends globally dominated
because neither is dominated at sgte 50.

Figure 12 shows the learned policy for patients vetlr 50 whose Phase 1 treatment was not
tolerable due to side-effects. Here, we see that olanzapine appsaitthe reward is based only
on PANSS or on HQLS, and ziprasidone appears best if the pretesssigns a relatively large
weight to BMI. For intermediate preferences, risperidone appeats Begin if we consider the
upper-left edge of the triangle where the preferences assign zégbtwe HQLS, we get precisely
the same policy shown in Figure 9. We also see that olanzapine appetsiar ladipreferences that
consider only PANSS and HQLS (bottom edge.) Note that horizontal linegitritngle represent
sets of preferences where the weight on BMI is held constant. Over afycbference space, these
horizontal lines are completely contained within one treatment's optimal regicamingethat given
a weight for BMI, the policy usually does not depend on the relativegpeeice for PANSS versus
HQLI. We hypothesize again that this is because there is a strong assotiatiween symptom
control and quality of life. In this analysis, we found that quetiapine walsajlp dominated.
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Reward: BMI
d=(0;1,0)

l

Reward: PANSS ’ Ziprasidone j Risperidone— Olanzapin% Reward: HOLS
d=(10;0) d=(0;0;1)

Figure 12: Multiple rewards analysis using PANSS, BMI, and HQLS, shgwearned policy for
Phase 2 Tolerability patients with = 50.

6.4.2 FHASE 1 ANALYSIS

Figure 13 shows the learned policy for patients vgitle 50. Again we see that ziprasidone appears
best for preferences that assign a large importance to BMI, and pisezappears best for other
preferences. Again if we consider the upper-left edge of the trianbbrenthe preferences assign
zero weight to HQLS, we get precisely the same policy shown in Figureniéreistingly, the region
where ziprasidone appears best increases as we decrease thernogoftRANSS, indicating it
may be preferable for patients who are more concerned with weight tanttayuality of life than
with very tight control of symptoms. In this analysis, we found that quetigpisperidone, and
perphenazine were dominated at our example s{ate50, but we found no action to be globally
dominated.

6.5 Limitations

We note that unlike our previous work using this data, this analysis doestteotpt to remove
bias induced by missing data, nor does it provide measures of uncertairttyef learned policy
(Shortreed et al., 2010). Both of these limitations indicate important directavriatiire work, as
we discuss below.
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Reward: BMI
d=(0;1,0)
Reward: PANSS Ziprasidone— Olanzapine{ Reward: HQLS
d=(10;0) d=(0;0;1)

Figure 13: Multiple rewards analysis using PANSS, BMI, and HQLS, shgwearned policy for
Phase 1 patients with = 50.

7. Discussion and Future Work

The methods we have presented comprise a crucial rst step towards: amklysis method that
can be deployed in clinical decision support systems. However, thehallenges that remain to
be addressed.

7.1 The Meaning of Rewards and the Effect of Scaling

Consider an analysis with = 2 basis rewards at its nal time poiht= T. For a preference af =
0:5, two actionsa; anday for which 0.5r(g(sr;a) + 0:5rpj(sr;a1) = 0:5rgy(sr; a2) + 0:5rpy(sr; a2)
are indistinguishable. One can think of the preference as setting ardieyemate” for;g andrpy;:
in this case, the basis rewards can be exchanged at a one-to-onadaterahappiness with the
overall result of an action remains the same. &er0:75, the two actions would be indistinguish-
able if 0251 (st;a1) + 0:75ry(sr;a1) = 0:25rgy(st;a2) + 0:75ry(sr; az), meaning that the loss of
one unit ofry;; would have to be compensated by a gain of three unitgyah order for the actions
to be considered equivalent. The stronger the preferenag;fothe more units ofq; we need in
order to “make up” for the loss a unit of;;. Note that this interpretation would not be possible had
we chosen to de ne reward as a non-linear function of preference.

