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Abstract
Center-based partitioning clustering algorithms rely on minimizing an appropriately formulated
objective function, and different formulations suggest different possible algorithms. In this paper,
we start with the standard nonconvex and nonsmooth formulation of the partitioning clustering
problem. We demonstrate that within this elementary formulation, convex analysis tools and op-
timization theory provide a unifying language and framework to design, analyze and extend hard
and soft center-based clustering algorithms, through a generic algorithm which retains the compu-
tational simplicity of the popular k-means scheme. We show that several well known and more
recent center-based clustering algorithms, which have been derived either heuristically, or/and have
emerged from intuitive analogies in physics, statistical techniques and information theoretic per-
spectives can be recovered as special cases of the proposed analysis and we streamline their rela-
tionships.
Keywords: clustering, k-means algorithm, convex analysis, support and asymptotic functions,
distance-like functions, Bregman and Csiszar divergences, nonlinear means, nonsmooth optimiza-
tion, smoothing algorithms, fixed point methods, deterministic annealing, expectation maximiza-
tion, information theory and entropy methods

1. Introduction

The clustering problem is to partition a given data set into similar subsets or clusters, so that ob-
jects/points in a cluster are more similar to each other than to points in another cluster. This is
one of the fundamental problem in unsupervised machine learning, and it arises in a wide scope
of applications such as astrophysics, medicine, information retrieval, and data mining to name just
a few. A closely related problem is the one of vector quantization, mainly developed in the field
of communication/information theory. The interdisciplinary nature of clustering is evident through
its vast literature which includes many clustering problem formulations, and even more algorithms.
For a survey on clustering approaches, see Jain et al. (1999), and for vector quantization the review
paper of Gray and Neuhoff (1998), and the references therein.

Basically, the two main approaches to clustering are hierarchical clustering and partitioning
clustering. In this paper we focus on partitioning clustering, where the number of clusters is known
in advance. Most well known partitioning clustering methods iteratively update the so-called cen-
troids or cluster centers, and as such, are often referred as center-based clustering methods. These
clustering methods are usually classified as: hard and soft, depending on the way data points are
assigned to clusters. Hard clustering produces a disjoint partition of the data, that is, a binary strat-
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egy is used so that each data point belongs exactly to one of the partitions. In that class, one of
the most celebrated and widely used hard clustering algorithm is the classical k-means algorithm,
which basic ingredients can already be traced back to an earlier work of Steinhaus (1956). The algo-
rithm has been derived in the statistical literature by Forgy (1965) and MacQueen (1967). Another
well known variant includes the Linear Vector Quantization (LVQ) algorithm of Lloyd (1982). Soft
clustering is a relaxation of the binary strategy used in hard clustering, and allows for overlapping
of the partitions. In that class, there exists a plethora of algorithms which will be shortly outlined
below.

1.1 Motivation

Finding a true optimal partition of a fixed number of sets in a given n-dimensional space is known to
be an NP-hard problem (Garey and Johnson, 1979), and thus is in general out of reach. As a result,
the current literature abounds in approximation algorithms for the partitioning clustering problem.

This paper is a theoretical study of center-based clustering methods from a continuous opti-
mization theory viewpoint. One of the most basic and well-known formulation of the partitioning
clustering problem consists of minimizing the sum of a finite collection of “min”-functions, which
is a nonsmooth and nonconvex optimization problem. Building on convex and nonlinear analysis
techniques, we present a generic way to design, analyze and extend center-based clustering algo-
rithms by replacing the nonsmooth clustering problem with a smooth optimization problem. The
general framework and formalism has the advantage to provide a rigorous analysis for center-based
clustering algorithms, as well as to reveal the underlying difficulties, and it paves the way for build-
ing new schemes. Moreover, as we shall see below, this provides a closure and unification to many
disparate approaches that have led to center-based algorithms which have been widely used in appli-
cations, for example, fuzzy k-means, deterministic annealing, clustering with general divergences,
and which are shown to be special cases of the proposed framework.

We give now a brief summary of some of the relevant works that have motivated the present
study. All current center-based algorithms seek to minimize a particular objective function with
an attempt to improve upon the standard k-means algorithm. The latter is very attractive due to
its computational simplicity. It begins with an initial guess of the centers (usually at random), and
consists of two main steps: the first is the cluster assignment, which assigns each data point to the
closest cluster center; the second step re-compute the cluster centers as a weighted arithmetic mean
of all points assigned to each cluster centers. The algorithm stops when there is no more changes in
the partitions, that is, cluster centers no longer move. The simplicity of the k-means has also a price,
and it is well known that besides the fact that it does not find an optimal partition, a fact which is
surely not too surprising given the alluded difficulty of the partitioning problem, the algorithm also
suffers from several drawbacks, for example, it is highly sensitive to initial choice of cluster centers,
it might produce empty clusters, it does not provide flexibility to model and measure the influence
of specific data types arising in different applications etc...All these difficulties have motivated the
search for “better quality” clustering algorithms that could possibly cope with the listed drawbacks.

To achieve this goal, various approaches and techniques have been advocated and a large body
of literature has emerged, in particular in the statistic, computer science and engineering research re-
lated disciplines, while in the continuous optimization community, clustering analysis has received
limited attention, with some of the early studies including for example Rao (1971) and Gordon and
Henderson (1977). One direction of research in optimization has been to consider heuristic exten-
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sions of the k-means algorithm for the classical minimum sum of squares clustering problem, and
which have been shown to be quite successful in practice. For instance, the work of Hansen and
Mladenovic (2001) suggests a new descent local search heuristic and reports experimental results
showing that it outperforms other known local search methods, quite substantially. A more recent
account of optimization approaches to clustering can be found in the excellent and extensive survey
paper of Bagirov et al. (2003), and references therein, which among various nonsmooth and global
optimization methods, includes the application of the discrete gradient method. The latter is a tech-
nique for local optimization that can escape from stationary points which are not local minimizers
(see also for instance the more recent work Bagirov and Ugon, 2005).

Another direction of research has been to consider objective functions involving proximity mea-
sures other than the usual squared Euclidean distance that is used in k-means. Indeed, different data
types arising in many applications have justified the search for more meaningful proximity mea-
sures that can better model a given data set. In hard clustering algorithms, several researchers have
considered such an approach to extend the k-means algorithm. To mention just a few of the re-
cent studies in that direction (see, for example, Modha and Spanger, 2003; Banerjee et al., 2005;
Teboulle et al., 2006), and the extensive relevant bibliography given in these papers.

More intensive research activities have focused on developing soft clustering algorithms. In
that context, the literature on iterative methods for clustering is wide, and includes a large num-
ber of works and approaches that have been motivated by different fields of applications, and often
use different tools and terminology. Many soft clustering algorithms have emerged and have been
developed from heuristic considerations, axiomatic approaches, or/and are based on statistical tech-
niques, physical analogies, and information theoretic perspectives. For example, well known soft
clustering methods include the Fuzzy k-means (FKM), (see, for example, Bezdek, 1981), the Ex-
pectation Maximization algorithm (EM), (see, for example, Duda et al., 2001), Maximum Entropy
Clustering Algorithms (MECA), (see, for example, Rose, 1998), the Deterministic Annealing (DA)
(Rose et al., 1990), and the closely related similar technique with the same name proposed by Ueda
and Nakano (1998). The latter technique is very useful in practice, see for instance its application
to documents clustering in the recent work of Elkan (2006). More recent and other soft clustering
methods include for example the work of Zhang et al. (1999) which proposes a clustering algorithm
called k-harmonic means, and which relies on optimizing an objective function defined as the har-
monic mean of the squared Euclidean distance from each data points to all centers. An extension of
this method has also been further developed in Hamerly and Elkan (2002). All the cited studies have
also reported many experimental results to demonstrate the potential benefits of modifying, and ex-
tending the aforementioned classes of center-based algorithms, and to show their promise, and/or
advantage over the standard k-means, as well as their relevance in several practical and real-life
application contexts.

1.2 Main Contributions

Motivated by all these works, this paper has three main goals: (a) to reveal the underlying mathe-
matical tools that explain and enables us to design, analyze and extend center-based clustering algo-
rithms, (b) to develop a generic iterative scheme that keeps the simplicity of the k-means, allows for
a rigorous analysis of center-based clustering methods, and reveals their potential advantages and
limitations; (c) to provide a closure and unification to a long list of disparate motivations and ap-
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proaches that have been proposed for center-based clustering methods, and which as alluded above,
have been widely used in practice.

To achieve these goals, in this paper we develop a systematic and theoretical study of center-
based clustering methods from a continuous optimization theory perspective, which leads to a com-
mon language, and a unifying framework for building and analyzing a broad class of hard and soft
center-based clustering algorithms. This provides the basis for significantly extend the scope of
center-based partitioning clustering algorithms, to bridge the gap between previous works that were
relying on heuristics and experimental methods, and to bring new insights into their potential. The
proposed framework also shows that all current center-based algorithms are capable of handling
only the nonsmoothness difficulty inherent in the clustering problem, but do not provide a cure to
the nonconvexity difficulty which remains a challenging one.

A brief summary of our results and the organization of the paper is a follows. In Section 2 we
begin with the standard optimization formulation of the partitioning clustering problem that focuses
on the nonsmooth nonconvex optimization formulation in a finite dimensional Euclidean space. An
obvious key factor in modelling a clustering problem is the choice of the distance measure involved,
and which depends on the nature of the problem’s data. To handle this situation, we will consider
a broad concept of distance-like functions (Auslender and Teboulle, 2006), which extends (and in-
cludes) the usual quadratic Euclidean distance setting. We outline their basic properties, and give
two generic examples which include the useful and important Bregman and Csiszar based diver-
gences. In Section 3, we furnish the necessary background and known results from convex analysis,
with a particular focus on two central mathematical objects: support and asymptotic functions,
which will play a primary role in the forthcoming analysis of clustering problems. The connection
between support and asymptotic functions has been used in past optimization studies to develop
a general approach to smoothing nonsmooth optimization problems (Ben-Tal and Teboulle, 1989;
Auslender, 1999; Auslender and Teboulle, 2003). Building on these ideas, in Section 4 we first
describe an exact smoothing mechanism, which provides a very simple way to design and analyze a
wide class of center-based hard clustering algorithms. In turns, the support function formulation of
the clustering problem also provides the starting point for developing a new and general approximate
smoothing approach to clustering problems. This is achieved by combining the notion of asymptotic
functions with another fundamental mathematical object: the concept of nonlinear means of Hardy
et al. (1934). We study the relationships and properties of both concepts, and demonstrate that their
combination provides a natural and useful framework in the context of clustering. This enables us to
arrive at a unified approach for the formulation and rigorous analysis of soft center-based clustering
methods. Building on these results, and thanks to the specific form of the objective function one has
to minimize in the resulting smooth reformulation of the clustering problem, in Section 5 we intro-
duce a simple generic fixed point algorithm, analyze its properties and establish its convergence to
a stationary point. The generic algorithm is computationally as simple as the k-means method, and
thus appears suitable for practical purposes. Finally, in Section 6, we show that all the aforemen-
tioned hard and soft center-based clustering methods, which have been proposed in the literature
from different motivations and approaches can be realized as special cases of the proposed analysis,
and we streamline their relationships.
Notations. We use boldface notation for a finite collection of k vectors in a given finite dimensional
Euclidean space IRn, that is, IRkn 3 x := (x1, . . . ,xk), with IRn 3 xl := (xl

1, . . .x
l
n), l = 1, . . . ,k. The

inner product for two vectors u,v in IRn is denoted by uT v ≡ 〈u,v〉. For an open set S ⊂ IRn, the
notation S stands for the topological closure of S, and we also use the notation S,(S) to denote the k-
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fold Cartesian product S× . . .×S, (S× . . .×S). For any nonempty convex set C⊂ IRn, δC denotes the
indicator function of C, intC (riS) its interior (relative interior). The convex hull of a set A is denoted
by convA . The set of vectors in IRn with nonnegative (positive, negative) components is denoted by
IRn

+ (IRn
++, IRn

−−). For any function g defined on IRn, we also use the notation g(z)≡ g(z1, . . . ,zn).

