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Abstract

In the context of discriminant analysis, Vapnik’s statistical learning theory has mainly been devel-
oped in three directions: the computation of dichotomies with binary-valued functions, the compu-
tation of dichotomies with real-valued functions, and the computation of polytomies with functions
taking their values in finite sets, typically the set of categories itself. The case of classes of vector-
valued functions used to compute polytomies has seldom been considered independently, which is
unsatisfactory, for three main reasons. First, this case encompasses the other ones. Second, it can-
not be treated appropriately through a naı̈ve extension of the results devoted to the computation of
dichotomies. Third, most of the classification problems met in practice involve multiple categories.

In this paper, a VC theory of large margin multi-category classifiers is introduced. Central in
this theory are generalized VC dimensions called the γ-Ψ-dimensions. First, a uniform convergence
bound on the risk of the classifiers of interest is derived. The capacity measure involved in this
bound is a covering number. This covering number can be upper bounded in terms of the γ-Ψ-
dimensions thanks to generalizations of Sauer’s lemma, as is illustrated in the specific case of
the scale-sensitive Natarajan dimension. A bound on this latter dimension is then computed for
the class of functions on which multi-class SVMs are based. This makes it possible to apply the
structural risk minimization inductive principle to those machines.

Keywords: multi-class discriminant analysis, large margin classifiers, uniform strong laws of large
numbers, generalized VC dimensions, multi-class SVMs, structural risk minimization inductive
principle, model selection

1. Introduction

One of the central domains of Vapnik’s statistical learning theory (Vapnik, 1998) is the theory of
bounds, which is at the origin of the structural risk minimization (SRM) inductive principle (Vapnik,
1982; Shawe-Taylor et al., 1998) and, as such, has not only a theoretical interest, but also a practical
one. This theory has been developed for pattern recognition, regression estimation and density esti-
mation. The first results in the field of discrimination, exposed in Vapnik and Chervonenkis (1971),
were dealing with the computation of dichotomies with binary-valued functions. Later on, several
studies were devoted to the case of multi-class [[ 1,Q ]]-valued classifiers (Ben-David et al., 1995), and
large margin classifiers computing dichotomies (Alon et al., 1997; Bartlett, 1998;
Bartlett and Shawe-Taylor, 1999) (see also Bartlett et al., 1996, for the case of regression). How-
ever, the case of large margin classifiers computing polytomies (models taking their values in R

Q)
has seldom been tackled independently, although it cannot be considered as a trivial extension of
the three former ones (Guermeur et al., 1999).
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In this paper, we unify two complementary and well established theories, the theory of large
margin (bi-class) classifiers and the theory of multi-class [[ 1,Q ]]-valued classifiers, to lay the bases
of a simple theory of large margin multi-class classifiers. Central in the process is the specification
of a new class of generalized Vapnik-Chervonenkis (VC) dimensions, the γ-Ψ-dimensions. They
can be seen either as scale-sensitive extensions of the Ψ-dimensions (Ben-David et al., 1995), or
multivariate extensions of the fat-shattering dimension (Kearns and Schapire, 1994). An applica-
tion to the class of functions on which multi-class SVMs (M-SVMs) are based is provided. This
makes it possible to justify a posteriori the choice of their training criteria, which appear as imple-
mentations of the SRM inductive principle. This also gives birth to a model selection procedure of
low computational cost. The main stages of our study are summarized in Figure 1.

Multi−class extension

Theorem 4.1 in Vapnik (1998)Corollary 9 in Bartlett (1998)

Theorem 4.6 in 
Bartlett and Shawe−Taylor (1999)

Multi−class radius−margin bound

Multi−class extension

Section 5

VC bound with a covering number

Generalized Sauer−Shelah lemma

Multi−class extension of Lemma 3.5

Lemma 3.5 in Alon et al. (1997) Psi−dim, Ben−David et al. (1995)

Section 3 Section 4

Section 6

Section 7

Theorem 22

Lemma 39

Theorem 40

Theorem 48

VC bound for M−SVMs

VC bound with an extended VC dim

Figure 1: Organigram of the results of the paper.

Although the theorems of this theoretical contribution take the form of guaranteed risks, our
aim is not to derive a tight bound on the risk, but rather to highlight the instructive features of the
unification, and some specificities of the multi-class case. In that sense, our work is similar in spirit
to the one exposed in Tewari and Bartlett (2007). We are all interested in the way a convergence can
happen in the multi-class case. They consider the problem from the point of view of the training
algorithm, whereas we focus on the capacity of the class of functions. In short, the new theory can be
derived by extending concepts and results from only three famous papers: Ben-David et al. (1995),
Alon et al. (1997) and Bartlett (1998), plus a fourth reference, Bartlett and Shawe-Taylor (1999), to
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treat specifically the case of M-SVMs. This derivation appears rather straightforward once one has
understood that different descriptors of the behaviour of the class of functions of interest are to be
taken into account at the different steps of the reasoning, and this calls for the application of two
different “margin operators” to this class. This phenomenon, a specificity of the multi-class case, is
most noticeable at the level of the generalized Sauer-Shelah lemma, where the transition between
the two operators is performed.

The organization of the paper is as follows. Section 2 introduces the notion of multi-class
margin and margin risk for multi-class discriminant models, as well as the capacity measure that
will appear in the confidence interval of the basic guaranteed risk, a covering number. Section 3 is
then devoted to the formulation of this risk and its discussion. The γ-Ψ-dimensions are introduced
in Section 4. The extension of Sauer’s lemma relating the covering number of interest to one of the
γ-Ψ-dimensions, the margin Natarajan dimension, is established in Section 5. Our master theorem,
a combination of the basic convergence result and the aforementioned lemma, is then exposed in
Section 6. Section 7 is devoted to the computation of a bound on the margin Natarajan dimension of
the architecture shared by all the M-SVMs. In Section 8, the synthesis of the results derived in the
preceding sections is performed, underlining the specificities of the multi-class case. This section
also highlights the usefulness of our uniform convergence result for model selection. At last, we
draw conclusions and outline our ongoing research in Section 9.

2. Margin Risk for Multi-Category Discriminant Models

In this section, the theoretical framework of the study is introduced. It is based on a notion of margin
generalizing to an arbitrary (but finite) number of categories the standard (bi-class) one.

2.1 Formalization of the Learning Problem

We consider the case of a Q-category pattern recognition problem, with 3 ≤ Q < ∞ (so that the
degenerate case of dichotomies is a priori excluded). A pattern is represented by its description
x ∈ X and the set of categories Y is identified with the set of indexes of the categories, [[ 1,Q ]].
The link between patterns and categories is supposed to be of probabilistic nature. We make the
assumption that X , Y and the product space X ×Y are probability spaces, and X ×Y is endowed
with a probability measure P, fixed but unknown. The measure P completely characterizes the
problem of interest. In the PAC framework, this standard setting is known as probabilistic concept
learning (Kearns and Schapire, 1994). Hereafter, Z will designate the product space X ×Y , and
z = (x,y) its elements. Our goal is to find, in a given set G of functions g = (gk)1≤k≤Q from X into
R

Q, a function classifying data in an optimal way. Let (X ,Y ) be a random pair distributed according
to P. The function selection procedure, or training, makes use of a m-sample Dm = ((Xi,Yi))1≤i≤m
of independent copies of (X ,Y ). It consists in trying to optimize over G a criterion, called the
(expected) risk, which is the expectation with respect to P of a given loss function. At this point,
the properties of the functions in G and the way they perform classification must be specified. They
are supposed to satisfy some measurability conditions that will appear implicitly in the sequel (see
Dudley, 1984, Chap. 10 for a detailed study of the question in a similar context), plus the constraint
∑Q

k=1 gk = 0 (the purpose of this constraint will appear later). g assigns x ∈ X to the category l if
and only if gl(x) > maxk 6=l gk(x). In case of ex æquo, x is assigned to a dummy category denoted
by ∗. Let f be the decision function (from X into Y

S{∗}) associated with g. The criterion to be
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optimized is the probability of error P( f (X) 6= Y ). This calls for the choice of the following loss
function.

