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Abstract
We present a general and detailed development of an algorithm for �nite-horizon �tted-Q iteration
with an arbitrary number of reward signals and linear value function approximation using an ar-
bitrary number of state features. This includes a detailed treatment of the 3-reward function case
using triangulation primitives from computational geometry and a method for identifying globally
dominated actions. We also present an example of how our methods can be used to construct a real-
world decision aid by considering symptom reduction, weight gain, and quality of life in sequential
treatments for schizophrenia. Finally, we discuss future directions in which to take this work that
will further enable our methods to make a positive impact on the �eld of evidence-based clinical
decision support.
Keywords: reinforcement learning, dynamic programming, decision making, linear regression,
preference elicitation

1. Introduction

Within the �eld of personalized medicine, there is increasing interest in investigating the role of
sequential decision making for managing chronic disease (Weisz et al., 2004; McKay, 2009; Kuk
et al., 2010). Reinforcement learning methods (Szepesvári, 2010; Sutton and Barto, 1998) are al-
ready being used (Pineau et al., 2007; Murphy et al., 2007; Zhao et al.,2009) to analyze Sequen-
tial Multiple Assignment Randomized Trials (SMART) (Murphy, 2005). A patient's progression
through a SMART is divided into stages, each of which consists of a (typically uniform) random
assignment to a treatment, followed by monitoring and recording data on the patient's condition.
The patient data collected during each stage are very rich and commonly include several continuous
variables related to symptoms, side-effects, treatment adherence, quality of life, and so on. For the
ith patient in the trial, we obtain atrajectoryof observationsandactionsof the form
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Here,ai
t represents the action (treatment) at timet, andoi

t represents measurements made of patient
i after actionai

t� 1 andbeforeactionai
t . The �rst observationsoi

1 are baseline measurements made
before any actions are taken.

To analyze these data using reinforcement learning methods, we must de�ne two functions
st(o1;a1; :::;ot) andrt(st ;at ;ot+ 1) which map the patient's current history to a state representation
and a scalar reward signal, respectively. Applying these functions to thedata from theith patient
gives a trajectory
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These rede�ned data are treated as sample trajectories from a known policy which is typically
uniformly random over possible actions. Once we have these, we will view ongoing patient care
as a Markov decision process (MDP) (Bertsekas and Tsitsiklis, 1996),and apply batch off-policy
reinforcement learning methods to learn an optimal policy that takes a patient state and indicates
which action appears to be best in view of the data available. In an MDP, boththe state transition
dynamics and the reward distributions are assumed to have theMarkov property. That is, given the
valuest of the current state, the distribution of next stateSt+ 1 and current rewardRt is conditionally
independent ofsj ;a j ; r j for all j < t. Clearly this can be achieved by including past history inst ,
but this may not be feasible. For this work, we will assume that practitioners can suggest state
features (which may be summaries of history) that are “as good as a completehistory” in terms of
making predictions about future states and rewards: we want features that are rich enough to provide
good predictions about action values, but that are simple enough to allow usto learn from a limited
amount of data. In medical domains, we may additionally want the learned policyto be easily
interpreted and implemented. The interplay between predictiveness, learnability, and interpretability
makes the de�nition ofst a challenging problem that requires a great deal of further investigation,
particularly into the consequences of a non-Markov de�nition of state. However, the question of
how st should be de�ned can be answered at least in part by the data themselvestogether with
expert knowledge and feature/model selection techniques analogous to those used in supervised
learning settings (Keller et al., 2006)if we have an adequate de�nition of rt .

A major dif�culty with using trial data in this way is that there is often no obviously correct
way to de�nert . Indeed, any de�nition ofrt is an attempt to answer the question “What is the right
quantity to optimize?”—a question that is driven by the objectives of individual decision makers
andcannot be answered by the data alone.There are many reasonable reward functions one could
de�ne, since each patient record includes a multi-dimensional measurementof that patient's overall
well-being. For example, data often include a measure of the severity of the symptoms the patient is
experiencing, as well as a measure of the severity of the side-effects caused by the current treatment.
These different dimensions are typically better addressed by some treatments than by others, and
therefore the choice of which dimension to use as the reward will affect theresulting learned policy.
For example, a policy that minimizes expected symptom level will tend to choose more aggressive
drugs that are very effective but that have a more severe side-effect pro�le. On the other hand, a
policy that minimizes expected side-effect measurements will choose drugs that are less effective
but that have milder side-effects.

In clinical practice, doctors, patients, and families decide on a treatment by weighing different
measures of well-being, like symptoms and side-effects, according to subjective preferences that
are not known to us at the time of data analysis. Continuing our example, thesepreferences may
lean more toward symptom reduction or side-effect reduction, dependingon the individual decision
makers involved, and an appropriate reward function de�nition should re�ect these preferences. In
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principle, one could elicit these preferences, use them to de�ne the reward function of each individ-
ual decision maker, and then learn a policy for that reward function; however accurate preference
elicitation can be dif�cult to achieve, and even when it is possible it can be a time-consuming pro-
cess for the decision maker. Moreover, this approach is problematic because it does not give a
complete picture of the quality of the available actions under different reward choices. Indeed, the
decision maker will not know when very small changes in preferences might lead to different ac-
tions, or when one action is optimal for a broad range of preferences, or when another action is not
optimal for any preference.

Rather than eliciting preference and producing a policy that recommends a single action per
state, our “inverse preference elicitation” approach is to �rst considerall of the actions available at
the current state. For each of the actions, we answer the question,“What range of preferences makes
this action a good choice?”This provides much richer information about the possible actions at
each stage. Furthermore, even if a preference is speci�ed somehow, our methods allow the maker to
immediately see if his or her preferences are near a “boundary”—that is,whether a small change in
preference can lead to a different recommended action. In this case, according to the data analysis
two or more actions perform comparably well, and therefore the �nal decision could be based on
other less crucial considerations such as dosing schedule and difference in cost. We are interested
in ef�cient algorithms that can exactly compute the optimal policy for a range ofreward functions
to investigate how our choice of reward function in�uences the optimal policy, and in turn how we
can offer more �exible choices among good actions.

2. Related Applications, Existing Methods, and Our Contributions

Our approach can help explore trade-offs in different application domains besides sequential med-
ical decision making as well. In e-commerce, one may wish to trade off short-term pro�ts with
increased brand-visibility. In robotics, one may wish to trade-off rapid task completion against
wear-and-tear on equipment. Researchers are already considering trading off water reserves versus
�ood risk in water reservoir control (Castelletti et al., 2010); our approach could provide further
insight here. Even within RL itself, our approach could provide a new perspective on trading off
achieving high expected reward with avoiding risk, an issue explored by Mannor and Tsitsiklis
(2011). Any problem for which it is dif�cult or undesirable to formulate a single scalar reward to
drive decision making could bene�t from our approach.

There is wide interest in making use of multiple reward signals for sequential decision making.
Gábor et al. (1998) demonstrated that an MDP with multiple reward signals canbe well-de�ned
and solved so long as we are given a �xed partial ordering on reward vectors. Mannor and Shimkin
(2004) offer a formalism where actions are chosen to ensure that the long-term average reward vec-
tor approaches a “target set”. The target set induces an ordering (closeness) on reward vectors which
drives the agent's actions. Natarajan and Tadepalli (2005) assume thata scalar reward function is
constructed by taking a weighted sum of a reward vector, just as we will. They assume that the
weights are given, and that the weights will change over time. Their strategyis to learn a dictionary
of policies for different weight vectors that should eventually contain policies that work well for
many different preferences. They note that “An interesting direction for future research is to investi-
gate the number of different weight vectors needed to learn all the optimal policies within a desired
degree of accuracy,” which we will address as part of this work. Early work in this direction (Bar-
rett and Narayanan, 2008) explored the problem of simultaneously computing optimal policies for a
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class of reward functions over a small, �nite state space in a framework where the model is known.
Subsequent developments were made that focussed on the in�nite-horizon discounted setting and
black-box function approximation techniques (Castelletti et al., 2010; Vamplew et al., 2011). We
extended the approach of Barrett and Narayanan (2008) to the setting with real-valued state fea-
tures andlinear function approximation, which is a more appropriate framework for analyzing trial
data (Lizotte et al., 2010). We also introduced an algorithm that is asymptoticallymore time- and
space-ef�cient than the Barrett & Narayanan approach, and described how it can be directly applied
to batch data. We also gave an algorithm for �nding the set of all non-dominated actions in the
single-variable continuous state setting. This paper builds on our previouswork by contributing:

� A general and detailed development of �nite-horizon �tted-Q iteration with anarbitrary num-
ber of reward signals and linear approximation using an arbitrary number of state features

� A detailed treatment of 3-reward function case using triangulation algorithms from computa-
tional geometry that has the same asymptotic time complexity as the 2-reward function case

� A more concise solution for identifying globally dominated actions under linear function
approximation, and method for solving this problem in higher dimensions

� A real-world decision aid example that considers symptom reduction, weightgain, and quality
of life when choosing treatments for schizophrenia

3. Background

We begin by de�ning the mathematical framework for our problem and describing its relationship to
the usual MDP formulation. We then discuss how two existing formalisms,Inverse Reinforcement
learningandPOMDP Planning, relate to our approach.

3.1 Problem Framework

For each patient, we assume we will choose a treatment action at each timepointt = 1;2; :::;T,
after which they are no longer under our care. In this �nite-horizon sequential decision making
setting, the optimal policy in general depends ont (Bertsekas and Tsitsiklis, 1996), so we explicitly
maintain separatert , Qt , andVt functions for each timepoint, and we de�neQT � rT . Furthermore,
it is convenient for our purposes to allow the set of possible statesSt and the set of possible actions
At to depend on time. We then designate the learned policy at a particular time point by pt : St ! At .

We consider sets of MDPs that all have the sameSt , At , and state transition dynamics, but
whose expected reward functionsrt(st ;at ;d) have an additional parameterd. One may think ofd as
a special part of state that: i) does not evolve with time, and ii) does not in�uence transition dynam-
ics. Each �xedd identi�es a single MDP by �xing a reward function, which has a corresponding
optimal1 state-action value function de�ned in the usual way via the Bellman equation:

Qt(st ;at ;d) = rt(st ;at ;d) + ESt+ 1jst ;at [ max
a2At+ 1

Qt+ 1(St+ 1;a;d)]:

1. In this work, most Q- and V-functions are either optimal or estimates ofoptimal. We omit the usual� superscript in
most cases, and mark estimates with a hat .̂
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We will also refer to the optimal state value functionVt(st ;d) = maxa2At Qt(st ;a;d), and the2 op-
timal deterministic policypt(st ;d) 2 argmaxa2At

Qt(st ;a;d). The purpose ofd is to represent the
preferencesof a decision maker: we presume that a decision maker would like to follow an optimal
policy pt(st ;d) for the MDP indexed by the value ofd that represents their preferences, that is, the
value ofd for which rt(st ;at ;d) is a re�ection of their reward function.

In order to mathematize the relationship between preference andd, we de�ne the structure of
rt(st ;at ;d) to be

d = ( d[0];d[1]; :::;d[D� 1]); (1)

rt(st ;at ;d) = d[0]rt[0](st ;at) + d[1]rt[1](st ;at) + ::: + ( 1�
D� 2

å
d= 0

d[d])rt[D� 1](st ;at): (2)

whereå D� 1
d= 0 d[d] = 1. Thusrt(st ;at ;d) is a convex combination of thebasis rewards rt[0]; :::; rt[D� 1],

identi�ed by a vectord of lengthD that identi�es points on the(D � 1)-simplex. The vectord
represents a preference that assigns weight to each of the basis rewards. For example, ifd[d] = 1
for some indexd, thenrt(st ;at ;d) = rt[d](st ;at), and the optimal policypt(st ;d) will choose actions
that optimize the expected sum of rewards as determined byrt[d]. Intuitively, the magnitude ofd[d]
determines how muchpt(st ;d) “cares about” thedth basis reward. Preferences de�ned by non-linear
combinations of reward have been considered in non-sequential settings(e.g., Thall 2008), but such
approaches would be much more computationally challenging in the sequential decision making
setting in addition to being much more challenging to interpret; we discuss this in Section 7.1.
Throughout, we presume our data are trajectories where theith one takes the form
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3.2 Related Approaches

Inverse Reinforcement Learning(IRL) (e.g., see Ng and Russell, 2000) comprises a collection of
methods that take as input trajectories acquired by observing an expert and then attempt to infer the
reward function of that expert. While IRL methods also operate in a setting with unknown rewards,
our goal is quite different since we explicitly assume that our data donot come from an expert—in
fact actions are often chosen uniformly randomly. Furthermore, we donot attempt to recover the
reward function of any particular agent; we will instead attempt to learn the optimal policy for a set
of reward functions. IRL methods could be useful if one wanted to attempt toexplicitly learn the
preference (i.e., thed) of a decision-maker under our proposed framework; we leave this as potential
future work.

