Graph-Based Hierarchical Conceptual Clustering

Istvan Jonyer, Diane J. Cook, Lawrence B. Holder; 2(Oct):19-43, 2001.


Hierarchical conceptual clustering has proven to be a useful, although under-explored, data mining technique. A graph-based representation of structural information combined with a substructure discovery technique has been shown to be successful in knowledge discovery. The SUBDUE substructure discovery system provides one such combination of approaches. This work presents SUBDUE and the development of its clustering functionalities. Several examples are used to illustrate the validity of the approach both in structured and unstructured domains, as well as to compare SUBDUE to the Cobweb clustering algorithm. We also develop a new metric for comparing structurally-defined clusterings. Results show that SUBDUE successfully discovers hierarchical clusterings in both structured and unstructured data.

[abs] [pdf] [ps.gz] [ps]