Definition 1 (Multi-Class loss) Let `, the multi-class loss function, be defined on Y ×R
Q by:

∀(y,v) ∈ Y ×R
Q, `(y,v) = 1l{vy≤maxk 6=y vk}

where 1l is the indicator function, which takes the value 1 if its argument is true, and 0 otherwise.

` is simply the 0-1 loss in the multi-class setting. The expected risk of a function g is consequently
defined as follows.

Definition 2 (Expected risk) The expected risk of a function g ∈ G , R(g), is given by:

R(g) = E [`(Y,g(X))] =
Z

Z
1l{gy(x)≤maxk 6=y gk(x)}dP(z).

The empirical risk is simply the estimate of the risk computed on the training sample.

Definition 3 (Empirical risk) The empirical risk of g ∈ G measured on a m-sample, Rm(g), is the
random variable given by:

Rm(g) =
1
m

m

∑
i=1

1l{gYi (Xi)≤maxk 6=Yi gk(Xi)}.

When needed, the m-sample used will be specified, by writing for instance RDm(g) in place of
Rm(g). Let n ∈ N

∗ = N\ {0} and let zn = ((xi,yi))1≤i≤n ∈ Zn. In the sequel, Rzn(g) will designate
the frequency of errors 1

n ∑n
i=1 1l{gyi (xi)≤maxk 6=yi gk(xi)}.

2.2 Multi-Class Margin and Multi-Class Margin Risk

For the classes of vector-valued functions we are interested in, the two elements which are the most
important to assign a pattern to a category and to derive a level of confidence in this assignment
are the index of the highest output and the difference between this output and the second highest
one. This calls for the use of a measure different from the standard indicator function ` to assess the
quality of a discrimination. This measure can be built around a notion of multi-class margin which
has been studied independently by different groups of authors (see for instance Elisseeff et al., 1999;
Allwein et al., 2000). To define it, we first define an auxiliary function.

Definition 4 (Function M) Let M be the function from R
Q × [[ 1,Q ]] to R defined as:

∀(v,k) ∈ R
Q × [[ 1,Q ]] , M(v,k) =

1
2

(

vk −max
l 6=k

vl

)

.

Let M(v, .) = max1≤k≤Q M(v,k).

Definition 5 (Multi-Class margin) Let g be a function of a class G . Its margin on (x,y) ∈ X ×Y
is defined to be M (g(x),y).

To take this margin into account, the following operators are introduced:
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Definition 6 (∆ operator) Define ∆ as an operator on G such that:

∆ : G −→ ∆G ,
g 7→ ∆g = (∆gk)1≤k≤Q ,

∀x ∈ X , ∆g(x) = (M (g(x),k))1≤k≤Q .

For the sake of simplicity, we write ∆gk in place of (∆g)k. In the sequel, similar simplifications will
be performed implicitly with other operators.

Definition 7 (∆∗ operator) Define ∆∗ as an operator on G such that:

∆∗ : G −→ ∆∗G
g 7→ ∆∗g = (∆∗gk)1≤k≤Q

∀x ∈ X , ∆∗g(x) = (max(∆gk(x),−M (g(x), .)))1≤k≤Q .

Remark 8 If M (g(x), .) > 0, ∆g(x) has a unique (strictly) positive component, otherwise it has
none. Let us consider the first case, and let k∗ = argmax1≤k≤Q ∆gk(x) = argmax1≤k≤Q gk(x)
(∆gk∗(x) = M (g(x), .)).

∀x ∈ X ,

{
if M (g(x), .) > 0, ∆∗g(x) = ((2δk,k∗ −1)∆gk∗(x))1≤k≤Q
if M (g(x), .) = 0, ∆∗g(x) = 0

.

where δ is the Kronecker symbol.

Example 1 Suppose that g(x) = (−0.1,0.6,−0.3,−0.2). Then

{
∆g(x) = (−0.35,0.35,−0.45,−0.4)
∆∗g(x) = (−0.35,0.35,−0.35,−0.35)

.

Before proceeding, it is useful to highlight the way those definitions relate to the bi-class case.
Let G̃ denote the class of real-valued functions implemented by a large margin bi-class classifier.
There is a one-to-one map from this class onto a class G as defined above. To each function g̃
in G̃ , a function g = (g1,g2) in G can be associated such that g1 = g̃ = −g2. This is precisely to
ensure the existence of this one-to-one map that the constraint ∑Q

k=1 gk = 0 has been introduced.
Then, ∆g = ∆∗g = g = (g̃,−g̃). As a consequence, one can consider that when implementing a
large margin bi-class classifier, the functions effectively handled are the component functions ∆g1

(or equivalently the component functions ∆∗g1). In the sequel, ∆# is used in place of ∆ and ∆∗

in the formulas that hold true for both operators. Obviously, the first of these formulas is the one
connecting the risk of g with the behaviour of ∆#g.

Proposition 9 The risk of a function g of G can be expressed as:

R(g) = E
[
1l{∆#gY (X)≤0}

]
.
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With these definitions at hand, the margin risk is defined as follows.

Definition 10 (Margin risk) Let γ ∈ R
∗
+ = (0,∞). The risk with margin γ of a function g of G ,

Rγ(g), is defined as:
Rγ(g) = E

[
1l{∆#gY (X)<γ}

]
.

The empirical risk with margin γ of g, Rγ,m(g) (or Rγ,Dm(g) if the sample needs to be specified), and
the frequency of errors with margin γ, Rγ,zn(g), are defined accordingly.

A consequence of the definition of the margin risk is the fact that knowing the exact behaviour
of the component functions ∆#gk below −γ and over γ is useless. On the contrary, one can take
benefit from working with classes of functions taking values in [−γ,γ]Q, which is compact, rather
than in R

Q. This advantage will appear in the first place in Section 3, and then more clearly in
Section 5. Such a transform is achieved by application of the following piecewise-linear squashing
operator.

Definition 11 (πγ operator, Bartlett, 1998) For γ ∈ R
∗
+, define πγ as an operator on G such that:

πγ : G −→ πγG ,
g 7→ πγg =

(
πγgk

)

1≤k≤Q ,

∀x ∈ X , πγg(x) = (sign(gk(x)) ·min(|gk(x)|,γ))1≤k≤Q

where the sign function is defined by sign(t) = 1 if t ≥ 0, and sign(t) = −1 otherwise.

For γ ∈ R
∗
+, let ∆#

γ denote πγ ◦∆# and ∆#
γ G =

{
∆#

γ g : g ∈ G
}

.
The capacity measure that will appear in the basic guaranteed risk stated in Section 3 is a cov-

ering number. Its definition, and the definition of related concepts, is the subject of the following
section. Introductions to the basic notions of functional analysis used in this article can be found in
Carl and Stephani (1990), Devroye et al. (1996) and van der Vaart and Wellner (1996).

2.3 Capacity Measures: Covering and Packing Numbers

The notion of covering number is based on the notions of ε-cover and ε-net.

Definition 12 (ε-cover and ε-net, Kolmogorov and Tihomirov, 1961) Let (E,ρ) be a pseudo-
metric space. For e ∈ E and r ∈ R

∗
+, let B(e,r) be the open ball of center e and radius r in E.

Let E ′ be a subset of E. For ε ∈ R
∗
+, an ε-net of E ′ is a subset E ′ of E such that:

E ′ ⊂
[

e∈E ′

B(e,ε).

S

e∈E ′ B(e,ε) is then an ε-cover of E ′. E ′ is a proper ε-net of E ′ if it is included in E ′.