Partially Observable Markov Decision Process (POMDP) planning(Kaelbling et al., 1998)
comprises a large collection of methods that are designed to learn policies in theface ofpartial
observability, that is, when the current “nominal state”3 of the system is not observed. In this
framework, the agent maintains abelief state(i.e., distribution) over the current nominal state and
de�nes a value function and policy over these belief states. In the simplest setting withk nominal
states, the space of possible belief states is the set of vectors on the(k� 1)-simplex, and value-based
exact POMDP planners compute the optimal value function for all possible belief states. In effect,

2. The optimal policy may not be unique, but this does not concern us.
3. The term “nominal state” is used to denote the actual unobserved state of the system, so as to distinguish it from the

“belief state,” which comprises the agent's current beliefs about the system.
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the POMDP planner de�nes and solves thebelief MDPin which the belief states are considered to
be the observed (continuous) state.

Our goal in this work is to learn the optimal value function and policy for all possible preferences
d, which also happen live on the simplex. The value functions we learn are similar in structure to
those of the POMDP planning problem, but there are at least two important differences.

First and foremost, the value functions and policies we learn are functionsof preferenceand
of additional state (e.g., patient information) both of which are assumed to be observed. We will
see that in our formulation, for any �xed state the optimal value function is piecewise linear in
preference. The preference part of the value function has a structure similar to that of the value
function of a belief MDP, which is piecewise linear in the belief state.

Second, in POMDP planning, value is always aconvexfunction of belief state, and this property
is crucial in the development of exact and approximate (e.g., Pineau et al. 2006, Wang et al. 2006)
methods. However, we will show in Section 4.2.4 that because our approach estimates value func-
tions using regression, the Q-functions in our problem arenot convex ind. Since we do not have
convexity, we will develop alternative methods for representing value functions in Section 4.

Despite these two differences, it is possible to interpret our de�nition of preference as a “belief”
that the agent/patient is in exactly one ofD different hidden “preference states” each corresponding
to a single basis reward. We will not approach the problem from this point ofview since we prefer
the interpretation that each agent (e.g., patient) has a true observabled and a corresponding reward
function given by (2), but there may be applications where the hidden “preference state” interpreta-
tion is preferable. In any case, the two differences mentioned above meanthat even if we interpret
d as a belief over preference states, standard POMDP methods are not applicable.

4. Fitted-Q Iteration for Multiple Reward Functions

In order to illustrate the intuition behind our approach, we �rst describe analgorithm for learning
policies for all possibled in the simplest case: a �nite state space withD= 2 basis rewards. We then
describe how to accomodate linear function approximation with an arbitrary number of features in
theD= 2 setting. We then give a generalization to arbitraryD, and we provide an explicit algorithm
for theD= 3 case based on methods from computational geometry.

4.1 Optimal Value Functions for All Tradeoffs: Finite State Space,D= 2 Basis Rewards

To begin, we assume that theSt are all �nite, and that state transition probabilitiesP(st+ 1jst ;at)
and expected rewardsrt[0](st ;at); :::; rt[0](st ;at) are estimated using empirical averages from the data
set and “plugged in” where appropriate. From an algorithmic standpoint, inthis setting there is no
difference whether these quantities are known or estimated in this way. We therefore present our
algorithm as though all expectations can be computed exactly.

First, we consider two basis rewardsrt[0] andrt[1] and corresponding preferencesd = ( d[0];d[1]).
In this setting, the range of possible reward functions can be indexed by asingle scalard = d[1] by
de�ning

rt(st ;at ;d) = ( 1� d) � rt[0](st ;at) + d� rt[1](st ;at):

We will show that the optimal state-action value functionVt(st ;d) is piecewise-linear in the trade-
off parameterd. Where appropriate, we will use the notationVt(st ; �) to represent the function of
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Figure 1: ComputingVT from QT for all d by convex hull.

one argument (i.e., ofd) identi�ed by �xing st . (We will use notationQt(st ;at ; �) andrt(st ;at ; �)
similarly.) We use an exact piecewise-linear representation of the functionsVt(st ; �) for each state
and timepoint, which allows us to exactly compute value backups for alld more ef�ciently than
the point-based representations of Barrett and Narayanan (2008). Our representation also allows
identi�cation of the set of dominated actions, that is, the actions that are not optimal for any(st ;d)
pair. Value backups for �nite state spaces require two operations: maximization over actions, and
expectation over future states.

4.1.1 MAXIMIZATION

We begin at timet = T, the �nal time point,4 and describe how to take a collection of functions
QT(sT ;aT ; �) for all (sT ;aT) and produce an explicit piecewise-linear representation ofVT(sT ; �)
by maximizing overaT 2 AT . In Section 4.1.3, we show how this can be accomplished at earlier
timepointst < T using a divide-and-conquer approach.

The Q-function for the last timepoint is equal to the terminal expected rewardfunction rT ,
which is linear ind for each state-action pair as de�ned in (2), so we haveQT(sT ;aT ;d) = ( 1� d) �
rT[0](sT ;aT) + d� rT[1](sT ;aT). To represent eachQT(sT ;aT ; �), we maintain a list5 of linear func-
tions, one for each action, for eachsT . Figure 1(a) shows an example Q-function at a �xed state
sT at timeT for four different actions, three of which are optimal for somed and one which is not
optimal for anyd. The linear function for each action can be represented by a list of tradeoff points
(i.e., [0 1]) together with a list of their corresponding values (i.e.,[QT(sT ;aT ;0) QT(sT ;aT ;1)]) at
those tradeoff points. Each can also be represented by a point(QT(sT ;aT ;0);QT(sT ;aT ;1)) in the
plane, as shown in Figure 1(b). These two equivalent representationsoffer an important concep-

4. We will write QT rather thanQt= T in this section, and similarly writesT ;AT ; etc.
5. We denote an ordered list with objectsa;b;c by [a b c].
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tual and computational insight that is well-established in the multi-criterion optimization literature
(Ehrgott, 2005): the set of actions that are optimal for somed2 [0;1] are exactly those actions whose
line-representations lie on the upper convex envelope of the Q-functions, and equivalently, whose
point-based representations lie on the upper-right convex hull of the set of points in the plane. In
general, we can recover the actions that are optimal on any interval[d;d0] by �nding the upper-right
convex hull of the pointsf (QT(sT ;a;d);QT(sT ;a;d0)) : a 2 f 1:::jAjg g. This equivalence is impor-
tant because the time complexity of the convex hull operation onn points in two or three dimensions
is O(nlogn) (de Berg et al., 2008)—as fast as sorting.

We make use of this equivalence to construct our piecewise-linear representation ofVT(s; �).
Commonly-used convex hull routines produce output that is ordered, soit is easy to recover the
list of actions that are optimal for somed, along with the values ofd where the optimal action
changes. These values are the “knots” in the piecewise-linear representation. We denote the list
of knots of a piecewise-linear functionf (�) by D( f (�)) . The output of a convex hull algorithm is
an ordered list of points, each of the form(QT(sT ;aT ;0);QT(sT ;aT ;1)) . In this case, the list is
[(0:8;0:2) (0:5;0:6) (0:2;0:7)]. We know from the order of this list that the second knot inVT(s; �)
(afterd = 0) occurs where the lines represented by(0:8;0:2) and(0:5;0:6) intersect. Thus we can
compute that the line represented by(0:8;0:2) is maximal fromd = 0 to d = 0:43, at which point
it intersects the line represented by(0:5;0:6). After �nding the knots, we represent the piecewise-
linear value function in Figure 1(a) by the ordered knot-listD(VT(sT ; �)) = [ 0:00 0:43 0:75 1:00]
and value-list[0:80 0:54 0:58 0:70], rather than by the list of points. To recover the policy at
this point, we may also retain a list of lists containing the actions that are optimal at each knot:
[[1] [1 2] [2 4] [4]]. This allows us to determine the action or actions that are optimal for any segment
by taking the intersection of the action lists for the endpoints of the segment. Notethat because
VT(sT ; �) is a point-wise maximum of convex6 functions, it is convex.

Our representation allows us to evaluateVT(sT ;d) = maxa2AT QT(sT ;aT ;d) ef�ciently. Because
our knot list and value list are ordered, we can use binary search to �nd the largest knot inVT(sT ; �)
that is less thand. This tells us which linear piece is maximal ford, so we only need to evaluate this
single linear function. Thus computingVT(sT ;d) takesO(logjD(VT(sT ; �)) j) time, that is, the time
for the cost of the search, rather than theO(jD(VT(sT ; �)) j) time it would take to evaluate all of the
linear functions atd and then take the maximum.

4.1.2 EXPECTATION

We now show how we use our piecewise-linear representation ofVT(sT ; �) to ef�ciently compute a
piecewise-linear representation of

QT� 1(sT� 1;aT� 1; �) = rT� 1(sT� 1;aT� 1; �) + EST [VT(ST ; �)jsT� 1;aT� 1]

using the piecewise-linear representation ofVT . To do so, we must evaluate conditional expectations
of VT over possible future states.

Consider an example with two terminal statessT = 1 andsT = 2. Suppose that the probability
of arriving in statej (conditioned on some(sT� 1;aT� 1)) is given byq j . Since eachVT( j; �) is
linear over the intervals betweenD(VT( j; �)) , these two functions aresimultaneouslylinear over
the intervals betweenD(VT(1; �)) [ D(VT(2; �)) , and their weighted average is linear over the same

6. TheQT (sT ;aT ; �) are each linear, and therefore convex.
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intervals. Therefore the expectation

EST [VT(ST ; �)jsT� 1;aT� 1] = q1 �VT(1; �) + q2 �VT(2; �)

is itself a piecewise-linear function ofd with knot-list D(VT(1; �)) [ D(VT(2; �)) . Since the func-
tion rT� 1(sT� 1;aT� 1; �) is linear, it does not contribute additional knots, so we can compute the
piecewise-linear representation ofQT� 1(sT� 1;aT� 1; �) by computing its value-list at the aforemen-
tioned knots. The value list ofQT� 1(sT� 1;aT� 1; �) is
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Let k j = jD(VT(s0
j ; �)) j. This construction usesO(k1 + k2) space and requiresO(k1 + k2) evaluations

of VT . Note that becauseQT� 1(sT� 1;aT� 1; �) is a positive weighted sum of convex functions, it is
convex. Figure 2 illustrates this weighted sum operation.

We contrast the piecewise-linear representation approach with that of Barrett and Narayanan
(2008). The expectation can also be computed using the point-based representation in Figure 1(b):
let Xi be the set of points in the point-based representation ofVT(sT ; �). One can compute the point-
based representation ofQT� 1(sT� 1;aT� 1; �) by constructing a set of points

f (r(T� 1)[0]; r(T� 1)[1]) + q1 � (a1;b1) + q2 � (a2;b2)g;

wherer(T� 1)[d] = rT� 1(sT� 1;aT� 1;d)

for all (a1;b1) 2 X1; (a2;b2) 2 X2:

(3)

and then taking the upper-right portion of the convex hull of this set. Barrett and Narayanan (2008)
advocate this procedure and prove its correctness; however, they note that the set given in (3) has
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jX1jjX2j points that must be constructed and fed into the convex hull algorithm. Sinceki = jXi j + 1,
computing the expectation in this way will takeO(k1k2) space andO(k1k2 logk1k2) time, which
is asymptotically much less ef�cient than ourO(k1 + k2) piecewise-linear representation based ap-
proach.

