Journal of Machine Learning Research 1 (2001) 211-244 Submitted 5/00; Published 6/01

Sparse Bayesian Learning and the Relevance Vector Machine

Michael E. Tipping MTIPPING@MICROSOFT.COM
Microsoft Research

St George House, 1 Guildhall Street

Cambridge CB2 3NH, U.K.

Editor: Alex Smola

Abstract

This paper introduces a general Bayesian framework for obtaining sparse solutions to re-
gression and classification tasks utilising models linear in the parameters. Although this
framework is fully general, we illustrate our approach with a particular specialisation that
we denote the ‘relevance vector machine’ (RVM), a model of identical functional form to
the popular and state-of-the-art ‘support vector machine’ (SVM). We demonstrate that by
exploiting a probabilistic Bayesian learning framework, we can derive accurate prediction
models which typically utilise dramatically fewer basis functions than a comparable SVM
while offering a number of additional advantages. These include the benefits of probabilis-
tic predictions, automatic estimation of ‘nuisance’ parameters, and the facility to utilise
arbitrary basis functions (e.g. non-‘Mercer’ kernels).

We detail the Bayesian framework and associated learning algorithm for the RVM, and
give some illustrative examples of its application along with some comparative benchmarks.
We offer some explanation for the exceptional degree of sparsity obtained, and discuss
and demonstrate some of the advantageous features, and potential extensions, of Bayesian
relevance learning.

1. Introduction

In supervised learning we are given a set of examples of input vectors {xn}f;{:l along with
corresponding targets {t,}N_;, the latter of which might be real values (in regression)
or class labels (classification). From this ‘training’ set we wish to learn a model of the
dependency of the targets on the inputs with the objective of making accurate predictions
of ¢ for previously unseen values of x. In real-world data, the presence of noise (in regression)
and class overlap (in classification) implies that the principal modelling challenge is to avoid
‘over-fitting’ of the training set.

Typically, we base our predictions upon some function y(x) defined over the input space,
and ‘learning’ is the process of inferring (perhaps the parameters of) this function. A flexible
and popular set of candidates for y(x) is that of the form:

M
Y w) = wigi(x) = who(x), (1)
i=1

where the output is a linearly-weighted sum of M, generally nonlinear and fixed, basis func-
tions ¢(x) = ($1(x), Pp2(x),...,dam(x))T. Analysis of functions of the type (1) is facilitated

(©2001 Michael E. Tipping.

TIPPING

since the adjustable parameters (or ‘weights’) w = (wy,we, ..., wyr)" appear linearly, and
the objective is to estimate ‘good’ values for those parameters.

In this paper, we detail a Bayesian probabilistic framework for learning in general models
of the form (1). The key feature of this approach is that as well as offering good gener-
alisation performance, the inferred predictors are exceedingly sparse in that they contain
relatively few non-zero w; parameters. The majority of parameters are automatically set to
zero during the learning process, giving a procedure that is extremely effective at discerning
those basis functions which are ‘relevant’ for making good predictions.

While the range of models of the type (1) that we can address is extremely broad, we
concentrate here on a specialisation that we denote the ‘relevance vector machine’ (RVM),
originally introduced by Tipping (2000). We consider functions of a type corresponding
to those implemented by another sparse linearly-parameterised model, the support vector
machine (SVM) (Boser et al., 1992; Vapnik, 1998; Scholkopf et al., 1999a). The SVM makes
predictions based on the function:

N
(6 w) = > wiK(x,%;) + wp, (2)
i=1

where K (x,x;) is a kernel function, effectively defining one basis function for each example
in the training set.! The key feature of the SVM is that, in the classification case, its target
function attempts to minimise a measure of error on the training set while simultaneously
maximising the ‘margin’ between the two classes (in the feature space implicitly defined
by the kernel). This is a highly effective mechanism for avoiding over-fitting, which leads
to good generalisation, and which furthermore results in a sparse model dependent only
on a subset of kernel functions: those associated with training examples x,, (the “support
vectors”) that lie either on the margin or on the ‘wrong’ side of it. State-of-the-art results
have been reported on many tasks where the SVM has been applied.