2. The Clustering Problem with General Distance-Like Functions

In this paper, we focus on the basic nonsmooth nonconvex optimization formulation of the partition-
ing clustering problem which uses a broad class of distance-like functions (proximity measures) that
replaces (and includes) the usual squared Euclidean norm. As we shall see later on in Sections 4 and
5, this formulation provides a source of explanations to design and analyze center-based clustering
iterative algorithms.

2.1 Nonsmooth Optimization Formulation of Clustering

Let A = {a1, . . . ,am} be a given set of points in the subset S of a finite dimensional Euclidean
space IRn, and let 1 < k < m be a fixed given number of clusters. The clustering problem consists
of partitioning the data A into k subsets {A1, . . . ,Ak}, called clusters. The common approach to
formulate the clustering problem is as follows. For each l = 1, . . . ,k, the cluster Al is represented by
its center (centroid) xl , and we want to determine k cluster centers {x1, . . .xk} such that the sum of
proximity measures from each point ai to a nearest cluster center xl is minimized. Suppose for the
moment that we are given a proximity measure d(·, ·) that satisfies the following basic properties:

d(u,v)≥ 0, ∀(u,v) ∈ S and d(u,v) = 0 ⇐⇒ u = v.

We will call d(·, ·) a distance-like function, since we are not necessarily asking for d(·, ·) to be
symmetric or to satisfy the triangle inequality, (a more precise definition for d is given later in
§ 2.2). Then, the distance from each ai ∈ A to the closest cluster center is:

D(x,ai) = min
1≤l≤k

d(xl,ai).

The clustering problem seeks to minimize the average over the entire data set A . Thus, assigning
a positive weight νi to each D(x,ai), such that ∑m

i=1 νi = 1, (for example, each νi can be used to
model the relative importance of each point ai), the clustering problem consists of finding the set of
k centers {x1, . . . ,xk} that solves

(NS) min
x1,...,xk∈S

F(x1, . . . ,xk) :=
m

∑
i=1

νi min
1≤l≤k

d(xl,ai).

When the distance is the square of the Euclidean norm, that is, d(u,v) = ‖u−v‖2, and the average is
the special uniform case, that is, νi = m−1 for all i, this formulation can be traced back to the work
of Lloyd (1982) when related to vector quantization algorithms (Linde et al., 1980).

For k = 1, problem (NS) can either be analytically solved (e.g., when d is the quadratic norm)
or is just an easy convex problem, when the proximity measure d is given convex. Likewise, for
k = m, the (NS) problem is trivial, (i.e., each point is assigned to each cluster), while for k > m the
problem is infeasible. Thus, the interesting situation is when 1 < k < m, for which the problem (NS)
is nonsmooth and nonconvex. Furthermore, the number of variables is n×k, and since n is typically
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very large, even with a moderate number of clusters k, the clustering problem yields a very large
scale optimization problem to be solved. Therefore, the clustering problem in this most elementary
formulation (i.e., where k, the number of clusters is known) combines three of the most difficult and
challenging characteristics one encounters in an optimization problem: nonsmooth, nonconvex and
large scale.

2.2 Clustering with General Distance-Like Functions

We introduce a broad class of distance-like functions d that is used to formulate the clustering
problem in its general form, and we provide two generic families of such distance-like functions
for clustering. To measure the proximity of two given vectors in some subset S of IRn, we consider
the following concept of distance-like functions, as defined in the recent work of Auslender and
Teboulle (2006). The later concept has been widely used in several optimization algorithms, and for
more details and results we refer the reader to that work and the references therein.

First, we need to recall some basic notations and definitions in convex analysis, (see, for exam-
ple, Rockafellar, 1970). For a convex function g : IRn→ IR∪{+∞}, its effective domain is defined
by domg = {u | g(u) < +∞}, and the function is called proper if domg 6= /0, and g(u) >−∞, ∀u ∈
domg. For a proper, convex and lower semicontinuous function (lsc) g, (that is to say, that the epi-
graph of g is a closed set in IRn× IR) its subdifferential at x is defined by ∂g(x) = {γ ∈ IRn | g(z)≥
g(x)+ 〈γ,z− x〉, ∀z ∈ IRn} and we set dom∂g = {x ∈ IRn | ∂g(x) 6= /0}. When g is differentiable,
the subdifferential set reduces to the singleton ∇g(x), the gradient of g at x. Equipped with these
notations, we define now the notion of distance-like function.

Definition 1 A function d : IRn× IRn→ IR+∪{+∞} is called a distance-like function with respect
to an open nonempty convex set S⊂ IRn if for each y ∈ S it satisfies the following properties:
(d1) d(·,y) is proper, lsc, convex, and C2 on S with a positive definite symmetric matrix Hessian1

denoted by ∇2d(·,y);
(d2) domd(·,y) ⊂ S, and dom∂1d(·,y) = S where ∂1d(·,y) denotes the subgradient map of the
function d(·,y) with respect to the first variable;
(d3) d(·,y) is level bounded on IRn, that is, lim

‖u‖→∞
d(u,y) = +∞;

(d4) d(y,y) = 0, (which also implies that ∇1d(y,y) = 0, where ∇1d(·,y), is the gradient with
respect to the first variable.)

We denote by D(S) the family of functions d satisfying the premises of Definition 1. It should
be emphasized that the triangle inequality, and symmetry is not required in the definition of d, hence
the use of the “distance-like” terminology.

To understand the motivation behind the technical assumptions of Definition 1, and the forth-
coming mathematical developments given in Sections 4 and 5, let us already announce as an appe-
tizer, that the main (essentially the only one) computational step that will be needed in the generic
algorithm we developed in this paper for solving the clustering problem (NS), reduces to the solution
of an optimization problem which admits the simple form:

min{
m

∑
i=1

γid(x,ai) | x ∈ S}, (1)

1. We recall that the positive definiteness of the Hessian matrix implies that d(·,y) is strictly convex.
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with some given γi > 0, i = 1, . . . ,m. The properties (d1), and (d3) are needed to guarantee the ex-
istence of a unique global minimizer x∗ to the optimization problem of the form (1), while property
(d2) plays the role of a ”barrier”, and enforces the optimal solution x∗ to be in the open set S, (see
Section 5.1, and Lemma 14 for details). Property (d4) is just for normalization of d.

The class D(S) has been chosen in our setup, since it is broad and includes two useful generic
families that produces a wide variety of distance-like functions which are discussed next. However,
it should be noticed that as long as we can guarantee the existence of a unique global minimizer
to problem (1), the use of other classes of distance-like functions is possible; this situation will be
further illustrated below in Example 3.

2.3 Generic Families of Distance-Like Functions

As special cases of the class D(S), we briefly recall two particularly useful generic families that
produce a wide variety of distance-like functions which have been already shown to be relevant for
clustering, see for instance the recent work of Teboulle et al. (2006), and references therein.
• Bregman Based Distances Type2 Originally proposed by Bregman (1967), this class of distances
have been widely extended and analyzed in several optimization contexts and methods by Censor
and his co-authors, (see, for example, Censor and Lent, 1981), and the more recent comprehensive
monograph of Censor and Zenios (1997).

Let ψ : IRn → IR∪{+∞} be a proper, lsc, strictly convex function, with domψ ⊂ S, and such
that ψ is continuously differentiable on S := int(domψ). The Bregman based distance associated
with ψ is the function dψ : IRn× IRn→ [0,+∞] defined by

dψ(x,y) :=

{

ψ(x)−ψ(y)−〈x− y,∇ψ(y)〉 if y ∈ S
+∞ otherwise.

Most interesting and useful Bregman based distances functions are separable, and can be generated
with the choice

ψ(x) =
n

∑
j=1

ω(x j), (2)

with ω being some appropriate scalar twice differentiable convex function with ω′′(·) > 0 on
int(domω).

Example 1 Typical choices for ω(·) include ω(t) = t2, t log t,− log t,−(1− t2)1/2 with domain
domω = IR, IR+, IR++, [−1,1], respectively. Substituting these functions in dψ, with ψ as defined in
(2), the first three choices yields respectively the squared Euclidean distance, the Kullback-Liebler
based relative entropy and the Burg based relative entropy (also called the Itakura Saito distance).
For more examples and details in the context of clustering, see Teboulle et al. (2006), and references
therein.

• ϕ-Divergence Based Distances Type. Originally introduced by Csiszar (1967) in the context of
information theory to provide a notion generalizing divergence between probability measures, (e.g.,
the Kullback-Liebler relative entropy). It has been considered for optimization and algorithmic
purposes by Teboulle (1987, 1992, 1997).

2. Another terminology is Bregman divergence. In this paper we will freely use/exchange both terminologies.
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Let ϕ : IR→ IR∪{+∞} be a proper, lsc, convex function such that domϕ⊂ IR+, dom∂ϕ = IR++,
and such that ϕ is C2, strictly convex, and nonnegative on IR++, with ϕ(1) = ϕ′(1) = 0. Then, the
ϕ-divergence based distance is defined by,

dϕ(x,y) :=
n

∑
j=1

y jϕ
(

x j

y j

)

,

and which by its definition is already separable.

Example 2 Typical examples for the ϕ-divergence, dϕ with S = IRn
++, include

ϕ1(t) = − log t + t−1, (Arithmetic Mean),

ϕ2(t) = t log t− t +1, (Geometric Mean),

ϕ3(t) = 2(
√

t−1)2, (Root Mean Square).

The names in parenthesis indicate the type of means that results by solving problem of the form
(1) in these cases, (Teboulle et al., 2006).

For the above choices, and other appropriate ψ or/and ϕ, and S, both functionals dψ,dϕ can be
shown to be in the class D(S) as defined in Definition 1.3 In particular, it can be easily seen that
d ≡ dψ or dϕ enjoy the required basic property of a distance-like function, namely one can verify
that:

∀(u,v) ∈ S×S d(u,v)≥ 0 and d(u,v) = 0 iff u = v.

Moreover, note that the distance-like function dϕ is jointly convex on S×S, and hence in particular,
for any u ∈ S, the function v→ dϕ(u,v) is convex in its second argument, a property which is not
shared in general by the Bregman-based distance.

As previously noticed, symmetry is not requested in the definition of d, and as a result, as long
as we can guarantee the existence of a global minimizer for problem of the form (1), some of the
properties requested in Definition 1 with respect to the first argument, can be exchanged with respect
to the second argument, or even relaxed. This situation is further exemplified now.

Example 3 In a very recent paper, Banerjee et al. (2005) have proposed to use Bregman distance
for clustering by considering it as function with respect to its second argument (i.e., by changing
the order of the variables), and have derived an interesting and somewhat surprising result. More
precisely, consider problem (1) with

d(x,a) := dψ(a,x) := ψ(a)−ψ(x)−〈a− x,∇ψ(x)〉, ∀(a,x) ∈ S̄×S,

where S = int(domψ). In that case, in general, x→ dψ(a,x) is not necessarily convex,4 and hence
the corresponding problem (1) is nonconvex. Even though problem (1) is nonconvex, it has been
recently shown (Banerjee et al., 2005), that if a minimizer of (1) exists in S, then it is a global

3. Note that when no confusion occurs, and with some abuse of notations, throughout the paper, dϕ (dψ) always stands
for the ϕ-divergence (Bregman divergence).

