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Abstract

We investigate robustness properties for a broad class of support vector machines with non-smooth
loss functions. These kernel methods are inspired by convex risk minimization in infinite dimen-
sional Hilbert spaces. Leading examples are the support vector machine based on the ε-insensitive
loss function, and kernel based quantile regression based on the pinball loss function. Firstly, we
propose with the Bouligand influence function (BIF) a modification of F.R. Hampel’s influence
function. The BIF has the advantage of being positive homogeneous which is in general not true
for Hampel’s influence function. Secondly, we show that many support vector machines based on
a Lipschitz continuous loss function and a bounded kernel have a bounded BIF and are thus robust
in the sense of robust statistics based on influence functions.

Keywords: Bouligand derivatives, empirical risk minimization, influence function, robustness,
support vector machines

1. Introduction

The goal in non-parametric regression is to estimate a functional relationship between an
� d-valued

input random variable X and an
�

-valued output random variable Y , under the assumption that the
joint distribution P of (X ,Y ) is (almost) completely unknown. In order to model this relationship
one typically assumes that one has a training data set Dtrain =

(

(x1,y1), . . . ,(xn,yn)
)

from indepen-
dent and identically distributed (i.i.d.) random variables (Xi,Yi), i = 1, . . . ,n, which all have the
distribution P. Informally, the aim is to build a predictor f :

� d →
�

based on these observations
such that f (X) is a good approximation of Y . To formalize this aim one uses a continuous loss
function L : Y ×

�
→ [0,∞) that assesses the quality of a prediction f (x) for an observed output y

by L(y, f (x)). We follow the convention that the smaller L(y, f (x)) is, the better the prediction is.
The quality of a predictor f is measured by the L-risk RL,P( f ) := EPL(Y, f (X)) which of course is
unknown, because P is unknown. One tries to find a predictor whose risk is close to the minimal
risk, that is to the Bayes risk R ∗

L,P := inf{R L,P( f ) ; f :
� d →

�
measurable}. One way to build a

non-parametric predictor f is to use a support vector machine (SVM) which finds a minimizer fP,λ

c©2008 Andreas Christmann and Arnout Van Messem.



CHRISTMANN AND VAN MESSEM

of the regularized risk
R reg

L,P,λ( f ) := EPL(Y, f (X))+λ‖ f‖2
H , (1)

where λ > 0 is a regularization parameter to reduce the danger of overfitting, H is a reproducing
kernel Hilbert space (RKHS) of a measurable kernel k : X ×X → R, and L is a measurable, convex
loss function in the sense that L(y, ·) :

�
→ [0,∞) is convex for all y ∈ Y , see Vapnik (1998) and

Schölkopf and Smola (2002). Since (1) is strictly convex in f , the minimizer fP,λ is unique if it
exists. We denote the canonical feature map by Φ : H → H , Φ(x) := k(·,x). The reproducing
property gives f (x) = 〈 f ,Φ(x)〉H for all f ∈ H and x ∈ X . A kernel k is bounded, if ‖k‖∞ :=
sup{

√

k(x,x) : x ∈ X} < ∞. Using the reproducing property and ‖Φ(x)‖H =
√

k(x,x), one obtains
the well-known inequalities

‖ f‖∞ ≤ ‖k‖∞ ‖ f‖H and ‖Φ(x)‖∞ ≤ ‖k‖∞ ‖Φ(x)‖H ≤ ‖k‖2
∞ (2)

for f ∈ H and x ∈ X . The Gaussian radial basis function kernel defined by kRBF(x,x′) = exp(−‖x−
x′‖2/γ2), γ > 0, is bounded and universal on every compact subset of

� d (Steinwart, 2001) which
partially explains its popularity. The corresponding RKHS of this kernel has infinite dimension.
Of course, R reg

L,P,λ( f ) is not computable, because P is unknown. However, the empirical distribution

D = 1
n ∑n

i=1 δ(xi,yi) corresponding to the training data set Dtrain can be used as an estimator of P. Here
δ(xi,yi) denotes the Dirac distribution in (xi,yi). If we replace P by D in (1), we obtain the regularized
empirical risk

R reg
L,D,λ( f ) := EDL

(

Y, f (X)
)

+λ‖ f‖2
H .

An empirical SVM fD,λn
with λn > 0 and λn → 0 if n→∞, is called L-risk consistent if RL,P( fD,λn

)→
R ∗

L,P in probability for n → ∞.
Traditionally, research in nonparametric regression is often based on the least squares loss

LLS(y, t) := (y− t)2. The least squares loss function is convex in t, is useful to estimate the con-
ditional mean function, and is advantageous from a numerical point of view, but LLS is not Lipschitz
continuous. From a practical point of view there are situations in which a different loss function is
more appropriate. (i) In some situations one is actually not interested in modeling the conditional
mean, but in fitting a conditional quantile function instead. For this purpose the convex pinball
loss function Lτ−pin(y, t) := (τ− 1)(y− t), if y− t < 0, and Lτ−pin(y, t) := τ(y− t), if y− t ≥ 0, is
used, where τ ∈ (0,1) specifies the desired conditional quantile, see Koenker and Bassett (1978)
and Koenker (2005) for parametric quantile regression and Takeuchi et al. (2006) for nonparamet-
ric quantile regression. (ii) If the goal is to estimate the conditional median function, then the
ε-insensitive loss given by Lε(y, t) := max{|y− t| − ε,0}, ε ∈ (0,∞), promises algorithmic advan-
tages in terms of sparseness compared to the L1-loss function LL1(y, t) = |y− t|, see Vapnik (1998)
and Schölkopf and Smola (2002). (iii) If the regular conditional distribution of Y given X = x
is known to be symmetric, basically all invariant loss functions of the form L(y, t) = ψ(r) with
r = y− t, where ψ :

�
→ [0,∞) is convex, symmetric and has its only minimum at 0, can be used

to estimate the conditional mean, see Steinwart (2007). In this case a less steep loss function such
as the Lipschitz continuous Huber loss function given by Lc−Huber(y, t) := ψ(r) = r2/2, if |r| ≤ c,
and ψ(r) = c|r|− c2/2, if |r| > c for some c ∈ (0,∞), may be more suitable if one fears outliers in
y-direction, see Huber (1964) and Christmann and Steinwart (2007).

The deeper reason to consider Lipschitz continuous loss functions is the following. One strong
argument in favor of SVMs is that they are L-risk consistent under weak assumptions, that is SVMs
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are able to “learn”, but it is also important to investigate the robustness properties for such statistical
learning methods. In almost all cases statistical models are only approximations to the true random
process which generated a given data set. Hence the natural question arises what impact such
deviations may have on the results. J.W. Tukey, one of the pioneers of robust statistics, mentioned
already in 1960 (Hampel et al., 1986, p. 21): “A tacit hope in ignoring deviations from ideal models
was that they would not matter; that statistical procedures which were optimal under the strict
model would still be approximately optimal under the approximate model. Unfortunately, it turned
out that this hope was often drastically wrong; even mild deviations often have much larger effects
than were anticipated by most statisticians.”

Let us consider T (P) := R reg
L,P,λ( f ), with P a probability measure, as a mapping T : P 7→R reg

L,P,λ( f ).
In robust statistics we are interested in smooth and bounded functions T , because this will give stable
regularized risks within small neighborhoods of P. If an appropriate derivative ∇T (P) of T (P) is
bounded, then the function T (P) cannot increase or decrease unlimited in small neighborhoods of
P. Several notions of differentiability have been used for this purpose.

Let us therefore take a look at the following results from Averbukh and Smolyanov (1967, 1968),
Fernholz (1983) and Rieder (1994) on various notions of differentiation to clarify the connections
between these notions. For every pair of normed real vector spaces (X ,Y ) let a subset S(X ,Y ) of the
functions from X to Y be given. The following conditions are imposed on this system S , which will
provide the (Landau) o remainder of the first-order Taylor approximation of an S -differentiation:
(i) ρ(0) = 0, ρ ∈ S(X ,Y ), (ii) S(X ,Y ) is a real vector subspace of all functions from X to Y , (iii)
S(X ,Y )∩L(X ,Y ) = {0} where L(X ,Y ) is the space of continuous linear mappings from X to Y ,
and 0 stands for the zero operator and (iv) moreover, in case X =

�
, it is required that S(

�
,Y ) =

{ρ :
�

→ Y | limt→0 ρ(t)/t = 0}. If S fulfills (i) to (iv), then some mapping T : X → Y is called
S -differentiable at x if there exists some A ∈ L(X ,Y ) and ρ ∈ S(X ,Y ) such that for all h ∈ X ,
T (x+h) = T (x)+Ah+ρ(h). The continuous linear mapping ∇S T (x) = A is called S -derivative of
T at x. The set of all functions T : X → Y which are S -differentiable at x is denoted by DS (X ,Y ;x).
From conditions (ii) and (iii) it is seen that the S -derivative ∇S T (x) is uniquely defined. Condition
(iv) ensures that S -differentiability in case X =

�
coincides with the usual notion of differentiability.