However, despite its success, we can identify a number of significant and practical dis-
advantages of the support vector learning methodology:

e Although relatively sparse, SVMs make unnecessarily liberal use of basis functions
since the number of support vectors required typically grows linearly with the size of
the training set. Some form of post-processing is often required to reduce computa-
tional complexity (Burges, 1996; Burges and Scholkopf, 1997).

e Predictions are not probabilistic. In regression the SVM outputs a point estimate, and
in classification, a ‘hard’ binary decision. Ideally, we desire to estimate the conditional
distribution p(¢|x) in order to capture uncertainty in our prediction. In regression this
may take the form of ‘error-bars’, but it is particularly crucial in classification where
posterior probabilities of class membership are necessary to adapt to varying class
priors and asymmetric misclassification costs. Posterior probability estimates have
been coerced from SVMs via post-processing (Platt, 2000), although we argue that
these estimates are unreliable (Appendix D.2).

1. Note that the SVM predictor is not defined explicitly in this form — rather (2) emerges implicitly as a
consequence of the use of the kernel function to define a dot-product in some notional feature space.

212

SPARSE BAYESIAN LEARNING AND THE RELEVANCE VECTOR MACHINE

e It is necessary to estimate the error/margin trade-off parameter ‘C” (and in regression,
the insensitivity parameter ‘€’ too). This generally entails a cross-validation procedure,
which is wasteful both of data and computation.

e The kernel function K (x,x;) must satisfy Mercer’s condition. That is, it must be the
continuous symmetric kernel of a positive integral operator.?

The ‘relevance vector machine’ (RVM) is a Bayesian treatment® of (2) which does not
suffer from any of the above limitations. Specifically, we adopt a fully probabilistic frame-
work and introduce a prior over the model weights governed by a set of hyperparameters,
one associated with each weight, whose most probable values are iteratively estimated from
the data. Sparsity is achieved because in practice we find that the posterior distributions
of many of the weights are sharply (indeed infinitely) peaked around zero. We term those
training vectors associated with the remaining non-zero weights ‘relevance’ vectors, in def-
erence to the principle of automatic relevance determination which motivates the presented
approach (MacKay, 1994; Neal, 1996). The most compelling feature of the RVM is that,
while capable of generalisation performance comparable to an equivalent SVM, it typically
utilises dramatically fewer kernel functions.

In the next section, we introduce the Bayesian model, initially for regression, and define
the procedure for obtaining hyperparameter values, and from them, the weights. The
framework is then extended straightforwardly to the classification case in Section 3. In
Section 4, we give some visualisable examples of application of the RVM in both scenarios,
along with an illustration of some potentially powerful extensions to the basic model, before
offering some benchmark comparisons with the SVM. We offer some theoretical insight into
the reasons behind the observed sparsity of the technique in Section 5 before summarising
in Section 6. To streamline the presentation within the main text, considerable theoretical
and implementational details are reserved for the appendices.

2. Sparse Bayesian Learning for Regression

We now detail the sparse Bayesian regression model and associated inference procedures.
The classification counterpart is considered in Section 3.

2.1 Model Specification

Given a data set of input-target pairs {x,,,}Y_;, considering scalar-valued target functions

only, we follow the standard probabilistic formulation and assume that the targets are
samples from the model with additive noise:

tn = y(xn; W) + €n,

where €, are independent samples from some noise process which is further assumed to be
mean-zero Gaussian with variance o2. Thus p(t,|x) = N (t,|y(xx),0?), where the notation

2. This restriction can be relaxed slightly to include conditionally positive kernels (Smola et al., 1998;
Scholkopf, 2001).