4.1.3 VALUE BACKUPS FORt < T � 1

The maximization procedure described in Section 4.1.1 relies on the linearity ofQT(sT ;aT ; �). How-
ever, fort < T, we have shown thatQt(st ;at ; �) is piecewise-linear. We now show how to compute
Vt andQt from Qt+ 1 by �rst decomposingQt+ 1(st+ 1;at+ 1; �) into linear pieces and applying the
expectation and maximization operations to each piece. Recall that

Qt(st ;at ;d) = rt(st ;at ;d) + ESt+ 1[Vt+ 1(St+ 1;d)jst ;at ]:

We have shown by construction thatQT� 1(sT� 1;aT� 1; �) is convex and piecewise-linear. In general,
Vt(st ; �) is computed by taking a point-wise max over functionsQt(st ;at ; �), andQt� 1(st� 1;at� 1; �) is
computed by taking a positive weighted sum of the convex functionsrt� 1(st� 1;at� 1; �) andVt(st ; �).
Since both of these operations preserve convexity and piecewise-linearity, it follows by induction
thatQt(st ;at ; �) is convex piecewise-linear for allt 2 1; :::;T. To computeQt(st ;at ; �), we �rst iden-
tify the knots inESt+ 1[Vt+ 1(St+ 1; �)jst ;at ] and store them; this is done in the same way as fort + 1= T.
We then compute the value-list as described above. To computeVt(st ; �) = maxa2At Qt(st ;a; �), we
take the maximum over actions of these piecewise-linear Q-functions using Algorithm 2. First, we
decompose the problem of �nding maxa2At Qt(st ;a; �) for d 2 [0;1] into sub-problems of �nding
maxa2At Qt(st ;a; �) over intervals ofd where we know theQt(st ;a; �) are simultaneously linear. The
ends of these intervals are given by

S
aD(Qt(st ;a; �)) . We then apply the convex hull algorithm to

each of these intervals to recover any additional knots in maxa2At Qt(st ;at ; �).
The full backup procedure is described in Algorithm 1. In practice, we can avoid running

the convex hull algorithm over every interval by checking each interval's end points: if for some
actiona�

t we �nd that Qt(st ;a�
t ; �) is maximal at both ends of an interval in the current knot-list,

then maxaQt(st ;a; �) has no knots inside the interval. Note that though we present our algorithms
assuming the reward functions are linear, they will work for piecewise-linear reward functions as
well.

4.1.4 COMPLEXITY OF Qt(st ;at ; �) AND Vt(st ; �)

Suppose there arejSj states andjAj actions at each stage. For any �xedsT , each functionQT(sT ; i; �),
i = 1::jAj, has 2 knots,d = 0 andd = 1. Applying Algorithm 2 to produceVT(sT ; �) from these
functions generates at mostjAj � 1 new internal knots, and therefore eachVT(sT ; �) has at most
(jAj � 1) + 2 knots. To computeQT� 1(sT� 1;aT� 1; �), we take the expectation ofVT(sT ; �) over
statessT . SinceVT(sT ; �) might have different internal knots for everysT , QT� 1(sT� 1;aT� 1; �) may
have as many asjSj(jAj � 1) + 2 knots. However, the knots inQT� 1(sT� 1;aT� 1; �) will be the
same for allsT� 1 andaT� 1. ComputingVT� 1(sT� 1; �) using Algorithm 2 adds at mostjAj � 1 new
knots between each pair of existing knots, for a total of(jAj � 1j)( jSj(jAj � 1)+ 1)+ 2. In general,
Qt(st ;at ; �) may have up toO(jSjT� t jAjT� t) knots, andVt(st ; �) may have up toO(jSjT� t jAj(T� t)+ 1)
knots.

To computeQt(st ;at ; �) from rt andVt+ 1, our approach requiresO(jSjT� t jAj(T� t)+ 1) time for
each state, for a total ofO(jSj(T� t)+ 1jAj(T� t)+ 1) time. In contrast, the approach of Barrett &
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Algorithm 1 Value Backup - Finite State Space

/* A [ B meansA  A[ B */
8(sT+ 1;d); VT+ 1(sT+ 1;d) , 0. 8sT+ 1; D(VT+ 1(sT+ 1; �)) , f 0;1g.
for t = T downto 1 do

for all st 2 St do
for all at 2 At do

D(Qt(st ;at ; �))  fg
for all st+ 1 2 St+ 1 do

D(Qt(st ;at ; �))
[ D(Vt+ 1(st+ 1; �))

end for
for all d 2 D(Qt(st ;at ; �)) do

Qt(st ;at ;d)  r(st ;at ;d) +
å st+ 1

P(st+ 1jst ;at) �Vt+ 1(st+ 1;d)
end for

end for
ComputeD(Vt(st ; �)) by applying Algorithm 2
to Qt(st ;a; �); a 2 At

end for
end for

Algorithm 2 Max of Piecewise-Linear Functions

/* A [ B meansA  A[ B */
input piecewise-linear functionsfi(�), i = 1::k de�ned on[d0;d1].

Dall =
S k

i= 1D( fi(�))
Dout = Dall

for i = 2 to jDallj do
if argmaxj f j (Dall

i� 1) 6= argmaxj f j (Dall
i ) then

Dout [ D(maxj f j (d);d 2 (Dall
i� i ;D

all
i ))

end if
end for

Narayanan requiresO(jSj2�(T� t)+ 1jAj2�(T� t)+ 1 logjSj2�(T� t)+ 1jAj2�(T� t)+ 1) time for each of log2 jSj
pairs of piecewise-linear functions.

4.2 Optimal Value Functions for All Tradeoffs: Linear Function Appro ximation, D= 2 Basis
Rewards

Here, we demonstrate how our previously developed algorithms for value backups over all tradeoffs
can be extended to the case where we have arbitrary features of state variables and we use a linear
approximation of theQt functions. Again, we �rst considerQT andVT , which have the simplest
form, and then describe how to computeQt andVt at earlier time points. This treatment allows for
linear function approximators based on an arbitrary number of state features rather than the single
continuous state feature described in Lizotte et al. (2010).
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Suppose the expected terminal rewardsQT(sT ;aT ;0) andQT(sT ;aT ;1) are each linear functions
of the form QT(sT ;aT ;0) = f T

sT ;aT
bT[0] and QT(sT ;aT ;1) = f T

sT ;aT
bT[1]. Here, f sT ;aT

is a feature
vector7 that depends on state and action, and the weight vectorsbT[0] andbT[1] de�ne the linear
relationships between the feature vector and the expectation of the two basisrewards at timeT.
From Equation (2), we have

QT(sT ;aT ;d) = ( 1� d) � f T
sT ;aT

bT[0] + d� f T
sT ;aT

bT[1]; (4)

= f T
sT ;aT

�
(1� d) � bT[0] + d� bT[1]

�
:

A typical de�nition of f sT ;aT might include a constant component for the intercept, the measure-
ments contained insT , the discrete actionaT encoded as dummy variables, and the product of the
measurements insT with the encodedaT (Cook and Weisberg, 1999). One could also include other
non-linear functions ofsT andaT as features if desired. In particular, one could produce exactly the
same algorithm described in Section 4.1 by using feature vectors of lengthjSj � j Aj that consist of a
separate indicator for each state-action pair. In this case the estimated parameters will be precisely
the sample averages from Section 4.1. Note from (4) that regardless of the de�nition of f aT ;sT

, the
functionQT(sT ;aT ;d) is linear ind for any �xed sT ;aT .

Recall that we have a set of trajectories of the form

si
1;ai

1; r i
1[0]; r

i
1[1];s

i
2;ai

2; r i
2[0]; r

i
2[1]; :::;s

i
T ;ai

T ; r i
T[0]; r

i
T[1];

for i = 1:::N with which to estimate the optimalQ functions. In order to estimateQT(sT ;aT ;0)
and QT(sT ;aT ;1), we compute parameter estimatesb̂T[0] and b̂T[1] using ordinary least-squares
regression by �rst constructing a design matrix and regression targets

F T =

2

6
6
6
6
4

f T
s1
T ;a1

T

f T
s2
T ;a2

T
...

f T
sN
T ;aN

T

3

7
7
7
7
5

; rT[0] =

2

6
6
6
6
4

r1
T[0]

r2
T[0]
...

rN
T[0]

3

7
7
7
7
5

; rT[1] =

2

6
6
6
6
4

r1
T[1]

r2
T[1]
...

rN
T[1]

3

7
7
7
7
5

:

We then compute parameter estimates

b̂T[0] = ( F T
T F T) � 1F T

T rT[0];

b̂T[1] = ( F T
T F T) � 1F T

T rT[1];

using ordinary least squares.8 These estimated parameters are then substituted into de�nition (4),
giving Q̂T(sT ;aT ;0) andQ̂T(sT ;aT ;1). To construct an estimatêQT(sT ;aT ;d) for arbitraryd2 [0;1],
we could construct a scalar reward usingr t[0], r t[1], andd, and solve for the correspondingb̂T(d),
giving

b̂T(d) = ( F T
T F T) � 1F T

T

�
(1� d)rT[0] + drT[1]

�
;

7. In statistical terms,f T
sT ;aT

represents a row in the design matrix of the linear model.
8. We could also use ridge regression with a �xed ridge parameter. All ofour techniques immediately apply in this case

as well since the parameter estimates remain piecewise linear ind.
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Figure 3: Diagram of the regions in(y sT ;d) space where different actions are optimal at timeT. In
this example,y sT 2 [� 6;6].

but by linearity,

b̂T(d) = ( 1� d) � (F T
T F T) � 1F T

T rT[0] + d� (F T
T F T) � 1F T

T rT[1];

= ( 1� d) � b̂T[0] + d� b̂T[1]:

Thus we only need to solve forb̂T[0] andb̂T[1], after which we computêQT(sT ;aT ;d) = f T
sT ;aT

b̂T(d)
for any d by taking convex combinations of these coef�cient vectors. Therefore, for t = T, it is
straightforward to exactly representQ̂T(sT ;aT ;d) for all d.
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4.2.1 MAXIMIZATION

For any �xed values ofsT andaT , Q̂T(sT ;aT ; �) is a linear function. Therefore, we can use the
convex hull method to identify the actions that maximize value at a givensT , and use it to recover
the knots in the piecewise-linearV̂T(sT ; �).

Figure 3 is an illustration of the pieces of a hypotheticalV̂T(sT ; �) that is a maximization over 10
actions. In this example we de�ne a scalar state featurey sT and we construct feature vectors

f sT ;aT
= [[ 1 y sT ]1aT= 1 [1 y sT ]1aT= 2 ::: [1 y sT ]1aT= 10]T ; (5)

where 1aT= k is the indicator function that takes the value 1 ifaT = k and 0 otherwise. Note that
this choice of features is equivalent to de�ninĝQ using a separate linear regression for each action.
Each number in Figure 3 marks the region where that action is optimal at timeT. For example, a
vertical slice aty sT = � 4 of the value function has three linear pieces where actions 10, 1, and 7
are optimal.

In the �nite state-space case, we explicitly representedVT(sT ; �) separately for each nominal
statesT in the MDP in order to allow computation of expectations over terminal states. In contrast,
in the linear regression setting, we representV̂T(sT ; �) for eachobservedterminal states1

T ; :::;sN
T in

our data set. That is, we explicitly represent a one-dimensional slice of thevalue function for each
of thesi

T by applying Algorithm 2 to construct a piecewise-linear representation forV̂T(si
T ; �).

4.2.2 REGRESSIONON STATE FEATURES

At stageT � 1, the regression parameters of our estimateQ̂T� 1(sT� 1;aT� 1;d) are given by

b̂T� 1(d) = ( F T
T� 1F T� 1) � 1F T

T� 1ŷT� 1(d);

where, fort 2 f 1; :::;T � 1g, we de�ne

ŷt(d) = (( 1� d)r t[0] + dr t[1]) + v̂t+ 1(d);

which are the one-step value estimates for timet, where

v̂t+ 1(d) =

2

6
6
6
4

V̂t+ 1(s1
t+ 1;d)

V̂t+ 1(s2
t+ 1;d)
...