Definition 13 (Covering number, Kolmogorov and Tihomirov, 1961) Let (E,ρ) be a pseudo-
metric space. For ε ∈ R

∗
+, if E ′ ⊂ E has an ε-net of finite cardinality, then its covering number

N (ε,E ′,ρ) is the smallest cardinality of its ε-nets. If there is no such finite net, then the covering
number is defined to be ∞. We denote N (p) (ε,E ′,ρ) the covering number obtained by considering
proper ε-nets only.
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Hereafter, the pseudo-metric that will be used on the families of functions considered is the follow-
ing one:

Definition 14 (dxn pseudo-metric) Let n ∈ N
∗. For a sequence xn = (xi)1≤i≤n ∈ X n, define the

pseudo-metric dxn on G as:

∀(g,g′) ∈ G2, dxn(g,g′) = max
1≤i≤n

∥
∥g(xi)−g′(xi)

∥
∥

∞ .

Definition 15 ∀n ∈ N
∗, ∀ε ∈ R

∗
+,

N (p) (ε,G ,n) = max
xn∈X n

N (p) (ε,G ,dxn) ,

the maximum being used in place of a supremum to highlight the fact that we implicitly make the
assumption that all the ε-nets considered are of finite cardinality.

There is a close connection between covering and packing properties of bounded subsets in pseudo-
metric spaces.

Definition 16 (ε-separation and packing number, Kolmogorov and Tihomirov, 1961) Let (E,ρ)
be a pseudo-metric space and ε ∈ R

∗
+. A set E ′ ⊂ E is ε-separated if, for any distinct points e1 and

e2 in E ′, ρ(e1,e2) ≥ ε. The ε-packing number of E ′′ ⊂ E, M (ε,E ′′,ρ), is the maximal size of an
ε-separated subset of E ′′.

Definition 17 (Separation) For n ∈ N
∗, let F be a class of functions on X taking their values in

[[ −n,n ]]Q and F |D its restriction to a subset D of X of finite cardinality. Two functions f and f ′ in
the class F |D are separated if they are 2-separated in the pseudo-metric dD , that is, if

max
x∈D

∥
∥ f (x)− f ′(x)

∥
∥

∞ ≥ 2.

Definition 18 (Pairwise separated set of functions) Let F , D and F |D be defined as above. F |D
is pairwise separated if any two distinct functions of F |D are separated.

2.4 Additional Definitions

This section gathers definitions which will be used in the proof of our basic uniform convergence
result.

Definition 19 (G(γ,xn) and G(γ,Dn)) Let n ∈ N
∗ and γ ∈ R

∗
+. Let xn = (xi)1≤i≤n ∈ X n. Let us

consider any function (deterministic algorithm) fnet that takes as input γ, G , and xn, and returns a
subset of G such that its image by the operator ∆#

γ is a proper γ/2-net of the set ∆#
γ G (in the pseudo-

metric dxn), and this net is of minimal cardinality, that is, of cardinality N (p)
(
γ/2,∆#

γ G ,dxn
)
.

G(γ,xn) = fnet (γ,G ,xn) .

The random variable G(γ,Dn) is defined accordingly, by replacing in the definition of G(γ,xn) the
sequence xn with (Xi)1≤i≤n.
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Note that for the sake of simplicity, we use G(γ,Dn) in place of G
(
γ,(Xi)1≤i≤n

)
, although the latter

formulation is more precise.

Definition 20 (Swapping group T2n) For n ∈ N
∗, let T2n be the “swapping” subgroup of S2n, the

symmetric group of degree 2n. T2n is the set of all permutations σ over [[ 1,2n ]] that swap i and
n+ i for all i in some subset of [[ 1,n ]]. Precisely, for all i in [[ 1,n ]], (σ(i),σ(i+n)) is either equal to
(i, i+n) or to (i+n, i). The permutations σ are regarded as acting on coordinates. For z2n ∈Z2n and
σ ∈ T2n, let σ

(
z2n
)

=
((

xσ(i),yσ(i)

))

1≤i≤2n
. T2n is endowed with a uniform probability distribution.

Definition 21 (Bernoulli/Rademacher sequence) For n∈N
∗, a Bernoulli or Rademacher sequence

is a sequence α = (αi)1≤i≤n of independent real random variables with P(αi =−1) = P(αi = 1) = 1
2

for all i.

3. Uniform Convergence of the Empirical Margin Risk

With the hypotheses and definitions of the previous section at hand, we prove the following uniform
convergence result.

3.1 Basic Uniform Convergence Result

Theorem 22 Let G be the class of functions that a large margin Q-category classifier on a domain
X can implement. Let Γ ∈ R

∗
+ and δ ∈ (0,1). With probability at least 1−δ, for every value of γ in

(0,Γ], the risk of any function g in G is bounded from above by:

R(g) ≤ Rγ,m(g)+

√

2
m

(

ln
(
2N (p)

(
γ/4,∆#

γ G ,2m
))

+ ln

(
2Γ
γδ

))

+
1
m

.

The proof is given in Appendix B. This theorem can be seen as a multi-class extension of Corollary 9
in Bartlett (1998). Indeed, setting Q = 2 (and Γ = 1), we get a slightly improved version of this
corollary. The difference rests on the fact that in the first symmetrization, we took advantage of
an idea which is implicitly at the basis of Formula (4.28) in Vapnik (1998). This idea consists in
making use of Lemma 49. As a consequence, Theorem 22 can also be seen as a specification for
the case of large margin multi-category classifiers of Theorem 4.1 in Vapnik (1998).

3.2 Choice of the Margin Operator

Theorem 22 has been derived for both margin operators, ∆ and ∆∗. The choice between them should
thus rest on the use which is done of the bound, that is, on the nature of the pathway followed to
bound from above the covering number of interest. This question, the nature of which is primarily
technical, will turn out to be of central importance in the following sections. At this point, we can
already notice that the ∆∗ operator provides less information on the behaviour of the function on
which it is applied than the ∆ operator. Such a difference would appear as an advantage to derive a
generalization of Sauer’s lemma, and a drawback to compute an upper bound on the corresponding
generalized VC dimension. This suggests to implement a hybrid strategy, mixing results involving
∆∗ with results involving ∆. This is precisely what will be done here.
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4. γ-Ψ-dimensions: the Generalized VC Dimensions of Large Margin
Multi-Category Classifiers

Several approaches can be applied to bound from above the covering number of interest for a given
class of functions G . The standard one, introduced in Vapnik and Chervonenkis (1971), consists in
involving in the process the VC dimension, or one of its extensions. If VC dimensions appear useful
in practice, their interest is primarily of theoretical nature. Indeed, they characterize learnability
in different settings (see for instance Alon et al., 1997). In this section, the γ-Ψ-dimensions are
introduced as the generalized VC dimensions suited for large margin multi-category classifiers.
They appear as syntheses of the Ψ-dimensions and the fat-shattering dimension (also known as the
γ-dimension). The pertinence of this specification will be established in Section 5.

The basic result relating a covering number (precisely the growth function) to the VC dimen-
sion is the Sauer-Shelah lemma (Vapnik and Chervonenkis, 1971; Sauer, 1972; Shelah, 1972). As
stated in the introduction, extensions of the standard VC theory, which only deals with the compu-
tation of dichotomies with indicator functions, have mainly been proposed for large margin bi-class
discriminant models and multi-class discriminant models taking their values in finite sets. In both
cases, generalized Sauer-Shelah lemmas have been derived (see for instance Haussler and Long,
1995; Alon et al., 1997), which involve extended notions of VC dimension. For large margin
bi-class discriminant models, the generalization of the VC dimension which has given birth to
the richest set of theoretical results is a scale-sensitive variant called the fat-shattering dimension
(Kearns and Schapire, 1994). In the multi-class case, several alternative solutions were proposed by
different authors, such as the graph dimension (Dudley, 1987; Natarajan, 1989), or the Natarajan
dimension (Natarajan, 1989). It was proved in Ben-David et al. (1995) that most of these extensions
could be gathered in a general scheme, which makes it possible to derive necessary and sufficient
conditions for PAC learning (Valiant, 1984). In this scheme, they appear as special cases of Ψ-
dimensions.