3. Note that our approach is not a Bayesian treatment of the SVM methodology per se, an area which has
seen much recent interest (Sollich, 2000; Seeger, 2000; Kwok, 2000) — here we treat the kernel function
as simply defining a set of basis functions, rather than as a definition of a dot-product in some space.

213

TIPPING

specifies a Gaussian distribution over #, with mean y(x,) and variance 0. The function

y(x) is as defined in (2) for the SVM where we identify our general basis functions with the
kernel as parameterised by the training vectors: ¢;(x) = K(x,x;). Due to the assumption
of independence of the t,, the likelihood of the complete data set can be written as

1
pltw. o) = (2ro?) 2 exp {1t - @l (@)

wheret = (t1...tx)", w = (wp ... wy)" and @ is the N x (N +1) ‘design’ matrix with & =
[P(x1), P(x2),...,0(xn)]", wherein ¢(x,,) = [1, K (x,,%1), K (x5, %2), ..., K(xp,xn)]". For
clarity, we omit to notate the implicit conditioning upon the set of input vectors {x,} in
(4) and subsequent expressions.

With as many parameters in the model as training examples, we would expect maximum-
likelihood estimation of w and o2 from (4) to lead to severe over-fitting. To avoid this, a
common approach is to impose some additional constraint on the parameters, for example,
through the addition of a ‘complexity’ penalty term to the likelihood or error function. This
is implicitly effected by the inclusion of the ‘margin’ term in the SVM. Here, though, we
adopt a Bayesian perspective, and ‘constrain’ the parameters by defining an explicit prior
probability distribution over them.

We encode a preference for smoother (less complex) functions by making the popular
choice of a zero-mean Gaussian prior distribution over w:

N
p(wla) = HN(’LUHO,QZI), (5)
i=0
with a a vector of N + 1 hyperparameters. Importantly, there is an individual hyperpa-
rameter associated independently with every weight, moderating the strength of the prior
thereon.

To complete the specification of this hierarchical prior, we must define hyperpriors
over a, as well as over the final remaining parameter in the model, the noise variance o?.
These quantities are examples of scale parameters, and suitable priors thereover are Gamma
distributions (see, e.g., Berger, 1985):

N

p(e) = [] Gamma(asa, b),
=0

p(B) = Gamma(plc, d),
with 8 = 02 and where

Gamma(a|a,b) = D(a) " 1h%at le b, (6)

with ['(a) = [;7t* e 'dt, the ‘gamma function’. To make these priors non-informative (i.e.
flat), we might fix their parameters to small values: e.g. ¢ = b = ¢ = d = 10~*. However, by

4. Note that although it is not a characteristic of this parameter prior in general, for the case of the RVM
that we consider here, the overall implied prior over functions is data dependent due to the appearance
of x5, in the basis functions K (x, x,). This presents no practical difficulty, although we must take care in
interpreting the “error-bars” implied by the model. In Appendix D.1 we consider this in further detail.

214

SPARSE BAYESIAN LEARNING AND THE RELEVANCE VECTOR MACHINE

setting these parameters to zero, we obtain uniform hyperpriors (over a logarithmic scale).
Since all scales are equally likely, a pleasing consequence of the use of such ‘improper’
hyperpriors here is that of scale-invariance: predictions are independent of linear scaling of
both t and the basis function outputs so, for example, results do not depend on the unit
of measurement of the targets. For completeness, the more detailed derivations offered in
Appendix A will consider the case of general Gamma priors for « and S, but in the main
body of the paper, all further analysis and presented results will assume uniform scale priors
witha=b=c=d=0.

This formulation of prior distributions is a type of automatic relevance determination
(ARD) prior (MacKay, 1994; Neal, 1996). Using such priors in a neural network, individual
hyperparameters would typically control groups of weights — those associated with each
input dimension z (this idea has also been applied to the input variables in ‘Gaussian
process’ models). Should the evidence from the data support such a hypothesis, using a
broad prior over the hyperparameters allows the posterior probability mass to concentrate
at very large values of some of these « variables, with the consequence that the posterior
probability of the associated weights will be concentrated at zero, thus effectively ‘switching
off’ the corresponding inputs, and so deeming them to be ‘irrelevant’.