V̂t+ 1(sN
t+ 1;d)

3

7
7
7
5

:

The components of the vectorŷT� 1(d) are not linear ind, so for t < T, solving the regression
only for d = 0 andd = 1 does not completely determinêQt(st ;at ;d). However, the components of
ŷT� 1(d) are each piecewise-linear ind. We determine the intervals over which the components are
simultaneously linear and then explicitly represent the state-value function atthe knots[d1 d2 ::: dK ]
between these intervals. The output accompanying this list of knots is a list ofestimated parameter
vectors[bT� 1(d1) bT� 1(d2) ::: bT� 1(dK)], each given bŷbT� 1(dk) = ( F T

T� 1F T� 1) � 1F T
T� 1ŷT� 1(dk).

This collection of parameters is analogous to thevalue listin the �nite state-space case, and com-
pletely de�nesQ̂T� 1(sT� 1;aT� 1; �) for all sT� 1 andaT� 1. As before, we can also retain a list of the
optimal actions at each of the knots in order to later recover the policy.
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Algorithm 3 Value Backup - Linear Function Approximation,D= 2 Basis Rewards

8(s;d); V̂T+ 1(s;d) , 0. 8s; D(V̂T+ 1(s; �)) , f 0;1g.
for t = T downto 1 do

DQ̂t  fg
for all (st ;at ;st+ 1) 2 D do

DQ̂t  DQ̂t [ D(V̂t+ 1(st+ 1; �))
end for
for all d 2 DQ̂t do

y(d)
t = (( 1� d)r t[0] + dr t[1]) + v̂t+ 1(d)

b̂(d)
t = ( F T

t F t) � 1F T
t y(d)

t
end for
for all st 2 D do

ComputeD(V̂t(st ; �)) by Algorithm 2
end for

end for

4.2.3 VALUE BACKUPS FORt < T � 1

The procedure for computing thêVT(si
T ; �) relies on the linearity ofQ̂T(si

T ;aT ; �), but for t < T,
Q̂t(st ;at ; �) is piecewise-linear in general. Thus to computeV̂t(si

t ; �) = maxaQ̂t(si
t ;a; �) for eachsi

t in
our data set, we apply Algorithm 2 for eachsi

t , using regression to computeQt� 1(st� 1;at� 1; �) from
these functions then proceeds as we did for thet = T � 1 case. The entire procedure is described in
Algorithm 3.

4.2.4 NON-CONVEXITY OF Q̂t(st ;at ; �)

Fort < T, the resultingQ̂t(st ;at ; �) are not necessarily convex in the regression setting, as we alluded
to in Section 3.2. To see this, recall that each element ofb̂T� 1(d) is a weighted sum of the piecewise-
linearŷT� 1(�):

b̂T� 1(dk) = ( F T
T� 1F T� 1) � 1F T

T� 1ŷT� 1(dk);

= wT
T� 1 � ŷT� 1(d):

Here,wT� 1 is an 1� N vector that depends onsand on the data, but does not depend ond. Elements
of wT� 1 can be positive or negative, depending on the feature representation used and the particular
data set on hand. Therefore, although each element ofŷT� 1(�) is a convex, piecewise-linear function,
the b̂t(�), and therefore thêQt(st ;at ; �) may not be convex fort < T. One consequence of this
non-convexity is that both the algorithm by Barrett and Narayanan (2008), as well as important
algorithms from the POMDP literature (e.g., Pineau et al., 2003) that operate on convex piecewise-
linear value functions, cannot represent the functionQ̂t(st ;at ; �) for t < T.

4.2.5 COMPLEXITY OF Q̂t(st ;at ; �) AND V̂t(st ; �)

Suppose there areN trajectories andjAj actions at each time point. For any �xedsT andaT , the �nal
learned Q-functionQ̂T(sT ;aT ; �) has two knots, one atd = 0 and one atd = 1. The terminal value
functionV̂T(si

T ; �) is constructed at each ofN points in state space by applying Algorithm 2 to the
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Q̂T(si
T ;a; �) for each observed terminal states1

T ;s2
T ; :::;sN

T in D. Each resultinĝVT(si
T ; �) has at most

jAj � 1 new internal knots, and therefore each has at most(jAj � 1) + 2 knots in total. To compute
Q̂T� 1(sT� 1;a; �), we use regression with targets constructed from theN value function estimates
V̂T(si

T ; �). In general, the knots for eacĥVT(si
T ; �) will be unique. Thus eacĥQT� 1(sT� 1;a; �), whose

knots are the union of the knots of theV̂T(si
T ; �), will have at mostN� (jAj � 1)+ 2 knots. Computing

V̂T� 1(si
T� 1; �) using Algorithm 2 adds at mostjAj � 1 new knots between each pair of knots in the

union, for a total of(jAj � 1j)(N � (jAj � 1) + 1) + 2 knots. In general,Q̂t(s;a; �) may have up
to O(NT� t jAjT� t) knots, andV̂t(s; �) may have up toO(NT� t jAj(T� t)+ 1) knots. To compute the
expectation described in Section 4.2.2 at timet, our approach requiresO(NT� t jAj(T� t)+ 1) for each
trajectory, for a total ofO(N(T� t)+ 1jAj(T� t)+ 1) time.

4.3 Optimal Value Functions for All Tradeoffs: Linear Function Appro ximation, D > 2 Basis
Rewards

We have seen that, forD = 2 basis rewards,̂Qt(st ;at ; �) = f T
st ;at

b̂t(�) is continuous and piecewise-
linear, but not convex. This remains true forD reward functions andD tradeoffsd = d[0]; :::;d[D� 1],
but asD increases, representinĝQt(st ;at ; �) becomes more dif�cult. In the general case,Q̂t(st ;at ; �)
andb̂t(�) are linear over pieces that are convex polytopes within the space of possible preferences.
We prove this below and show how this insight can be used to develop representations ofQ̂t and
V̂t . As in theD= 2 case, we can constructQ̂t(st ;at ; �) andV̂t(st ; �) for all t � T by taking pointwise
maximums and pointwise weighted sums of piecewise-linear functions. All proofs are deferred to
Appendix A.

De�nition 1 (Linear functions over convex polytopes) A function f : RD ! R is linear over a
convex polytopeR � RD if

9w 2 RD : f (d) = dT w 8d 2 R :

SinceR is a convex polytope, it can be decomposed into a �nite collection ofsimplicesTi , each
with D vertices, such thatR = [ iTi (Grünbaum, 1967). Each simplex is itself a convex polytope.
For a simplexT with verticesd1;d2; :::;dD, the weight vectorw of a linear functionf (d) = dT w
de�ned overT can be computed from the valuesy1;y2; :::;yD� 1 that f takes on the vertices, together
with the locations of the vertices themselves. This is accomplished by solving the system of linear
equations forw: 2

6
6
6
6
4

d1
[0] d1

[1] ::: d1
[D� 1]

d2
[0] d2

[1] ::: d2
[D� 1]

...
...

...
dD

[0] dD
[1] ::: dD

[D� 1]

3

7
7
7
7
5

2

6
6
6
4

w[0]
w[1]

...
w[D� 1]

3

7
7
7
5

=

2

6
6
6
4

y1

y2

...
yD

3

7
7
7
5

: (6)

Thus, a linear function over a convex polytope can be represented as apiecewise-linear function
over simplices.9

De�nition 2 (piecewise-linear functions over collections of convex polytopes)
A function f: RD ! R is piecewise-linearover a collectionCof convex polytopes if

8R 2 C9wR 2 RD : f (d) = dT wR 8d 2 R :

9. Equation (6) has a unique solution only if the determinant of the matrix in theequation is non-zero, that is, only if
there are no collinearities in the vertices ofT .

3268



L INEAR FITTED-Q ITERATION WITH MULTIPLE REWARD FUNCTIONS

Algorithm 4 Algorithm sketch for max
Identify the convex polytopesRi where fi is maximal. EachRi is the intersection ofjAt j half-
spaces.
Decompose eachRi into simplices
Evaluatefmax at each vertex in each resulting simplex
Recover thews as needed using Equation (6)

Algorithm 5 Algorithm sketch for sum
Identify the convex polytopes of the formU \ V over which the sum is linear
Decompose each of these polytopes into simplices
Evaluatefsum at each vertex in each resulting simplex
Recover thews as needed using Equation (6).

Thus we can completely represent a piecewise-linear function as a collection of (R ;wR ) pairs.

Lemma 3 (Max of linear functions) Given a set of functionsf f1; f2; :::; fNg that are all linear over
the same convex polytopeR , the function

fmax(d) = max( f1(d); f2(d); :::; fN(d))

is piecewise-linear over the collection of convex polytopesC= f R1;R2; :::;RNg given by

Ri = R \
N\

j= 1

�
d 2 RD : fi(d) � f j (d)

	
; i = 1::N:

Note further that
S N

i= 1Ri = R , and that the functionfmax is convex (and therefore continuous)
on R , since eachfi is convex. These properties immediately suggest a strategy for computing a
representation offmax described in Algorithm 4. Figure 4 gives a pictorial representation of this
strategy, which allows us to perform the max-over-actions portion of a value iteration backup for
D > 2. We now address how to perform the weighted-sum-over-states portionof the backup.

Lemma 4 [Sum of piecewise-linear functions] Given two functions, g1 which is piecewise-linear
over a collectionC1 of polytopes, and g2 which is piecewise-linear over a collectionC2 of polytopes,
their linear combination

fsum(d) = a1g1(d) + a2g2(d)

is piecewise-linear over the collection

C1+ 2 = f U \ V g; s:t: U 2 C1; V 2 C2:

This property suggests a strategy for representingfsum described in Algorithm 5. Figure 5 gives
a pictorial representation of this strategy, which allows us to perform the weighted-sum-over-states
portion of a value iteration backup forD > 2.

We can now use these strategies to construct a complete algorithm for theD > 2 case. At time
T, we have

Q̂T(sT ;aT ;d) = f T
sT ;aT

�
d[0] � b̂t[0] + d[1] � b̂t[1] + ::: + d[D� 1] � b̂T(D� 1)

�
;

= dT wT ;
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Figure 4: Pictorial representation of taking max of linear functions forD= 3 basis rewards. The �rst
row of triangles represents three linear functionsf1; f2, and f3; darker shading indicates
higher function values. The second row shows the convex polytopesRi over which fi
is maximal, the decomposition of each of these polytopes into simplicesTi , and their
corresponding weight vectorswi . The continuous piecewise-linear functionfmax is shown
at the bottom.

where

b̂T[d] = ( F T
T F T) � 1F T

T rT[d];

wT[d] = f T
sT ;aT

b̂T[d]:
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Figure 5: Pictorial representation of taking sum of piecewise-linear functions for D = 3 basis re-
wards. The top row shows the two functions to be added; darker shadingindicates higher
function values. In the second row, the left diagram shows the pieces over which the sum
is linear. The right diagram of the second row shows the resulting continuous piecewise-
linear function.

Thus for anysT ;aT , the functionQ̂T(sT ;aT ; �) = f T
sT ;aT

b̂T(�) is linear over the pieceR = f d : d[d] >

0g \ f d : å d d[d] = 1g, which is the unit(D� 1)-simplex. This is because each element ofb̂T[d](�) is
linear ind. It follows thatV̂T(sT ; �) = maxaQ̂T(sT ;a; �) is piecewise-linear over the sets described
in Lemma 3. To represent the stageT value functionsV̂T(sT ; �), we apply Algorithm 4 to the Q-
functionsQ̂T(sT ;a; �) of each actiona for eachsT in our data set. Given this value function at timeT,
we can computêQT� 1(�; �; b̂T� 1(d)) by computing each element ofb̂T� 1(d) as the weighted sum of
V̂T(sT ; �) evaluated at the pointssT in our data set by repeated application of Algorithm 5. As in the
D= 2 case, these weights are given by the columns of the matrix(F T

T F T) � 1F T
T . At this point, note

that for anysT� 1;aT� 1, the functionQ̂T� 1(sT� 1;aT� 1; �) is piecewise-linear over thesame pieces—
they are the pieces identi�ed in Lemma 4. Thus to computeV̂T� 1 we can simply apply Algorithm 4
to each of these pieces. Backups to earlier timepoints proceed analogously.