We introduce scale-sensitive extensions of the Ψ-dimensions. The underlying idea is simple: in
the same way as scale-sensitive extensions of the VC dimension, such as the fat-shattering dimen-
sion, make it possible to study the generalization capabilities of bi-class discriminant models taking
their values in R, scale-sensitive extensions of the Ψ-dimensions should make it possible to study
the generalization capabilities of Q-class discriminant models taking their values in R

Q.

4.1 Ψ-dimensions

Definition 23 (Ψ-dimensions, Ben-David et al., 1995) Let F be a class of functions on a set X
taking their values in the finite set [[ 1,Q ]]. Let Ψ be a family of mappings ψ from [[ 1,Q ]] into
{−1,1,∗}, where ∗ is thought of as a null element. A subset sX n = {xi : 1 ≤ i ≤ n} of X is said
to be Ψ-shattered by F if there is a mapping ψn =

(
ψ(i)
)

1≤i≤n in Ψn such that for each vector vy in
{−1,1}n, there is a function fy in F satisfying

(

ψ(i) ◦ fy(xi)
)

1≤i≤n
= vy.

The Ψ-dimension of F , denoted by Ψ-dim(F ), is the maximal cardinality of a subset of X Ψ-
shattered by F , if this cardinality is finite. If no such maximum exists, F is said to have infinite
Ψ-dimension.
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Remark 24 Let F and Ψ be defined as above. Extending the definition of the standard VC dimen-
sion, VC-dim, so that it applies to classes of functions taking values in {−1,1,∗}, which has no
incidence in practice, the following proposition holds true:

Ψ-dim(F ) = VC-dim({(x,ψ) 7→ ψ◦ f (x) : f ∈ F ,ψ ∈ Ψ}) .

In words, the idea common to all these dimensions is to introduce adequately chosen mappings
from [[ 1,Q ]] into {−1,1,∗} so that the problem of the computation of the capacity measure boils
down to the computation of several standard VC dimensions. In that context, the motivation for the
choice of one particular dimension (set Ψ) utterly rests on the possibility to derive two tight bounds:
a generalized Sauer-Shelah lemma and a bound on the dimension itself. The most frequently used
Ψ-dimension is the graph dimension.

Definition 25 (Graph dimension, Natarajan, 1989) Let F be a class of functions on a set X tak-
ing their values in [[ 1,Q ]]. The graph dimension of F , G-dim(F ), is the Ψ-dimension of F in the
specific case where Ψ = {ψk : 1 ≤ k ≤ Q}, such that ψk takes the value 1 if its argument is equal to
k, and the value −1 otherwise. Reformulated in the context of multi-class discriminant analysis, the
functions ψk are the indicator functions of the categories.

Obviously, this notion of Ψ-dimension is connected with one of the standard decomposition schemes
implemented to tackle multi-class problems with bi-class classifiers: the one-against-all method.
Another popular decomposition scheme is the one-against-one method. The corresponding Ψ-
dimension has been proposed by Natarajan.

Definition 26 (Natarajan dimension, Natarajan, 1989) Let F be a class of functions on a set X
taking their values in [[ 1,Q ]]}. The Natarajan dimension of F , N-dim(F ), is the Ψ-dimension of F
in the specific case where Ψ = {ψk,l : 1 ≤ k 6= l ≤ Q}, such that ψk,l takes the value 1 if its argument
is equal to k, the value −1 if its argument is equal to l, and ∗ otherwise.

4.2 Margin Ψ-dimensions

Our scale-sensitive version of the concept of Ψ-dimension is devised so that the corresponding
dimensions can alternatively be seen as multivariate extensions of the fat-shattering dimension.

Definition 27 (Fat-shattering dimension, Kearns and Schapire, 1994) Let G be a class of real-
valued functions on a set X . For γ∈R

∗
+, a subset sX n = {xi : 1 ≤ i ≤ n} of X is said to be γ-shattered

by G if there is a vector vb = (bi) ∈ R
n such that, for each vector vy = (yi) in {−1,1}n, there is a

function gy in G satisfying

∀i ∈ [[ 1,n ]] , yi (gy(xi)−bi) ≥ γ. (1)

The fat-shattering dimension with margin γ, or Pγ dimension, of the class G , Pγ-dim(G), is the max-
imal cardinality of a subset of X γ-shattered by G , if this cardinality is finite. If no such maximum
exists, G is said to have infinite Pγ dimension.

Let ∧ denote the conjunction of two events. With these definitions at hand, the Ψ-dimensions with
margin γ, or γ-Ψ-dimensions, are defined as follows:
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Definition 28 (γ-Ψ-dimensions) Let G be a class of functions on a set X taking their values in
R

Q. Let Ψ be a family of mappings ψ from [[ 1,Q ]] into {−1,1,∗}. For γ ∈ R
∗
+, a subset sX n =

{xi : 1 ≤ i ≤ n} of X is said to be γ-Ψ-shattered (Ψ-shattered with margin γ) by ∆#G if there is a
mapping ψn =

(
ψ(i)
)

1≤i≤n in Ψn and a vector vb = (bi) in R
n such that, for each vector vy = (yi) in

{−1,1}n, there is a function gy in G satisfying

∀i ∈ [[ 1,n ]] ,

{
if yi = 1, ∃k : ψ(i)(k) = 1 ∧ ∆#gy,k(xi)−bi ≥ γ
if yi = −1, ∃l : ψ(i)(l) = −1 ∧ ∆#gy,l(xi)+bi ≥ γ

. (2)

The γ-Ψ-dimension, or Ψ-dimension with margin γ, of ∆#G , denoted by Ψ-dim
(
∆#G ,γ

)
, is the

maximal cardinality of a subset of X γ-Ψ-shattered by ∆#G , if this cardinality is finite. If no such
maximum exists, ∆#G is said to have infinite γ-Ψ-dimension.

From a theoretical point of view, the one-against-one decomposition method exhibits an advantage
over the one-against-all decomposition method: its use makes it easier to extend to the multi-class
case bi-class theorems, by application of the pigeonhole principle. Thus, the scale-sensitive Ψ-
dimension which will be involved in our generalized Sauer-Shelah lemma is the one extending the
Natarajan dimension. Given the definitions of the Natarajan dimension and the scale-sensitive Ψ-
dimensions, it can be formulated as:

Definition 29 (Natarajan dimension with margin γ) Let G be a class of functions on a set X tak-
ing their values in R

Q. For γ ∈ R
∗
+, a subset sX n = {xi : 1 ≤ i ≤ n} of X is said to be γ-N-shattered

(N-shattered with margin γ) by ∆#G if there is a set

I(sX n) = {(i1(xi), i2(xi)) : 1 ≤ i ≤ n}

of n couples of distinct indexes in [[ 1,Q ]] and a vector vb = (bi) in R
n such that, for each vector

vy = (yi) in {−1,1}n, there is a function gy in G satisfying

∀i ∈ [[ 1,n ]] ,

{
if yi = 1, ∆#gy,i1(xi)(xi)−bi ≥ γ
if yi = −1, ∆#gy,i2(xi)(xi)+bi ≥ γ .

The Natarajan dimension with margin γ of the class ∆#G , N-dim
(
∆#G ,γ

)
, is the maximal cardinality

of a subset of X γ-N-shattered by ∆#G , if this cardinality is finite. If no such maximum exists, ∆#G
is said to have infinite Natarajan dimension with margin γ.

4.3 Discussion

In the preceding section, we have given a formulation of the definition of the Natarajan dimension
which is inspired from the one in Ben-David et al. (1995) (the definition in Natarajan, 1989, does
not involve the ψk,l mappings). This formulation can be restricted by considering only the mappings
ψk,l such that k < l, instead of k 6= l. This is possible due to the symmetrical roles played by the
indexes of categories i1(xi) and i2(xi) in the definition. As a consequence, the cardinality of the set
Ψ considered can be divided by 2 (reduced from Q(Q− 1) to

(Q
2

)
). This is useful indeed, since

many theorems dealing with Ψ-dimensions involve the cardinality of Ψ (see for instance Theorem 7
in Ben-David et al., 1995). An equivalent simplification can be performed in the case of the margin
Natarajan dimension.
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Proposition 30 The definition of the Natarajan dimension with margin γ is not affected by the
introduction of the additional constraint: ∀i ∈ [[ 1,n ]], i1(xi) < i2(xi).