The function T 7→ ∇S T (x) is a linear mapping from DS (X ,Y ;x) to L(X ,Y ).

S -differentiations may be constructed in a special way by means of coverings C , whose elements
are naturally assumed to be bounded sets C (so that th → 0 uniformly for h ∈C as t → 0). For every
normed real vector space X let a covering CX of X be given which consists of bounded subsets of
X . If Y is another normed real vector space, define SC (X ,Y ) = {ρ : X → Y | limt→0 suph∈C

‖ρ(th)‖
t =

ρ(0) = 0 ∀C ∈ CX}. Then the class SC satisfies the conditions (i) to (iv). With X ranging through all
normed real vector spaces, we can then define the following concepts of differentiation by varying
the covering CX . Gâteaux-differentiation is defined by the choices CGX = {C ⊂ X |C finite}. For
Hadamard-differentiation, CHX = {C ⊂ X |C compact} and Fréchet-differentiation uses the cover-
ing CFX = {C ⊂ X |C bounded}. The three differentiations will be indicated by the corresponding
authors’ initials. From these definitions it is clear that ∇F implies ∇H which implies ∇G. It can be
shown that ∇H is actually the weakest S -derivative which fulfills the chain rule.

One general approach to robustness (Hampel, 1968, 1974) is the one based on influence func-
tions which are related to Gâteaux-derivatives. Let M1 be the set of probability distributions on
some measurable space (Z,B(Z)) and let H be a reproducing kernel Hilbert space. The influence
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function (IF) of T : M1 → H at a point z ∈ Z for a distribution P is defined as

IF(z;T,P) = lim
ε↓0

T ((1− ε)P+ εδz)−T (P)

ε
, (3)

if the limit exists. Within this approach robust estimators are those which have a bounded influence
function.1 The influence function is neither supposed to be linear nor continuous. If the influence
functions exists for all points z∈ Z and if it is continuous and linear, then the IF is a special Gâteaux-
derivative.

Christmann and Steinwart (2004, 2007) and Steinwart and Christmann (2008b) showed that
SVMs have a bounded influence function in binary classification and in regression problems pro-
vided that the kernel is bounded and continuous, L is twice Fréchet-differentiable w.r.t. the second
argument, and the first and second F-derivative of L is bounded. Hence Lipschitz continuous loss
functions are of special interest from a robustness point of view. An example of a loss function with
these properties is the logistic loss given by Llog(y, t) := − log

(

4Λ(y− t)(1−Λ(y− t))
)

, y, t ∈
�

,
where Λ(y− t) = 1/

(

1+e−(y−t)
)

. However the important special cases Lε, Lτ−pin, and Lc−Huber are
excluded in these results, because these loss functions are not everywhere Fréchet-differentiable.

The present paper tries to fill this gap: we will propose in Definition 1 an alternative to the
influence function. This alternative is based on Bouligand-derivatives whereas Hampel’s influence
function was defined having Gâteaux-derivatives in mind. The second goal of this paper is to use
this new notion of robustness to show that SVMs for regression are robust in this sense even if the
loss function has no Fréchet-derivative.

Let us now recall some facts on Bouligand-derivatives and strong approximation of functions.
For the rest of the introduction let X , Y , W , and Z be normed linear spaces, and we consider
neighborhoods N (x0) of x0 in X , N (y0) of y0 in Y , and N (w0) of w0 in W . Let F and G be
functions from N (x0)×N (y0) to Z, h1 and h2 functions from N (w0) to Z, f a function from
N (x0) to Z and g a function from N (y0) to Z. A function f approximates F in x at (x0,y0),
written as f ∼x F at (x0,y0), if F(x,y0)− f (x) = o(x− x0). Similarly, g ∼y F at (x0,y0) if
F(x0,y)− g(y) = o(y− y0). A function h1 strongly approximates h2 at w0, written as h1 ≈ h2 at
w0, if for each ε > 0 there exists a neighborhood N (w0) of w0 such that whenever w and w′ belong
to N (w0),

∥

∥

(

h1(w)−h2(w)
)

−
(

h1(w′)−h2(w′)
)∥

∥ ≤ ε‖w−w′‖. A function f strongly approxi-
mates F in x at (x0,y0), written as f ≈x F at (x0,y0), if for each ε > 0 there exist neighborhoods
N (x0) of x0 and N (y0) of y0 such that whenever x and x′ belong to N (x0) and y belongs to N (y0)
we have

∥

∥

(

F(x,y)− f (x)
)

−
(

F(x′,y)− f (x′)
)∥

∥ ≤ ε‖x− x′‖. Strong approximation amounts to re-
quiring h1 − h2 to have a strong Fréchet-derivative of 0 at w0, though neither h1 nor h2 is assumed
to be differentiable in any sense. A similar definition is made for strong approximation in y. We
define strong approximation for functions of several groups of variables, for example G ≈(x,y) F
at (x0,y0), by replacing W by X ×Y and making the obvious substitutions. Note that one has both
f ≈x F and g ≈y F at (x0,y0) exactly if f (x)+g(y) ≈(x,y) F at (x0,y0).

Recall that a function f : X → Z is called positive homogeneous if

f (αx) = α f (x) ∀α ≥ 0, ∀x ∈ X .

Following Robinson (1987) we can now define the Bouligand-derivative. Given a function f from
an open subset X of a normed linear space X into another normed linear space Z, we say that

1. In the following we use the term “robust” in this sense, unless otherwise stated.
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f is Bouligand-differentiable at a point x0 ∈ X , if there exists a positive homogeneous function
∇B f (x0) : X → Z such that

f (x0 +h) = f (x0)+∇B f (x0)(h)+o(h). (4)

We can write (4) also as

lim
h→0

∥

∥ f (x0 +h)− f (x0)−∇B f (x0)(h)
∥

∥

Z /‖h‖X = 0. (5)

Let F : X ×Y → Z, and suppose that F has a partial B-derivative2 ∇B
1 F(x0,y0) with respect to x at

(x0,y0). We say ∇B
1 F(x0,y0) is strong if F(x0,y0)+∇B

1 F(x0,y0)(x−x0) ≈x F at (x0,y0). Robinson
(1987) showed that the chain rule holds for Bouligand-derivatives. Let f be a Lipschitzian function
from an open set Ω ⊂

� m to
� k, x0 ∈ Ω, and f B-differentiable at x0. Let g be a Lipschitzian

function from an open set Γ ⊂
� k, with f (x0) ∈ Γ, to

� l be B-differentiable at f (x0). Then g◦ f is
B-differentiable at x0 and ∇B(g ◦ f )(x0) = ∇Bg

(

f (x0)
)

◦∇B f (x0). The fact that B-derivatives, just
as F- and H-derivatives, fulfill the chain rule is no contradiction to the before mentioned fact that
H-differentiability is the weakest S -differentiation which fulfills the chain rule (Rieder, 1994, p. 4)
because the B-derivative is not necessarily a continuous linear function.

In general Gâteaux- and Bouligand-differentiability are not directly comparable, because B-
derivatives are by definition positive homogeneous, but not necessarily linear. We will show that
the existence of the BIF implies the existence of the IF and that in that case BIF=IF. Please note that
this in general does not imply that the IF is a Gâteaux-derivative.

In this paper, we will prove that many SVMs based on Lipschitz continuous loss functions have
a bounded Bouligand influence function. To formulate our results we will use Bouligand-derivatives
in the sense of Robinson (1991) as defined above. These directional derivatives were to our best
knowledge not used in robust statistics so far, but are successfully applied in approximation theory
for non-smooth functions. Section 2 covers our definition of the Bouligand influence function (BIF)
and contains the main result which gives the BIF for support vector machines based on a bounded
kernel and a B-differentiable Lipschitz continuous convex loss function. In Section 3 it is shown
that this result covers the loss functions Lε, Lτ−pin, Lc−Huber, and Llog as special cases. Section 4
contains the conclusions. All proofs are given in the Appendix.

2. Main Result

This section contains our two main results: the definition of the Bouligand influence function and
a theorem which shows that a broad class of support vector machines based on a Lipschitz contin-
uous, but not necessarily Fréchet-differentiable loss function have a bounded Bouligand influence
function. We denote the set of all probability distributions on some measurable space (Z,B(Z)) by
M1 and let H be a Hilbert space.