4. Exceptions include the well known special cases, when the Bregman divergence is the squared Euclidean distance and
the relative entropy. Otherwise, the convexity of x→ dψ(a,x) is not warranted without imposing further conditions
on ψ, which unfortunately precludes the use of relevant or/and useful ψ for defining a Bregman divergence.
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minimizer, and is always the (weighted) arithmetic mean of the data. This can be seen as follows.
A very simple, but fundamental property satisfied by any Bregman distance, is the following three
point identity revealed in Chen and Teboulle (1993), (see Lemma 3.1 there), and which naturally
generalizes Pythagoras theorem. For any three points u,v∈ int(domψ) and w∈ domψ the following
identity holds true

dψ(w,v)−dψ(w,u) = dψ(u,v)+ 〈∇ψ(u)−∇ψ(v),w−u〉. (3)

Thanks to the identity (3), and the fact that dψ(·, ·)≥ 0, one has for any i = 1, . . . ,m:

dψ(ai,x)−dψ(ai,z) = dψ(z,x)+ 〈∇ψ(z)−∇ψ(x),ai− z〉,
≥ 〈∇ψ(z)−∇ψ(x),ai− z〉.

Thus, multiplying the last inequality by γi > 0, and summing over i = 1, . . . ,m, it immediately
follows that with z := ∑n

i=1 γiai, the right hand side of the inequality vanishes, and hence

m

∑
i=1

γidψ(ai,x)≥
m

∑
i=1

γidψ(ai,z), ∀x ∈ S,

showing that z ∈ S is the global minimizer of problem (1).

Note that it is also possible to consider other classes of distance-like functions, which are not
necessarily based on Bregman or/and ϕ divergences (as long as a unique global optimal solution of
(1) is warranted). An interesting recent study can be found for example, in the work of Modha and
Spanger (2003) which have considered convex-k-means clustering algorithms based on some other
proximity measures that are convex in the second argument.

Finally, note also that one could easily enrich the model (NS) by considering for example a more
general formulation that associates with each l a different distance dl ∈ D(Sl) (and which can be
useful in applications to accommodate different types of data, Modha and Spanger, 2003), so that
the more general model would consist of solving

min

{

m

∑
i=1

νi min
1≤l≤k

dl(x
l,ai) | (x1, . . . ,xk) ∈ S1×·· ·×Sk

}

.

The analysis and theoretical results that we developed below also hold for such more general for-
mulations as well.

3. Convex Analysis Background: Support and Asymptotic Functions

The main approach in this paper is based on considering ways to replace the nonsmooth clustering
problem (NS) via a smooth optimization problem, and to study and derive a corresponding generic
algorithm solving the nonsmooth problem (NS) via its smoothed counterpart. To develop this ap-
proach, this section furnishes some of the key concepts and results of convex analysis that will be
used throughout this paper. For further details and proofs of the material presented in this section
(see for example Rockafellar 1970, Sections 12 and 13, and Auslender and Teboulle 2003, Chapter
2). Readers familiar with these concepts may skip directly to Section 4, perhaps after reading the
examples of the present section which provide motivation to the forthcoming developments.
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3.1 Support Functions

A fundamental concept for dealing with properties of closed convex sets is the concept of support
function. It allows to transfer properties about sets via functions, and as a result turns out to play a
central role in optimization problems and facilitate their analysis.

Definition 2 For any set C ⊂ IRk, the function σC : IRk→ [−∞,+∞] defined by

σC(v) := sup{〈u,v〉 | u ∈C} , (4)

is called the support function of C.

Geometrically, the support function of a set C describes the closed half-spaces which contain C,
namely

C ⊂ {u | 〈u,v〉 ≤ α} ⇐⇒ σC(v)≤ α.

Note that the supremum in (4) may be finite or infinite; attained on C or not. If C = /0, we set
σC ≡−∞, while if C 6= /0, one has σC >−∞ and σC(0) = 0.

For the forthcoming analysis, we consider the case when C is a closed convex set in IRk. The
support function can be computed for many interesting geometric convex sets C, (Rockafellar, 1970,
Section 13, p. 113). Let us give here two particularly interesting examples.

Example 4 Let C := B = {u ∈ IRk | ‖u‖ ≤ 1} be the unit Euclidean ball. Then, applying Cauchy-
Schwartz inequality, it is easy to verify that

σB(v) = ‖v‖,

that is, the Euclidean norm is the support function of the unit ball.

Example 5 Let C be the unit simplex in IRk, that is,

C := ∆ = {u ∈ IRk |
k

∑
j=1

u j = 1,u j ≥ 0, j = 1, . . . ,k}.

Then, a simple computation shows that

σ∆(v) = sup{〈u,v〉 | u ∈ ∆}= max
1≤ j≤k

v j,

the supremum being attained on the compact set ∆, at {u∗l : l = 1, . . . ,k} given by:

u∗l =

{

1 if l = argmax
1≤ j≤k

v j

0 otherwise.

At this stage, and to motivate the reader for the forthcoming technical results and analysis, let
us already emphasize that support functions are essentially “built-in” for most optimization prob-
lems. More precisely, most smooth and nonsmooth optimization problems can be modelled via the
following generic abstract optimization model

inf{c0(u)+σY (c(u)) | c(u) ∈ domσY},
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where c(u) = (c1(u), . . . ,cm(u)) ∈ IRm, where all {ci}m
i=0 are real valued on IRk, and Y ⊂ IRm is ad-

equately defined. The re-formulation of optimization problems via their support functions provides
an alternative way to view and tackle optimization problems by exploiting mathematical properties
of support functions, and this is the line of analysis that will be used here for the clustering prob-
lem. The following examples illustrate the support function formulations of some generic classes
of optimization problems. More details can be found in Auslender and Teboulle (2003, Chapter 2).

Example 6 (a) (Nonlinear programming). Consider the standard optimization problem

vNLP := inf{c0(u) | ci(u)≤ 0, i = 1, . . . ,m, u ∈ IRk}.
Then, it is easy to see that with Y = IRm

+, one has

vNLP = inf
u∈IRk

{c0(u)+ sup{〈y,c(u)〉 | y ∈ IRm
+}}= inf

u∈IRk
{c0(u)+σIRm

+
(c(u))}.

Note that the first equation above is nothing else but the Lagrangian representation of (NLP), with
y ∈ IRm

+ being the Lagrangian multiplier associated with the constraints.
(b) (lp-norm optimization problems). Consider the problem

vLP := inf{‖c(u)‖p, u ∈ IRk}, (p≥ 1),

where ‖z‖p := (∑m
i=1 |zi|p)1/p is the usual lp-norm of z ∈ IRm. Let Y be the lq-unit ball in IRm, that is,

Y := {y ∈ IRm ‖y‖q ≤ 1}, with p+q = pq.

Then, invoking Hölder inequality, it follows that σY (c(u)) = ‖c(u)‖p, and hence,

vLP = inf{σY (c(u)) | u ∈ IRk}.
(c) (Finite minimax problems). Consider the finite minimax problem

vMM := inf
u∈IRk

max
1≤i≤m

ci(u).

Then, using Example 5 with Y = ∆, the unit simplex in IRm, one obtains

vMM := inf{σY (c(u)) | u ∈ IRk}.

The above examples have illustrated the primary role of support functions in formulating opti-
mization problems. Our goal will be to exploit the special structure and further properties of support
functions for deriving useful equivalent reformulations of the clustering problem. The next result
recorded below in Theorem 4 reveals an important and relevant property of support functions.

First, let us recall that the support function of a given set C is intimately connected to the well-
known indicator of the set C, through another fundamental operation in convex analysis, which is
the conjugacy operation.

Definition 3 For any function g : IRk → IR∪{+∞}, the convex conjugate of g is the function g∗ :
IRk→ IR∪{+∞} defined by

g∗(z) = sup
y∈IRk

{〈y,z〉−g(y)}= sup
y∈ domg

{〈y,z〉−g(y)}.

In addition, if g is proper, lower semicontinuous (lsc) and convex on IRk, then so is its conjugate g∗,
and g∗∗ = g.
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Now, consider the indicator function of C defined by

δC(u) =

{

0 if u ∈C
+∞ otherwise.

Then, using the definition of the support function, one has

σC(v) = sup
u∈C
〈u,v〉= sup

u∈IRk

{〈u,v〉−δC(u)}.

Thus, we see that σC is nothing else but the conjugate of the indicator function δC, that is, σC = δ∗C.
Moreover, if C is also closed convex, then

δ∗∗C = δC = σ∗C.

Therefore, the indicator function and the support function of a closed convex set are conjugate to
each other. In fact, the support function provides a remarkable one-to-one correspondence between
nonempty closed convex subsets of IRk and the class of positively homogeneous lsc proper convex
functions through the conjugacy operation.5 This result is formally cited below.

Theorem 4 (Rockafellar, 1970, Theorem 13.2). The functions which are the support functions of
non-empty convex sets are the lsc proper convex functions which are positively homogeneous.

3.2 Asymptotic Functions

We now look at the relationship between the support function and another important mathemati-
cal object, called the asymptotic function. For that purpose, we first need to define the notion of
asymptotic cone.6

The asymptotic cone of a nonempty convex set C ⊂ IRk is a convex cone containing the origin
defined by,

C∞ := {v ∈ IRk : v+C ⊂C}.

Geometrically, this means that the asymptotic convex cone C∞ includes the origin and consists
of all directions v ∈ IRk, such that for each u ∈ C, the halfline {u + tv | t ≥ 0} is contained in C.
This notion is useful for dealing with unbounded sets, namely when we are concerned in specifying
directions in which a set is unbounded. For example, one can show that a nonempty closed convex
subset C of IRk is bounded if and only if C∞ = {0}. Here, we are interested in the behavior of
convex functions “in the large”, that is, in the way convex functions vary, as their argument move
along halflines in IRk. A convenient way to achieve this is through the notion of asymptotic function
which is just the asymptotic cone of the epigraph of that function. Intuitively speaking, the result
given below says that the asymptotic behavior of g along halflines depends only on the direction of
the halfline, and not on its location.

5. Recall that a function p is positively homogeneous on IRk if 0 ∈ dom p and p(tu) = t p(u) for all u ∈ IRk and all t > 0.
6. In the convex setting (i.e., when working with convex sets and convex functions, the asymptotic cone (function) is

often called recession cone (function). In fact for closed convex sets (functions), the two concepts coincide (Auslender
and Teboulle, 2003).
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Definition 5 Let g : IRk→ IR∪{+∞} be a proper, convex and lower semicontinuous (lsc) function.
The asymptotic function g∞ of g is the function g∞ : IRk→ IR defined by

epi (g∞) = (epig)∞,

where epig = {(x,r) ∈ IRk× IR : g(x)≤ r} ⊂ IRk+1 is the epigraph of g.

The next result shows that this definition makes sense, and collect some basic properties of the
asymptotic function g∞.

Proposition 6 (Rockafellar, 1970, Theorem 8.5) Let g : IRk → IR∪ {+∞}, be a proper, convex
function. Then its asymptotic function g∞ is a proper convex function on IRk that is positively
homogeneous with g∞(0) = 0. For any z ∈ IRk, one has

g∞(z) = sup{g(u+ z)−g(u) | u ∈ domg}.

Furthermore, if g is also assumed lsc on IRk, then g∞ is also lsc, and for any u ∈ domg and any
z ∈ IRk,

g∞(z) = sup
t>0

t−1[g(u+ tz)−g(u)] = lim
t→+∞

t−1[g(u+ tz)−g(u)].

In particular, one also has

g∞(z) = lim
s→0+

{

gs(z) := sg(s−1z)
}

, ∀ IRk 3 z ∈ domg. (5)

The last property (5) is useful to compute asymptotic functions. To illustrate this, let us give a few
interesting examples (see, for example Example 2.5.1, page 51 in Auslender and Teboulle, 2003).