Proof Let Gy be a subset of G of cardinality 2n such that ∆#Gy γ-N-shatters sX n with respect to
I(sX n) and vb. Let I′(sX n) be the set of n couples of indexes (i′1(xi), i′2(xi)) deduced from I(sX n) by
reordering its elements, that is,

∀i ∈ [[ 1,n ]] ,
(
i′1(xi), i

′
2(xi)

)
= (min(i1(xi), i2(xi)) ,max(i1(xi), i2(xi))) .

Let vb′ = (b′i) be the vector of R
n deduced from vb as follows: ∀i ∈ [[ 1,n ]], b′i = bi if (i′1(xi), i′2(xi)) =

(i1(xi), i2(xi)), b′i = −bi otherwise. We establish that ∆#Gy still γ-N-shatters sX n with respect to
I′(sX n) and vb′ . For any vector vy = (yi) of {−1,1}n, let gy′ be the function in Gy such that ∆#gy′

“contributes” to the γ-N-shattering of sX n with respect to I(sX n) and vb for a value of the binary vec-
tor equal to vy′ = (y′i), where y′i = yi if (i′1(xi), i′2(xi)) = (i1(xi), i2(xi)), y′i =−yi otherwise. According
to Definition 29,

∀i ∈ [[ 1,n ]] ,

{
if y′i = 1, ∆#gy′,i1(xi)(xi)−bi ≥ γ
if y′i = −1, ∆#gy′,i2(xi)(xi)+bi ≥ γ .

As a consequence, for the set of indexes i such that (i′1(xi), i′2(xi)) = (i1(xi), i2(xi)),

{
if yi = 1, ∆#gy′,i′1(xi)(xi)−b′i ≥ γ
if yi = −1, ∆#gy′,i′2(xi)(xi)+b′i ≥ γ . (3)

Furthermore, for the set of indexes i such that (i′1(xi), i′2(xi)) = (i2(xi), i1(xi)),

{
if yi = −1, ∆#gy′,i′2(xi)(xi)+b′i ≥ γ
if yi = 1, ∆#gy′,i′1(xi)(xi)−b′i ≥ γ .

This is exactly (3), which thus holds true for all values of i in [[ 1,n ]] (whether the couple (i′1(xi), i′2(xi))
is equal to (i1(xi), i2(xi)) or equal to (i2(xi), i1(xi))). According to Definition 29, the function ∆#gy′

thus contributes to the γ-N-shattering of sX n with respect to I′(sX n) and vb′ for a value of the binary
vector equal to vy. But since the vector vy has been chosen arbitrarily in {−1,1}n, this implies that
∆#Gy γ-N-shatters sX n with respect to I′(sX n) and vb′ , which, by construction of I ′(sX n), concludes
the proof.

In the sequel, we will sometimes make use of Proposition 30 implicitly. We now establish that the
γ-Ψ-dimensions are actually multivariate extensions of the fat-shattering dimension.

Proposition 31 Let G̃ be a class of real-valued functions on a set X . Let G be the corresponding
class of functions from X into R

2. Then, for all positive value of γ,

Pγ-dim(G̃) = Ψ-dim(∆#G ,γ).

Proof When Q = 2, one can consider that the set Ψ contains only two mappings, ψ+ and ψ−,
with ψ+(1) = 1, ψ+(2) = −1 and ψ−(1) = −1, ψ−(2) = 1 (adding other mappings, for instance
mappings taking the value ∗, would be useless since such mappings either do not take the value 1,
or do not take the value −1). Using the same line of reasoning as in the proof of Proposition 30, one
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can establish that Ψ can be restricted further to the singleton {ψ+}. As a consequence, (2) simplifies
into:

∀i ∈ [[ 1,n ]] ,

{
if yi = 1, ∆#gy,1(xi)−bi ≥ γ
if yi = −1, ∆#gy,2(xi)+bi ≥ γ . (4)

Since we have seen in Section 2.2 that ∆#g = (g̃,−g̃), (4) simplifies further into (1) (with g̃ in place
of g), which concludes the proof.

In both cases (fat-shattering dimension and margin Ψ-dimensions) the introduction of the vector of
“biases” vb could be seen as a simple computational trick, useful to derive the generalized Sauer-
Shelah lemma (establish a connection between the property of separation and the capacity to shatter
a set of points) at the expense of a more complex computation for the bound on the margin dimension
itself. This is partly the case indeed. However, in Section 7, we will see that these extra degrees of
freedom can be handled pretty easily.

5. Relating the Covering Number and the Margin Natarajan Dimension

This section is devoted to the formulation of an upper bound on the covering number of interest in
terms of the margin Natarajan dimension. Its main result is a generalization of the Sauer-Shelah
lemma given by Lemmas 38 and 39. Our basic uniform convergence result, Theorem 22, involves
the class of functions ∆#

γ G . However, in the preceding section, the scale-sensitive Ψ-dimensions
have been defined for ∆#G (although the extension to ∆#

γ G is straightforward). The reason for this
change, and the way it can be handled, is the subject of the following subsection.

5.1 Switching from ∆#
γ G to ∆#G

As stated in Section 2.2, the advantage of working with the class ∆#
γ G is obvious: the range of its

functions, [−γ,γ]Q, is optimal (the smallest range that does not affect the value of the margin risk).
The seamy side of things is that the nonlinearity introduced by the πγ operator is difficult to handle
when bounding a generalized VC dimension. Furthermore, there is no direct connection between
Ψ-dim

(
∆#

γ G ,ε
)

and Ψ-dim
(
∆#G ,ε

)
. On the contrary, the transition can be performed very easily at

the level of the covering number, thanks to the following lemma.

Lemma 32 Let G be a class of functions from a domain X into R
Q, let γ and ε be two positive real

numbers and let n ∈ N
∗. Then,

N (p)(ε,∆#
γ G ,n) ≤ N (p)(ε,∆#G ,n).

Proof This property directly springs from the fact that πγ satisfies the Lipschitz condition with

constant 1. Thus, ∀(g,g′) ∈ G2, ∀x ∈ X , ∀(γ,ε) ∈
(
R
∗
+

)2
,

∥
∥∆#g(x)−∆#g′(x)

∥
∥

∞ < ε =⇒
∥
∥∆#

γ g(x)−∆#
γ g′(x)

∥
∥

∞ < ε.

Since the computations leading to our generalized Sauer-Shelah lemma will require the functions in
∆#G to have a bounded range, to compensate for the elimination of the πγ operator, from now on,
we make the hypothesis that there exists a positive real number M such that the functions g, and by

2563



GUERMEUR

way of consequence the functions ∆#g, take their values in [−M,M]Q. Given this hypothesis, the
only values of the margin parameter γ corresponding to a nontrivial situation are those inferior or
equal to M. As a consequence, we also assume that the parameter Γ of Theorem 22 is set equal to
M. To formulate the main combinatorial result of this section, new concepts are to be defined. They
correspond to extensions of concepts introduced in Alon et al. (1997).

5.2 Definitions

Definition 33 (η-discretization operator) Let G be a class of functions from X into [−M,M]Q.
For η ∈ R

∗
+, define the η-discretization as an operator on ∆#G such that:

(.)(η) : ∆#G −→
(
∆#G

)(η)
,

∆#g 7→
(
∆#g
)(η)

=
((

∆#gk
)(η)
)

1≤k≤Q
,

∀x ∈ X ,
(
∆#g
)(η)

(x) =

(

sign
(
∆#gk(x)

)
·
⌊∣
∣∆#gk(x)

∣
∣

η

⌋)

1≤k≤Q

where the function b.c is defined by ∀t ∈ R+, btc = max{ j ∈ N : j ≤ t}.