Definition 1 The Bouligand influence function (BIF) of the function T : M1 → H for a distribu-
tion P in the direction of a distribution Q 6= P is the special Bouligand-derivative (if it exists)

lim
ε↓0

∥

∥T
(

(1− ε)P+ εQ
)

−T (P)−BIF(Q;T,P)
∥

∥

H
ε

= 0. (6)

2. Throughout the paper we will denote partial B-derivatives of f by ∇B
1 f , ∇B

2 f , ∇B
2,2 f := ∇B

2

(

∇B
2 f

)

etc.

919



CHRISTMANN AND VAN MESSEM

The BIF has the interpretation that it measures the impact of an infinitesimal small amount of
contamination of the original distribution P in the direction of Q on the quantity of interest T (P). It
is thus desirable that the function T has a bounded BIF.

Note that (6) is indeed a special B-derivative, because we consider the directions h = ε(Q−P)
and x0 = P. If Q equals the Dirac distribution δz in a point z ∈ Z, that is δz({z}) = 1, we write
BIF(z;T,P). The choice of the metric on M1 is not important for the definition of the BIF, because
‖ε(Q−P)‖= ε‖Q−P‖ and ‖Q−P‖ is a positive constant. For the norm of total variation we obtain
for example,

lim
ε(Q−P)↓0

∥

∥T
(

P+ ε(Q−P)
)

−T (P)−BIF(Q;T,P)
∥

∥

H
‖ε(Q−P)‖tv

= 0,

(cf., Equation 5). Since ε(Q−P) → 0 iff ε → 0 and by assumption Q 6= P we obtain (6).
The Bouligand influence function is a modification of the influence function given by (3). Recall

that the Gâteaux-derivative of some mapping f at a point x0 equals ∇G f (x0)(h) = limε↓0
(

f (x0 +
εh)− f (x0)

)

/ε if it exists for every h ∈ X . Hence the influence function is the special Gâteaux-
derivative with Q = δz and h = δz − P, if the IF is continuous and linear. However, the BIF is
always positive homogeneous because it is a Bouligand-derivative, which is in general not true for
the influence function. As will be shown in (13), this property leads to the result that for α ≥ 0 and
h := ε(Q−P) the asymptotic bias T ((1−αε)P+αεQ)−T (P) equals αBIF(Q;T,P)+o(h).

The following simple calculations clarify the connection between the BIF and the IF. In general
we have for B-derivatives with h = εh̃, where ε ∈ (0,∞) and h̃ ∈ X with 0 < ‖h̃‖ ≤ 2,

0 = lim
h→0

‖ f (x0 +h)− f (x0)−∇B f (x0)(h)‖

‖h‖

= lim
ε↓0

‖ f (x0 + εh̃)− f (x0)− ε∇B f (x0)(h̃)‖

ε‖h̃‖

= lim
ε↓0

∥

∥

∥

f (x0 + εh̃)− f (x0)

ε
−∇B f (x0)(h̃)

∥

∥

∥
.

Hence limε↓0
(

f (x0 + εh̃)− f (x0)
)

/ε = ∇B f (x0)(h̃). In particular we obtain for Q 6= P and taking
0 < ‖Q−P‖ ≤ 2 into account that, if BIF(Q;T,P) exists, then BIF(Q;T,P) = limε↓0

(

T ((1− ε)P+
εQ)−T (P)

)

/ε, which is the definition of the IF, if we choose Q = δz.
We can now give a general result on the BIF of the support vector machine T (P) := fP,λ. We re-

strict attention to Lipschitz continuous loss functions, because the growth behavior of L plays an im-
portant role to obtain consistency and robustness results as was shown by Christmann and Steinwart
(2007). For notational convenience we shall often write ∇B

2 L(Y, f (X)) instead of ∇B
2 L(Y, ·)( f (X)),

because f (X) ∈
�

. We will sometimes explicitly write “·” for multiplication to avoid misunder-
standings.

Theorem 2 Let X ⊂
� d and Y ⊂

�
be closed sets, H be a RKHS with a bounded, continuous kernel

k, fP,λ ∈ H , and L : Y ×
�
→ [0,∞) be a convex loss function which is Lipschitz continuous w.r.t. the

second argument with uniform Lipschitz constant |L|1 := supy∈Y |L(y, ·)|1 ∈ (0,∞). Further, assume
that L has measurable partial B-derivatives w.r.t. to the second argument with

κ1 := sup
y∈Y

∥

∥∇B
2 L(y, ·)

∥

∥

∞ ∈ (0,∞) , κ2 := sup
y∈Y

∥

∥∇B
2,2L(y, ·)

∥

∥

∞ < ∞ . (7)
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Let δ1 > 0, δ2 > 0, Nδ1( fP,λ) := { f ∈ H ;
∥

∥ f − fP,λ
∥

∥

H < δ1}, λ > 1
2 κ2 ‖k‖3

∞, and P,Q be probability
measures3 on

(

X×Y,B(X×Y )
)

with EP|Y |< ∞ and EQ|Y |< ∞. Define G : (−δ2,δ2)×Nδ1( fP,λ)→
H ,

G(ε, f ) := 2λ f +E(1−ε)P+εQ∇B
2 L(Y, f (X)) ·Φ(X) , (8)

and assume that ∇B
2 G(0, fP,λ) is strong. Then the Bouligand influence function of T (P) := fP,λ in

the direction of Q 6= P exists,

BIF(Q;T,P) = S−1(
EP∇B

2 L(Y, fP,λ(X)) ·Φ(X)
)

(9)

−S−1(
EQ∇B

2 L(Y, fP,λ(X)) ·Φ(X)
)

, (10)

where S : H → H with

S(·) := ∇B
2 G(0, fP,λ)(·) = 2λ idH (·)+EP∇B

2,2L(Y, fP,λ(X)) · 〈Φ(X), ·〉H Φ(X),

and BIF(Q;T,P) is bounded.

Remark 3 We additionally show that under the assumptions of Theorem 2 we have:

1. For some χ and each f ∈Nδ1( fP,λ), G(· , f ) is Lipschitz continuous on (−δ2,δ2) with Lipschitz
constant χ.

2. G has partial B-derivatives with respect to ε and f at (0, fP,λ).

3. ∇B
2 G(0, fP,λ)(h− fP,λ) lies in a neighborhood of 0 ∈ H , ∀h ∈ Nδ1( fP,λ).

4. d0 := infh1,h2∈Nδ1
( fP,λ)− fP,λ ;h1 6=h2

‖∇B
2 G(0, fP,λ)(h1)−∇B

2 G(0, fP,λ)(h2)‖H
‖h1−h2‖H

> 0 .

5. For each ξ > d−1
0 χ there exist constants δ3,δ4 > 0, a neighborhood Nδ3( fP,λ) :=

{ f ∈ H ;
∥

∥ f − fP,λ
∥

∥

H < δ3}, and a function f ∗ : (−δ4,δ4) → Nδ3( fP,λ) satisfying

v.1) f ∗(0) = fP,λ.

v.2) f ∗ is Lipschitz continuous on (−δ4,δ4) with Lipschitz constant | f ∗|1 = ξ.

v.3) For each ε ∈ (−δ4,δ4) is f ∗(ε) the unique solution of G(ε, f ) = 0 in Nδ3( fP,λ).

v.4) ∇B f ∗(0)(u) =
(

∇B
2 G(0, fP,λ)

)−1 (

−∇B
1 G(0, fP,λ)(u)

)

, u ∈ (−δ4,δ4).

The function f ∗ is the same as in the implicit function theorem by Robinson (1991), see
Theorem 7.

Remark 4 It will be shown that κ2 = 0 for L = Lε and L = Lτ−pin and thus the regularization
condition only states that λ > 1

2 κ2 ‖k‖3
∞ = 0.

3. Because X and Y are assumed to be closed, P can be split up into the marginal distribution PX and the regular
conditional probability P( · |x), x ∈ X , on Y . Same for Q.
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Note that S can be interpreted as the (Bouligand-)Hessian of the regularized risk, see (14) and
(17). Further the formula in (9) and (10) is similar to the one obtained by Christmann and Stein-
wart (2007) for the IF of T (P) = fP,λ. The difference is that we used B-derivatives instead of
F-derivatives, because we allow non-smooth L.

Note that the first summand of the BIF given in (9) does not depend on the contaminating
distribution Q. In contrast to that, the second summand of the BIF given in (10) depends on Q and
consists of two factors. The first factor depends on the partial B-derivative of the loss function, and
is hence bounded due to (7). For many loss functions this factor depends only on the residual term
y− fP,λ(x). The second factor is the feature map Φ(x) which is bounded, because k is bounded. For
the Gaussian RBF kernel we expect that the second factor is not only bounded, but that the impact
of Q 6= P on the BIF is approximately local, because k(x,x′) converges exponentially fast to zero if
||x− x′||2 is large.