Example 7 In the following three examples, it can be verified that g(·) is a proper lsc convex
function on IRk, and thus we can use (5) to compute g∞(·).
(a) Let g(u) =

√

1+‖u‖2. Then, using (5) one has g∞(z) = ‖z‖.
(b) Let g(u) = ∑k

j=1 eu j . Then one obtains g∞(z) = δIRk
−

, that is, the indicator of the negative orthant

in IRk.
(c) Let g(u) = log∑k

j=1 eu j . Then, g∞(z) = max1≤ j≤k z j.

To expand our ability of computing the asymptotic function g∞ of a given function g, it turns
out that it is often easier to work with the conjugate of g, which is always lsc, and therefore, by
Proposition 6 so is its asymptotic function. Since this asymptotic function is lsc, proper, posi-
tively homogeneous and convex, Theorem 4 guarantees that it must be the support function of some
nonempty closed convex set. The next convex analytic result shows that this set should be precisely
the effective domain of the conjugate g∗.

Proposition 7 (Rockafellar, 1970, Theorem 13.3) Let g : IRk→ IR∪{+∞} be a proper convex and
lsc function, and let C = domg∗ be the effective domain of the conjugate g∗. Then, σC = g∞.

This last result connecting support and asymptotic functions, together with (5) in Proposition
6, provides the basis and motivation for developing a general approach to smoothing nonsmooth
optimization problems. This approach was introduced by Ben-Tal and Teboulle (1989), and for more
general results and details, the reader is refereed to Auslender (1999), and the recent monograph of
Auslender and Teboulle (2003). Building on these ideas, we now develop smoothing approaches to
the clustering problem.
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4. Smoothing Methodologies for Clustering

We first describe a very simple exact smoothing mechanism which provides a novel and simple way
to view and design all center-based hard clustering algorithms from an optimization perspective.
In turns, the support function formulation also provides the starting point for developing a new
and general smoothing approach for clustering problems, which is based on combining asymptotic
functions, and the fundamental notion of nonlinear means of Hardy et al. (1934). The resulting
smoothing approach lends to devise a simple generic algorithm, which computationally is as simple
as the popular k-means scheme, (see Section 5), and encompasses and extend most well known soft
clustering algorithms, see Section 6.

4.1 Exact Smoothing: The Support Function Approach and Hard Clustering

Given {a1, . . . ,am} in the subset S⊂ IRn, and a distance-like function d ∈D(S), the general cluster-
ing problem as formulated in Section 2 through (NS) is to solve

min
x1,...,xk∈S

F(x1, . . . ,xk)≡min
x∈S

F(x) :=
m

∑
i=1

νi min
1≤l≤k

d(xl,ai),

where we use the notation x = (x1, . . . ,xk), for the k× n dimensional vector x, and S ⊆ IRN , with
N := kn, for the k-fold Cartesian product of S.

In the context of the clustering problem, we now briefly show that the support function allows
to derive an equivalent smooth formulation of the clustering problem, and in fact provides the foun-
dation to the design and analysis of hard clustering algorithms. Fix any i ∈ {1, . . . ,m}, and let

di(x) := (d(x1,ai), . . . ,d(xk,ai)) ∈ IRk.

The nonsmooth term min1≤l≤k d(xl,ai) can be replaced by a smooth one, by using the support
function. Indeed, using Example 5, it follows that for any i = 1, . . . ,m,

min
1≤l≤k

d(xl,ai) =−σ∆i(−di(x)) = min{〈wi,di(x)〉 : wi ∈ ∆i}, (6)

where ∆i is the unit simplex in IRk given by

∆i =

{

wi ∈ IRk |
k

∑
l=1

wi
l = 1,wi

l ≥ 0, l = 1, . . . ,k

}

,

and where wi
l is the ”membership” variables associated to cluster Al , which satisfies: wi

l = 1 if the
point ai is closest to cluster Al , and wi

l = 0 otherwise. Thus, substituting (6) in (NS), it follows that
the nonsmooth clustering problem (NS) is equivalent to the exact smooth problem:

(ES) min
x1,...,xk∈S

min
w1,...,wm∈IRk

{

m

∑
i=1

νi

k

∑
l=1

wi
ld(xl,ai) | wi ∈ ∆i, i = 1, . . . ,m

}

.

The smooth formulation (ES) explains precisely the mechanism of all well known, old and more
recent, hard center-based hard clustering algorithms. Indeed, applying the Gauss-Seidel (GS) mini-
mization algorithm to problem (ES), (which is also often called alternative minimization or coordi-
nate descent method, (see, for instance, Auslender, 1976; Bertsekas and Tsitsiklis, 1989; Bertsekas,
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99), that is, at each iteration, first minimize with respect to wi with xl fixed, then minimize with
respect to xl with the membership variable fixed, yields a general hard clustering algorithm with
distance-like functions, which for short is denoted (HCD). The algorithm HCD includes as spe-
cial cases, not only the popular k-means algorithm, but also many others hard clustering methods
mentioned in the introduction. In particular, it includes and extend the Bregman hard clustering
algorithm recently derived by Banerjee et al. (2005, Algorithm 1, p. 1715), which was introduced
and motivated from a completely different view point, relying on statistical and information theo-
retic arguments. To make the paper self-contained, the algorithm HCD has been discussed in some
details in the appendix.

4.2 Approximate Smoothing via Asymptotic Functions and Soft Clustering

The support function approach which has provided an exact smoothed reformulation of the non-
smooth problem (NS) and the corresponding generic hard clustering method HCD, lends itself to
another systematic way to obtain an approximate smoothed reformulation of the problem (NS),
which in turn will provide the basis for producing a generic soft clustering algorithm.

We have seen in §4.1, that the nonsmooth clustering problem (NS) is equivalent to the exact
smooth formulation (ES). Using (6), an equivalent representation of the clustering problem (ES)
can also be written as

(NS) min
x1,...,xk∈S

m

∑
i=1

−νiσ∆i(−d(x1,ai), . . . ,−d(xk,ai))

where ∆i := {wi ∈ IRk : eT wi = 1,wi ≥ 0}, i = 1, . . . ,m, and e≡ (1, . . .1) ∈ IRk.
Fix any i ∈ {1, . . . ,m}. Thanks to Proposition 7, we know that the support function of the set

∆i corresponds to an asymptotic convex function, say (gi)∞(·). From Proposition 6, this asymptotic
function can be approximated (cf. (5)) via:

gi
∞(z) = lim

s→0+

{

gi
s(z) := sgi(s−1z)

}

, ∀ IRk 3 z ∈ domgi, ∀i = 1, . . .m,

where gi is some given convex function, such that dom(gi)∗ = ∆i. This naturally suggests to replace
the support function−σ∆i(·) in (NS) by an approximate function gi

s(·), and thus to consider for each
s > 0, the following approximate problem for (NS):

(NS)s min
x1,...,xk∈S

m

∑
i=1

−νig
i
s(−d(x1,ai), . . . ,−d(xk,ai)). (7)

Thus, with a function gi
s smooth enough, this approach leads to a generic smoothed approximate

reformulation of the nonsmooth problem (NS) which depends on the parameter s > 0 that plays the
role of a smoothing parameter.

A key question is then to find appropriate candidates for the function gi for the clustering prob-
lem. Answer to this question will be developed in the next two subsections. But first, let us illustrate
the above approach with an important example.

Example 8 (The Log-Sum Exponential Smoothing for Clustering) The Log-Sum exponential func-
tion is an important and very well known operation which has been widely used in optimization
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contexts, (Bertsekas, 1982; Ben-Tal and Teboulle, 1989). For the clustering problem, it will lead to
a family of important methods.

Consider a slight variant, and more general form of the function considered in Example 7(c)
given by

g(y) = log
k

∑
l=1

πle
yl , (8)

where πl are some given weights, that is, πl ≥ 0, ∀l = 1, . . . ,k and ∑k
l=1 πl = 1. This function is

convex on IRk, and from Example 7(c) one obtains 7

g∞(y) = lim
s→0

gs(y) = max
1≤l≤k

yl .

Thus, using (8), the clustering problem (NS) can be approximated by solving the smoothed problem
(NS)s which in this case reads:

(NS)s min
x1,...,xk∈S

Fs(x) :=−s
m

∑
i=1

νi log

(

k

∑
l=1

πle
− d(xl ,ai)

s

)

.

When d is the squared Euclidean distance, (with νi = m−1,∀i, πl = k−1,∀l), the objective function
just derived from the proposed smoothing optimization approach, is in fact exactly the objective
function arising in some well known clustering methods, such as the so-called (EM)-algorithm for
normal mixtures, (Duda et al., 2001), and the deterministic annealing (Rose et al., 1990), which
were motivated by, and derived from, a statistical/probabilistic framework and statistical physics
analogies. Further, when d is a Bregman function, as given in Example 3, the approximation model
(NS)s yields precisely the Bregman soft clustering method recently derived by Banerjee et al. (2005)
from an information theory view point. This will be further discussed in Section 6.

As we shall see next, another natural way to smooth the clustering problem, and which later on
will reconcile with the asymptotic function approach, is by using the so-called concept of nonlinear
means.

4.3 Approximate Smoothing via Nonlinear Means

The concept of nonlinear means defined below, was introduced in 1934 by Hardy et al. (1934,
Chapter III) as a natural generalization of the well known power means, that is, the weighted lp-
norm of a positive vector z.

Definition 8 Let h : IR→ IR∪{+∞} be a strictly increasing and convex function, and let h−1 be
its inverse, which is thus strictly increasing and concave. The nonlinear mean of k real numbers
z1, . . . ,zk associated to h is defined by

Gh(z) = h−1

(

k

∑
l=1

πlh(zl)

)

,

where πl are weights which are arbitrary positive numbers whose sum is one, that is, π ∈ ri(∆).

7. In fact, one also has domg∗ = ∆, (see Lemma 18), and thus as promised by Proposition 7, σ∆ = g∞.
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In the rest of this paper we use the notation ∆+ for the relative interior of the simplex in IRk, that
is, ∆+ := {π ∈ IRk | ∑k

l=1 πl = 1,π > 0}. As in Hardy et al. (1934, Chapter III, p. 66) we adopt the
convention that h−1(∞) = b, where b := sup{t | h(t) < ∞}.

More details and many results on nonlinear means can be found in Hardy et al. (1934, Chapter
III). At this juncture, it is interesting to note that Karayiannis (1999) has suggested an axiomatic
approach to re-formulate clustering objective functions that essentially leads him to rediscover the
notion of nonlinear means given in Hardy et al. (1934). This interesting axiomatic approach can
thus be further viewed as an additional supportive argument to the general smoothing optimization
approach we develop here.

The next simple result shows that the nonlinear mean does provide an approximation, more
precisely a lower bound for the maximum function max

1≤l≤k
zl .

Lemma 9 For each z ∈ IRk and any π ∈ ∆+ the following inequalities hold,

k

∑
l=1

πlzl ≤ Gh(z)≤ max
1≤l≤k

zl . (9)

Proof. By the convexity of the function h one has

h

(

k

∑
l=1

πlzl

)

≤
k

∑
l=1

πlh(zl) ,

and since h−1 is increasing, this proves the left hand side inequality of (9). To prove the right hand

side of the inequality, note that since
k

∑
l=1

πlzl ≤ max
1≤l≤k

zl , and h is increasing, then

k

∑
l=1

πlh(zl)≤ max
1≤l≤k

h(zl) = h

(

max
1≤l≤k

zl

)

,

and an application of h−1 to both sides of the inequality completes the proof.

Recall that our basic clustering problem (NS) consists of minimizing the objective function F
which can be rewritten as:

F(x) =
m

∑
i=1

νi min
1≤l≤k

d(xl,ai) =−
m

∑
i=1

νi max
1≤l≤k

{−d(xl,ai)}. (10)

Since d(·, ·) ≥ 0, to approximate maxl−d(xl,ai) we need only to consider nonlinear means with
domain containing the negative orthant IRk

−.