Note that this definition is not a straightforward extension of the original one to the case of vector-
valued functions, since we had to relax the hypothesis of nonnegativity. Fortunately, this general-
ization does not raise any difficulty.

Definition 34 (Strong Natarajan dimension) Let G be a class of functions from X into [−M,M]Q

and let η ∈ (0,M]. A subset sX n = {xi : 1 ≤ i ≤ n} of X is said to be strongly N-shattered by
(
∆#G

)(η)
if there is a set

I(sX n) = {(i1(xi), i2(xi)) : 1 ≤ i ≤ n}

of n couples of distinct indexes in [[ 1,Q ]] and a vector vb = (bi) in
[[

−
⌊

M
η

⌋

+1,
⌊

M
η

⌋

−1
]]n

such

that, for each vector vy = (yi) in {−1,1}n, there is a function gy in G satisfying

∀i ∈ [[ 1,n ]] ,

{

if yi = 1,
(
∆#gy,i1(xi)

)(η)
(xi)−bi ≥ 1

if yi = −1,
(
∆#gy,i2(xi)

)(η)
(xi)+bi ≥ 1

.

The strong Natarajan dimension of the class
(
∆#G

)(η)
, SN-dim

((
∆#G

)(η)
)

, is the maximal car-

dinality of a subset of X strongly N-shattered by
(
∆#G

)(η)
, if this cardinality is finite. If no such

maximum exists,
(
∆#G

)(η)
is said to have infinite strong Natarajan dimension.

Obviously, as in the case of the margin Natarajan dimension, the definition remains unchanged if
the additional constraint: ∀i ∈ [[ 1,n ]], i1(xi) < i2(xi) is introduced.
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5.3 Relating Separation and Strong N-shattering

The Sauer-Shelah lemma and its generalizations rest on a simple idea: to establish a connection
between the property of separation of two functions and their capacity to “shatter” a singleton. This
connection is obvious in the case of binary-valued functions (more precisely functions taking values
in {−1,1}). Then,

∣
∣ f (x)− f ′(x)

∣
∣≥ 2 ⇐⇒ f (x) = − f ′(x)

and thus f and f ′ classify x in different categories. Things are more complicated is the case of
classifiers taking values in R

Q. The corresponding result in that latter context is the following.

Lemma 35 Let G be a class of functions from X into [−M,M]Q and let η be a real number be-
longing to (0,M]. Let D be a subset of X of finite cardinality and let F and F ∗ be respectively
the restrictions of (∆G)(η) and (∆∗G)(η) to D . F and F ∗ are endowed with the pseudo-metric

dD . If two functions g and g′ in G are such that f ∗ = (∆∗g)(η)
∣
∣
∣
D

and f ∗
′
= (∆∗g′)(η)

∣
∣
∣
D

are sepa-

rated, then there exists x in D such that
{

f = (∆g)(η)
∣
∣
∣
D

, f ′ = (∆g′)(η)
∣
∣
∣
D

}

strongly N-shatters the

singleton {x}. Suppose further, without loss of generality, that maxk f ∗k (x) ≥ maxk f ∗
′

k (x) and let
k0 = argmaxk f ∗k (x). Then there is at least one couple (I ({x}) ,vb) = ({(i1(x), i2(x))} ,(b0)) with
i1(x) = k0 and b0 = f ∗k0

(x)−1 witnessing the strong N-shattering of {x} by { f , f ′}.

Proof We first demonstrate that k0 is well defined. Indeed, this is the case unless f ∗(x) = 0. But
f ∗(x) = 0 and maxk f ∗k (x) ≥ maxk f ∗

′
k (x) implies that f ∗

′
(x) = 0, which is in contradiction with the

hypothesis
∥
∥
∥ f ∗(x)− f ∗

′
(x)
∥
∥
∥

∞
≥ 2. By definition of the operator ∆∗, there exists an index l0 different

from k0 such that f ′l0(x) = f ∗
′

l0
(x). l0 is simply the index of a component of g′(x) satisfying g′l0(x) =

maxk 6=k0 g′k(x). By definition of k0 and b0, fk0(x)−b0 = f ∗k0
(x)−b0 = 1. By construction, f ′l0(x)+

b0 = f ∗
′

l0
(x)+ b0. Two cases must now be considered. If f ∗

′
l0

(x) = maxk f ∗
′

k (x), then f ∗
′

l0
(x) = 0 =⇒

f ∗
′
(x) = 0 =⇒ f ∗k0

(x)≥ 2 (otherwise f ∗ and f ∗
′
would not be separated). As a consequence, f ∗

′
l0

(x)+

f ∗k0
(x) ≥ 2 and thus f ∗

′
l0

(x)+b0 ≥ 1, which is equivalent to f ′l0(x)+b0 ≥ 1. If f ∗
′

l0
(x) 6= maxk f ∗

′
k (x),

then f ∗
′

k0
(x) = maxk f ∗

′
k (x) and f ∗

′
l0

(x) = − f ∗
′

k0
(x). Necessarily, f ∗k0

(x)− f ∗
′

k0
(x) ≥ 2 (otherwise f ∗ and

f ∗
′

would not be separated) and finally f ′l0(x) + b0 = f ∗k0
(x)− f ∗

′
k0

(x)− 1 ≥ 1. Thus, the couple
(

I ({x}) = {(k0, l0)} ,vb =
(

f ∗k0
(x)−1

))

witnesses the strong N-shattering of {x} by { f , f ′}.

Lemma 35 will turn out to be of central importance in the sequel. We consider it as contributing
to characterize the specificity of the multi-class case, since it highlights the usefulness of the ∆∗

operator (whereas the usefulness of the ∆ operator will appear in Section 7).

Remark 36 Lemma 35 cannot be stated with the operator ∆ only.

Proof To prove this last assertion, it suffices to exhibit a counter example. Let G be a class of
functions from X into [−2,2]4 and g and g′ be two functions in G such that there exists D = {x}
satisfying g(x) = (1.4,−0.2,−0.2,−1.0) and g′(x) = (1.4,−0.2,−0.6,−0.6). Let η = 0.1. Us-
ing the same notations as above, we get f (x) = (8,−8,−8,−12), f ′(x) = (8,−8,−10,−10) and
f ∗(x) = f ∗

′
(x) = (8,−8,−8,−8). Although f and f ′ are separated, they do not strongly N-shatter
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{x}. Indeed, if it were the case, then according to Definition 34, there would be two different in-
dexes k0 and l0 in [[ 1,4 ]] such that fk0(x)+ f ′l0(x) ≥ 2, which is not the case.

In contrast with this negative result, the hypothesis
∥
∥
∥ f ∗(x)− f ∗

′
(x)
∥
∥
∥

∞
≥ 2 also implies that

{

f ∗, f ∗
′
}

strongly N-shatters {x} (Lemma 35 could have been stated with the operator ∆∗ only). A tricky
thing must be borne in mind. If two pairs

(
g(1),g(2)

)
and

(
g(3),g(4)

)
of functions in G are such

that
(

f ∗(1)(x), f ∗(2)(x)
)

=
(

f ∗(3)(x), f ∗(4)(x)
)
, then if

∥
∥ f ∗(1)(x)− f ∗(2)(x)

∥
∥

∞ ≥ 2, {x} is strongly
N-shattered both by

{
f (1), f (2)

}
and by

{
f (3), f (4)

}
. However, those shatterings could require dif-

ferent witnesses (I ({x}) ,vb). More precisely, using the notations of Definition 34, given the cou-
ple
(

f ∗(1), f ∗(2)
)
, one can exhibit an index i1(x) and a bias b0 contributing to both shatterings (by

{
f (1), f (2)

}
and by

{
f (3), f (4)

}
) but the last component of the witness, i2(x), must be chosen as a

function of the values taken by the functions f on x. It is thus a priori different for
{

f (1), f (2)
}

and
for
{

f (3), f (4)
}

.
We now prove the main combinatorial result at the basis of our generalization of the Sauer-

Shelah lemma, an extension of Lemma 3.3 in Alon et al. (1997).