3. Examples

In this section we show that our main theorem covers some SVMs widely used in practice. The
following result treats SVMs based on the ε-insensitive loss function or Huber’s loss function for
regression, and SVMs based on the pinball loss function for nonparametric quantile regression.
These loss functions have uniformly bounded first and second partial B-derivatives w.r.t. the second
argument, see the Appendix.

Corollary 5 Let X ⊂
� d and Y ⊂

�
be closed, and P,Q be distributions on X ×Y with EP|Y | < ∞

and EQ|Y | < ∞.

1. For L ∈ {Lτ−pin,Lε}, assume that for all δ > 0 there exist positive constants ξP, ξQ, cP, and
cQ such that for all t ∈

�
with |t − fP,λ(x)| ≤ δ‖k‖∞ the following inequalities hold for all

a ∈ [0,2δ‖k‖∞] and x ∈ X:

P
(

Y ∈ [t, t +a]
∣

∣x
)

≤ cPa1+ξP and Q
(

Y ∈ [t, t +a]
∣

∣x
)

≤ cQa1+ξQ . (11)

2. For L = Lc−Huber, assume for x ∈ X:

P
(

Y ∈
{

fP,λ(x)− c, fP,λ(x)+ c
}∣

∣x
)

= Q
(

Y ∈
{

fP,λ(x)− c, fP,λ(x)+ c
}∣

∣x
)

= 0 . (12)

Then the assumptions of Theorem 2 are valid: BIF(Q;T,P) of T (P) := fP,λ exists, is given by (9) to
(10), and is bounded.

For the somewhat smoother Huber loss function we only need to exclude by (12) that the con-
ditional probabilities of Y given X with respect to P and Q have no point probabilities at the two
points fP,λ(x)−c and fP,λ(x)+c. Therefore, for this loss function Q can be a Dirac distribution and
in this case we have BIF = IF.

For the pinball loss function some calculations give

BIF(Q;T,P) =
1

2λ

Z

X

(

P
(

Y ≤ fP,λ(x)
∣

∣x
)

− τ
)

Φ(x)dPX(x)

−
1

2λ

Z

X

(

Q
(

Y ≤ fP,λ(x)
∣

∣x
)

− τ
)

Φ(x)dQX(x),
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if the BIF exists. We expect the first integral to be small, because fP,λ(x) approximates the τ-quantile
of P(· |x) and even rates of convergence are known (Steinwart and Christmann, 2008a,b). As will
become clear from the proof, (11) and (12) guarantee that the regular conditional probabilities P(· |x)
and Q(· |x) do not have large point masses at those points where the Lipschitz continuous loss
function L is not F-differentiable or in small neighborhoods around these points. Even for the case
of parametric quantile regression, that is for L = Lτ−pin, λ = 0 and the unbounded linear kernel
k(x,x′) := 〈x,x′〉, some assumptions on the distribution P seem to be necessary for the existence
of the IF, see Koenker (2005, p. 44). He assumes that P has a continuous density which is strictly
positive where needed.

Nevertheless, the question arises whether Theorem 2 and Corollary 5 can be shown without any
assumption on the distributions P and Q. This is—at least with the techniques we used—not possible
for non-smooth loss functions as the following counterexample shows. Let us consider kernel based
quantile regression based on the Gaussian RBF kernel, that is L = Lτ−pin, k = kRBF , and λ > 0.
Hence the set D of discontinuity points of ∇B

2 L is D = {0}. Fix x ∈ X and y,y∗ ∈ Y with y 6= y∗.
Define P = δ(x,y) and Q = δ(x,y∗). Consider f1, f2 ∈ Nδ1( fP,λ) with f1(x) 6= f2(x), y− f1(x) > 0,
y− f2(x) < 0, y∗− f1(x) > 0, and y∗− f2(x) < 0. Hence, ∇B

2 L(y, f1(x)) = ∇B
2 L(y∗, f1(x)) = −τ and

∇B
2 L(y, f2(x)) = ∇B

2 L(y∗, f2(x)) = 1−τ. Note that ∇B
2,2L(y, t) = 0 for all y, t ∈

�
. We thus obtain for

the H -norm in (19) that
∥

∥E(1−ε)P+εQ
(

∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))
)

·Φ(X)
∥

∥

H = ‖Φ(x)‖H > 0 .
Hence ∇B

2 G(0, fP,λ) is not strong in this special case, because ‖Φ(x)‖H is in general greater than
ε∗ ‖ f1 − f2‖H for arbitrarily small values of ε∗.

Now we shall show for Llog that the assumptions (11) or (12) are not needed to obtain a bounded
BIF. It is easy to see that Llog is strictly convex w.r.t. the second argument and Fréchet-differentiable
with ∇F

2 Llog(y, t) = 1− 2Λ(y− t), ∇F
2,2Llog(y, t) = 2Λ(y− t)[1−Λ(y− t)], and ∇F

2,2,2Llog(y, t) =
−2Λ(y− t)[1−Λ(y− t)][1− 2Λ(y− t)]. Obviously, these partial derivatives are bounded for all
y, t ∈

�
. Furthermore, κ1 = supy∈ � |∇F

2 Llog(y, ·)|1 = 1/2 and κ2 = supy∈ � |∇F
2,2Llog(y, ·)|1 ≤ 1/2,

because an everywhere F-differentiable function g is Lipschitz continuous with |g|1 = ||∇Fg||∞ if
∇Fg is bounded.

Corollary 6 Let X ⊂
� d and Y ⊂

�
be closed, L = Llog, and P,Q be distributions on X ×Y with

EP|Y | < ∞ and EQ|Y | < ∞. Then the assumptions of Theorem 2 are valid, and BIF(Q;T,P) of
T (P) := fP,λ exists, is given by (9) to (10), and BIF(Q;T,P) is bounded.

Corollary 6 is of course also valid for empirical distributions Dn and Qm consisting of n and m
data points, because no specific assumptions on P and Q are made.

The influence function of T (P) = fP,λ based on Llog and error bounds of the type
∥

∥T
(

(1− ε)P+ εδ(x,y)−T (P)
)∥

∥

H ≤ c∗ ε

where the constant c∗ is known and depends only on P, Q := δ(x,y), and λ, were recently derived
by Christmann and Steinwart (2007). We like to mention that Corollary 6 shows that this influence
function is even a Bouligand-derivative, hence positive homogeneous in h = ε(Q−P). Therefore,
we immediately obtain from the existence of the BIF that the asymptotic bias of SVMs has the form

f(1−αε)P+αεQ,λ − fP,λ = T (P+αh)−T (P)

= αBIF(Q;T,P)+o(αh) (13)

= α
(

T (P+h)−T (P)+o(h)
)

+o(αh)

= α
(

f(1−ε)P+εQ,λ − fP,λ
)

+o(αε(Q−P)), α ≥ 0.
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This equation nicely describes the behavior of the asymptotic bias term f(1−ε)P+εQ,λ − fP,λ if we
consider the amount αε of contamination instead of ε.

4. Discussion

Bouligand-derivatives and strong Bouligand-derivatives were successfully used in approximation
theory, see for example Clarke (1983), Robinson (1987, 1991), Ip and Kyparisis (1992), and the
references cited therein. To our best knowledge however, these concepts were not used so far to
investigate robustness properties of statistical operators.

Therefore, we defined the Bouligand influence function (BIF) as a modification of the influence
function (IF), the latter being related to Gâteaux-derivatives and a cornerstone of robust statistics,
see Hampel (1974), Hampel et al. (1986), and Maronna et al. (2006). If the BIF exists, then it is
identical to the IF. The BIF is a positive homogeneous function by definition. This is in general not
true for the IF. We used the BIF to show that support vector machines for regression, which play an
important role in modern statistical learning theory, are robust in the sense of influence functions,
if a bounded continuous kernel is used and if the convex loss function is Lipschitz continuous and
twice Bouligand-differentiable, but not necessarily twice Fréchet-differentiable. The result covers
the important special cases of SVMs based on the ε-insensitive, Huber or logistic loss function for
regression, and kernel based quantile regression based on the pinball loss function. The IF of SVMs
based on the logistic loss was recently derived by Christmann and Steinwart (2007) and Steinwart
and Christmann (2008b).

From our point of view, the Bouligand-derivative is a promising concept for robust statistics
for the following reason. Many robust estimators proposed in the literature are implicitly defined
as solutions of minimization problems where the objective function or loss function is continuous
or Lipschitz continuous, but not necessarily twice Fréchet-differentiable. Examples are not only
SVMs treated in this paper, but also M-estimators of Huber-type and certain maximum likelihood
estimators under non-standard conditions. Bouligand-differentiation nicely fills the gap between
Fréchet-differentiation, which is too strong for many robust estimators, and Gâteaux-differentiation
which is the basis for the robustness approach based on influence functions. Bouligand-derivatives
fulfill a chain rule and a theorem of implicit functions which is in general not true for Gâteaux-
derivatives.
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Appendix A. Proofs

This appendix contains all the proofs of the previous sections.