4.3.1 COMPLEXITY

Note that the primitive operations required for �tted-Q iteration—pointwise max and pointwise
weighted sum—are precisely the same as in the simpler settings discussed earlier, but the functions
we are operating on are(D� 1)-dimensional.

3271



L IZOTTE, BOWLING AND MURPHY

Suppose there areN trajectories andjAj actions at each time point. For any �xedsT andaT ,
the �nal learned Q-functionQ̂T(sT ;aT ; �) has 1 pieceR1 corresponding to the unit(D� 1)-simplex.
The terminal value function̂VT(si

T ; �) is constructed at each ofN points in state space by applying
Algorithm 4 to theQ̂T(si

T ;aT ; �) for each observed terminal states1
T ;s2

T ; :::;sN
T in D and each action

aT . Each resultinĝVT(si
T ; �) has at mostjAj piecesR1; :::;RjAj, supposing each action has a piece

where it is optimal. To computêQT� 1(sT� 1;a; �), we use regression with targets constructed from
the N value function estimateŝVT(si

T ; �). In general, the pieces for eachV̂T(si
T ; �) may be unique.

Thus eachQ̂T� 1(sT� 1;a; �) has pieces formed from all possible intersections between pieces of the
N differentV̂T(si

T ; �), so there may be up tojAjN such pieces. Applying Algorithm 4 again within
each of these pieces means that eachV̂T� 1(si

T� 1; �) may havejAjN+ 1 pieces. In general,̂Qt(s;a; �)

may have up toO(jAjå
T� t
i= 1 Ni

) pieces, and̂Vt(s; �) may have up toO(jAjå
T� t
i= 0 Ni

) pieces.
A more detailed complexity analysis would depend on how the pieces are represented, and

on how Algorithms 4 and 5 are implemented using computational geometry primitives—we have
already seen that forD = 2 basis rewards we can do much better than this worst-case bound. In-
tuitively this is because most of the intersections between pieces of theN differentV̂T(si

T ; �) are in
fact empty. A general treatment of implementing Algorithms 4 and 5 is beyond the scope of this
paper; however, we now present a detailed algorithm designed for theD= 3 case that is also much
less computationally intensive than the above double-exponential bound suggests.

4.4 Optimal Value Functions for All Tradeoffs: Linear Function Appro ximation, D= 3 Basis
Rewards

We now consider theD= 3 case speci�cally. The �rst “algorithmic trick” we will use is to represent
functions ofd using two rather than three dimensions, that is,

rt(st ;at ;d[0];d[1]) = d[0]rt[0](st ;at) + d[1]rt[1](st ;at) + ( 1� d[0] � d[1])rt[2](st ;at):

This follows from the constraint thatå i d[i] = 1. Note that the set of points(d[0];d[1]) : d[0] + d[1] �
1; d[0] � 0; d[1] � 0 is a convex polytope inR2. In fact it is a simplex, and therefore we can repre-
sent the linear functionQT(sT ;aT ; �) by storing the corners of the simplexT = [( 1;0) (0;1) (0;0)]
together with the parameter vectors

b̂T(1;0) = ( F T
T F T) � 1F T

T r t[0];

b̂T(0;1) = ( F T
T F T) � 1F T

T r t[1];

b̂T(0;0) = ( F T
T F T) � 1F T

T r t[2]:

We can compute a weight-vector representation of the function using Equation (6).
Consider two linear functionŝQT(sT ;1; �) andQ̂T(sT ;2; �) overT . To take their pointwise max-

imum, we must identify the pieces over which the maximum is linear, as described in Lemma 3.
The boundary of these two pieces is a line inR2. If this line intersectsT , it will divide T into the
two pieces. If it does not, then one function must be greater than the other over all of T . Iden-
tifying the pieces can be accomplished by �nding where (if anywhere) the dividing line given by
Q̂T(sT ;1; �) = Q̂T(sT ;2; �) intersectsT ; this is illustrated in Figure 6. We representV̂T(sT ; �) by
recording the piecesR on either side of the dividing line. Each piece is identi�ed by a set of ver-
tices, along with the value of the max at each vertex. (Note that certain vertices will belong to both
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Figure 6: Identifying the pieces over which the max of two linear functions is linear.

pieces.) If there are more than 2 actions, we can take further maxes over each identi�ed sub-piece,
partitioning as necessary. This completes the max-over-actions step at timeT.

To computeQ̂T� 1(sT� 1;aT� 1; �), we compute each element ofb̂T� 1(�) at each vertexd by taking
a weighted sum over next states ofV̂T(sT ; �), again with weights given by columns of(F T

T F T) � 1F T
T .

From Lemma 4 we know that we need to identify all of the pieces formed by intersecting the linear
pieces of the functions to be summed. Naïvely, one might compute the intersectionof all pairs of
pieces, but forD= 3 basis rewards we can instead use aconstrained Delaunay triangulation(CDT),
which essentially gives us only the non-empty intersections and does so muchmore ef�ciently
than enumerating all pairs. Figure 7 gives a schematic diagram of this procedure. The input to
a standard Delaunay triangulation algorithm is a list of points in space. The output is a list of
simplices (in this case triangles) that partition space and whose vertices come from the input points.
The particular triangles chosen satisfy certain properties (de Berg et al.,2008), but the main appeal
for our purposes is the algorithm'sO(nlogn) running time (Chew, 1987), wheren is the number of
points to be triangulated. A constrained version of the algorithm allows us to additionally specify
edges between points that must be present in the output. The constrained version of the algorithm
will add points as needed to satisfy this requirement; again Figure 7 illustrates this. The simplices
(triangles) will form the pieces for the elements ofb̂T� 1(�), which will de�ne our estimateŝQT� 1.

The output of the CDT algorithm is a set of pieces over which we know the sum of the piecewise-
linear functions will be linear. There are in fact more pieces than are strictlynecessary, because
linear pieces that have more than three vertices (e.g., quadrilaterals) are divided up by the algorithm.
Nonetheless, the output is convenient because we can determine the weight vectorw for any simplex
using Equation (6). Once we have determined these pieces and vertices, we evaluatêVT(sT ; �) at each
terminal state and each vertex. Each element ofb̂T� 1(�) is a piecewise-linear function whose pieces
are given by the CDT algorithm, and whose values are given by the appropriate weighted sum of
V̂T(sT ; �) evaluated at the vertices. This givesQ̂T� 1. The max operation to obtain̂VT� 1 can again
be achieved by taking the max over each piece ofQ̂T� 1, and so on backward tot = 1. A complete
description is given in Algorithm 6

The problem of �nding intersections between lines and computing triangulations is well-studied
in the �eld of computational geometry (de Berg et al., 2008). Though these problems may appear
trivial, it is very important to avoid situations where there is “ill-conditioning.” For example, if we
were to use �oating point arithmetic to de�ne three lines that should intersect at the same point,
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Figure 7: Computing the sum of three piecewise-linear functions. The threeexample value func-
tions each have two linear pieces. The boundary between two pieces is shown by a dotted
line. We take all of the vertices, plus the boundaries, and give them as input to a con-
strained Delaunay triangulation procedure. The output is shown.

we may �nd that the “intersection point” is different depending on which pairof lines is used to
compute it. This can lead to many spurious points and edges being generated as we proceed with
value iteration. We take advantage of CGAL, the Computational Geometry Algorithms Library
(CGAL, 2011), which is designed speci�cally to avoid these problems.

Algorithm 6 Value Backup - Linear Function Approximation,D= 3 Basis Rewards

8(s;d); V̂T+ 1(s;d) , 0. 8s; D(V̂T+ 1(s; �)) , f [(1;0); (0;1); (0;0)]g.
for t = T downto 1 do

DQ̂t  fg
for all (st ;at ;st+ 1) 2 D do

DQ̂t  DQ̂t [ D(V̂t+ 1(st+ 1; �))
end for
DQ̂t  constrained_Delaunay_Triangulation(DQ̂t )
for all d 2 vertices(DQ̂t ) do

yt(d) = d[0]r t[0] + d[1]r t[1] + ( 1� d[0] � d[1])r t[2] + v̂t+ 1(d)
b̂t(d) = ( F T

t F t) � 1F T
t yt(d)

end for
for all st 2 D do

ComputeD(V̂t(st ; �)) by Algorithm 4
end for

end for

4.4.1 COMPLEXITY FOR D = 3

Any triangulation ofn points in the plane containsO(n) triangles (Brass, 2005), so the operation
DQ̂t  constrained_Delaunay_Triangulation(DQ̂t ) increases the size ofDQ̂t only linearly. It follows
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that eachQ̂T� 1(sT� 1;a; �) hasO(N� jAj) pieces rather than thejAjN given by the worst case analysis
in Section 4.3.1. ThereforêQt(s;a; �) may have up toO(NT� t jAjT� t) pieces, and̂Vt(st ; �) may have
up to O(NT� t jAj(T� t)+ 1) pieces. Note that these rates are the same as for theD = 2 special case
discussed in Section 4.2.5. Intuitively this is because the triangulation ofn points ind-dimensional
space hasO(ndd=2e), triangles (Brass, 2005), that is, the same asymptotic growth rate forD = 2
(one-dimensional preference space) andD = 3 (two-dimensional preference space).

5. Dominated Actions

The ability to computêQandV̂ for all preferences achieves our goal of informing the decision maker
about the quality of available actions under different preferences, and of informing the decision
maker about how the recommended policy changes with preference. In addition to achieving these
primary goals, our representations ofQ̂ andV̂ allow us to compute whether or not an action is
dominated(not optimal for a given state no matter what the preference) and whetherit is globally
dominated(not optimal foranystate-preference pair.) The notion of domination arises in POMDP
planning as well, where certain actions may not be optimal for any belief state,but the notion of
global domination has no direct analog in the POMDP setting since it is a property of additional
observed states that is not part of a typical POMDP.

The concept of domination is central to the �eld of multi-criterion optimization (Ehrgott, 2005),
and is important in the medical decision making setting because it identi�es treatment actions that
are not appropriate no matter what the decision maker's preference is. One may also consider
actions that are dominated for all patient states in a population of interest, thatis, the actions that
are globally dominated. Knowing this set of actions would be useful for developing aformulary—a
list of treatments that should generally be made available to a patient population.

The general problem of analytically identifying the set of globally dominated actions is dif�-
cult, as we will illustrate, but we �rst provide solutions for low-dimensional problems and discuss
the identi�cation of globally dominated actions in higher dimensional settings. Ourapproach for
determining if actions are dominated is to look forcerti�cates of non-domination for each action.
A point (st ;at ;d) whereQ̂t(st ;at ;d) = V̂t(st ;d) is a certi�cate that actionat is not dominated at state
st , and that actionat is therefore not globally dominated.10 All proofs are deferred to Appendix A.

5.1 Finite Case,D= 2 Basis Rewards

We showed in Section 4.1 how to exactly represent theQt(st ;at ; �) andVt(st ; �) functions for allst and
at for D= 2 when the state space is �nite by representing them as lists of knots (vertices) and knot-
values (vertex-values). In addition to storing this information, we may also store the set of actions
that are optimal at each knot, that is, we may storeA� (d) = f a�

t : Qt(st ;a�
t ;d) = Vt(st ;d)g for eachd

in the knot list ofVt(st ; �). Note thatA� (d) may contain more than one action. Supposedk anddk+ 1

are adjacent knots inD(Vt(st ; �)) . For alld s.t.dk < d < dk+ 1, we haveA� (d) = A� (dk) \ A� (dk+ 1).
Thus the set of actions that have a non-domination certi�cate at statest is given by

jD(Vt (st ;�)) j[

k= 1

A� (dk);

10. Note that in this work we determine which actions areestimatedto be dominated, since we are using estimatesQ̂t
andV̂t to make this determination. Assessing our con�dence that an action is truly non-dominated based on available
data will require incorporation of appropriate statistical methods (Laber et al., 2009).
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and any actions not in the above union are dominated atst . Note that recording this additional
information does not increase the time complexity of the method. It also allows us to�nd every
globally dominated action by computing the above union at each �nite state, takingthe union of
those sets, and identifying actions not present in the union.