5.4 Main Combinatorial Result

Lemma 37 Let G be a class of functions on X taking their values in [−M,M]Q and let η be a real
number belonging to (0,M]. Let D be a subset of X of finite cardinality |D| and let F and F ∗

be respectively the restrictions of (∆G)(η) and (∆∗G)(η) to D . F and F ∗ are endowed with the

pseudo-metric dD . Setting d = SN-dim(F ) and q =
⌊

M
η

⌋

, the following bound holds true:

M (2,F ∗,dD) < 2
(
|D| Q2(Q−1) q2)dlog2(φ(d,|D|))e

(5)

where φ(d, |D|) = ∑d
i=1

(|D|
i

)((Q
2

)
(2q−1)

)i
.

Proof Let us say that the class F strongly N-shatters a triplet (sD , I(sD),vb) (for a nonempty
subset sD of D , a set of couples of indexes I(sD) and a vector of biases vb) if F strongly N-
shatters sD according to I(sD) and vb. For all integers l ≥ 2 and |D| ≥ 1, let t(l, |D|) denote the
maximum number t such that, for every set F ∗

l of l pairwise separated functions in F ∗, Fl =
{

f ∈ F : f ∗ ∈ F ∗
l

}
strongly N-shatters at least t triplets (sD , I(sD),vb). If there is no subset of F ∗

of cardinality l pairwise separated, then t(l, |D|) is infinite.
The number of triplets (sD , I(sD),vb) that could be shattered and for which the cardinality of

sD does not exceed d ≥ 1 is less than ∑d
i=1

(|D|
i

)((Q
2

)
(2q−1)

)i
, since for sD of size i > 0, there

are strictly less than
((Q

2

)
(2q−1)

)i
possibilities to choose the couple (I(sD),vb). It follows that

t(l, |D|) ≥ φ(d, |D|) for some l implies t(l, |D|) = ∞. By definition of t(l, |D|), this means that
there is no subset of F ∗ of cardinality l pairwise separated (otherwise t(l, |D|) would be finite) and
finally, by definition of M (2,F ∗,dD), M (2,F ∗,dD) < l. Therefore, to finish the proof, it suffices
to show that, for all d ≥ 1 and |D| ≥ 1,

t
(

2
(
|D| Q2(Q−1) q2)dlog2(φ(d,|D|))e

, |D|
)

≥ φ(d, |D|). (6)

We claim that
t(2, |D|) ≥ 1 (7)
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for all |D| ≥ 1 and
t
(
2p |D| Q2(Q−1) q2, |D|

)
≥ 2t(2p, |D|−1) (8)

for all p ≥ 1 and |D| ≥ 2.
The first part of the claim is a direct consequence of Lemma 35.
For the second part, first note that if no set of 2p |D| Q2(Q− 1) q2 pairwise separated func-

tions in F ∗ exists, then by definition t
(
2p |D| Q2(Q−1) q2, |D|

)
= ∞ and hence the claim holds.

Assume then that there is a set F ∗
0 of 2p |D| Q2(Q− 1) q2 pairwise separated functions in F ∗.

Split it arbitrarily into p |D| Q2(Q− 1) q2 pairs. For each pair
(

f ∗, f ∗
′
)

, there exists a singleton

{x} ⊂ D strongly N-shattered by { f , f ′}. Once more, this is a direct consequence of Lemma 35.
By definition, a vector f ∗(x) has all components of equal magnitude. As a consequence, the
number of different values that it can take is equal to Qq + 1. The numbers of different sets

of the form
{

f ∗(x), f ∗
′
(x)
}

such that
∥
∥
∥ f ∗(x)− f ∗

′
(x)
∥
∥
∥

∞
≥ 2 is bounded from above by 1

2(Qq +

1)(Qq− 1) < 1
2 Q2 q2. Thus, by the pigeonhole principle, switching the indexes in the couples

of functions if needed, for each procedure of this type, there exists x0 ∈ D such that at least
(
2p |D| Q2(Q−1) q2

)
/
(
|D| Q2 q2

)
= 2p (Q− 1) of the resulting couples of functions take the

same value on x0, value satisfying
∥
∥
∥ f ∗ (x0)− f ∗

′
(x0)

∥
∥
∥

∞
≥ 2. For all these pairs, the correspond-

ing sets { f , f ′} all shatter {x0} (shatter at least one triplet of the form ({x0} , I ({x0}) ,vb)). If
the components of the couples are reordered in such a way that all the couples are identical with
maxk f ∗k (x0) ≥ maxk f ∗

′
k (x0), this result still holds if one imposes that the values of i1(x0) and b0 are

those considered in Lemma 35 (i1(x0) = argmaxk f ∗k (x0) and b0 = f ∗i1(x0)
(x0)− 1). Once i1(x0) is

set, i2(x0) can take at most Q−1 different values. Thus, using once more the pigeonhole principle,
among those last couples of functions, there are (at least) 2p (Q−1)/(Q−1) = 2p of them such that

the quintuplet
(

x0, f ∗ (x0) , f ∗
′
(x0) , I ({x0}) ,vb

)

can be the same, that is, a single pair (I ({x0}) ,vb)

can witness the strong N-shattering of {x0} by all the sets { f , f ′}. To sum up, this means that there
are two subclasses of F ∗

0 of cardinality at least 2p, call them F ∗
+ and F ∗

− , and there are x0 ∈ D , two
vectors V0,+ and V0,− in [[ −q,q ]]Q such that ‖V0,+−V0,−‖∞ ≥ 2, (k0, l0) ∈ [[ 1,Q ]]2 with k0 6= l0, and a
scalar b0 in [[ −q+1,q−1 ]] such that:







∀ f ∗+ ∈ F ∗
+, f ∗+(x0) = V0,+

∀ f ∗− ∈ F ∗
−, f ∗−(x0) = V0,−

∀ f+ ∈ F+, f+,k0(x0) ≥ 1+b0

∀ f− ∈ F−, f−,l0(x0) ≥ 1−b0

where F+ =
{

f+ ∈ F : f ∗+ ∈ F ∗
+

}
and F− =

{
f− ∈ F : f ∗− ∈ F ∗

−
}

. Since the members of F ∗
+ are

pairwise separated on D but are all equal on x0, they are pairwise separated on D \ {x0}. The same
holds for the members of F ∗

− . Hence, by definition of the function t, F+ strongly N-shatters at
least t (2p, |D|−1) triplets (sD , I(sD),vb) with sD ⊆ D \{x0}, and the same holds for F−. Clearly,
F0 = { f ∈ F : f ∗ ∈ F ∗

0 } strongly N-shatters all triplets strongly N-shattered either by F+ or by
F−. Moreover, if the same triplet (sD , I(sD),vb) is strongly N-shattered both by F+ and by F−,
then F0 also strongly N-shatters the triplet ({x0}

S

sD ,{(k0, l0)}
S

I(sD), v̄b), where v̄b is deduced
from vb by adding one component corresponding to the point x0, component taking the value b0.
Indeed, the sets F+ and F− have been built precisely in that purpose. Suffice it to notice what
follows. Let (sD , I(sD),vb) be a triplet strongly N-shattered both by F+ and by F−. For the sake
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of simplicity, reordering the points in D if needed, we suppose that sD can be written as follows:
sD = {xi : 1 ≤ i ≤ |sD |}. Then, for any vector vy = (yi) in {−1,1}|sD |, there exists (at least) one
function f+,y in F+ such that

∀i ∈ [[ 1, |sD | ]] ,
{

if yi = 1, f+,y,i1(xi)(xi)−bi ≥ 1
if yi = −1, f+,y,i2(xi)(xi)+bi ≥ 1

and
f+,y,k0(x0)−b0 ≥ 1

and one function f−,y in F− such that

∀i ∈ [[ 1, |sD | ]] ,
{

if yi = 1, f−,y,i1(xi)(xi)−bi ≥ 1
if yi = −1, f−,y,i2(xi)(xi)+bi ≥ 1

and
f−,y,l0(x0)+b0 ≥ 1.