A.1 Proofs for the Results in Section 2

For the proof of Theorem 2 we shall use the following implicit function theorem for B-derivatives,
see Robinson (1991, Cor. 3.4). For a function f from a metric space (X ,dX) to another metric space
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(Y,dY ), we define

δ( f ,X) = inf{dY
(

f (x1), f (x2)
)

/dX(x1,x2) | x1 6= x2; x1, x2 ∈ X} .

Theorem 7 Let Y be a Banach space and X and Z be normed linear spaces. Let x0 and y0 be points
of X and Y , respectively, and let N (x0) be a neighborhood of x0 and N (y0) be a neighborhood of
y0. Suppose that G is a function from N (x0)×N (y0) to Z with G(x0,y0) = 0. In particular, for
some φ and each y ∈ N (y0), G(·,y) is assumed to be Lipschitz continuous on N (x0) with mod-
ulus φ. Assume that G has partial B-derivatives with respect to x and y at (x0,y0), and that: (i)
∇B

2 G(x0,y0)(·) is strong. (ii) ∇B
2 G(x0,y0)(y− y0) lies in a neighborhood of 0 ∈ Z, ∀y ∈ N (y0). (iii)

δ(∇B
2 G(x0,y0),N (y0)− y0) =: d0 > 0. Then for each ξ > d−1

0 φ there are neighborhoods U of x0

and V of y0, and a function f ∗ : U →V satisfying (a) f ∗(x0) = y0. (b) f ∗ is Lipschitz continuous on
N (x0) with modulus ξ. (c) For each x ∈U, f ∗(x) is the unique solution in V of G(x,y) = 0. (d) The

function f ∗ is B-differentiable at x0 with ∇B f ∗(x0)(u) =
(

∇B
2 G(x0,y0)

)−1 (

−∇B
1 G(x0,y0)(u)

)

.

We will also need the following consequence of the open mapping theorem, see Lax (2002,
p. 170).

Theorem 8 Let X and Y be Banach spaces, A : X →Y be a bounded, linear, and bijective function.
Then the inverse A−1 : Y → X is a bounded linear function.

The key ingredient of our proof of Theorem 2 is of course the map G :
�
×H → H defined

by (8). If ε < 0 the integration is w.r.t. a signed measure. The H -valued expectation used in the
definition of G is well-defined for all ε ∈ (δ2,δ2) and all f ∈ Nδ1( fP,λ), because κ1 ∈ (0,∞) by (7)
and ‖Φ(x)‖∞ ≤ ‖k‖2

∞ < ∞ by (2). For F- and B-derivatives holds a chain rule and F-differentiable
functions are also B-differentiable. For ε ∈ [0,1] we thus obtain

G(ε, f ) =
∂R reg

L,(1−ε)P+εQ,λ

∂H
( f ) = ∇B

2 R reg
L,(1−ε)P+εQ,λ( f ) . (14)

Since f 7→ R reg
L,(1−ε)P+εQ,λ( f ) is convex and continuous for all ε ∈ [0,1] equation (14) shows that we

have G(ε, f ) = 0 if and only if f = f(1−ε)P+εQ,λ for such ε. Hence

G(0, fP,λ) = 0 . (15)

We shall show that Theorem 7 is applicable for G and that there exists a B-differentiable function
ε 7→ fε defined on a small interval (−δ2,δ2) for some δ2 > 0 satisfying G(ε, fε) = 0 for all ε ∈
(−δ2,δ2). From the existence of this function we shall obtain BIF(Q;T,P) = ∇B fε(0).

Proof of Theorem 2. The existence of fP,λ follows from the convexity of L and the penalizing term,
see also Christmann and Steinwart (2007, Prop. 8). The assumption that G(0, fP,λ) = 0 is valid by
(15). Let us now prove the results of Remark 3 parts 1 to 5.
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Remark 3 part 1. For f ∈ H fixed let ε1,ε2 ∈ (−δ2,δ2). Using ‖k‖∞ < ∞ and (15) we obtain

∣

∣E(1−ε1)P+ε1Q∇B
2 L(Y, f (X)) ·Φ(X)−E(1−ε2)P+ε2Q∇B

2 L(Y, f (X)) ·Φ(X)
∣

∣

=
∣

∣(ε1 − ε2)EQ−P∇B
2 L(Y, f (X)) ·Φ(X)

∣

∣

≤ |ε1 − ε2|
Z

∣

∣∇B
2 L(y, f (x)) ·Φ(x)

∣

∣ d|Q−P|(x,y)

≤ |ε1 − ε2|
Z

sup
y∈Y

|∇B
2 L(y, f (x))| sup

x∈X
|Φ(x)|d|Q−P|(x,y)

≤ |ε1 − ε2|‖Φ(x)‖∞ sup
y∈Y

∥

∥∇B
2 L(y, ·)

∥

∥

∞

Z

d|Q−P|(x,y)

≤ 2 ‖k‖2
∞ sup

y∈Y

∥

∥∇B
2 L(y, ·)

∥

∥

∞ |ε1 − ε2|

= 2 ‖k‖2
∞ κ1 |ε1 − ε2| < ∞ .

Remark 3 part 2. We have

∇B
1 G(ε, f ) = ∇B

1

(

E(1−ε)P+εQ∇B
2 L(Y, f (X)) ·Φ(X)

)

= ∇B
1

(

EP∇B
2 L(Y, f (X)) ·Φ(X)+ εEQ−P∇B

2 L(Y, f (X)) ·Φ(X)
)

= EQ−P∇B
2 L(Y, f (X)) ·Φ(X)

= EQ∇B
2 L(Y, f (X)) ·Φ(X)−EP∇B

2 L(Y, f (X)) ·Φ(X) . (16)

This expectation exists due to (2) and (7). Furthermore, we obtain

∇B
2 G(0, fP,λ)(h)+o(h)

= G(0, fP,λ +h)−G(0, fP,λ)

= 2λh+EP∇B
2 L(Y,( fP,λ(X)+h(X))) ·Φ(X)−EP∇B

2 L(Y, fP,λ(X)) ·Φ(X)

= 2λh+EP

(

∇B
2 L

(

Y,( fP,λ(X)+h(X))
)

−∇B
2 L

(

Y, fP,λ(X)
)

)

·Φ(X) .

This expectation exists, as the term ∇B
2 L

(

Y,( fP,λ(X)+h(X))
)

−∇B
2 L

(

Y, fP,λ(X)
)

is bounded due to
(2), (7), and ‖k‖∞ < ∞. Using 〈Φ(X), ·〉H ∈ H , we get

∇B
2 G(0, fP,λ)(·) = 2λidH (·)+EP∇B

2,2L(Y, fP,λ(X)) · 〈Φ(X), ·〉H Φ(X) . (17)

Note that EP∇B
2,2L

(

Y, f (X)
)

= ∇B
2 EP∇B

2 L
(

Y, f (X)
)

, because

∇B
2 EP∇B

2 L
(

Y, f (X)
)

−EP∇B
2,2L

(

Y, f (X)
)

= EP
(

∇B
2 L(Y,( f (X)+h(X)))−∇B

2 L(Y, f (X))
)

−EP∇B
2,2L(Y, f (X))+o(h)

= EP
(

∇B
2 L(Y,( f (X)+h(X)))−∇B

2 L(Y, f (X))−∇B
2,2L(Y, f (X))

)

+o(h) = o(h)

by definition of the B-derivative.
Remark 3 part 3. Let Nδ1( fP,λ) be a δ1-neighborhood of fP,λ. Because H is a RKHS and hence a

vector space it follows for all h∈Nδ1( fP,λ) that
∥

∥ fP,λ −h−0
∥

∥

H ≤ δ1 and hence h− fP,λ ∈Nδ1(0)⊂
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H . Note that ∇B
2 G(0, fP,λ)( ·) computed by (17) is a mapping from H to H . For ξ := h− fP,λ we

have ‖ξ‖H ≤ δ1 and the reproducing property yields

∇B
2 G(0, fP,λ)(ξ) = 2λξ+EP∇B

2,2L(Y, fP,λ(X)) ·ξΦ(X).