Example 9 (Nonlinear Means on IRk
−.) Consider the functions hi(t), i = 1,2,3 given respectively

by − log(−t),−t−1,−
√
−t with domain (−∞,0) for the first two, and (−∞,0] for the last one. The

corresponding nonlinear means Ghi are then respectively the weighted geometric, harmonic, and
square root mean of z ∈ IRk

−−, for the first two choices of h, and of z ∈ IRk
− for the last one, while if

z 6∈ IRk
−− (z 6∈ IRk

− for the last one), one has Gh(z) = 0.
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In view of the upper bound of Lemma 9, for each i, we can consider approximating the quantity
max1≤l≤k(−d(xl,ai)), by its nonlinear mean Gh, and hence the resulting objective F given in (10)
by an approximate objective given by:

F̂(x) =−
m

∑
i=1

νih
−1

(

k

∑
l=1

πlh(−d(xl,ai))

)

. (11)

Let us illustrate this on two specific examples with some h as given in Example 9.

Example 10 (Harmonic Mean Approximation) Consider the function h2(t) =−t−1 from Example
9, with domh2 = intdomh2 = (−∞,0), that yields the harmonic mean Gh2 . Then, using h2 in (11),
to approximate F given in (10), one has to consider minimizing the approximate objective:

F̂(x) =
m

∑
i=1

νi

(

k

∑
i=1

πl

d(xl,ai)

)−1

.

This recovers and extends the approximate objective F̂(x), (with d(·, ·) the squared Euclidean dis-
tance, πl = k−1, ∀l, νi = m−1, ∀i), which was recently suggested by Zhang et al. (1999) from
heuristic and intuitive considerations, together with a corresponding k-harmonic means algorithm,
and some interesting numerical results. More recently, Hamerly and Elkan (2002) have further stud-
ied new variants of the k-harmonic means algorithm, and have experimentally shown its superiority
for finding clustering of high quality in low dimensions. However, no mathematical or/and con-
vergence analysis of the proposed algorithms have been provided in these works. It will be shown
later on, that the k-harmonic means algorithm can also be viewed as a particular realization of our
generic algorithm for which our convergence result can be applied, see Section 5.

Example 11 (Geometric Mean Approximation) Take the function h1(t) = − log(−t) given in Ex-
ample 9 with domh1 = intdomh1 = (−∞,0) that yields the geometric means Gh1 . Then, using (11),
we then obtain as an approximation of F , the resulting approximate objective:

F̂(x) =
m

∑
i=1

νi

k

∏
l=1

d(xl,ai)πl .

This example provides an apparently new approximate model for clustering, on which one can apply
the generic scheme developed in Section 5.

Now, we return to the Log-Sum exponential function described in Example 8. With the choice
h(t) = et , in Definition 8, the resulting nonlinear means Gh precisely recovers the convex Log-Sum
exponential function,

Gh(z) = log
k

∑
l=1

πle
zl .

Therefore, since in that case Gh(·) is convex, Proposition 6 can be applied, and one has:

max
1≤l≤k

zl = lim
s→0

sGh(s
−1z) = G∞

h (z),

where the later expression denotes the asymptotic function of the mean Gh(·).
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Thus, this specific example shows that the objective function of the clustering problem (NS)
(cf. (10)), can be approximated either by a nonlinear (smooth) mean, or, by the corresponding
asymptotic function of Gh(·), provided the later can be well defined. This suggests an approach that
would combine nonlinear means and asymptotic functions to provide a generic smoothing model
which will approximate the original clustering problem (NS), and approach it in the limit, for a
broad class of smooth approximations. This can be achieved, provided we can characterize the class
of functions h for which Gh(·) remains convex. This is developed next.

4.4 Combining Asymptotic Functions and Convex Nonlinear Means

The mean Gh(·) being by definition the composition of a convex function with a concave one, is not
necessarily convex. Thus, defining its corresponding asymptotic function as given in Proposition
6 is not warranted. Furthermore, it turns out that the convexity of Gh(·) plays a crucial role in the
convergence proof of the forthcoming generic algorithm (see Section 5). Thus, it is important to
characterize the convexity of the nonlinear mean Gh(·). By specializing a general result proven in
Ben-Tal and Teboulle (1986, Theorem 2.1), we can identify a wide class of functions h for which
Gh(·) is convex.

In the sequel, for convenience we will often use the notation Ω := int(domh), and Ωk to denote
the k-fold Cartesian product of int(domh).

Lemma 10 Let h : IR→ IR∪{+∞} be C3 on Ω, strictly increasing and convex, and let r(t) :=
−h′′(t)/h′(t). Then Gh(z) is convex on Ωk if and only if 1/r(t) is convex on Ω.

Proof. Define ξ(z) := ∑k
l=1 πlh(zl), so that Gh(z) = h−1(ξ(z)). Then, Gh is convex if and only if it

satisfies the gradient inequality, that is, recalling that (h−1)′(·) > 0, this is equivalent to say,

h−1(ξ(y))−h−1(ξ(x))
(h−1)′(ξ(x))

≥
k

∑
l=1

πl(yl− xl)h
′(xl), ∀x,y ∈Ωk. (12)

To prove that (12) holds true, define,

H(s, t) :=
h−1(s)−h−1(t)

(h−1)′(t)
.

Invoking Ben-Tal and Teboulle (1986, Lemma 1, p. 1449), one has H is concave in (s, t) if and
only if 1/r(t) is convex. To complete the proof it thus remains to show that the concavity of H
reduces to the validity of (12). Applying Jensen’s Inequality for the concave function H(·, ·) at
s := ξ(y), t := ξ(x), it follows that the function H is concave if and only if,

H(ξ(y),ξ(x))≥
k

∑
l=1

πlH(h(yl),h(xl)) =
k

∑
l=1

πl
(yl− xl)

(h−1)′(h(xl))
.

Therefore, using the relation h′
(

h−1(t)
)

= 1/(h−1)′(t) at t := h(xl), proves that the last inequality
is exactly (12).

Define the class of functions,

H :=

{

h ∈C3(Ω) | h′ > 0, h′′ > 0, and
1
r

is convex

}

.
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The class of functions H satisfying the condition 1/r(t) is convex is wide, (Ben-Tal and Teboulle,
1986). It includes in particular, all functions h such that 1/r(t) is a linear function, that is, 1/r(t) =
at +b, a,b ∈ IR.

Example 12 (Convex Nonlinear Means) It can be easily verified that the class of functions h ∈ H
satisfying 1/r(t) = at +b for some a,b ∈ IR includes in particular (with a = 0, b 6= 0) the function
h(t) = et/b, as well as, for example, the functions h with Ω≡ int(domh) = (−∞,δ), (δ≥ 0)) given
by
(i) h(t) =−(δ− t)p , p ∈ (0,1), (a = (p−1)−1, b = δ(1− p)−1).
(ii) h(t) = (δ− t)−p , p ∈ (0,+∞), (a =−(p+1)−1, b = δ(p+1)−1).
(iii) h(t) =− log(δ− t),(a =−1, b = δ).

Clearly these examples for h include and extend all the previous choices hi(t), i = 1,2,3 (cf.
Example 9), and generate accordingly corresponding convex nonlinear means Gh.

Equipped with Lemma 10, the concept of asymptotic nonlinear mean associated to a given
convex nonlinear mean Gh is now well defined through Proposition 6.

Definition 11 Let h ∈H . For z ∈ IRk and π ∈ ∆+, the asymptotic nonlinear mean is defined by

G∞
h (z) = lim

s→0+
sh−1

(

k

∑
l=1

πlh
(zl

s

)

)

.

With a proof identical to that of Lemma 9 we immediately get the following result.

Lemma 12 If h ∈H , then for each z ∈ IRk and any π ∈ ∆+ one has

k

∑
l=1

πlzl ≤ G∞
h (z)≤ max

1≤l≤k
zl.

This last result, together with Definition 11, and the results developed in Section 4.2 (cf. (7)),
provide all the ingredients to combine nonlinear convex means as characterized in Lemma 10 with
asymptotic functions, and to formulate a broad class of smooth approximations to the clustering
problem (NS) as follows.

For any h ∈H , any fixed s > 0, and any π ∈ ∆+, we approximate the nonsmooth objective F of
the original clustering problem (NS) by the smooth function:

Fs(x
1, . . . ,xk)≡ Fs(x) =−s

m

∑
i=1

νih
−1

(

k

∑
l=1

πlh

(−d(xl,ai)

s

)

)

.

In the rest of the paper, we focus on developing and analyzing a generic algorithm that minimizes
the smoothed approximate nonconvex function Fs(·).

Remark 13 Lemma 9 and Lemma 12 show that the nonlinear mean and its asymptotic version
always provides a lower bound for max

1≤i≤k
zi, and hence when applied to the function Fs it follows that

for any s > 0,
m

∑
i=1

νi

{

min
1≤l≤k

d(xl,ai)−
k

∑
l=1

πld(xl,ai)

}

≤ F(x)−Fs(x)≤ 0. (13)
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The quality of the smooth approximation is somewhat hidden in the last inequality. Yet, it is im-
portant to note that the Log-Sum exponential mean generated via h(t) = et appears to be a sort of
optimal mean for approximating the finite max

1≤l≤k
zl function. Indeed, take for example νi = m−1, ∀i,

and πl = k−1, ∀k. In that case,

Fs(x) = s logk− s
m

m

∑
i=1

s log

(

k

∑
l=1

e
−d(xl ,ai)

s

)

:= s logk +Ls(x).

Then, the right inequality (13) produces the well known approximation result for Ls(·) (Bertsekas,
1982; Ben-Tal and Teboulle, 1989):

0≤ F(x)−Ls(x)≤ sm logk,

showing that the Log-Sum exponential mean shares a unique type of uniform approximation, and
for which G∞

h (z)≡ max
1≤i≤k

zi. More on this specific property of the Log-Sum exponential function will

be discussed in Section 6.

5. The Smooth k-Means Algorithm: Properties and Convergence

Building on the previously developed results, in this section we present a simple generic center-
based algorithm for soft clustering, that we call the Smooth k-means (SKM) algorithm, and we
study its convergence properties.

5.1 Motivation

Given d ∈ D(S), h ∈ H and any s > 0, to solve the clustering problem we consider a solution
method that solves the approximate smoothed minimization problem,

inf
{

Fs(x) | x ∈ S
}

, (14)

where

Fs(x) =−s
m

∑
i=1

νih
−1

(

k

∑
l=1

πlh

(

−d(xl,ai)

s

)

)

. (15)

This problem could be solved by some standard optimization algorithms, such as projected gra-
dient/Newton type methods, Lagrangian multipliers, etc. (see, for example, Bertsekas, 99). How-
ever, given that clustering problems are usually very large scale, we are interested to devise a simple
iterative scheme which does not require any sophisticated computations at each iteration, (e.g., Hes-
sian computations, matrix inversions, or/and line search techniques), which are usually needed in
the alluded standard optimization algorithms.