Here, the assignment of an individual hyperparameter to each weight, or basis function,
is the key feature of the relevance vector machine, and is responsible ultimately for its
sparsity properties. To introduce an additional N + 1 parameters to the model may seem
counter-intuitive, since we have already conceded that we have too many parameters, but
from a Bayesian perspective, if we correctly ‘integrate out’ all such ‘nuisance’ parameters
(or can approximate such a procedure sufficiently accurately), then this presents no problem
from a methodological perspective (see Neal, 1996, pp. 16-17). Any subsequently observed
‘failure’ in learning is attributable to the form, not the parameterisation, of the prior over
functions.

2.2 Inference

Having defined the prior, Bayesian inference proceeds by computing, from Bayes’ rule, the
posterior over all unknowns given the data:

p(t|w, o, 0?)p(w, a, 0%)
p(t) ®

Then, given a new test point, x,, predictions are made for the corresponding target ¢, in
terms of the predictive distribution:

p(w, o, 0%[t) =

p(tlt) = [plt.lw. ,0%) plw, o2l dw dax do (3)

To those familiar, or even not-so-familiar, with Bayesian methods, it may come as no surprise
to learn that we cannot perform these computations in full analytically, and must seek an
effective approximation.

We cannot compute the posterior p(w, a, o |) in (7) directly since we cannot perform
the normalising integral on the right-hand-side, p(t) = [p(t|w, a, 0®)p(w, o, 0%) dw dex do?.
Instead, we decompose the posterior as:

p(w, &, 0°[t) = p(wlt, a, 0)p(ex, o t), (9)

215

TIPPING

and note that we can compute analytically the posterior distribution over the weights since
its normalising integral, p(t|a, 0?) = [p(t|w, 0?) p(w|a) dw, is a convolution of Gaussians.
The posterior distribution over the weights is thus given by:?

p(t|w, o%)p(w|o)

p(wt, 0, 0%) = PR PR, (10)
= 0 PR e { S B e ()
where the posterior covariance and mean are respectively:
Y= (0@ "®+A) ", (12)
p=o ’2®"t, (13)

with A = diag(ag, aq,...,an).

We are now forced to adopt some approximation, and do so by representing the second
term on the right-hand-side in (9), the hyperparameter posterior p(a,o?|t), by a delta-
function at its mode®, i.e. at its most-probable values onp, O’l%/IP. We do so on the basis that
this point-estimate is representative of the posterior in the sense that functions generated
utilising the posterior mode values are near-identical to those obtained by sampling from
the full posterior distribution. It is important to realise that this does not necessitate that
the entire mass of the posterior be accurately approximated by the delta-function. For
predictive purposes, rather than requiring p(a, 0%|t) =~ d(amp, o%p), We only desire

/p(t*|a,02)5(aMp,al%/[P) da do? ~ /p(t*|a,02)p(a,02|t) do d02, (14)

to be a good approximation. This notion may be visualised by a thought experiment where
we consider that we are utilising two identical basis functions ¢;(x) and ¢;(x). It follows
from (15) shortly that the mode of p(cx, o%|t) will not be unique, but will comprise an infinite
‘ridge’ where «; s aj_l is some constant value. No delta-function can be considered to
reasonably approximate the probability mass associated with this ridge, yet any point along
it implies an identical predictive distribution and so (14) holds. All the evidence from the
experiments presented in this paper suggests that this predictive approximation is very
effective in general.

Relevance vector ‘learning’ thus becomes the search for the hyperparameter posterior
mode, i.e. the maximisation of p(a, o%|t) o p(t|a, 0?)p(a)p(0?) with respect to a and .