Using (2) and (7) we obtain

∥

∥2λξ+EP∇B
2,2L(Y, fP,λ(X)) ·ξΦ(X)−0

∥

∥

H

≤ 2λ‖ξ‖H +
∥

∥EP∇B
2,2L(Y, fP,λ(X)) ·ξΦ(X)

∥

∥

H

≤ 2λ‖ξ‖H + sup
y∈Y

∥

∥∇B
2,2L(y, ·)

∥

∥

∞ ‖ξ‖∞ ‖Φ(x)‖∞

≤ 2λ‖ξ‖H +κ2 ‖ξ‖H ‖k‖3
∞

≤
(

2λ+κ2 ‖k‖3
∞
)

δ1 ,

which shows that ∇B
2 G(0, fP,λ)(h− fP,λ) lies in a neighborhood of 0 ∈ H , for all h ∈ Nδ1( fP,λ).

Remark 3 part 4. Due to (17) we have to prove that

d0 := inf
f1 6= f2

∥

∥

∥
2λ( f1 − f2)+EP∇B

2,2L
(

Y, fP,λ(X)
)

· ( f1 − f2)Φ(X)
∥

∥

∥

H
‖ f1 − f2‖H

> 0 .

If f1 6= f2, then (2), (7), and λ > 1
2 κ2 ‖k‖3

∞ yield that

∥

∥2λ( f1 − f2)+EP∇B
2,2L

(

Y, fP,λ(X)
)

· ( f1 − f2)Φ(X)
∥

∥

H /‖ f1 − f2‖H

≥
(

‖2λ( f1 − f2)‖H −
∥

∥EP∇B
2,2L(Y, fP,λ(X)) · ( f1 − f2)Φ(X)

∥

∥

H

)

/‖ f1 − f2‖H

≥ 2λ−κ2 ‖k‖3
∞ > 0

by our assumption, which gives the assertion.
Remark 3 part 5. The assumptions of Robinson’s implicit function theorem, see Theorem 7,

are valid for G due to the results of Remark 3 parts 1 to 4 and the assumption that ∇B
2 G(0, fP,λ) is

strong. This gives part 5.
The result of Theorem 2 now follows from inserting (16) and (17) into Remark 3 part 5(v.4).

Using (7) we see that S is bounded. The linearity of S follows from its definition and the inverse of
S does exist by Theorem 7. If necessary we can restrict the range of S to S(H ) to obtain a bijective
function S∗ : H → S(H ) with S∗( f ) = S( f ) for all f ∈ H . Hence S−1 is also bounded and linear by
Theorem 8. This gives the existence of a bounded BIF specified by (9) and (10).

A.2 Calculations for the Results in Section 3

For the proof of Corollary 5 we need the partial B-derivatives for the three loss functions and also
have to check that ∇B

2 G(0, fP,λ) is strong. We shall compute the partial B-derivatives for these loss
functions in advance.
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A.2.1 ε-INSENSITIVE LOSS

We shall show for the ε-insensitive loss L = Lε that

∇B
2 L(y, t)(h) =















−h if {t < y− ε} or {y− t = ε,h < 0}
0 if {y− ε < t < y+ ε} or {y− t = ε,h ≥ 0}

or {y− t = −ε,h < 0}
h if {t > y+ ε} or {y− t = −ε,h ≥ 0}

and ∇B
2,2L(y, t)(h) = 0.

For the derivation of ∇B
2 L(y, t) we need to consider 5 cases.

1. If t > y+ ε, we have t +h > y+ ε as long as h is small enough. Therefore,

∇B
2 L(y, t)(h)+o(h) = L(y, t +h)−L(y, t) = t +h− y− ε− (t − y− ε) = h.

2. If t < y− ε, we have t +h < y+ ε if h is sufficiently small. Thus

∇B
2 L(y, t)(h)+o(h) = y− t −h− ε− (y− t − ε) = −h.

3. If y− t ∈ (−ε,ε) we have y− t − h ∈ (−ε,ε) for h → 0. This yields ∇B
2 L(y, t)(h)+ o(h) =

0−0 = 0.

4. If y− t = ε we have to consider 2 cases. If h ≥ 0 and small, then −ε < y− t−h < ε and hence
∇B

2 L(y, t)(h)+o(h) = 0−0 = 0.
If h < 0, we have y− t −h > ε and thus

∇B
2 L(y, t)(h)+o(h) = y− t −h− ε−0 = −h.

5. If y− t = −ε we have again to consider 2 cases. If h ≥ 0, we have y− t −h < −ε. Hence

∇B
2 L(y, t)(h)+o(h) = t +h− y− ε−0 = h.

If h < 0, we get −ε < y− t −h < ε which gives ∇B
2 L(y, t)(h)+o(h) = 0−0 = 0.

This gives the assertion for the first partial B-derivative. Using the same reasoning we obtain
∇B

2,2L(y, t)(h) = 0.

A.2.2 PINBALL-LOSS

It will be shown that for the pinball loss L = Lτ−pin we get

∇B
2 L(y, t)(h) =

{

(1− τ)h if {y− t < 0} or {y− t = 0,h ≥ 0}
−τh if {y− t > 0} or {y− t = 0,h < 0}

and ∇B
2,2L(y, t)(h) = 0.

For the calculation of ∇B
2 L(y, t) we consider 3 cases.
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1. If y− t < 0 we have y− t −h < 0 for sufficiently small values of |h|. Hence

∇B
2 L(y, t)(h)+o(h) = L(y, t +h)−L(y, t)

= (τ−1)(y− t −h)− (τ−1)(y− t) = (1− τ)h.

2. If y− t > 0 we have y− t −h > 0 for sufficiently small values of |h| which yields

∇B
2 L(y, t)(h)+o(h) = τ(y− t −h)− τ(y− t) = −τh.

3. Assume y− t = 0. If y− t −h < 0 we have

∇B
2 L(y, t)(h)+o(h) = (1− τ)h.

If y− t −h > 0 it follows

∇B
2 L(y, t)(h)+o(h) = τ(y− t −h)− τ(y− t) = −τh.

Together this gives the assertion for ∇B
2 L(y, t)(h). In the same way we get ∇B

2,2L(y, t)(h) = 0.

A.2.3 HUBER LOSS

It will be shown that for the Huber loss L = Lc−Huber we have

∇B
2 L(y, t)(h) =

{

−csign(y− t)h if |y− t| > c
−(y− t)h if |y− t| ≤ c

and

∇B
2,2L(y, t)(h) =







h if {y− t = c,h ≥ 0} or {y− t = −c,h < 0}
or {|y− t| < c}

0 if else .

For the derivation of ∇B
2 L(y, t) we consider the following 5 cases.

1. Let y− t = c. If h ≥ 0 or y− t −h ≤ c then

∇B
2 L(y, t)(h)+o(h) = L(y, t +h)−L(y, t)

=
1
2
(y− t −h)2 −

1
2
(y− t)2 = −(y− t)h+

h2

2
.

If h < 0 or y− t −h > c > 0 we have

∇B
2 L(y, t)(h)+o(h) = c|y− t −h|−

c2

2
−

1
2
(y− t)2

= c(y− t −h)−
c2

2
−

c2

2
= c(c−h)− c2 = −(y− t)h.
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2. Now we consider the case y− t = −c. If h ≥ 0 or y− t −h ≤−c < 0 we obtain

∇B
2 L(y, t)(h)+o(h) = c|y− t −h|−

c2

2
−

1
2
(y− t)2

= c(c+h)−
c2

2
−

c2

2
= −(y− t)h.

If h < 0 or y− t −h > −c we get

∇B
2 L(y, t)(h)+o(h) =

1
2
(y− t −h)2 −

1
2
(y− t)2 = −(y− t)h+

h2

2
.

3. If y− t > c, we have y− t −h > c and thus

∇B
2 L(y, t)(h)+o(h) = c|y− t −h|−

c2

2
− c|y− t|+

c2

2
= c(y− t −h)− c(y− t) = −ch = −csign(y− t)h.

4. If y− t < −c, we have y− t −h < −c and obtain analogously to (iii) that

∇B
2 L(y, t)(h)+o(h) = c|y− t −h|−

c2

2
− c|y− t|+

c2

2
= c(−y+ t +h)− c(−y+ t) = ch = −csign(y− t)h.

5. If −c < y− t < c, then −c < y− t −h < c and

∇B
2 L(y, t)(h)+o(h) =

1
2
(y− t −h)2 −

1
2
(y− t)2 = −(y− t)h+

h2

2
.

This gives the assertion for ∇B
2 L(y, t)(h). Only the first two cases, where y− t =±c, were necessary

to compute, since in the other 3 parts the function is already F-differentiable, and thus also B-
differentiable. For the second partial B-derivative we consider 3 cases.

1. Assume y− t = c. If y− t −h < c then

∇B
2,2L(y, t)(h)+o(h) = ∇B

2 L(y, t +h)−∇B
2 L(y, t) = −(y− t −h)− (−(y− t)) = h.

If y− t −h > c then ∇B
2,2L(y, t)(h)+o(h) = −c− (−(y− t)) = 0.