It turns out that the specific form of Fs lends itself to build a simple iterative scheme, by com-
bining the smoothing approach with successive approximations. The idea of such combination is
well known in the field of optimization, and can be traced back to the so-called Weiszfeld algorithm
derived in 1937 for solving some basic location theory problems (Weiszfeld, 1937). The Weiszfeld
algorithm has provided a fertile ground for many other algorithms and problems in a variety of re-
search areas, (see, for example, Ben-Tal et al., 1991; Brimberg and Love, 1993, and many of the
references cited therein).
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To motivate the generic algorithm SKM described below in §5.2, let us consider for the moment
the special case when S = IRN , with the distance like function between any two points u,v ∈ IRn

being the usual squared Euclidean distance d(u,v) = ‖u− v‖2.
The necessary local optimality condition for solving problem (14) in that case consists of finding

x ∈ IRN satisfying
∇Fs(x) = 0. (16)

Recall that we use the notation x = (x1, . . . ,xk) with xl ∈ IRn, l = 1, . . . ,k, and N = kn. We
denote by ∇lFs(x) the gradient of Fs(x) with respect to xl ∈ IRn. To express (16) in a compact
and informative way we also use the following notations. For any scalar s > 0, i = 1, . . . ,m and
l = 1, . . . ,k, let

δi(xl) := −s−1d(xl,ai), with δi(x) = (δi(x1), . . .δi(xk)) ∈Ωk, (17)

ρil(x) := πl
h′(δi(xl))

h′(Gh(δi(x)))
. (18)

With (17), since h′(·) > 0 and πl > 0,∀l, the functions ρil(·) are positive for every i, l. Now, using
the definition of Fs given in (15), we obtain for each l = 1, . . . ,k

∇lFs(x) = πl

m

∑
i=1

νi
(

h−1)′
(

k

∑
l=1

πlh

(

−d(xl,ai

s

)

)

·h′
(

−d(xl,ai)

s

)

∇1d(xl,ai), (19)

where ∇1d(xl,ai) is the gradient of d with respect to the first variable xl . Using in (19) the relation

(h−1)′(t) =
1

h′ (h−1(t))
,

the definition of Gh(·), and (18), simple algebra shows that (16) reduces to

∇lFs(x) =
m

∑
i=1

νiρil(x)∇1d(xl,ai) = 0, l = 1, . . . ,k. (20)

Since for the moment, we assumed d(u,v) = ‖u−v‖2, then ∇1d(u,v) = 2(u−v), and (20) simplifies
to

m

∑
i=1

νiρil(x)(xl−ai) = 0, l = 1, . . . ,k. (21)

Defining for each i = 1, . . . ,m, and l = 1, . . . ,k,

λil(x) := νiρil(x) ·
(

m

∑
j=1

ν jρ jl(x)

)−1

, (22)

one has λil(x) > 0, and∑m
i=1 λil(x) = 1, and (21) reduces to

xl =
m

∑
i=1

λil(x)ai, l = 1, . . . ,k. (23)
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Formula (23) suggests that in order to find xl , we can consider the following fixed point iteration:
for t = 0,1, . . .,

xl(t +1) =
m

∑
i=1

λil(x(t))ai, l = 1, . . . ,k. (24)

The explicit formula for x(t + 1) given in (24) has been achieved thanks to our ability to solve
the equation (20) for x, which in turns, follows from the linearity of the gradient map ∇1d(·, ·), for
the special case of the squared Euclidean distance. In fact, the fixed point iteration (24) obtained
from solving (20) reads equivalently as:

xl(t +1) = argmin
xl

{

m

∑
i=1

νiρil(x(t))d(xl,ai)

}

, l = 1, . . . ,k.

This provides the motivation for the extension given next, and which allows to handle the general
case with distance-like functions.

5.2 The SKM Algorithm

Mimicking the approach just outlined in the special case of the squared Euclidean distance, this
naturally suggests that for handling general distance-like function d ∈ D(S), one computes x(t +
1) = (x1(t +1), . . . ,xk(t +1)) by solving:

x(t +1) = argmin
x

{

m

∑
i=1

k

∑
l=1

νiρil(x(t))d(xl,ai)

}

≡ argmin
x∈S

As(x,x(t)),

where As : IRN×S→ IR+∪{+∞} is defined by

As(x,u) =
m

∑
i=1

k

∑
l=1

νiρil(u)d(xl,ai), (25)

and with {ρil(·)}i,l > 0 as defined in (18)) for some given h ∈H , (As, depends on s > 0 through the
definition of ρil).

This leads us to propose the following simple generic family of iterative algorithms for solving
(14).
The SKM Algorithm. For given data points {a1, . . . ,am} ∈ S ⊂ IRn, pick a distance like function
d ∈ D(S), a function h ∈ H and fix s > 0. Set t = 0, choose x(0) ∈ S and generate iteratively the
sequence {x(t)}∞

t=0 by solving:

x(t +1) = argmin
{

As(x,x(t)) | x ∈ S
}

,

until convergence.
The next result shows that the algorithm SKM is well defined.

Lemma 14 Let d ∈D(S), h ∈H and s > 0. For any fixed u ∈ S, consider the convex optimization
problem

(Pu) v(u) := inf{As(x,u) | x ∈ S},
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where As(x,u) is defined in (25). Then, the following statements hold:
(i) The optimal set X∗(u) of problem (Pu) is nonempty and compact.
(ii) There exists a unique minimizer y(u) := (y1(u), . . . ,yk(u)) ∈ S solving (Pu) and satisfying

m

∑
i=1

νiρil(u)∇1d(yl(u),ai) = 0, l = 1, . . . ,k. (26)

Proof. (i) For any fixed u ∈ S, and s > 0, let Φu(x) := As(x,u)+
k

∑
l=1

δ
(

xl|S
)

, where δ(·|S) denotes

the indicator of S. Then, by the definition of As(·,u) given in (25), and property (d2) in Definition
1, the minimization problem (Pu) can be written as

v(u) := inf{Φu(x) : x ∈ IRN}.

Since here v(u) is finite, recalling the definition of the distance-like function d (cf. Definition 1), it
follows by (d3) that Φu(·) is level bounded. Therefore with Φu(·) being a proper, lsc, and convex
function, it follows that the optimal set X ∗(u) of problem (Pu) is nonempty and compact, and hence
the existence of a minimizer is warranted.
(ii) The minimizer is unique thanks to the strict convexity of As(·,u) (which is implied from (d1) of
Definition 1, recalling that νi > 0 and ρil(·) > 0 for every i, l). From the optimality conditions, for
each y(u) ∈ X∗(u) we have 0 ∈ ∂Φu(y(u)), where ∂Φu stands for the subdifferential of Φu. Then,
applying Rockafellar (1970, Theorem 23.8), it follows that for each l = 1, . . . ,k the optimality of
y(u) yields

0 ∈
m

∑
i=1

νi∂1d(yl(u),ai)ρil(u)+NS(y
l(u)), (27)

where NS(y
l(u)) stands for the normal cone8 to S at yl(u). Since by definition, νi > 0, ρil(u) >

0, ∀i, l, and since by (d2) of Definition 1, for each i ∈ [1,m], one has dom∂1d(·,ai) = S a nonempty
open convex set, it follows that y(u)∈ S, and NS(y

l(u)) = {0}, and hence (27) reduces to the desired
equation (26).

The main computational step of the algorithm SKM consists of solving for xl(t +1) the equation

m

∑
i=1

νiρil(x(t))∇1d(xl(t +1),ai) = 0, l = 1, . . . ,k. (28)

As already mentioned (cf. §2.2), the class of distance-like functions which are separable includes
most interesting and useful examples based on Bregman divergences, while ϕ-divergences are by
definition given separable. More generally, let us consider now what will be called the class of
separable distance-like functions, with d defined by

d(x,y) =
n

∑
j=1

θ(x j,y j), (29)

8. For a closed convex set C ⊂ IRn, recall Rockafellar (1970) that the normal cone to C at x ∈C is defined by NC(x) =
∂δC(x) = {ν ∈ IRn | 〈ν,z− x〉 ≤ 0,∀z ∈C}.
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where θ : IR× IR→ IR∪{+∞} satisfies the premises of Definition 1 (i.e., with S := I, and I being
an open interval). For such a separable d the equation (28) reduces to solving for each l = l, . . .k,
the simple scalar equation in the variable xl

j(·):
m

∑
i=1

νiρil(x(t))θ′(xl
j(t +1),ai

j) = 0, j = 1, . . . ,n, (30)

where θ′(·,ai
j) is the derivative with respect to the first argument. Both separable Bregman diver-

gences, and ϕ-divergences are then recovered as special cases of (29) with

θ(α,β) := ψ(α)−ψ(β)− (α−β)ψ′(β) and θ(α,β) := βϕ(
α
β

),

respectively, and with the appropriate scalar functions ψ,ϕ (cf. §2.2). Note that the equation (30)
can be solved analytically for xl(t + 1) in the case of Bregman divergences, as well as for the case
of ϕ-divergences for many interesting choices of ϕ, see, for example, Example 2, and for more
examples and details, the recent work (Teboulle et al., 2006), and references therein.

Thanks to the strict monotonicity of θ′(·,ai
j) in its first variable (inherited from Definition 1),

we can establish for the class of separable distance-like functions defined in (29), the following
property of SKM, which simple proof is left to the reader.

Proposition 15 Let d ∈ D(S) be separable and let {x(t)}∞
t=0 be the sequence generated by SKM.

Then, for each l = 1, . . . ,k, the iterates S 3 xl(t +1), t = 0,1, . . . that solves (30), satisfy:

min
1≤i≤m

ai
j ≤ xl

j(t +1)≤ max
1≤i≤m

ai
j, j = 1, . . . ,n,

that is, the sequence {x(t)}∞
t=0 lies in a bounded hypercube in S.

We end this section with two additional remarks on the computational aspects of SKM.
(a) The computational complexity of SKM is as simple as the standard k-means algorithm, which
makes SKM viable for large scale clustering problems, and allows to significantly extend the scope
of soft center-based iterative clustering methods.
(b) Although this paper is concerned with theoretical issues, it should also be noted that in a more
practical implementation of SKM, one could also start at t = 0 with a fixed positive value for
st and decrease iteratively the parameter st . For that purpose, various strategies from standard
optimization techniques, such as for example within penalty/barrier methods can be considered,
(see, for example, Bertsekas, 1982, 99). Yet, recall that any fixed s > 0 do provide an approximate
solution as well, as explained in §4.3, see, for example, Example 10.

5.3 Convergence Analysis

We are now in the position to state and prove the main convergence result for SKM. Note that the
key element in the proof strongly relies on the convexity result established in Lemma 10 for the
nonlinear means Gh(·).

Theorem 16 Let {x(t)}∞
t=0 be the sequence generated by the SKM algorithm. Then,

(i) Fs(x(t +1)) < Fs(x(t)), for all x(t +1) 6= x(t).
(ii) Let d ∈D(S) be separable. Then, the sequence {x(t)}∞

t=0 is bounded and each limit point x ∈ S
of this sequence is a stationary point for Fs.
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Proof (i) By definition of the algorithm SKM and Lemma 14, x(t +1) ∈ S is the unique minimizer
solving x(t +1) = argmin

x
As(x,x(t)), and hence

As(x(t +1),x(t)) < As(x(t),x(t)), ∀ x(t +1) 6= x(t). (31)

Let

vil
t := −s−1d(xl(t),ai) ∈Ω, i = 1, . . . ,m, l = 1, . . . ,k, (32)

and vi
t := (vi1

t , . . . ,vik
t ) ∈Ωk, i = 1, . . . ,m.

Then,

Fs(x(t)) =−s
m

∑
i=1

νih
−1

(

k

∑
l=1

πlh(vil
t )

)

=−s
m

∑
i=1

νiGh(v
i
t). (33)

Since h ∈H , s > 0 and νi > 0, then by Lemma 10, Gh(·) is convex on Ωk. Therefore, applying the
gradient inequality to the convex function Gh(·) one has:

Gh(z)−Gh(y)≥ 〈z− y,∇Gh(y)〉, ∀y,z ∈Ωk. (34)

Using the points given by z := vi
t+1, and y := vi

t , and noting that the l-th component of the gradient
of Gh(·) is given by

(

∇Gh(v
i
t)
)

l = πl
h′(vil

t )

h′
(

Gh(vi
t)
) = ρil(x(t)), l = 1, . . . ,k,

(where the last equality follows from (18)), one obtains after substituting these expressions in (34),

Gh(v
i
t)−Gh(v

i
t+1)≤

k

∑
l=1

νi

(

vil
t − vil

t+1

)

ρil(x(t)), i = 1, . . . ,m.