5. Rather than evaluating (10) explicitly, there is a quicker way to obtain both the weight posterior (11)
and the marginal likelihood (15) together. From Bayes rule simply write p(w|t,,o®)p(t|a,o?) =
p(t|w,o?)p(w|a). Then, expanding the known right-hand-side quantities, gather together all terms in
w that appear within the exponential, and complete the square, introducing some new terms in t, to
give by inspection the posterior Gaussian distribution p(w|t, a, 02). Combining all the remaining terms
in t then gives p(t|e, o?) (15).

6. An alternative approach is to iteratively maximise a wariational lower bound on p(t), via a factorised
approximation to p(w,a, o|t), the joint posterior distribution over all the model parameters (Bishop
and Tipping, 2000). This is a computationally intensive technique and in practice gives ezpected values
for the hyperparameters which are identical to the point-estimates obtained by the method described
here.

216

SPARSE BAYESIAN LEARNING AND THE RELEVANCE VECTOR MACHINE

For the case of uniform hyperpriors (we consider the general case in Appendix A), we need
only maximise the term p(t|a, 0?), which is computable and given by:

p(t]e, 0?) = /p(t|w,02)p(w|a) dw,
1
= (2m) V2|6’ 1 + AR 2 exp {—§tT(U2I + <1>A1<1>T)1t} . (15)

In related Bayesian models, this quantity is known as the marginal likelihood, and its max-
imisation known as the type-II mazimum likelihood method (Berger, 1985). The marginal
likelihood is also referred to as the “evidence for the hyperparameters” by MacKay (1992a),
and its maximisation as the “evidence procedure”.

2.3 Optimising the Hyperparameters

Values of @ and 02 which maximise (15) cannot be obtained in closed form, and here we
summarise formulae for their iterative re-estimation. Further details concerning hyperpa-
rameter estimation, including alternative expectation-maximisation-based re-estimates, are
given in Appendix A.

For a, differentiation of (15), equating to zero and rearranging, following the approach
of MacKay (1992a), gives:
af = 5 (16)
where p; is the i-th posterior mean weight from (13) and we have defined the quantities ;
by:

v =1— Y,

with 3;; the i-th diagonal element of the posterior weight covariance from (12) computed
with the current a and o2 values. Each «; € [0, 1] can be interpreted as a measure of how
‘well-determined’ its corresponding parameter w; is by the data (MacKay, 1992a). For «;
large, where w; is highly constrained by the prior, ¥; ~ «; L and it follows that ; ~ 0.
Conversely, when «; is small and w; fits the data, v; ~ 1.

For the noise variance o2, differentiation leads to the re-estimate:

(O_Z)Ilew — ||t — ‘I’H“2)

N — ZZ Yi
Note that the ‘N’ in the denominator refers to the number of data examples and not the
number of basis functions.

The learning algorithm thus proceeds by repeated application of (16) and (18), con-
current with updating of the posterior statistics 3 and p from (12) and (13), until some
suitable convergence criteria have been satisfied (see Appendix A for some further imple-
mentation details). In practice, during re-estimation, we generally find that many of the
«; tend to infinity (or, in fact, become numerically indistinguishable from infinity given the
machine accuracy)’. From (11), this implies that p(w;|t, &, 0?) becomes highly (in princi-

(18)

7. This is true only for the case of the uniform hyperparameter priors adopted here. The use of more general
Gamma priors, detailed in the appendix, would typically lead to some a’s taking on large, but finite,
values, and so implying some small, but non-zero, weights. Sparsity would then be realised through
thresholding of the weights.

217

TIPPING

ple, infinitely) peaked at zero — i.e. we are a posteriori ‘certain’ that those w; are zero.
The corresponding basis functions can thus be ‘pruned’, and sparsity is realised.

