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We would like to thank the authors for their provocative view on boosting. Their view is built
upon some “contrary” evidence based on a particular simulation model. In our discussion, we argue
that the structure of the simulation model explains many aspects of the “contrary” evidence. We
touch upon the issue of shrinkage or small step-sizes, and we conclude that the “statistical view”
provides constructive insights for applying boosting in a highly successful way.

The gradient and “statistical” point of view The gradient point of view of AdaBoost is, in our
opinion, a great leap forward for understanding AdaBoost and deriving new variants of boosting now
meaning much more than just AdaBoost. This view, which seems to be called the “statistical view”
by Mease and Wyner (MW), has been pioneered by Breiman (1998, 1999), Friedman et al. (2000),
Mason et al. (2000) Rätsch et al. (2001) and is not just a product of the statistics community. The
gradient view of boosting allows transferring of the boosting methodology to many other contexts
than just classification, see for example Meir and Rätsch (2003) or Bühlmann and Hothorn (2007)
for an overview. We should also emphasize that the gradient view has never promised to explain
everything about AdaBoost. Hence we are puzzled by the negative picture of this view painted in
the paper under discussion: it differs greatly for most part from our experience and understanding
of the statistical research on boosting. In particular, the MW paper seems to ignore simulation, real
data and theoretical evidence about overfitting and early stopping (cf. Bartlett and Traskin 2007
regarding asymptotic theory for AdaBoost). We will discuss these issues in more details below.

The relevance of MW’s counter-examples The evidences in MW are simulated “counter-
examples”. It is questionable that they are representative of situations encountered in practice.
More importantly, with one exception, evidence of differences shown contradicting the so-called
“statistical view” are 1 or 2 % in error rate. One wonders how important or meaningful these differ-
ences are in practice, even though they might be statistically significant. In any real world situation,
the model used is for sure wrong and the approximation error of the model to the real situation could
easily swallow these small differences in performance.
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Furthermore, all the evaluation metrics in the MW paper are on statistical performance without
any consideration of the computation involved or the meaning of the model derived. For large data
problems, computation is an indispensable player and needs to be in the picture.

Additive decision boundary but non-additive logit-probabilities MW’s model (in Section 3) is
additive for the decision boundary. In terms of conditional probabilities p(x) = P[Y = 1|X = x] on
the logit-scale, logit(p(x)) is not an additive function in the (feature) components of x.

Since the population minimizer of (gradient) AdaBoost or also of LogitBoost equals

Fpop(x) = 0.5 · logit(p(x)) = 0.5 · log

(

p(x)
1− p(x)

)

,

a (boosting) estimate will be good if it involves an effective parameterization. We believe that this
is a central insight, which has been pioneered by Breiman (1998, 1999), Friedman et al. (2000) and
which has been further developed by more recent asymptotic results on boosting. In the MW model,
Fpop(x) is non-additive in x while boosting with stumps yields an estimate f̂ (x) which is additive in
x. We think that this is the main reason why some of the figures in MW lead to “contrary” evidence:
with our model, as illustrated below, the comparison of stumps versus larger trees for weak learners
is always in favor of stumps, that is, stumps yield better performance and larger trees are more
heavily overfitting which is the opposite finding to Figures 1, 2, and 11 in MW. MW’s model in
Section 4 involves only a single component of x and hence it is additive also on the logit-scale for
the probabilities. But our own model described below does not confirm MW’s statement that their
findings “do not depend on a particular simulation model”.

Other issues in MW concerning “contrary” evidence cannot be easily explained by the nature of
the model.

Figure 3 intends to show that LogitBoost is worse than AdaBoost. The MW finding might seem
relevant at 1000 iterations. But one doesn’t need to go that far for both methods by early stopping.
100 or so iterations seems enough for stumps and 400 for 8-node trees. The performance difference
is then less than 1%. Thus, having some computation savings in mind, early stopped LogitBoost is
preferable.

Figure 4 tries to make the point that early stopping could hurt to lose about 1% performance
when the total Bayes error is 20% and there is no structure to be learned. However, the 1000
iteration model undoubt-fully gives the wrong impression that something is there, while the early
stopped model gives the correct impression that not much is to be learned. Hence we think early
stopping is not hurting here. In addition, the starting value of boosting matters but this issue is
ignored in standard AdaBoost. A (gradient) boosting algorithm should be started with Finit = F0 ≡
0.5log(p̂/(1− p̂)) where p̂ is the empirical frequency of Y = 1, cf. Bühlmann and Hothorn (2007).
That is, boosting would (try to) improve upon the MLE from the “pure noise” model. Then, it is
expected - and we checked this using gradient LogitBoost on the unbalanced example corresponding
to Figure 4 in MW - that boosting will overfit from the beginning because the underlying structure
is pure noise. The same idea could be applied to AdaBoost as well: in contrast, standard AdaBoost
and MW start with the naive value Finit = F0 ≡ 0.