In our example analysis, we chose to convert all of the rewards to médesebefore using
them; thus we interpret a preferencedf 0.5 to mean that the “exchange rate” is one-to-one
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Value Function for Phase 2: Lack of Tolerability
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Figure 14: Multiple rewards analysis showing learned value function ssucéated learned policy
for Phase 2 Tolerability patientssing 50 BMI as one basis reward Note how scaling
the BMI reward affects the regions where different actions are optirgGa@mpare with
Figure 9.)

for percentiles of PANSS and percentiles of BMI. The exchange ratie=a0:5 could be shifted
however by rst multiplying one or both rewards by a constant factookeetusing them in our
algorithm. If we fed 2 BMI into our algorithm asg'y, the exchange rate dt= 0:5 would be two
percentiles of PANSS equals one percentile of BMI, and the preferdnekich the policy changes
from one action to the other in Figure 9, for example, would shift to the lefte ditdering of
recommended treatments (olanzapine for lowlessperidone for moderaid ziprasidone for high
d) would remain the same, however.

A more extreme version is illustrated in Figure 14, where we us@Ml as one basis reward.
In this analysis, the “exchange rate” fde= 0:5 is one unit of BMI equals 50 units of PANSS. Note
that there are still three non-dominated actions, but the regions wherd tveno are optimal are
now very small and “compressed” into an area very riearQ. This illustrates a potential pitfall:
if the exchange rate representeddy 0:5 is not “moderate,” resulting decision aids will be at best
unhelpful and at worst misleading. However, it also supports the usieeadxact algorithms we
have presented: even if the rewards are poorly scaled, the set-gfomoimated actions remains the
same, and they retain their ordering according to delta.

Note that if the region where an action is optimal is very small, a naive gridtseaerd may
not detect it. For example, if we ask try to determine in the Figure 14 exampldleiatments
are optimal near a preference @& 0 by checking nearbg, we may miss risperidone. On the
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other hand, the exact methods we have presented will correctly reeotpaiz the risperidone is
non-dominated. A practitioner using our methods might then wish to changedhse by rescal-
ing one or more of the basis rewards. The nature of this rescaling will seodepend on the
application at hand; we intend to formalize this problem in future work.

7.2 Value Function and Policy Approximations

We have shown that the complexity of constructing the exact value functjmtéstially exponen-
tial in the time horizon of the problem. However, we have also shown in oumpbeathat although
the value function may be very complex, the learned policy may still be very sirkgiare 10 il-
lustrates this: each faint triangle in the gure represents a linear piece o&ihe function. Though
there are many pieces, by and large adjacent pieces recommend the same 8his re ects
a large-scale smoothness in the Q-functions, and suggests that a simpdeh $umztion might
approximate the piecewise-linear Q-functions very well while reducing coatipnal cost. Some
existing algorithms for POMDPs that approximate the value function (e.g., Peted 2006, Wang
et al. 2006) may be useful, but novel modi cations will be needed to ussethpproximations in
our setting. Another class of approximations introduced by Poupart antilier (2002) focuses on
compressing the state space of the POMDP. As we discussed in SectiorehRniber of states
in a POMDP roughly corresponds to the number of basis rewards coedidg our method. Thus,
these methods may lead to a way of computing a simpli ed or “compressed” vigretérences
when the number of basis rewards is large, which could be used bothumeredmputational cost
and to help users better understand their preferences.

7.3 Measures of Uncertainty and Similar Q-values

In our example, almost all preferences are associated with exactly tinebpction. In practice, it
may make more sense to recommend more than one action for a particulagipceféthe Q-values
of those actions are very similar. In the medical setting, one may prefer to tiewhysician or
patient to break ties if outcomes under different treatments are deemed ¢tobe.” We note two
criteria for “closeness” that deserve further study.

Statistical Signi canceOne reason for recommending a set of treatments arises when there is
insuf cient evidence that one action is actually superior to another.llideme would like to know
if an observed difference in Q-values for different actions is trugtferpopulation or if it is present
in the data we have simply by chance. The methods we have presentedmtovidé uncertainty
information about the learned value function or policy, and although theitiigois based on linear
regression which itself has well-established methods for statistical inferigige&nown that even
standard single-reward tted-Q iteration requires specially tailored stafistiethods in order to
obtain valid con dence measures (Laber et al., 2009; Shortreed e0aDb)2These methods, based
on the bootstrap data re-sampling procedure, can be very computatioriatigire even for one
reward function; thus it will be crucial to combine them with new approximattoriee problem in
order to produce analyses in a reasonable amount of time. Methods fortmditfze bias induced
by having partially missing data can be computationally intensive as well (8kdr#t al., 2010),
and should be investigated concurrently with methods for producing emtd information.