5.2 Regression Case,D= 2 Basis Rewards, One State Feature

We now show how to identify all of the globally dominated actions in the linear function approx-
imation setting. We �rst discuss the case with a single state featurey sT , D= 2 basis rewards, and
the last timepointT. We also construct feature vectorsf sT ;aT

so that theQ̂t functions are built using

separate regressions for each action; for example see (5). We can then de�ne b̂a
t (d) to be the 2� 1

sub-vector of̂bt(d) that aligns with the sub-vector off st ;at
that is non-zero forat = a. We also de�ne

the matrixBa
T =

h
b̂a

T(0) b̂a
T(1)

i
for each action, so that

Q̂T(sT ;aT ;d) =
�

1 y sT

�
Ba

T

�
d

1� d

�
: (7)

To �nd the globally dominated actions, we will search for certi�cates of non-domination in(y sT ;d)
space and identify the actions that do not have a certi�cate. Figure 3 shows an example of this
setting. In the example, actions 1, 4, 6, 7, 8, 9, and 10 have regions where they are optimal, and
hence certi�cates of non-domination. Actions 2, 3, and 5 have no certi�cates, that is, they are not
optimal for any combination ofy sT andd.

EachBa
T is a constant given the data and the regression algorithm. The form of (7)clearly shows

that Q̂T(�;a; �) is a bilinear function ofy sT andd. To analytically identify the set of dominated
actions, we analyze the boundaries between the regions where one actionhas higher value than
another. These boundaries occur whereQT(�;a1; �) = QT(�;a2; �) for some actionsa1 anda2, that is,
where

�
1 y sT

�
Ba1

T

�
d

1� d

�
=

�
1 y sT

�
Ba2

T

�
d

1� d

�
;

which describes the hyperbola ind andy sT given by

�
1 y sT

�
(Ba1

T � Ba2
T )

�
d

1� d

�
= 0: (8)

Along these boundaries, “triple-points” occur at(y sT ;d) points where three or more actions have
exactly the same value. At these points, either all of the actions involved are optimal, or none of
them are. We now show that if there exists a certi�cate of non-domination foractiona, but there
exists no certi�cate fora on the boundary of the domain ofVT(sT ;d), then there exists a certi�cate
for a at a triple-point.

Lemma 5 (Lizotte et al., 2010)If action a is optimal at time T for some point(y sT ;d) but is not
optimal for any(y sT ;d) on the boundary of the domain, then a is optimal for some(y sT ;d) that is a
triple-point.

From Lemma 5 we know that to �nd all actions that are optimal for some(y sT ;d) we need only
check the boundaries and the triple points. The boundaries can be checked using Algorithm 2.
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(Note that becausêQT(�;a; �) is bilinear ind and iny sT , we can also use Algorithm 2 to identify for
any �xed d the actions that are optimal for somey sT .) We can then enumerate the

� jAj
3

�
triple-points

and check them to detect any regions that do not intersect the boundaryof the domain, like for
example the region where action 1 is optimal in Figure 3 where we have identi�edthe triple-points
with white dots. This procedure reveals all actions that are optimal for some(y sT ;d), and thereby
identi�es any actions that are not optimal for any(y sT ;d).

To compute the triple points, we must solve the following system of bilinear equations fory sT

andd:

�
1 y sT

�
(Ba1

T � Ba2
T )

�
d

1� d

�
= 0;

�
1 y sT

�
(Ba1

T � Ba3
T )

�
d

1� d

�
= 0:

There are many ways of interpreting this system of equations; it describesthe intersection of two
hyperbolas, as pointed out in our earlier work (Lizotte et al., 2010). We describe a more concise
solution here. Note that any solution(y sT ;d) must have the property that the vector[1 y sT ] is

orthogonal to the two vectors given by(Ba1
T � Ba2

T )
�

d
1� d

�
and (Ba1

T � Ba3
T )

�
d

1� d

�
. Since

[1 y sT ] is two-dimensional, this implies that these two vectors are collinear. Thereforethe vector�
d

1� d

�
must satisfy

(Ba1
T � Ba2

T )
�

d
1� d

�
= l (Ba1

T � Ba3
T )

�
d

1� d

�
: (9)

Equation (9) describes thegeneralized eigenvalue problem(Golub and Van Loan, 1996). Common
software packages can solve forl andd.11 We have described the process of identifying globally
dominated actions for bilinear functions; we can immediately extend this algorithm for piecewise
bilinear functions by applying it between pairs of knots.

5.3 Regression Case,p State Features, Arbitrary D

Lizotte et al. (2010) conjectured that an analogue of Lemma 5 holds in higherdimensions, and that
identifying all globally dominated actions for more state variables and/or reward functions would
require computing intersections of surfaces in higher dimensions. We re�ne this conjecture, and we
propose a solution method for �nding globally dominated actions for

Q̂T(y sT
;a;d) =

�
1 y T

sT

�
Ba

T d:

wherey sT
is p-dimensional, andd is theD-dimensional vector of preferences de�ned as usual. We

consider �nding non-dominated actions over a “domain of interest,” of the form S� D, whereS is
a rectangle inRp, andD is a convex subset of valid preferences. To prove our method is correct,
we require the following conjecture.

11. In practice one solves(Ba1
T � Ba2

T )x = l (Ba1
T � Ba3

T )x and then projectsx onto the subspacex[1] = 1� x[0] by dividing
it by x[0] + x[1].
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Conjecture 6 If the system of polynomial equations of the form

�
1 y T

sT

�
(Ba1

T � Ba2
T ) d = 0 (10)

�
1 y T

sT

�
(Ba1

T � Ba3
T ) d = 0

...
�

1 y T
sT

�
(Ba1

T � Bak
T ) d = 0

has a �nite number of solution points, those points taken together are a continuous vector-valued
function of the coef�cients of the system.

Conjecture 6 is true for a single polynomial of one variable over the complex plain (Uherka and
Sergott, 1977), and holds for theD= 2 case. We believe the conjecture holds because it is known
that systems of multivariate polynomials can be reduced to solving a collection ofindependent
problems each involving a single polynomial of one variable. This reduction uses the methods of
eliminationandextension(Cox et al., 1997).

Proposition 7 Assume Conjecture 6. If there exists a point(y sT
;d) in the interior of the domain

of interest where action a is optimal, but a is not optimal at any point(y sT
;d) where p+ D + 1

actions are simultaneously optimal, then there exists a point(y sT
;d) on the boundary of the domain

of interest where action a is optimal.

We refer to a point wherek actions are simultaneously optimal as a “k-tuple point.” To �nd
the set of globally non-dominated actions, we �rst solve (10) and check tosee if any of the(p+
D + 1)-tuple points are optimal. If so, all of the point's associated actions not globally dominated.
The system (10) of polynomial equations can be solved by computer algebra systems or using
numerical approximation techniques (Cox et al., 1997; Sturmfels, 2002). By recursively applying
the proposition to the boundaries of the original domain, we can ensure thatwe identify every action
that is not globally dominated: �rst, we �nd(D + p+ 1)-tuple points inside the original(D + p)-
dimensional domain of interest and check whether any of these are optimal. We then treat each
of the (D + p� 1)-dimensional boundaries as our new domains of interest, and look for(D + p)-
tuple points in each of these, and so on until we check each of the 2D+ p zero-dimensional points at
the corners of our original domain. Again, we have described the process of identifying globally
dominated actions for functions linear ind; we can immediately extend this algorithm to piecewise-
linear functions by applying it within linear regions.

6. Application to Medical Decision Making

An important application of this work is the improvement of the use of sequentialmedical data
for constructing clinical decision support systems. In this section, we brie�y discuss how such
systems are currently constructed, how preferences are currently addressed in the medical decision
making community, and how the methods presented in this paper provide a noveland useful way of
incorporating preferences in clinical decision support systems. We thenpresent an example using
real data that illustrates how our methods can be used to inform clinical decision making.
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6.1 Clinical Decision Support, Evidence-Based Medicine, and Preferences

Currently, most clinical decision support systems are constructed using expert opinion (e.g., Work-
ing Group for the Canadian Psychiatric Association and the Canadian Alliance for Research on
Schizophrenia, 1998; Miller et al., 1999). Although accumulated clinical experience is invaluable in
making good treatment decisions, data-derived scienti�c evidence is playing an increasingly promi-
nent role. Sackett (1996) state that “The practice of evidence based medicine means integrating
individual clinical expertise with the best available external clinical evidence from systematic re-
search.”

In order to be effective, any evidence-based decision support system must leave room for indi-
vidual clinical expertise to inform the �nal decision. The methods we have presented are able to
do this by presenting treatment recommendations in a way that incorporates decision maker prefer-
ences. There is extensive literature on “preference elicitation,” both within and outside the �eld of
medical decision making. In the medical decision making �eld, however, preference elicitation is
usually done at the population level and used to produce generic clinical guidelines, rather than to
make recommendations tailored to individual patients (e.g., Bonnichsen, 2011; Davis et al., 2011).
In other �elds, preference elicitation is done before presenting any information about the available
treatments (Boutilier, 2002; Thall, 2008). It is assumed that preference elicitation is able to reliably
extract the preferences of the decision maker; in our setting, preference elicitation would attempt to
�nd the d that represents the preference of a decision maker, run �tted-Q iterationusingrt(st ;at ;d),
and recommend a single treatment. This approach leaves no room for individual clinical expertise.

Our methods provide a novel alternative to preference elicitation. Rather than trying to deter-
mine which of the uncountable number of possible preferences a user mighthave, we present, for
each available action, the set of preferences for which that action is optimal. That is, we present the
policy as a function of preference. We call this approach “inverse preference elicitation” because
rather than eliciting a preference and recommending a treatment, we can easilyand intuitively show
for each treatment the set of preferences that are consistent with its recommendation. By using
this approach, the time a user would have spent having his or her preference elicited is now spent
directly considering the evidence for how preferences in�uence recommended treatment.

6.2 Example: CATIE Study

We illustrate inverse preference elicitation using data from the Clinical Antipsychotic Trials of In-
tervention Effectiveness (CATIE) study. The CATIE study was designed to compare sequences
of antipsychotic drug treatments for the care of schizophrenia patients. The full study design is
quite complex (Stroup et al., 2003; Swartz et al., 2003); we have therefore chosen a simpli�ed sub-
set of the CATIE data in order to more clearly illustrate the potential of the methods presented in
this paper. CATIE was an 18-month study that was divided into two main phases of treatment.
Upon entry into the study, most patients began “Phase 1,” in which they wererandomized to one
of �ve possible treatments with equal probability: olanzapine, risperidone,quetiapine, ziprasidone,
or perphenazine. As they progressed through the study, patients weregiven the opportunity at each
monthly visit to discontinue their Phase 1 treatment and begin “Phase 2” on a new treatment. The set
of possible Phase 2 treatments depended on the reason for discontinuing Phase 1 treatment. If the
Phase 1 treatment was deemed to be ineffective at reducing symptoms, then their Phase 2 treatment
was chosen randomly as follows: clozapine with probability 1=2, or uniformly randomly from the
set {olanzapine, risperidone, quetiapine} with probability 1=2. If the Phase 1 treatment was deemed
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to produce unacceptable side-effects, their Phase 2 treatment was chosen uniformly randomly from
the set {olanzapine, risperidone, quetiapine, ziprasidone}.

In previous work, we used batch off-policy reinforcement learning to analyze data from this
study using a single reward function (Shortreed et al., 2010). We now give two new analyses using
the new methods we have presented to examine multiple rewards simultaneously. The basis rewards
we consider are measures of symptoms, side-effects, and quality of life.