2.4 Making Predictions

At convergence of the hyperparameter estimation procedure, we make predictions based on
the posterior distribution over the weights, conditioned on the maximising values ayp and
o3p- We can then compute the predictive distribution, from (8), for a new datum x, using
(11):

ptlt e, obip) = [pitw. b p(wit. anie, o) dw. (19)
Since both terms in the integrand are Gaussian, this is readily computed, giving:

p(t*|t? aMP, O—I%AP) = N(t*|y*’ 0—3)3

with

Yo = 1" H(X), (21)
0r = ovp + ¢(x.) " Sp(x.). (22)

So the predictive mean is intuitively y(x,; p), or the basis functions weighted by the pos-
terior mean weights, many of which will typically be zero. The predictive variance (or
‘error-bars’) comprises the sum of two variance components: the estimated noise on the
data and that due to the uncertainty in the prediction of the weights. In practice, then,
we may thus choose to set our parameters w to fixed values p for the purposes of point
prediction, and retain X if required for computation of error bars (see Appendix D.1).

3. Sparse Bayesian Classification

Relevance vector classification follows an essentially identical framework as detailed for
regression in the previous section. We simply adapt the target conditional distribution
(likelihood function) and the link function to account for the change in the target quantities.
As a consequence, we must introduce an additional approximation step in the algorithm.

For two-class classification, it is desired to predict the posterior probability of member-
ship of one of the classes given the input x. We follow statistical convention and generalise
the linear model by applying the logistic sigmoid link function o(y) = 1/(1 + e7Y) to y(x)
and, adopting the Bernoulli distribution for P(¢|x), we write the likelihood as:

N
P(tlw) = [T olyGen; w)} [1 = ofy(xa; w)}]' " (23)
n=1

where, following from the probabilistic specification, the targets ¢,, € {0,1}. Note that there
is no ‘noise’ variance here.

However, unlike the regression case, we cannot integrate out the weights analytically,
and so are denied closed-form expressions for either the weight posterior p(w|t, &) or the
marginal likelihood P(t|a). We thus choose to utilise the following approximation proce-
dure, as used by MacKay (1992b), which is based on Laplace’s method:

218

SPARSE BAYESIAN LEARNING AND THE RELEVANCE VECTOR MACHINE

1. For the current, fixed, values of a, the ‘most probable’ weights wyp are found, giving
the location of the mode of the posterior distribution.

Since p(w|t, &) < P(t|w)p(w]|a), this is equivalent to finding the maximum, over w,

of
al 1
log { P(t|w)p(w|a)} =D [tnlogyn + (1 — t,) log(1 — yn)] — SWAW, (29)
n=1
with y, = o{y(xp;w)}. This is a standard procedure, since (24) is a penalised

(regularised) logistic log-likelihood function, and necessitates iterative maximisation.
Second-order Newton methods may be effectively applied, since the Hessian of (24),
required next in step 2, is explicitly computed. We adapted the efficient ‘iteratively-
reweighted least-squares’ algorithm (e.g. Nabney, 1999) to find wyp.

2. Laplace’s method is simply a quadratic approximation to the log-posterior around its
mode. The quantity (24) is differentiated twice to give:

VuVylogp(wlt,a)|, = —(8'B& + A), (25)

where B = diag (f1, 52, . - . , fn) is a diagonal matrix with 5, = o{y(xn)} [l — o{y(x,)}].
This is then negated and inverted to give the covariance ¥ for a Gaussian approxi-
mation to the posterior over weights centred at wyp.

3. Using the statistics ¥ and wyp (in place of p) of the Gaussian approximation, the
hyperparameters a are updated using (16) in identical fashion to the regression case.

At the mode of p(w|t, o), using (25) and the fact that Vy, log p(w]t, o) ‘WMP: 0, we can
write:

> =(®"B® +A)"!, (26)
wyp = S®Bt. (27)

These equations are equivalent to the solution to a ‘generalised least squares’ problem
(e.g. Mardia et al., 1979, p.172). Compared with (12) and (13), it can be seen that the
Laplace approximation effectively maps the classification problem to a regression one with
data-dependent (heteroscedastic) noise, with the inverse noise variance for €, given by
B = o {y(xa)} [1 = o{y(xa)}].