Multiplying by s > 0 the above inequality, summing over i = 1, . . . ,m, using (33) and (32) it follows
that for all x(t +1) 6= x(t),

Fs(x(t +1))−Fs(x(t)) ≤ s
m

∑
i=1

k

∑
l=1

νi(v
il
t − vil

t+1)ρ
il(x(t)),

=
m

∑
i=1

k

∑
l=1

νid(xl(t +1),ai)ρil(x(t))−
m

∑
i=1

k

∑
l=1

νid(xl(t),ai)ρil(x(t)),

= As(x(t +1),x(t))−As(x(t),x(t)) < 0,

where the last inequality is from (31), and (i) is proved.
(ii) Let d ∈ D(S) be separable. Then, by Proposition 15, the sequence {x(t)}∞

t=0 is bounded with
limit points in S. Thus, there exists x ∈ S and a convergent subsequence {x(t j)} to x, namely
lim
j→∞

x(t j) = x with lim j→∞ t j = +∞. Let x∗ ∈ S be a stationary point of Fs, then one has,

m

∑
i=1

νi∇1d((xl)∗,ai)ρil(x∗)) = 0, l = 1, . . . ,k. (35)
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We need to show that x = x∗. Thanks to Lemma 14(ii), and by definition of algorithm SKM, given
x(t) ∈ S, there exists a unique x(t +1) ∈ S which satisfies

m

∑
i=1

νi∇1d(xl(t +1),ai)ρil(x(t)) = 0, l = 1, . . . ,k. (36)

Let us denote the solution of (36) by xl(t + 1) := T l(x(t)), l = 1, . . . ,k, and for any u ∈ S, set
T (u) :=

(

T 1(u), . . . ,T k(u)
)

. Since D(S) 3 d(·,ai) is given C2 on S, with positive definite matrix

Hessian ∇2
1d(·,ai), and since νiρil(x(t)) > 0, then

m

∑
i=1

νi∇2
1d(·,ai)ρil(x(t)) is also a positive definite

matrix. Therefore, by invoking the implicit function theorem, it follows that T is continuous on S.
Now, by definition of SKM, using (36) and (35), in terms of T , it follows that:

x(t) = x∗ if and only if T (x(t)) = x(t). (37)

To complete the proof, we need to consider two cases. First, if for some t ≥ 0, x(t +1) = T (x(t)) =
x(t), then in that case the sequence repeats itself from that point, and one has x = x(t), which by (37)
implies that x = x∗. In the other case, with x(t +1) 6= x(t), by (i) one has for all t ≥ 0, Fs(x(t +1) <
Fs(x(t)). Therefore, the sequence {Fs(x(t)} is monotone decreasing, and since Fs(x) ≥ F(x) ≥ 0,
being also bounded below, it must converge to some limit, and it follows that,

lim
j→∞

[Fs(x(t j))−Fs(T (x(t j)))] = 0. (38)

Since T is continuous, one also have lim
j→∞

T (x(t j)) = T (x), and hence together with (38) we obtain

Fs(x) = Fs(T (x)). Therefore, by (i), the last equation implies that x = T (x), and hence by (37),
x = x∗.

Remark 17 It should be noted (as already explained in §2.3), that as long as a unique global min-
imizer of x → A(x,u) exists, and the continuity of the map T (·) on S can be ensured, a close
inspection of the proof reveals that the convergence result established in Theorem 16 could also be
used for other classes of distance-like functions, and in particular for the important class of Bregman
divergences considered by Banerjee et al. (2005), and discussed in Example 3.

6. Relations with Known Center-Based Clustering Algorithms and Extensions

The purpose of this section is not an intent to survey all the current existing approaches and center-
based clustering methods. Rather, our aim is to briefly demonstrate that many of the seemingly
different methods cited in the introduction, and which have emerged from various view points, can
be derived, analyzed and extended under the unified smoothing optimization approach we have
developed in this paper. This is now illustrated below, with a particular focus on the Deterministic
Annealing algorithm (DA) and its possible extensions.

Before proceeding, we recall our setting. As outlined in Section 2, there exists essentially two
equivalent ways to formulate the clustering problem: the nonsmooth formulation and its equivalent
exact smooth re-formulation, given respectively by

(NS) min{F(x) | x ∈ S} ⇐⇒ (SF) min
x,w

{

C1(x,w) | wi ∈ ∆i}
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where

F(x) =
m

∑
i=1

νi min
1≤l≤k

d(xl,ai); C1(x,w) :=
m

∑
i=1

k

∑
l=1

νiw
i
ld(xl,ai),

and with w := (w1, . . .wm) ∈ ∆ = ∆1× . . .×∆m.

6.1 The Fuzzy k-Means Algorithm (FKM)

This method (Bezdek, 1981) was originally devised to relax the solution of problem (SF), by intro-
ducing the objective function

Cβ(x,w) :=
m

∑
i=1

k

∑
l=1

νi(w
i
l)

βd(xl,ai),

where β > 1 is the parameter that governs the “fuzzy partition” through w. Indeed, the nonlinearity
of the function w→ Cβ(x,w), (as opposed to the standard k-means objective which corresponds to
β = 1) yields a solution w which is not anymore of the binary type as in hard clustering, hence the
“fuzzy” terminology, (which also corresponds to the soft terminology). Applying the Gauss-Seidel
algorithm described in the appendix to problem (SF) with the objective Cβ(x,w) yields the FKM,
(see, for example, Duda et al., 2001, page. 528).

Alternatively, keeping x fixed, and minimizing with respect to w, that is, solving the strictly
convex problem in w:

w∗(x) = argmin{Cβ(x,w) | wi ∈ ∆i, i = 1, . . . ,m},

one obtains the optimal solution

(wi
l)
∗(x) = d(xl,ai)

1
1−β

(

k

∑
j=1

d(x j,ai)
1

1−β

)−1

, i = 1, . . . ,m, l = 1, . . .k.

Plugging-in the optimal solution w∗(x) into the objective Cβ(x,w), an easy computation shows that
the remaining optimization problem to be solved in the variable x reduces to:

min







m

∑
i=1

νi

(

k

∑
l=1

d(xl,ai)
1

1−β

)1−β

| x ∈ S







, (β > 1). (39)

Therefore, with the choice h(t) = (−t)1/(1−β) (which is in the class H , see Example 12) in the
definition of Fs(·) as given in (15), one obtains that with the particular choice πl = k−1,∀l, the
objective function (39), and hence the resulting FKM algorithm, are recovered as a special case of
the smoothing approach and of algorithm SKM, for which our convergence result applies for any
distance d ∈D(S), thus also broadening the scope of FKM based method. Note that with the special
choice β = 2, the Harmonic Mean algorithm (cf. Example 10) is recovered.

6.2 The Deterministic Annealing (DA)

In Rose et al. (1990), building on statistical physics analogies, the authors have introduced the
Deterministic Annealing (DA) algorithm for clustering problems. In the recent work (Teboulle
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and Kogan, 2005) we already announced that DA can be derived and interpreted as a smoothing
optimization method. Indeed, the DA algorithm simply corresponds to the choice H 3 h(t) =
et , in the nonlinear mean Gh, and when substituted in (15) yields to solve the smooth nonconvex
optimization problem:

min

{

−s
m

∑
i=1

νi log
k

∑
l=1

πle
−d(xl ,ai)/s | x ∈ S

}

, (40)

where the smoothing parameter s > 0 plays the role of the inverse temperature used in the DA
formulation (Rose et al., 1990). Thus, applying SKM to problem (40), we obtain the classical DA
algorithm whenever d(·, ·) is the usual squared Euclidean distance, as well as its extension with
d ∈D(S).

The DA algorithm is thus also a smoothing optimization method. It has been claimed in the
literature (Rose et al., 1990; Ueda and Nakano, 1998; Rose, 1998), but, to the best of our knowledge,
not mathematically proven, that by suitably tuning the temperature, namely in our language, the
smoothing parameter, the DA can deliver “global” optimal solutions. However, our current analysis
demonstrates that only the nonsmoothness difficulty appears to be eliminated via the DA approach,
yet the nonconvexity difficulty remains. Nevertheless, deterministic annealing based algorithms
continue to be successfully used in practice (Elkan, 2006) and appear to share two particularly
interesting and unique features:
(i) As reported in several studies, the DA converges very quickly to“good” solutions (as compared
to the k-means algorithm).
(ii) The DA algorithm which is obtained from our framework with the special choice h(t) = et ,
is also a source of many other seemingly different methods, in particular when we consider its
extension with distance-like functions other than the usual squared Euclidean distance.

In view of the combined smoothing and successive approximation approach we have developed,
these two features are perhaps not too surprising in the following sense. The quick delivery of a rea-
sonable approximate solution relies on the gradient descent property of the SKM algorithm devel-
oped in Section 5, and hence of the DA algorithm in particular. Moreover, the Log-Sum exponential
function appears to be optimal in the sense we previously explained in Section 4 and in Remark 13.
Below, we further exemplify the point (ii) by briefly showing how the methods mentioned in the in-
troduction, such as, Maximum Entropy Clustering Algorithms (MECA), Expectation Maximization
(EM), and the Bregman soft clustering algorithm are essentially equivalent smoothing methods.

6.3 Deterministic Annealing, Entropy Methods and Information Theory

A remarkable mathematical property of the Log-Sum exponential function is that it is just the con-
jugate of the entropy function on the unit simplex, and vice-versa. More precisely, the following
result holds.

Lemma 18 For any given π ∈ ∆,

log
k

∑
l=1

πle
zl = max

y∈∆

{

〈y,z〉−
k

∑
l=1

yl log
yl

πl

}

,

where ∆ = {y ∈ IRk : ∑k
l=1 yl = 1,y≥ 0}. Moreover, with g(z) = log ∑k

l=1 πlezl , one has

g∗(y) =
k

∑
l=1

yl log
yl

πl
, with domg∗ = ∆.
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Proof. By direct computation, or see for example Rockafellar (1970, p. 148).

Using the dual representation of the Log-Sum exponential function given in Lemma 18 into
the objective function of (40), some algebra shows that the smooth optimization problem (40) is
equivalent to:

min
x,w

{

C1(x,w)+ s
m

∑
i=1

k

∑
l=1

νiw
i
l log

wi
l

πl
| wi ∈ ∆i, i = 1, . . . ,m

}

. (41)

This equivalent reformulation of the smooth optimization model (40) allows to show connec-
tions with other approaches that we now discuss.

Problem (40) recovers the basic formulation of what is called in the literature Maximum En-
tropy Clustering Algorithms, (MECA) (Rose, 1998). Of course, this shows that maximum entropy
methods applied to the clustering problem, are thus a special case of our smoothing approach.

Furthermore, it is interesting to notice that in MECA models one usually assume that πl =
k−1,∀l = 1, . . .k., that is, a uniform distribution. We can enrich the model by considering πl as
weights (probabilities) associated to each cluster center l, and ask to find the “best” possible distri-
bution for π, namely for given (x,w) in problem (41), we need to solve:

min

{

−s ∑
i=1

νi

k

∑
l=1

wi
l logπl | π ∈ ∆+

}

.