Symptoms: PANSSFor our symptom measurement, we use the Positive and Negative Syndrome
Scale (PANSS) which is a numerical representation of the level of psychotic symptoms experienced
by a patient (Kay et al., 1987). A higher value of PANSS re�ects the presence of more severe
symptoms. PANSS is a well-established measure that we have used in previouswork on the CATIE
study (Shortreed et al., 2010), and is measured for each CATIE patientboth at the beginning of the
study and at several times over the course of the study. Since having larger PANSS is worse, for
our �rst basis rewardr[0] we use 100 minus the percentile of a patient's PANSS at the end of their
time in the study. We use the distribution of PANSS at the beginning of the study asthe reference
distribution for the percentile.

Body Weight: BMI Weight gain is an important and problematic side-effect of many antipsy-
chotic drugs (Allison et al., 1999). Patients in the CATIE study had their BodyMass Index (BMI)
(National Institutes of Health., 1998) measured at study intake and several times over the course of
the study. Since in this population having a larger BMI is worse, for our second basis rewardr[1]
we use 100 minus the percentile of a patient's BMI at the end of their time in the study. We use the
distribution of BMI at the beginning of the study as the reference distributionfor the percentile.

Quality of Life: HQLS Measures of quality of life are intended to assess to what degree a
patient's disease is impacting his or her daily life, in terms of a patient's relationships with others,
ability to work, emotional state, and ability to carry out daily activities (Cramer etal., 2000). Patients
in CATIE were administered the Heinrichs-Carpenter Quality of Life (HQLS)(Heinrichs et al.,
1984) scale at intake and repeatedly as they progressed through the study. Since having a higher
HQLS is better, for our third basis rewardr[2] we use the percentile of a patient's HQLS at the end
of their time in the study. We use the distribution of HQLS at the beginning of the study as the
reference distribution for the percentile.

6.3 Symptoms versus Weight Gain

We begin by presenting the output of our algorithm forD = 2, using PANSS as described above
for r[0], and BMI for r[1]. In Figures 8, 9 and 10 we will present plots of the piecewise linear value
functionV̂t(st ; �) for t = 1;2 and for various representative values ofst . When we plotV̂t(st ;d) as
a function ofd, we simultaneously show the learned optimal action using the style and colour of
the plotted line. Thus from our plots one can see both the learned value and the learned policy as a
function ofd, which enables us to easily see for each action the range of preferences for which that
action looks best.

6.3.1 PHASE 2 ANALYSES

Following the approach of our previous work (Shortreed et al., 2010),we use PANSS at entry to
Phase 2 as a continuous state variables2 so that we can allow symptom severity to in�uence optimal
action choice. We convert the PANSS scores at entry to Phase 2 into percentiles just as we did for the
PANSS reward signal. Furthermore, we learn value functions for the Phase 2 Ef�cacy patients and
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the Phase 2 Tolerability patients separately, since these two groups have different sets of possible
actions.

We have relatively little data for Phase 2 Ef�cacy subgroup of patients. Therefore for this
subgroup, we combine the actions of giving {olanzapine, risperidone, or quetiapine} into one “not-
clozapine” action:AEFF

2 = f CLOZ;not-CLOZg. The other three drugs are much more similar to
each other than they are to clozapine, which is much more toxic and is currentlyconsidered a “last
resort” for use when symptoms are not effectively managed by other treatments (McDonagh et al.,
2010). The feature vectors we use for Stage 2 Ef�cacy patients are given by

f EFF
s2;a2

= [ 1; 1a2= CLOZ; s2; s2 � 1a2= CLOZ; 1TD; 1EX; 1ST1; 1ST2; 1ST3; 1ST4]T :

Here,s2 is the PANSS percentile at entry to Phase 2. Feature 1a2= OLAN is an indicator that the action
at the second stage was clozapine, as opposed to one of the other treatments. We also have other
features that do not in�uence the optimal action choice but that are chosen by experts to improve
the value estimates.12 1TD is an indicator variable of whether the patient has had tardive dyskinesia
(a motor-control side-effect), 1EX indicates whether the patient has been recently hospitalized, and
1ST1 through 1ST4 indicate the type of facility at which the patient is being treated (e.g., hospital,
specialist clinic)

For Phase 2 Tolerability patients, the possible actions areATOL
2 = f OLAN;QUET;RISP;ZIPg,

and the feature vectors we use are given by

f TOL
s2;a2

= [ 1; 1a2= OLAN ; 1a2= QUET; 1a2= RISP; s2; s21a2= OLAN ; s21a2= QUET; s21a2= RISP; :::

1TD; 1EX; 1ST1; 1ST2; 1ST3; 1ST4]T :

Here we have three indicator features for different treatments at Phase2, 1a2= OLAN , 1a2= RISP,
1a2= QUET, with ziprasidone represented by turing all of these indicators off. Againwe include
the product of each of these indicators with the PANSS percentiles2. The remainder of the features
are the same as for the Phase 2 Ef�cacy patients.

Figure 8 shows a plot of the piecewise linear value functionV̂2(s2; �) for patients who are in
Phase 2 of the study because of a lack of ef�cacy of the Phase 1 treatment. We plotV̂2(s2; �) for
three �xed values ofs2 corresponding to having low PANSS, moderate PANSS, or high PANSS at
entry to Phase 2. (These correspond to settings2 = 25, s2 = 50 ands2 = 75, respectively.) For
all three states shown in the plot, the learned policy indicates that clozapine is the best action for
a reward based only on PANSS (i.e., ford = 0), but not-clozapine (olanzapine or risperidone or
quetiapine) is best for a reward based only on BMI (i.e., ford = 1.) We have indicated the values of
d at which the decision changes from one action to the other by dropping down a dotted line. We see
that, except for those with a strong preference for controlling BMI, clozapine appears to be the best
choice among patients who found their Phase 1 treatment to be ineffective atcontrolling symptoms.
It is clear from the plot that neither action is globally dominated since neither is dominated at any
of our example states.

Figure 9 shows a plot of the piecewise linear value functionV̂2(s2; �) for patients who are in
phase 2 of the study because they could not tolerate the side-effects of their Phase 1 treatment.
Again we plotV̂2(s2; �) for three different Phase 2 entry percentiles of PANSS:s2 = 25,s2 = 50 and

12. See Section 4.2 by Shortreed et al. (2010) for a more thorough discussion of these kinds of features. When we display
value functions and learned policies in our examples, we set all of these indicators to 0 since they are not needed by
the learned policy to select actions in the future.
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Figure 8: Multiple rewards analysis showing learned value function and associated learned policy
for Phase 2 Ef�cacy patients. Three value functions are shown, with theassociated action
chosen by the learned policy, fors2 = 25,s2 = 50, ands2 = 75.

s2 = 75. Possible treatments are olanzapine, quetiapine, risperidone and ziprasidone. If we use a
reward based only on PANSS (i.e., ford = 0), the learned policy indicates that olanzapine is the
best action for those with high or moderate incoming PANSS, and that risperidone is best for those
with lower incoming PANSS. Ziprasidone is best for a reward based only onBMI (i.e., for d = 1)
independent of PANSS level. This result agrees with existing research on weight gain associated
with these atypical antipsychotics (Allison et al., 1999). Again, we have indicated the values ofd
at which the decision changes from one action to another by dropping down a dotted line. In this
analysis, we found that quetiapine was globally dominated.

6.3.2 PHASE 1 ANALYSIS

For Phase 1 patients, the possible actions areA1 = f OLAN;PERP;QUET;RISP;ZIPg, and the
feature vectors we use are given by

f TOL
s1;a1

= [ 1; 1a1= OLAN ; 1a1= PERP; 1a1= QUET; 1a1= RISP; :::

s1; s11a1= OLAN ; s11a1= PERP; s11a1= QUET; s11a1= RISP; :::

1TD; 1EX; 1ST1; 1ST2; 1ST3; 1ST4]T :

We have four indicator features for different treatments at Phase 2, 1a1= OLAN , 1a1= PERP, 1a1= QUET,
and 1a1= RISP, with ziprasidone represented by turing all of these indicators off. We include the

3282



L INEAR FITTED-Q ITERATION WITH MULTIPLE REWARD FUNCTIONS

0 0:2 0:4 0:6 0:8 1
0

20

40

60

80

100

V̂2(75;d)

V̂2(50;d)

V̂2(25;d)

Reward:
PANSS

Reward:
BMI

d

E
xp

ec
te

d
R

ew
ar

d

Value Functions for Phase 2: Lack of Tolerability

Figure 9: Multiple rewards analysis showing learned value function and associated learned policy
for Phase 2 Tolerability patients. Three value functions are shown, with theassociated
action chosen by the learned policy, fors2 = 25,s2 = 50, ands2 = 75.

product of each of these indicators with the PANSS percentiles1 at entry to the study, and the
remainder of the features are the same as for the Phase 2 feature vectors. (These are collected
before the study begins and are therefore available at Phase 1 as well.)

Figure 10 shows a plot of the piecewise linear value functionV̂1(s1; �) for patients entering Phase
1 (the beginning) of the study. Again we plotV̂1(s1; �) for three �xed values ofs1 = 25,s1 = 50 and
s1 = 75. Possible treatments are perphenazine, olanzapine, quetiapine, risperidone and ziprasidone.
For all three states shown in the plot, the learned policy indicates that olanzapine is the best action
for a reward based only on PANSS (i.e., ford = 0). Ziprasidone is best for a reward based only on
BMI (i.e., for d = 1), also independent of PANSS level. Again, the result agrees well with existing
research (Allison et al., 1999). In this analysis, we found perphenazine and quetiapine to be globally
dominated.

6.4 Symptoms vs. Weight Gain vs. Quality of Life

We now present the output of our algorithm forD = 3, using PANSS forr[0], BMI for r[1], and
HQLS for r[2]. We use the methods described in Section 4.4 to compute the value functions which
map a statest and a three-element preference vectord to an estimated value. Rather than display
the shape of this value function using a surface or contour plot, we have elected to show only the
regions of preference space where each action is optimal (i.e., the learned policy) mapped onto an
equilateral triangle. This simpli�es the presentation, but still allows us to easily see for each action
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Value Functions for Phase 1

Figure 10: Multiple rewards analysis showing learned value function and associated learned policy
for Phase 1 patients. Three value functions are shown, with the associated action chosen
by the learned policy, fors2 = 25,s2 = 50, ands2 = 75.

the set of preferences for which that action looks best.13 In all examples, we show the policy for
PANSS percentilest = 50.

6.4.1 PHASE 2 ANALYSES

We use the same state representation as for theD = 2 example. Because we are using the exact
samer[0] andr[1] as we did for theD = 2 example as well, we can exactly recover the learned policy
of our previousD = 2 analysis from ourD = 3 analysis simply by considering all preferences of the
form d = ( d;1� d;0), that is, the preferences along the upper-left edge of the triangle.

Figure 11 shows the learned policy for patients withs2 = 50 whose Phase 1 treatment was
not ef�cacious. As in theD = 2 case, we combine the actions of giving {olanzapine, risperidone,
or quetiapine} into one “not-clozapine” action. We see that clozapine appears best if the reward
is based only on PANSS or on HQLS, and “not-clozapine” appears bestonly if the preference
assigns a relatively large weight to BMI. If we consider the upper-left edge of the triangle where
the preferences assign zero weight to HQLS, we get precisely the same policy shown in Figure 8.
We also see that clozapine appears best for all preferences that consider only PANSS and HQLS
(bottom edge) and for most preferences that consider only HQLS and BMI (upper-right edge.)
We hypothesize that this is because there is a strong association between control of schizophrenia

13. In addition to the policy, we have indicated the linear regions produced by the Delaunay triangulations using faint
lines in order to give a sense of their complexity.
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Figure 11: Multiple rewards analysis using PANSS, BMI, and HQLS, showing learned policy for
Phase 2 Ef�cacy patients withs2 = 50.

symptoms and quality of life; thus treatments that work well for PANSS should also work somewhat
well for HQLS. We note however that clozapine occupies a narrower range on the upper-right edge
than it does on the upper-left edge. In this analysis it is clear that neither action is globally dominated
because neither is dominated at states2 = 50.