2. Assume y− t = −c. If y− t −h < −c we obtain ∇B
2,2L(y, t)(h)+o(h) = c− (−(y− t)) = 0.

If y− t −h > −c then

∇B
2,2L(y, t)(h)+o(h) = −(y− t −h)− (−(y− t)) = h.

3. Assume that |y− t| 6= c. Then ∇B
2 L(y, t + h) = ∇B

2 L(y, t). The difference, and consequently
∇B

2,2L(y, t)(h) = 0.
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This gives the assertion for Huber’s loss function.
Proof of Corollary 5. Now that we have shown that these loss functions have bounded first and
second partial B-derivatives, we are ready to check if ∇B

2 G(0, fP,λ) is strong in these cases. Recall
that ∇B

2 G(0, fP,λ) is strong, if for all ε∗ > 0 there exist a neighborhood Nδ1( fP,λ) and an interval
(−δ2,δ2) with δ1,δ2 > 0 such that for all f1, f2 ∈ Nδ1( fP,λ) and for all ε ∈ (−δ2,δ2) we have

∥

∥

(

G(ε, f1)−g( f1)
)

−
(

G(ε, f2)−g( f2)
)∥

∥

H ≤ ε∗ ‖ f1 − f2‖H , (18)

where

g( f ) = 2λ fP,λ(X)+EP∇B
2 L

(

Y, fP,λ(X)
)

·Φ(X)+ 2λ idH ( f (X)− fP,λ(X))

+EP∇B
2,2L

(

Y, fP,λ(X)
)

· 〈( f (X)− fP,λ(X)),Φ(X)〉H Φ(X) , f ∈ H .

Fix ε∗ > 0. Obviously, (18) is valid for f1 = f2. For the rest of the proof we therefore fix arbitrary
functions f1, f2 ∈ Nδ1( fP,λ) with f1 6= f2. We obtain for the term on the left hand side of (18) that

∥

∥

∥

(

2λ f1(X)+E(1−ε)P+εQ∇B
2 L(Y, f1(X)) ·Φ(X)

−2λ fP,λ(X)−EP∇B
2 L(Y, fP,λ(X)) ·Φ(X)

−2λ( f1(X)− fP,λ(X))−EP∇B
2,2L(Y, fP,λ(X)) · ( f1(X)− fP,λ(X))Φ(X)

)

−
(

2λ f2(X)+E(1−ε)P+εQ∇B
2 L(Y, f2(X)) ·Φ(X)

−2λ fP,λ(X)−EP∇B
2 L(Y, fP,λ(X)) ·Φ(X)

−2λ( f2(X)− fP,λ(X))−EP∇B
2,2L(Y, fP,λ(X)) · ( f2(X)− fP,λ(X))Φ(X)

)∥

∥

∥

H

=
∥

∥

∥
E(1−ε)P+εQ

(

∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))
)

·Φ(X) (19)

−EP∇B
2,2L(Y, fP,λ(X)) · ( f1(X)− f2(X))Φ(X)

∥

∥

∥

H

≤ |1− ε|
∥

∥

∥
EP

(

∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))

−∇B
2,2L(Y, fP,λ(X)) · ( f1(X)− f2(X))

)

Φ(X)
∥

∥

∥

H

+|ε|
∥

∥

∥
EQ

(

∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))
)

·Φ(X)
∥

∥

∥

H

+|ε|
∥

∥

∥
EP∇B

2,2L(Y, fP,λ(X)) · ( f1(X)− f2(X))Φ(X)
∥

∥

∥

H
=: |1− ε|A+ |ε|B+ |ε|C . (20)

We shall show that (20) is bounded from above by ε∗ ‖ f1 − f2‖H . When we look at the first par-
tial B-derivatives of our loss functions, we see that we can separate them in 2 cases: for Lε and
Lτ−pin there are one or more discontinuities in ∇B

2 L, whereas ∇B
2 L is continuous for Lc−Huber. Re-

call that the set D of points where Lipschitz continuous functions are not Fréchet-differentiable,
has Lebesgue measure zero by Rademacher’s theorem (Rademacher, 1919). Define the function
h
(

y, f1(x), f2(x)
)

:= ∇B
2 L

(

y, f1(x)
)

− ∇B
2 L

(

y, f2(x)
)

. For L ∈ {Lε,Lτ−pin}, denote the set of dis-
continuity points of ∇B

2 L by D. Take f1, f2 ∈ Nδ1( fP,λ). For ∇B
2 L(Y, fP,λ(x)) /∈ D we obtain

∇B
2 L(Y, f1(x)) = ∇B

2 L(Y, f2(x)) for sufficiently small δ1 and hence h(y, f1(x), f2(x)) = 0. If, on
the other hand, ∇B

2 L(Y, fP,λ(x)) ∈ D and f1(x) < fP,λ(x) < f2(x) or f2(x) < fP,λ(x) < f1(x), then
∇B

2 L(Y, f1(x)) 6= ∇B
2 L(Y, f2(x)) and hence h(y, f1(x), f2(x)) 6= 0. Define m = 2|D|.
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A.2.4 PINBALL LOSS

Using the first part of this proof we see that for the pinball loss L = Lτ−pin we obtain
|h(y, f1(x), f2(x))| ≤ c1, with c1 = 1, D = {0}, m = 2, and ∇B

2,2L(y, t) = 0, for all t ∈
�

. For all
f ∈ Nδ1( fP,λ) we get

| f (x)− fP,λ(x)| ≤
∥

∥ f − fP,λ
∥

∥

∞ ≤ ‖k‖∞
∥

∥ f − fP,λ
∥

∥

H ≤ ‖k‖∞ δ1 . (21)

Further
| f1(x)− f2(x)| ≤ ‖ f1 − f2‖∞ ≤ ‖k‖∞ ‖ f1 − f2‖H ≤ 2‖k‖∞ δ1 . (22)

Using (21), (22), and (11) we obtain

A =
∥

∥EP(∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))) ·Φ(X)
∥

∥

H
≤ EP|h(Y, f1(X), f2(X))| |Φ(X)|

≤ ‖k‖2
∞ EP|h(Y, f1(X), f2(X))|1{h6=0}

≤ ‖k‖2
∞ c1P

(

∇B
2 L(Y, f1(X)) 6= ∇B

2 L(Y, f2(X))
)

= ‖k‖2
∞

(

P
(

{Y − f1(X) < 0}∧{Y − f2(X) > 0}
)

+P
(

{Y − f2(X) < 0}∧{Y − f1(X) > 0}
)

)

= ‖k‖2
∞

Z

X
P
(

Y ∈ ( f2(x), f1(x)) |x
)

+P
(

Y ∈ ( f1(x), f2(x)) |x
)

dPX(x)

= ‖k‖2
∞

Z

X
P
(

Y ∈ ( f2(x), f2(x)+ [ f1(x)− f2(x)]) |x
)

+P
(

Y ∈ ( f1(x), f1(x)+ [ f2(x)− f1(x)]) |x
)

dPX(x)

≤ m‖k‖2
∞

Z

X
cP| f1(x)− f2(x)|

1+ξPdPX(x)

≤ m‖k‖2
∞ cP ‖ f1 − f2‖

1+ξP
∞

≤ mcP ‖k‖3+ξP
∞ ‖ f1 − f2‖

1+ξP

H ,

where PX denotes the marginal distribution of X . Similar calculations give that B ≤ mcQ ‖k‖3+ξQ
∞

‖ f1 − f2‖
1+ξQ

H . We obtain C = 0, because ∇B
2,2L(Y, fP,λ(X)) = 0. Hence, the term in (20) is less than

or equal to

|1− ε|mcP ‖k‖3+ξP
∞ ‖ f1 − f2‖

1+ξP

H + |ε|mcQ ‖k‖3+ξQ
∞ ‖ f1 − f2‖

1+ξQ

H

=
(

|1− ε|cP ‖k‖ξP
∞ ‖ f1 − f2‖

ξP

H + |ε|cQ ‖k‖ξQ
∞ ‖ f1 − f2‖

ξQ

H
)

m‖k‖3
∞ ‖ f1 − f2‖H

≤ ε∗‖ f1 − f2‖H ,

where ε∗ = (|1− ε|cP ‖k‖ξP
∞ 2ξPδξP

1 + |ε|cQ ‖k‖ξQ
∞ 2ξQδξQ

1 )m‖k‖3
∞ .