Clearly, the objective function in the later problem is convex in π, and a straightforward application
of Karush-Khun-Tucker (KKT) optimality conditions (Bertsekas, 99) to the latter problem yields
the optimal choice for π:

π∗l =
m

∑
i=1

νiw
i
l , l = 1, . . .k. (42)

Another interpretation is to view MECA as follows. Going back to the formulation (SF), the
problem (41) can in fact be viewed from various angles via the classical penalty-barrier optimization
method, which is also a smoothing approach (Auslender, 1999), whereby the entropy is used to
penalize the simplex constraints on wi, and s would play the role of the penalty-barrier parameter.
Namely by defining,

E(w,π) :=
m

∑
i=1

k

∑
l=1

νiw
i
l log

wi
l

πl

with w∈∆, where w := (w1, . . .wm), wi ∈ IRk, and ∆ = ∆1× . . .×∆m, problem (41) can be viewed as
a family of penalized problems, with s > 0, being the penalty parameter for solving the constrained
problem:

min
x,w
{C1(x,w) | E(w,π)≤ ε,w ∈ ∆},

where ε > 0, is preassigned. An interesting interpretation of the latter problem was described by
Rose (1998) as follows. The smoothing parameter s can be viewed as a Lagrange multiplier to an
entropy constraint which would measure the level of randomness in the following sense: the first
term in the objective of (41) is a predefined “expected distortion”, and thus we are trading “entropy”,
the second term in (41), for reduction in the distortion as s→ 0. Alternatively, problem (41) can
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also be seen directly related to the fundamental Shannon rate-distortion function (Berger, 1971).
Suppose the knowledge of the ”expected distortion” C1(x,w) is pre-assumed at a certain level, say
δ > 0, that is, one has C1(x,w) = ∑i,l νiwi

ld(xl,ai) ≤ δ. Fix any s > 0, say s = 1, and let π be as
given in (42). Then, for a fixed given x one has to solve,

R(δ) = min
w
{E(w,π) | C1(x,w)≤ δ, w ∈ ∆} . (43)

Following information theory concepts (Thomas and Cover, 1991), a close inspection of the last
problem reveals that the objective function E(w,π) in (43) is the so-called average mutual infor-
mation functional, and the optimal value R(δ) of problem (43) is nothing else but the mathematical
description of the rate distortion function. The later problem is a convex optimization problem in
w (a probabilistic/soft assignment variable), that can be solved via the so-called Blahut-Arimoto
algorithm, (Berger, 1971), which is an iterative fixed point type convex dual optimization method.

6.4 The EM algorithm and Bregman Soft Clustering

The Expectation Maximization (EM) algorithm is a workhorse in statistical estimation problems
for learning mixtures of distributions, (see, for example, Duda et al., 2001). In a very recent paper,
Banerjee et al. (2005) have shown that there exists a bijective correspondence between regular ex-
ponential distributions and Bregman divergences. This result enables them to show (see, Banerjee
et al., 2005, Section 5), that the EM algorithm for learning mixtures of regular exponential family
distributions is in fact equivalent to Bregman soft clustering.

Without recourse to any probability/statistical arguments, we provide below, yet another inter-
pretation and realization of this result, by showing that it corresponds to a special case of our generic
scheme, with the special choices h(t) = et , and d(x,a) := dψ(a,x).

Fix any s > 0, say s = 1 in (40). Then, one has to solve the equivalent problem (after an obvious
change of sign to pass to maximization):

max
x

F (x,π)≡max

{

m

∑
i=1

νi log
k

∑
l=1

πle
−d(xl ,ai) | x ∈ S

}

,

where π ∈ ∆+. Applying SKM, given π ∈ ∆+, and xl ∈ S we first need to compute:
The E-Step: compute “conditional probabilities” (cf. (18), and 22)):

ρil(x̄) :=
πle−d(x̄l ,ai)

∑k
j=1 π je−d(x̄l ,ai)

. (44)

Now, the second step in SKM consists of solving

min
x∈S

{

m

∑
i=1

k

∑
l=1

νid(xl,ai)ρil(x̄)

}

,

which admits a unique global minimizer (cf. Example 3), and yields
The M-step:

xl =
∑m

i=1 νiρil(x̄)ai

∑m
j=1 ν jρ jl(x̄)

, l = 1, . . . ,k. (45)

95



TEBOULLE

Now, if we assume that πl is also considered as a variable in the maximization of F (x,π), (e.g.,
πl gives the fraction of points representing optimal clusters l), then given x̄ ∈ S, one has to solve

max
π

F (x,π)≡max

{

m

∑
i=1

νi log
k

∑
l=1

πle
−d(x̄l ,ai) | π ∈ ∆+

}

. (46)

It is easy to see that the objective function in problem (46) is a concave function in the variable π,
and hence a direct application of the KKT optimality conditions to this convex problem (maximizing
a concave objective subject to a simplex constraint) yields using the notations in (44), the global
optimal solution:

π∗l =
m

∑
i=1

νiρil(x̄), l = 1, . . . ,k. (47)

Therefore, with the equations (44), (45) and (47), we have recovered through a special realiza-
tion of SKM, the EM algorithm for learning mixtures model of exponential family distributions or
equivalently the Bregman soft clustering method, as recently derived in Banerjee et al. (2005) from
a completely different perspective.

6.5 Discussion

There exists many other related clustering algorithms not discussed here, that can be designed, ana-
lyzed and extended through our framework, and we refer the reader to the relevant cited references
throughout this paper and their bibliography therein. The above comparisons were just briefly out-
lined to demonstrate the fundamental and useful role that convex analysis and optimization theory
can play in the analysis and interpretation of iterative center-based clustering algorithms. As such,
the general framework we have proposed should be viewed as complementary to alternative formu-
lations and approaches. Indeed, it is also important to mention that for specific application domains
which often involve particular input data representation, such as in statistics and information theory,
alternative approaches and formulations should not be ignored, as they can at times provide ways
for better/new insights or/and solution methods. For example, in the problem of learning mixture
models, an alternative approach is via spectral projection techniques, which provide algorithms with
theoretical guarantee for learning mixtures of log-concave distributions (Kannan et al., 2005). An-
other example is the information bottleneck method (Tishby et al., 1999) which provides a useful
formalism and principle to extract relevant information in a given data set. The recent interest-
ing study (Banerjee et al., 2005) connecting Bregman clustering and lossy compression schemes
through an information theoretic formalism, and which allows for extending the information bottle-
neck method, further demonstrates the usefulness of considering alternative formulations.

7. Concluding Remarks

This paper is a theoretical contribution to clustering analysis, and has three messages. First, the pro-
posed optimization framework and formalism provides a systematic and simple way to design and
analyze a broad class of hard and soft center-based clustering algorithms, which retain the computa-
tional simplicity of the k-means algorithm. Secondly, the proposed formalism has provided a closure
and unification to a long list of disparate motivations and approaches that have been proposed for
center-based clustering methods. As discussed in the paper, many of these algorithms which have
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been widely used in applications are special cases of our analysis. Third, the common optimization
language and the fundamental tools we have used, which rely on the combination of convex asymp-
totic functions, nonlinear means and distance-like functions, and from which our generic scheme
has emerged, enables for a rigorous analysis of center-based clustering algorithms, have revealed
the advantages and limitations of such methods, and have provided the basis for significantly extend
the scope of partitioning clustering algorithms.

As a final remark, we hope that the current study will further stimulate the use and application of
convex analysis and optimization in data analysis. Indeed, there are several theoretical and practical
challenges that need to be met in future research works in clustering analysis. Let us mention just a
few questions that naturally emerged from the present analysis. As already pointed out throughout
this study, for a given specific data set to cluster, current experimental results indicate that with
the choice of the Euclidean squared distance, the deterministic annealing algorithm (based on the
log-exponential mean) and the harmonic k-means can produce better quality clustering (see, for
example, Rose, 1998; Ueda and Nakano, 1998; Zhang et al., 1999; Hamerly and Elkan, 2002; Elkan,
2006). Thus, future experimentation based on these methods, but using other proximity measures
that could model various data types, deserves to be considered. Furthermore, as pointed out by
a referee, it would be interesting to identify the “best” choice of the function h to be used in the
broader family of convex nonlinear means. Similarly, can we characterize the classes of functions
h or/and the classes distance-like functions d that would allow us to eliminate or/and control the
inherent nonconvexity difficulty which is present in the clustering problem? Can we rigorously
measure the quality of clustering produced by the generic scheme, or some other possible refined
variants, in terms of the problem data and the couple (h,d)? Even partial answers to such theoretical
questions would have a significant practical impact, and deserve further investigations.
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Appendix A.

In this appendix we briefly describe the basic mechanism of hard clustering center-based algorithms.

A.1 The Gauss-Seidel Algorithm-GSA

The Gauss-Seidel algorithm, also called coordinate descent or alternative optimization method, pro-
ceeds as follows to solve the generic minimization problem:

minmin{F(x,y) : x ∈ X ,y ∈ Y} .

• At iteration t, fix x(t) ∈ X , and minimize with respect to y the function F(x(t),y), to get y(t).

• Update x by minimizing F(x,y(t)) with respect to x.
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• Continue this process iteratively until some declared stopping criteria is satisfied.

Convergence of GSA to a stationary point can be established under suitable conditions on the prob-
lem’s data, (Auslender, 1976; Bertsekas, 99).

A.2 Hard Clustering with Distance-Like Functions

The popular k-means algorithm with d being the squared of the Euclidean distance, is nothing else
but the Gauss-Seidel method, when applied to the exact smooth formulation (ES) of the clustering
problem.

min
x,w

{

C1(x,w) =
m

∑
i=1

k

∑
l=1

νiw
i
ld(xl,ai)

}

.

More generally, applying GSA on problem (ES) with distance-like functions d, we can obtain a
broad class of general Hard Clustering algorithms HCD. Note that the main computational step in
the generic HCD algorithm keeps the computational simplicity of the k-means algorithm, yet allows
for significantly expand the scope of hard clustering center-based methods.
Algorithm HCD–Hard Clustering with Distance-Like Functions

• Step 0-Initialization Set t = 0 and let {xl(0) : l = 1, . . . ,k} be the k initial centers in S. (These
can be picked randomly).

• Step 1-Cluster Assignment For i = 1, . . . ,m solve wi(t) = argmin
w∈∆i

k

∑
l=1

wld(xl(t),ai).

• Step 2-Update Cluster Centers For each l = 1, . . . ,k solve

(

x1(t +1), . . . ,xk(t +1)
)

= argmin
x1,...,xk

{

m

∑
i=1

k

∑
l=1

νiw
i
l(t)d(xl,ai)

}

.

• Step 3-Stopping Criteria Stop when some stopping criteria is satisfied, (e.g., x(t +1) = x(t)),
else set t←− t +1 and goto Step 1.

Algorithm HCD clearly implies that the objective function of (ES) is nonincreasing at the suc-
cessive iterations. The resulting stationary point obtained by this procedure satisfies the Karush-
Khun-Tucker (KKT) necessary optimality conditions for problem (ES) (Bertsekas, 99).

The remarkable simplicity of algorithm HCD relies on the fact that Step 1 is trivially solved,
while step 2 can be solved analytically for a wide class of distances d. Indeed, at any given iteration
t, to solve Step 1, for all i = 1, . . . ,m, let l(i) = argmin

1≤l≤k
d(xl(t),ai). Then, an optimal wi is simply

given by

wi
l(i)(t) = 1, that is, when xl is the center closest to ai,and wi

l(t) = 0,∀l 6= l(i).

To solve step 2, noting that the objective is separable in each variable xl , it reduces to solve for each
xl:

xl(t +1) = argmin
x

{

m

∑
i=1

wi
l(i)(t)d(x,ai)

}

.
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For the class d ∈D(S), as well as for other distance-like functions as discussed in Section 2.2, this
problem admits a unique global optimal solution. Furthermore, for distance-like functions which
are given separable, this problem even reduces to solve a one dimensional optimization problem,
which can often be solved analytically for many examples (Teboulle et al., 2006). It is easy to see
that algorithm HCD includes as special cases, not only the popular k-means algorithm, but also
many others hard clustering methods mentioned in the introduction. In particular, it includes and
extend the Bregman hard clustering algorithm recently derived in Banerjee et al. (2005, Algorithm
1, page 1715).
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