How accurate is the Laplace approximation? In the Bayesian treatment of multilayer
neural networks, the Gaussian approximation is considered a weakness of the method as
the single mode of p(w|t, &) at wyp can often be unrepresentative of the overall posterior
mass, particularly when there are multiple such modes (as is often the case). Here in
this linearly-parameterised model, we know that p(w|t, &) is log-concave (as the Hessian is
negative-definite everywhere). Not only is the posterior thus unimodal, log-concavity also
implies that its tails are no heavier than exp(—|w|), and so we expect much better accuracy.®

8. An alternative Gaussian approximation is realisable using the variational bound of Jaakkola and Jordan
(1997), exploited in the variational RVM (Bishop and Tipping, 2000).

219

TIPPING

For polychotomous classification, where the number of classes K is greater than two,
the likelihood (23) is generalised to the standard multinomial form:

N K

P(tlw) = T TT odur(ens wi) 3, (28)

n=1k=1

where a conventional “one-of-K” target coding for ¢ is used and the classifier has multiple
outputs yi(x; wg), each with its own parameter vector wy and associated hyperparameters
ay; (although the hyperparameters could be shared amongst outputs if desired). The mod-
ified Hessian is computed from this (see Nabney, 1999) and inference proceeds as shown
above. There is no need to heuristically combine multiple classifiers as is the case with, for
example, the SVM. However, the size of 3 scales with K, which is a highly disadvantageous
consequence from a computational perspective.

4. Relevance Vector Examples

In this section we first present some visualisations of the relevance vector machine applied
to simple example synthetic data sets in both regression (Section 4.1) and classification
(Section 4.2), followed by another synthetic regression example to demonstrate some poten-
tial extensions of the approach (Section 4.3). We then offer some illustrative ‘benchmark’
results in Section 4.4.

4.1 Relevance Vector Regression: the ‘sinc’ function

The function sinc(xz) = sin(z)/z has been a popular choice to illustrate support vector
regression (Vapnik et al., 1997; Vapnik, 1998), where in place of the classification margin,
the e-insensitive region is introduced, a ‘tube’ of +-¢ around the function within which errors
are not penalised. In this case, the support vectors lie on the edge of, or outside, this region.
For example, using a univariate ‘linear spline’ kernel:

Tm + T

: 3
5 n min(Z,, xn)2 + —mm(wm, Zn)

K(zpm,zn) = 1+ 2%y + L@y min(zy,, o,) — 3

and with € = 0.01, the approximation of sinc(z) based on 100 uniformly-spaced noise-free
samples in [—10, 10] utilises 36 support vectors as shown in Figure 1 (left).

In the RVM, we model the same data with the same kernel (29), which is utilised to
define a set of basis functions ¢, (x) = K(z,z,), n = 1... N. Typically, we will be tackling
problems where the target function has some additive noise component, the variance of
which we attempt to estimate with o2. However, for the purposes of comparison with
this ‘function approximation’ SVM example, we model the ‘sinc’ function with a relevance
vector machine but fiz the noise variance in this case at 0.012 and then re-estimate o
alone. This setting of the noise standard deviation to 0.01 is intended to be analogous,
in an approximate sense, to the setting the e-insensitivity to the same value in the SVM.
Using this fixed o, the RVM approximator is plotted in Figure 1 (right), and requires only
9 relevance vectors. The largest error is 0.0070, compared to 0.0100 in the support vector
case, and we have obtained the dual benefit of both increased accuracy and sparsity.

220

SPARSE BAYESIAN LEARNING AND THE RELEVANCE VECTOR MACHINE

More representative of ‘real’ problems, Figure 2 illustrates the case where uniform noise
(i.e. not corresponding to the RVM noise model) in [—0.2,0.2] is added to the targets. Again,
a linear spline kernel was used. The trained RVM uses 6 relevance vectors, compared to 29
for the SVM. The root-mean-square (RMS) deviation from the true function for the RVM
is 0.0245, while for the SVM it is 0.0291. Note that for the latter model, it was necessary to
tune the parameters C' and e, in this case using 5-fold cross-validation. For the RVM, the
analogues of these parameters (the a’s and 0?) are automatically estimated by the learning
procedure.