A.2.5 ε-INSENSITIVE LOSS

The proof for the ε-insensitive loss L = Lε is analogous to the proof for Lτ−pin, but with c1 = 2,
D = {−ε,+ε}, m = 4 and thus we must consider 4 cases instead of 2 where h(y, f1(x), f2(x)) 6= 0.
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A.2.6 HUBER LOSS

For Huber’s loss function L = Lc−Huber we have |∇B
2,2L(y, t)| ≤ 1 := c2 and h(y, f1(x), f2(x)) is

bounded by c1 = 2c. Let us define

h∗(y, fP,λ(x), f1(x), f2(x)) := ∇B
2 L(y, f1(x))−∇B

2 L(y, f2(x))

−∇B
2,2L(y, fP,λ(x)) · ( f1(x)− f2(x)).

Somewhat tedious calculations show that there are 8 cases where h∗(y, fP,λ(x), f1(x), f2(x)) 6= 0
and 6 cases where h∗(y, fP,λ(x), f1(x), f2(x)) = 0. In each of the 8 cases, y − fP,λ(x) ∈ {−c,c}
and |h∗(y, fP,λ(x), f1(x), f2(x))| ≤ | f1(x)− f2(x)|. Due to symmetry of the Huber loss function, the
calculations are quite similar, therefore we only consider here some cases.

If −c < Y − fP,λ(x) < c, then ∇B
2,2L(Y, fP,λ(x)) · ( f1(x)− f2(x)) = f1(x)− f2(x) and for suffi-

ciently small δ1, ∇B
2 L(Y, f1(x)) = −(Y − f1(x)) and ∇B

2 L(Y, f2(x)) = −(Y − f2(x)). A small calcu-
lation shows that h∗(Y, fP,λ(x), f1(x), f2(x)) = 0.

By straightforward calculations we also obtain that h∗(Y, fP,λ(x), f1(x), f2(x)) = 0 for the fol-
lowing 5 cases:

1. Y − fP,λ(x) < −c or Y − fP,λ(x) > c,

2. Y − fP,λ(x) = −c and fP,λ(x) > f2(x) > f1(x),

3. Y − fP,λ(x) = −c and f1(x) > f2(x) > fP,λ(x),

4. Y − fP,λ(x) = c and fP,λ(x) > f2(x) > f1(x),

5. Y − fP,λ(x) = c and f1(x) > f2(x) > fP,λ(x).

If Y − fP,λ(x) = −c and f1(x) > fP,λ(x) > f2(x), we get ∇B
2 L(Y, f1(X)) = c, ∇B

2 L(Y, f2(x)) =
−(Y − f2(x)) and ∇B

2,2L(Y, fP,λ(x)) · ( f1(x)− f2(x)) = 0. Hence,

h∗(Y, fP,λ(x), f1(x), f2(x)) = c+Y − f2(x) = fP,λ(x)− f2(x) 6= 0,

since f2(x) < fP,λ(x).
Analogously, some calculations show that h∗(Y, fP,λ(x), f1(x), f2(x)) 6= 0 for the following 7

cases:

1. Y − fP,λ(x) = −c and f2(x) > fP,λ(x) > f1(x),

2. Y − fP,λ(x) = −c and fP,λ(x) > f1(x) > f2(x),

3. Y − fP,λ(x) = −c and f2(x) > f1(x) > fP,λ(x),

4. Y − fP,λ(x) = c and f1(x) > fP,λ(x) > f2(x),

5. Y − fP,λ(x) = c and f2(x) > fP,λ(x) > f1(x),

6. Y − fP,λ(x) = c and fP,λ(x) > f1(x) > f2(x),

7. Y − fP,λ(x) = c and f2(x) > f1(x) > fP,λ(x).
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Using (12) in (20) we get for the term A in (20) that

A =
∥

∥EPh∗(Y, fP,λ(X), f1(X), f2(X))Φ(X)
∥

∥

H

≤ ‖k‖2
∞

Z

|h∗(y, fP,λ(x), f1(x), f2(x))|1{h∗ 6=0}dP(x,y)

≤ ‖k‖2
∞

Z

| f1(x)− f2(x)|P
(

Y ∈ {−c+ fP,λ(x),c+ fP,λ(x)}
∣

∣x
)

dPX(x) = 0.

Also C =
∥

∥

∥
EP∇B

2,2L(Y, fP,λ(X)) · ( f1(X)− f2(X))Φ(X)
∥

∥

∥

H
≤ κ2 ‖k‖3

∞ ‖ f1 − f2‖H . One can compute

the analogous terms to A and C, say A(Q) and C(Q), respectively, where the integration is with
respect to Q instead of P. Combining these expressions we obtain

B =
∥

∥EQ(∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))) ·Φ(X)
∥

∥

H

≤ EQ
∣

∣∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))−

∇B
2,2L(Y, fP,λ(X)) · ( f1(X)− f2(X))

∣

∣ |Φ(X)|

+EQ
∣

∣∇B
2,2L(Y, fP,λ(X)) · ( f1(X)− f2(X))

∣

∣ |Φ(X)|

= A(Q)+C(Q) ≤ κ2 ‖k‖3
∞ ‖ f1 − f2‖H .

Hence, the term in (20) is less than or equal to ε∗ ‖ f1 − f2‖H where ε∗ = 2|ε|κ2 ‖k‖3
∞. This gives the

assertion, because |ε| can be chosen arbitrarily small.

Proof of Corollary 6. Both partial F-derivatives ∇F
2 Llog(y, t) = 1− 2Λ(y− t) and ∇F

2,2Llog(y, t) =
2Λ(y− t)[1−Λ(y− t)] are clearly bounded, because Λ(z) ∈ (0,1), z ∈

�
. We only have to show

that ∇B
2 G(0, fP,λ) is strong for L = Llog, that is that the term in (19) is bounded by ε∗ ‖ f1 − f2‖H for

arbitrary chosen ε∗ > 0. A Taylor expansion gives for arbitrary y, t1, t2 ∈
�

that

Λ(y− t2) = Λ(y− t1)+(t1 − t2)Λ(y− t1)
(

1−Λ(y− t1)
)

+O((t1 − t2)
2). (23)

Combining (2), (21), (22), and (23) we obtain
∣

∣EP
(

∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))−∇B
2,2L(Y, fP,λ) · ( f1(X)− f2(X))

)

Φ(X)
∣

∣

≤ 2‖k‖2
∞ EP

∣

∣Λ(Y − f2(X))−Λ(Y − f1(X))

−Λ(Y − fP,λ(X))(1−Λ(Y − fP,λ(X))
(

f1(X)− f2(X)
)∣

∣

≤ 2‖k‖2
∞ EP

∣

∣

(

f1(X)− f2(X)
)[

Λ(Y − f1(X))(1−Λ(Y − f1(X)))

−Λ(Y − fP,λ(X))(1−Λ(Y − fP,λ(X)))
]

+O(( f1(X)− f2(X))2)
∣

∣

≤ 2‖k‖2
∞ EP

(

‖ f1 − f2‖∞
∣

∣Λ(Y − f1(X))(1−Λ(Y − f1(X))) (24)

−Λ(Y − fP,λ(X))(1−Λ(Y − fP,λ(X)))
∣

∣+ c3 ‖ f1 − f2‖
2
∞
)

.

A Taylor expansion around fP,λ(x) shows that Λ(y− f1(x))(1−Λ(y− f1(x))) equals

Λ(y− fP,λ(x))(1−Λ(y− fP,λ(x)))

+
(

fP,λ(x)− f1(x)
)

Λ(y− fP,λ(x))(1−Λ(y− fP,λ(x)))(1−2Λ(y− fP,λ(x)))

+ O(( f1(x)− fP,λ(x))
2) .
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Using this expansion and (2), (21), and (22) it follows that the term in (24) is bounded by

2‖k‖2
∞ EP

(

‖ f1 − f2‖∞ (
∥

∥ f1 − fP,λ
∥

∥

∞ /4+ c4δ2
1 ‖k‖2

∞)+ c3 ‖ f1 − f2‖
2
∞
)

≤ ‖k‖4
∞

(

δ1/2+2c4δ2
1 ‖k‖∞ +4c3δ1

)

‖ f1 − f2‖H . (25)

Using the Lipschitz continuity of ∇B
2 L(y, ·), (2), and (23) we obtain

|ε|EQ−P
∣

∣

(

∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))
)

·Φ(X)
∣

∣

≤ |ε|‖k‖2
∞ E|Q−P|

∣

∣∇B
2 L(Y, f1(X))−∇B

2 L(Y, f2(X))
∣

∣

≤ |ε|‖k‖3
∞ ‖ f1 − f2‖H . (26)

Combining (25) and (26) shows that the term in (19) is bounded by ε∗ ‖ f1 − f2‖H with the positive
constant ε∗ = ‖k‖3

∞
(

δ1 ‖k‖∞ /2 + 2c4δ2
1 ‖k‖2

∞ + 4c3δ1 ‖k‖∞ + |ε|
)

, where δ1 > 0 and ε > 0 can be
chosen as small as necessary.
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