Practical Signi cance Even if we have strong statistical evidence that one action has a higher
Q-value than another, we may still wish to recommend a set of actions if thatatiffe is too
small to be practically meaningful. Methods for mathematizing the idea of a “clinioaigningful
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difference” are under investigation (Laber et al., 2012); we see peofoisintegrating them with
our methods.

7.4 D > 3 Basis Rewards

To allow more than 3 basis rewards, we need methods that can repredenaaipulate piecewise
linear functions in higher dimensions. One avenue would be tcentanded algebraic decision
diagrams which have been successfully applied to MDPs (Zamani et al., 201B) ntt obvious
whether XADD methods provide us with a computationally feasible solutio®for 3, but their
use is worthy of future study.

8. Conclusion

We have presented a general and explicit development of nite-horitEnhQ iteration with an ar-
bitrary number of reward signals and linear value function approximatiow @ arbitrary number
of state features. This included a detailed treatment of the 3-reward foretse using triangulation
primitives from computational geometry and a method for identifying globally datathactions
under linear function approximation. We also presented an example of homethods can be
used to construct real-world decision aid by considering symptom reduyetgight gain, and qual-
ity of life in sequential treatments for schizophrenia. Finally, we have dsszliuture directions in
which to take this work that will further enable our methods to make a positivedngrethe eld
of evidence-based clinical decision support.
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Appendix A. Proofs

Note that Lemmas 3 and 4 are known (or deemed “obvious”) in the computbgieometry litera-
ture, but are proved here for completeness.

A.1 Proof of Lemma 3

Over eactR;, fmax= fj which is linear. Eaclr, is an intersection of the convex polytoRewith an
intersection of half-spaces of the fofd : fi(d)  f;(d)g, which are also convex polytopes. Thus
eachR is a convex polytope.
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A.2 Proof of Lemma 4

For any poindin a setU\ V as above, we hawg (d) = d wy andgy(d) = dTWV. Therefore, for
suchd, we have

a; (d"'wy)+ az (d'wy);

ar gi(d)+ az go(d)
d (a1 wy+az wy);

= dT Wu\ v+
Therefore within each set given by the intersections above,datindg, are linear.

A.3 Proof of Lemma 5

Supposen is optimal for somgy ;;d) in the domain but is not optimal for arfy s;;d) on the
boundary of the domain. Further suppose that not optimal at any triple-point. Then the region
wherea is optimal must be completely enclosed by the region whesaale other actional is
optimal. However, by Equation (8), the boundary between the regionsawtie superior tca®and
vice-versa is a hyperbola composed of two sets (sheets) that are@atuous and have in nite
extent in bothy s, andd. The set must therefore intersect the boundary of the doma(n fd)
and thus there must exist a certi cate foon the boundary. Thus we have a contradiction.

A.4 Proof of Proposition 7

Assume there is a region inside the domain wheeig optimal. Assumex is not optimal at any
(p+ D+ 1)-tuple point. Sincea is not optimal at a point wherp+ D+ 1 actions are optimal,
the region whera is optimal must have on its boundary points whiegtions are simultaneously
optimal for somek < p+ D+ 1. Choose the maximutfor which this is true. This boundary is
de ned by a system ok 1 polynomial equations op+ D variables of the form (10); call the
variableszi;z,;:::;Zp+p. Since we assume the region where optimal is in the interior of the
domain, there exists an interior point that is a solution to the system of equations. Create a
new system ok 1 equations an## 1 unknowns by xing the las{p+ D) (k 1) variables

system. Suppose the solution of the reduced system is a continuous fusicagnwhich holds

if Conjecture 6 is true. Then if we mowg, toward a boundary from its original value, either we
will nd a point satisfying the original system with, on the boundary and the remaining variables
in the interior of the domain, or another variable or variables will reach its@daty rst, and the
remainder of the variables will be in the interior of the domain. In either caseg #xists a point
on the boundary of the domain of interest where acigmoptimal.
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