Figure 12 shows the learned policy for patients withs2 = 50 whose Phase 1 treatment was not
tolerable due to side-effects. Here, we see that olanzapine appears best if the reward is based only
on PANSS or on HQLS, and ziprasidone appears best if the preference assigns a relatively large
weight to BMI. For intermediate preferences, risperidone appears best. Again if we consider the
upper-left edge of the triangle where the preferences assign zero weight to HQLS, we get precisely
the same policy shown in Figure 9. We also see that olanzapine appears best for all preferences that
consider only PANSS and HQLS (bottom edge.) Note that horizontal lines in the triangle represent
sets of preferences where the weight on BMI is held constant. Over muchof preference space, these
horizontal lines are completely contained within one treatment's optimal region, meaning that given
a weight for BMI, the policy usually does not depend on the relative preference for PANSS versus
HQLI. We hypothesize again that this is because there is a strong association between symptom
control and quality of life. In this analysis, we found that quetiapine was globally dominated.
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Figure 12: Multiple rewards analysis using PANSS, BMI, and HQLS, showing learned policy for
Phase 2 Tolerability patients withs2 = 50.

6.4.2 PHASE 1 ANALYSIS

Figure 13 shows the learned policy for patients withs1 = 50. Again we see that ziprasidone appears
best for preferences that assign a large importance to BMI, and olanzapine appears best for other
preferences. Again if we consider the upper-left edge of the triangle where the preferences assign
zero weight to HQLS, we get precisely the same policy shown in Figure 10. Interestingly, the region
where ziprasidone appears best increases as we decrease the importance of PANSS, indicating it
may be preferable for patients who are more concerned with weight control and quality of life than
with very tight control of symptoms. In this analysis, we found that quetiapine, risperidone, and
perphenazine were dominated at our example states1 = 50, but we found no action to be globally
dominated.

6.5 Limitations

We note that unlike our previous work using this data, this analysis does notattempt to remove
bias induced by missing data, nor does it provide measures of uncertainty for the learned policy
(Shortreed et al., 2010). Both of these limitations indicate important directions for future work, as
we discuss below.
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Figure 13: Multiple rewards analysis using PANSS, BMI, and HQLS, showing learned policy for
Phase 1 patients withs1 = 50.

7. Discussion and Future Work

The methods we have presented comprise a crucial �rst step towards a data analysis method that
can be deployed in clinical decision support systems. However, there are challenges that remain to
be addressed.

7.1 The Meaning of Rewards and the Effect of Scaling

Consider an analysis withD = 2 basis rewards at its �nal time pointt = T. For a preference ofd =
0:5, two actionsa1 anda2 for which 0:5r[0](sT ;a1)+ 0:5r[1](sT ;a1) = 0:5r[0](sT ;a2)+ 0:5r[1](sT ;a2)
are indistinguishable. One can think of the preference as setting an “exchange rate” forr[0] andr[1]:
in this case, the basis rewards can be exchanged at a one-to-one rate and our happiness with the
overall result of an action remains the same. Ford = 0:75, the two actions would be indistinguish-
able if 0:25r[0](sT ;a1)+ 0:75r[1](sT ;a1) = 0:25r[0](sT ;a2)+ 0:75r[1](sT ;a2), meaning that the loss of
one unit ofr[1] would have to be compensated by a gain of three units ofr[0] in order for the actions
to be considered equivalent. The stronger the preference forr[1], the more units ofr[0] we need in
order to “make up” for the loss a unit ofr[1]. Note that this interpretation would not be possible had
we chosen to de�ne reward as a non-linear function of preference.

In our example analysis, we chose to convert all of the rewards to percentiles before using
them; thus we interpret a preference ofd = 0:5 to mean that the “exchange rate” is one-to-one
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Figure 14: Multiple rewards analysis showing learned value function and associated learned policy
for Phase 2 Tolerability patients,using50�BMI as one basis reward. Note how scaling
the BMI reward affects the regions where different actions are optimal. (Compare with
Figure 9.)

for percentiles of PANSS and percentiles of BMI. The exchange rate atd = 0:5 could be shifted
however by �rst multiplying one or both rewards by a constant factor before using them in our
algorithm. If we fed 2� BMI into our algorithm asr[1], the exchange rate atd = 0:5 would be two
percentiles of PANSS equals one percentile of BMI, and the preferenceat which the policy changes
from one action to the other in Figure 9, for example, would shift to the left. The ordering of
recommended treatments (olanzapine for lowestd, risperidone for moderated, ziprasidone for high
d) would remain the same, however.

A more extreme version is illustrated in Figure 14, where we use 50� BMI as one basis reward.
In this analysis, the “exchange rate” ford = 0:5 is one unit of BMI equals 50 units of PANSS. Note
that there are still three non-dominated actions, but the regions where two of them are optimal are
now very small and “compressed” into an area very neard = 0. This illustrates a potential pitfall:
if the exchange rate represented byd = 0:5 is not “moderate,” resulting decision aids will be at best
unhelpful and at worst misleading. However, it also supports the use ofthe exact algorithms we
have presented: even if the rewards are poorly scaled, the set of non-dominated actions remains the
same, and they retain their ordering according to delta.

Note that if the region where an action is optimal is very small, a naïve grid-search overd may
not detect it. For example, if we ask try to determine in the Figure 14 example which treatments
are optimal near a preference ofd = 0 by checking nearbyd, we may miss risperidone. On the
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other hand, the exact methods we have presented will correctly recognize that the risperidone is
non-dominated. A practitioner using our methods might then wish to change the analysis by rescal-
ing one or more of the basis rewards. The nature of this rescaling will of course depend on the
application at hand; we intend to formalize this problem in future work.

7.2 Value Function and Policy Approximations

We have shown that the complexity of constructing the exact value function ispotentially exponen-
tial in the time horizon of the problem. However, we have also shown in our example that although
the value function may be very complex, the learned policy may still be very simple. Figure 10 il-
lustrates this: each faint triangle in the �gure represents a linear piece of the value function. Though
there are many pieces, by and large adjacent pieces recommend the same action. This re�ects
a large-scale smoothness in the Q-functions, and suggests that a simple, smooth function might
approximate the piecewise-linear Q-functions very well while reducing computational cost. Some
existing algorithms for POMDPs that approximate the value function (e.g., Pineau et al. 2006, Wang
et al. 2006) may be useful, but novel modi�cations will be needed to use these approximations in
our setting. Another class of approximations introduced by Poupart and Boutilier (2002) focuses on
compressing the state space of the POMDP. As we discussed in Section 3.2, the number of states
in a POMDP roughly corresponds to the number of basis rewards considered by our method. Thus,
these methods may lead to a way of computing a simpli�ed or “compressed” view ofpreferences
when the number of basis rewards is large, which could be used both to reduce computational cost
and to help users better understand their preferences.

7.3 Measures of Uncertainty and Similar Q-values

In our example, almost all preferences are associated with exactly one optimal action. In practice, it
may make more sense to recommend more than one action for a particular preference if the Q-values
of those actions are very similar. In the medical setting, one may prefer to allowthe physician or
patient to break ties if outcomes under different treatments are deemed to be “close.” We note two
criteria for “closeness” that deserve further study.

Statistical Signi�canceOne reason for recommending a set of treatments arises when there is
insuf�cient evidence that one action is actually superior to another. Ideally, one would like to know
if an observed difference in Q-values for different actions is true forthe population or if it is present
in the data we have simply by chance. The methods we have presented do notprovide uncertainty
information about the learned value function or policy, and although the algorithm is based on linear
regression which itself has well-established methods for statistical inference, it is known that even
standard single-reward �tted-Q iteration requires specially tailored statistical methods in order to
obtain valid con�dence measures (Laber et al., 2009; Shortreed et al., 2010). These methods, based
on the bootstrap data re-sampling procedure, can be very computationally intensive even for one
reward function; thus it will be crucial to combine them with new approximationsto the problem in
order to produce analyses in a reasonable amount of time. Methods for mitigating the bias induced
by having partially missing data can be computationally intensive as well (Shortreed et al., 2010),
and should be investigated concurrently with methods for producing con�dence information.

Practical Signi�cance Even if we have strong statistical evidence that one action has a higher
Q-value than another, we may still wish to recommend a set of actions if that difference is too
small to be practically meaningful. Methods for mathematizing the idea of a “clinicallymeaningful
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difference” are under investigation (Laber et al., 2012); we see promise for integrating them with
our methods.

7.4 D > 3 Basis Rewards

To allow more than 3 basis rewards, we need methods that can represent and manipulate piecewise
linear functions in higher dimensions. One avenue would be to useextended algebraic decision
diagrams, which have been successfully applied to MDPs (Zamani et al., 2012). Itis not obvious
whether XADD methods provide us with a computationally feasible solution forD > 3, but their
use is worthy of future study.

8. Conclusion

We have presented a general and explicit development of �nite-horizon�tted-Q iteration with an ar-
bitrary number of reward signals and linear value function approximation using an arbitrary number
of state features. This included a detailed treatment of the 3-reward function case using triangulation
primitives from computational geometry and a method for identifying globally dominated actions
under linear function approximation. We also presented an example of how our methods can be
used to construct real-world decision aid by considering symptom reduction, weight gain, and qual-
ity of life in sequential treatments for schizophrenia. Finally, we have discussed future directions in
which to take this work that will further enable our methods to make a positive impact on the �eld
of evidence-based clinical decision support.
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Appendix A. Proofs

Note that Lemmas 3 and 4 are known (or deemed “obvious”) in the computational geometry litera-
ture, but are proved here for completeness.

A.1 Proof of Lemma 3

Over eachRi , fmax = fi which is linear. EachRi is an intersection of the convex polytopeR with an
intersection of half-spaces of the formf d : fi(d) � f j (d)g, which are also convex polytopes. Thus
eachRi is a convex polytope.
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A.2 Proof of Lemma 4

For any pointd in a setU \ V as above, we haveg1(d) = dT wU andg2(d) = dT wV . Therefore, for
suchd, we have

a1 � g1(d) + a2 � g2(d) = a1 � (dT wU ) + a2 � (dT wV );

= dT (a1 � wU + a2 � wV );

= dT wU\ V :

Therefore within each set given by the intersections above, bothg1 andg2 are linear.

A.3 Proof of Lemma 5

Supposea is optimal for some(y sT ;d) in the domain but is not optimal for any(y sT ;d) on the
boundary of the domain. Further suppose thata is not optimal at any triple-point. Then the region
wherea is optimal must be completely enclosed by the region where asingleother actiona0 is
optimal. However, by Equation (8), the boundary between the regions where a is superior toa0and
vice-versa is a hyperbola composed of two sets (sheets) that are each continuous and have in�nite
extent in bothy sT andd. The set must therefore intersect the boundary of the domain of(y sT ;d)
and thus there must exist a certi�cate fora on the boundary. Thus we have a contradiction.

A.4 Proof of Proposition 7

Assume there is a region inside the domain wherea is optimal. Assumea is not optimal at any
(p+ D + 1)-tuple point. Sincea is not optimal at a point wherep+ D + 1 actions are optimal,
the region wherea is optimal must have on its boundary points wherek actions are simultaneously
optimal for somek < p+ D + 1. Choose the maximumk for which this is true. This boundary is
de�ned by a system ofk � 1 polynomial equations onp+ D variables of the form (10); call the
variablesz1;z2; :::;zp+ D. Since we assume the region wherea is optimal is in the interior of the
domain, there exists an interior pointz� that is a solution to the system of equations. Create a
new system ofk � 1 equations andk � 1 unknowns by �xing the last(p+ D) � (k � 1) variables
to zk = z�

k; zk+ 1 = z�
k+ 1 :::; zp+ D = z�

p+ D. The point(z�
1; :::;z�

k� 1) is a solution to this reduced
system. Suppose the solution of the reduced system is a continuous functionof z�

k, which holds
if Conjecture 6 is true. Then if we movez�

k toward a boundary from its original value, either we
will �nd a point satisfying the original system withz�

k on the boundary and the remaining variables
in the interior of the domain, or another variable or variables will reach its boundary �rst, and the
remainder of the variables will be in the interior of the domain. In either case, there exists a point
on the boundary of the domain of interest where actiona is optimal.
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