Shrinkage and small step-sizes: another dimension for regularization MW makes some claims
about additional shrinking using small step-sizes. As we understand Friedman (2001), he never in-
tended to say that a shrinkage factor would avoid overfitting. Instead, he argued that introducing
a shrinkage factor may improve the performance. Later, Efron et al. (2004) made the connection,
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in the setting of linear models, that boosting with an infinitesimally small shrinkage step is equiv-
alent to the Lasso under some conditions, and for general situations, Zhao and Yu (2007) showed
that appropriate backward steps need to be added to boosting to get Lasso. This intriguing con-
nection shows again that the shrinkage factor cannot eliminate overfitting. All what it achieves is
a different, usually more powerful solution path (with a new regularization dimension through the
step-size) than without shrinkage.

Our own findings with an additive model for logit-probabilities Now we devise our own sim-
ulation model to clarify some issues regarding overfitting, choice of weak learner and the estima-
tion of probabilities via boosting. Arguably, as emphasized above, examples should not be over-
interpreted. However, in view of many reported findings similar to what we show here, we feel that
our examples are rather “representative” and we are reporting major instead of slight differences.

Our model is in the spirit of MW but on the logit-scale:

logit(p(x)) = 8
5

∑
j=1

(x j −0.5)

Y ∼ Bernoulli(p(x)),

where p(x) = P[Y |X = x]. This model has Bayes error rate approximately equal to 0.1 (as in the MW
paper). We use this model as it is additive on the logit-scale for the probabilities since the population
minimizer of (gradient) AdaBoost and (gradient) LogitBoost is 0.5logit(p(x)). We use n = 100,
d = 20 (i.e., 15 ineffective features), x as in MW and we show the results for one representative
example with test set of size 2000. We skipped the repetition step over many realizations from
the model: again, we think that one realization is representative and it mimics somewhat better the
situation of analyzing one real data set.

We consider the misclassification test error, the surrogate loss test error (e.g., the test set average
of exp(−y f̂ ) for AdaBoost) and the absolute error for probabilities

1
2000

2000

∑
i=1

|p̂(Xi)− p(Xi)|,

where averaging is over the test set.
All our computations have been done with MW’s code for AdaBoost and the R-package mboost

from Bühlmann and Hothorn (2007): we used stumps and larger trees as weak learners. By the way,
MW’s code is not implementing 8 node trees but trees which have on average about 6-8 terminal
nodes (during the boosting iterations for this model). The results are displayed in Figures 1- 3. A
comparison is also made to the naive estimator with p̂(x) ≡ 0.5.

From this very limited experiment we find all facts that we view as important and typical for
boosting:

1. Overfitting can be a severe issue when considering the test surrogate loss or for estimating
conditional probabilities. In fact, overfitting is seen clearly for all three methods, that is gradi-
ent AdaBoost, LogitBoost and AdaBoost. In addition, the misclassification loss is much more
insensitive with respect to overfitting. This has been pointed out very clearly in Bühlmann
and Yu (2000) and in the rejoinder of Friedman et al. (2000).
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Figure 1: Gradient boosting with exponential loss (gradient AdaBoost). Left panel: Test set mis-
classification error; Middle panel: test set surrogate loss; Right panel: test set absolute
error for probabilities. Black: stumps; Red: larger tree; Blue dashed line: naive estimator.
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Figure 2: Gradient boosting with Binomial log-likelihood (gradient LogitBoost). Left panel: Test
set misclassification error; Middle panel: test set surrogate loss; Right panel: test set
absolute error for probabilities. Black: stumps; Red: larger tree; Blue dashed line: naive
estimator.
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Figure 3: AdaBoost (as in MW). Left panel: Test set misclassification error; Middle panel: test set
surrogate loss; Right panel: test set absolute error for probabilities. Black: stumps; Red:
larger tree; Blue dashed line: naive estimator. More details are described in point 4 of our
summary of findings.