1.2 w w w 1.2

1r 1r

0.8t 0.8t
0.6r 0.6f
0.4¢ 0.4f

0.2 02

0 ()7

-0.21 -0.21

-10 -5 0 5 10 -10 -5 0 5 10

Figure 1: Support (left) and relevance (right) vector approximations to sinc(z) from 100
noise-free examples using ‘linear spline’ basis functions. The estimated functions
are drawn as solid lines with support/relevance vectors shown circled.

Figure 2: Support (left) and relevance (right) vector approximations to sinc(z), based on
100 noisy samples. The estimated functions are drawn as solid lines, the true
function in grey, and support/relevance vectors are again shown circled.

221

TIPPING

4.2 Relevance Vector Classification: Ripley’s synthetic data

We utilise artificially-generated data in two dimensions in order to illustrate graphically
the selection of relevance vectors for classification. Both class 1 (denoted by ‘x’) and class
2 (‘e’) were generated from mixtures of two Gaussians by Ripley (1996), with the classes
overlapping to the extent that the Bayes error is around 8%.

A relevance vector classifier is compared to its support vector counterpart, using a
‘Gaussian’ kernel which we define as

K(xma Xn) = eXP(—T_2||Xm - Xn||2), (30)

with 7 the ‘width’ parameter, chosen here to be 0.5. A value of C for the SVM was selected
using 5-fold cross-validation on the training set. The results for a 100-example training set
(randomly chosen from Ripley’s original 250) are given in Figure 3. The test error (from
the associated 1000-example test set) for the RVM (9.3%) is slightly superior to the SVM
(10.6%), but the remarkable feature of contrast is the complexity of the classifiers. The
support vector machine utilises 38 kernel functions compared to just 4 for the relevance
vector method. This considerable difference in sparsity between the two methods is typical,
as the later results on benchmark data sets support.

x x
X . X .
X% X X X ®x X X ®
X #* . X X #*

?% « x@ X xxx . :i‘ « xisx))((xxx
2000 ® ® x 22000 n el
A ® %.®® c o< e ®
.:dl@ ®@@® .:dl. LIPS
o... e® o -, @... e® o .

® °

Figure 3: SVM (left) and RVM (right) classifiers on 100 examples from Ripley’s Gaussian-
mixture data set. The decision boundary is shown dashed, and relevance/support

vectors are shown circled to emphasise the dramatic reduction in complexity of
the RVM model.

Of interest also is the fact that, unlike for the SVM, the relevance vectors are some
distance from the decision boundary (in x-space), appearing more ‘prototypical’ or even
‘anti-boundary’ in character. Given further analysis, this observation can be seen to be
consistent with the hyperparameter update equations given the form of the posterior in-
duced by the Laplace approximation of Section 3. A more qualitative explanation is that
the output of a basis function centred on or near the decision boundary is an unreliable

222

SPARSE BAYESIAN LEARNING AND THE RELEVANCE VECTOR MACHINE

indicator of class membership (i.e. its output is poorly-aligned with the data set in t-space
— see Section 5.2 for an illustration of this concept), and such basis functions are naturally
penalised (deemed ‘irrelevant’) under the Bayesian framework. Of course, there is no im-
plication that the utilisation of either boundary-located or prototypically-located functions
is ‘correct’ in any sense.

4.3 Extensions

Before giving some example results on benchmark data sets, we use another synthetic ex-
ample to demonstrate the potential of two advantageous features of the sparse Bayesian
approach: the ability to utilise arbitrary basis functions, and the facility to directly ‘opti-
mise’ parameters within the kernel specification, such as those which moderate the input
scales.

This latter feature is of c