2. Estimating conditional probabilities is quite reasonable when stopping early: as in point 1
above, we see very clearly that early stopping is absolutely crucial for all three methods.
And LogitBoost with early stopping gives the best misclassification error and best probability
estimate among the three.

3. Regarding the weak learner, larger trees are worse than stumps for our model where the
conditional probability function is additive on the logit scale. The “statistical view” reveals the
model behind AdaBoost and LogitBoost: we have to consider the logit-scale (the MW model
is not additive in terms of the logit of conditional probabilities; note that for the decision
boundary the scale doesn’t matter while it does play a role for conditional probabilities).

Larger trees do overfit more heavily for probability estimation or with respect to surrogate
test loss. For non-additive models (for probabilities on the logit-scale), the overfitting will
kick in later for large trees as the the underlying model requires a more complex fit to balance
approximation (“bias”) and stochastic error (“variance”).

4. Somewhat more in line with the MW paper, the original AdaBoost has less a tendency to
overfit than the gradient boosting version. The reason why AdaBoost with the larger tree in
Figure 3 is staying constant after a while is due to the fact that the algorithm gets “stuck”:
it alternates back and forth and hence, the amount of overfitting is limited. At this stage of
alternating behavior the estimated conditional class probabilities are very much concentrated
around either zero or one (not shown but similar to Fig. 18 in MW), that is, overfitting has
kicked in severely. We are not convinced that this “getting stuck” property of the algorithm is
desirable, despite the consequence that a bound on overfitting is then obviously in action. The
surrogate loss function in AdaBoost explodes much earlier (w.r.t. boosting iterations) and one
needs to implement an upper bound in the program in order to avoid NA values (MW’s code
needs some small modification here!).
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Our general understanding about Boosting and it’s success Instead of going through all issues
in MW, we choose instead to repeat several general understandings about boosting which were
incorrectly questioned by the paper under discussion:

A. Overfitting does matter, and it is a function of the both the “bias” and “variance”. Large trees
do not overfit heavily in terms of classification error because:
(i) the misclassification loss is very insensitive to overfitting (see Bühlmann and Yu 2000 and
the rejoinder of Friedman et al. 2000);
(ii) larger trees are not as “complex” as the number of nodes in them indicates since they are
fitted in a greedy fashion (e.g., 8-node trees fitted by boosting are not 4 times as complex as
stumps with two nodes).

Most probably, the difference between plain vanilla AdaBoost and a gradient version of Ad-
aBoost (as in MW) will not play a crucial role in terms of overfitting behavior; but gradient-
based boosting seems somewhat more exposed to overfitting while AdaBoost can get stuck
which naturally limits the amount of overfitting (on a single data-set).

B. Early stopping, particularly for probability estimation, is very important (because of overfit-
ting) and brings computational savings. The supporting theory is given in, for example, Zhang
and Yu (2005), Bühlmann (2006), Bartlett and Traskin (2007) and Bissantz et al. (2007).

C. Estimating probability via boosting is often quite reasonable. It is essential though to tune the
boosting algorithm appropriately: a good choice is to do early stopping with respect to the
log-likelihood test score (see next point regarding surrogate and evaluating loss).

D. It is important to distinguish between surrogate loss (implementing loss) and loss (evaluating
loss) function. For example, there is no surprise that it can happen with AdaBoost that the
training misclassification error is zero while the test set misclassification still decreases.

The usage of boosting as we have advocated in our works, and this is very much in line with
Friedman et al. (2000) and their subsequent works, has proven to be very competitive and success-
ful in applications. Gao et al. (2006) describe a successful application of boosting to a language
transliteration problem. Lutz (2006) has won the performance prediction challenge of the world
congress in computational intelligence in 2006 (WCCI 2006): he was using early-stopped Logit-
Boost with stumps. Part of his success is probably due to careful choice of choosing the stopping
iteration: according to personal communication (he has been a former PhD student of the first au-
thor of this discussion), he stopped before reaching the minimal value of a cross-validation scheme.
In summary, he did not take any of the findings from MW into account (he didn’t know the paper
at that time, of course). Maybe his success is more convincing evidence that LogitBoost with (i) its
“natural” loss function for a binary classification problem, and using (ii) early stopping, (iii) simple
weak learners and (iv) a small step size (i.e., shrinkage factor) often works surprisingly well. Other
references about successful applications of gradient-based boosting can be found in Bühlmann and
Hothorn (2007) which includes the R package mboost (standing for model-based boosting) for nu-
merous application areas ranging from classification, regression, generalized regression to survival
analysis.
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