Since, once more by construction, neither F+ nor F− strongly N-shatters {x0}
S

sD (whatever
the pair (I({x0}

S

sD), v̄b) may be), it follows that t
(
2p |D| Q2(Q−1) q2, |D|

)
≥ 2t(2p, |D|− 1),

which is precisely (8).
For any integer number r satisfying 1 ≤ r < |D|, let

l = 2
(
Q2(Q−1) q2)r Πr−1

u=0(|D|−u).

Applying (8) iteratively and eventually (7), it appears that t(l, |D|) ≥ 2r. Since t is clearly nonde-
creasing in its first argument, and 2

(
|D| Q2(Q−1) q2

)r ≥ l, this implies

t
(

2
(
|D| Q2(Q−1) q2)r

, |D|
)

≥ 2r.

We make use of this bound by considering separately the case where dlog2 (φ(d, |D|))e < |D| and
the case where dlog2 (φ(d, |D|))e ≥ |D|. In the first case, one can set r = dlog2 (φ(d, |D|))e. We
then get

t
(

2
(
|D| Q2(Q−1) q2)dlog2(φ(d,|D|))e

, |D|
)

≥ 2dlog2(φ(d,|D|))e

and consequently

t
(

2
(
|D| Q2(Q−1) q2)dlog2(φ(d,|D|))e

, |D|
)

≥ 2log2(φ(d,|D|)) = φ(d, |D|)

which is precisely (6). If on the contrary dlog2 (φ(d, |D|))e ≥ |D|, then

2
(
|D| Q2(Q−1) q2)dlog2(φ(d,|D|))e

> (Qq+1)|D| .

Since the number of distinct functions in F ∗ is bounded from above by (Qq+1)|D|, F ∗ cannot
contain a set of pairwise separated functions of cardinality larger than this number and hence, by
definition of t,

t
(

2
(
|D| Q2(Q−1) q2)dlog2(φ(d,|D|))e

, |D|
)

= ∞.

t
(

2
(
|D| Q2(Q−1) q2

)dlog2(φ(d,|D|))e
, |D|

)

is consequently once more superior to φ(d, |D|), which

completes the proof of (6) and thus concludes the proof of the lemma.

Note that expressing Lemma 37 in the bi-class case (by setting Q = 2), one obtains almost exactly
the expression of Lemma 3.3 in Alon et al. (1997), keeping in mind that our functions and theirs do
not take their values in the same intervals.
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5.5 Generalized Sauer-Shelah Lemma

Our generalized Sauer-Shelah lemma appears as a direct consequence of Lemma 37.

Lemma 38 (Generalized Sauer-Shelah lemma) Let G be a class of functions from X into
[−M,M]Q. For every value of ε in (0,M] and every integer value of n satisfying n≥N-dim(∆G ,ε/6),
the following bound is true:

N (p)(ε,∆∗G ,n) < 2

(

n Q2(Q−1)

⌊
3M
ε

⌋2
)dlog2(φ(d,n))e

(9)

where d = N-dim(∆G ,ε/6) and φ(d,n) = ∑d
i=1

(n
i

)((Q
2

)(
2
⌊

3M
ε
⌋
−1
))i

.

Proof ∀xn ∈ X n, applying Lemma 56 (right-hand side inequality) to ∆∗G gives:

N (p) (ε,∆∗G ,dxn) ≤ M (ε,∆∗G ,dxn) .

Setting η = ε/3 in Proposition 2 of Lemma 57, one obtains:

N (p) (ε,∆∗G ,dxn) ≤ M
(

2,(∆∗G)(ε/3) ,dxn

)

. (10)

Let Dn denote the smallest subset of X including all the elements of xn (its cardinality is inferior or

equal to n since xn can contain multiple copies of some elements of X ). We write (∆∗G)(ε/3)
∣
∣
∣
Dn

to

designate the restriction of (∆∗G)(ε/3) to Dn. Since

M
(

2,(∆∗G)(ε/3) ,dxn

)

= M
(

2, (∆∗G)(ε/3)
∣
∣
∣
Dn

,dxn

)

,

(10) implies:

N (p) (ε,∆∗G ,dxn) ≤ M
(

2, (∆∗G)(ε/3)
∣
∣
∣
Dn

,dxn

)

.

The packing numbers of (∆∗G)(ε/3)
∣
∣
∣
Dn

can be bounded thanks to Lemma 37, by setting D = Dn,

using n as an upper bound on |D| (which is possible since the right-hand side of (5) is an increasing

function of |D|), q =
⌊

M
η

⌋

=
⌊

3M
ε
⌋

and d = SN-dim

(

(∆G)(ε/3)
∣
∣
∣
Dn

)

. Thus, we get:

N (p) (ε,∆∗G ,dxn) < 2

(

n Q2(Q−1)

⌊
3M
ε

⌋2
)dlog2(φ(d,n))e

, (11)

with φ(d,n) = ∑d
i=1

(n
i

)((Q
2

)(
2
⌊

3M
ε
⌋
−1
))i

. Since the right-hand side of (11) is a nondecreasing

function of d, one can replace d with an upper bound. By definition of (∆G)(ε/3)
∣
∣
∣
Dn

,

SN-dim

(

(∆G)(ε/3)
∣
∣
∣
Dn

)

≤ SN-dim
(

(∆G)(ε/3)
)

.
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By application of Proposition 1 in Lemma 57,

SN-dim
(

(∆G)(ε/3)
)

≤ N-dim(∆G ,ε/6) .

Thus, (11) still holds if d is set equal to N-dim(∆G ,ε/6). Taking the maximum of its left-hand side
over X n then concludes the proof.

To find an upper bound on φ(d,n), and thus derive a generalized Sauer-Shelah lemma easier to
handle than Lemma 38, it suffices to make use of Lemma 58 with K1 = d, K2 = n and K3 =
(Q

2

)(
2
⌊

3M
ε
⌋
−1
)
. This implies that

φ(d,n) < Φ
(

d,n,

(
Q
2

)(

2

⌊
3M
ε

⌋

−1

))

<

(

en
(Q

2

)(
2
⌊

3M
ε
⌋
−1
)

d

)d

and consequently

log2 (φ(d,n)) < d log2

(

en
(Q

2

)(
2
⌊

3M
ε
⌋
−1
)

d

)

.

Substituting the right-hand side of this inequality to its left-hand side in (9), we finally get our master
lemma.

Lemma 39 (Final formulation of the generalized Sauer-Shelah lemma) Let G be a class of func-
tions from X into [−M,M]Q. For every value of ε in (0,M] and every integer value of n satisfying
n ≥ N-dim(∆G ,ε/6), the following bound is true:

N (p)(ε,∆∗G ,n) < 2

(

n Q2(Q−1)

⌊
3M
ε

⌋2
)dd log2(en(Q

2)(2b 3M
ε c−1)/d)e

where d = N-dim(∆G ,ε/6).

5.6 Discussion

To sum up, in this section, we have derived a bound on the covering number of interest in terms of
one of the γ-Ψ-dimensions, the margin Natarajan dimension. Obviously, such a generalized Sauer-
Shelah lemma can be derived in a similar way for other scale-sensitive extensions of a Ψ-dimension,
such as the one corresponding to the graph dimension. The bound, by the way, is slightly easier to
establish in the latter case. It involves smaller constants. However, as was already pointed out
in Section 4.1, the choice of one particular variant of the VC dimension rests on the search for
an optimal compromise between two requirements that can be contradictory: the need for a tight
bound on the capacity measure in terms of the VC dimension, and the need for a tight bound on
the VC dimension itself. In Section 7, it will appear clearly that the connection of the Natarajan
dimension with the one-against-one decomposition method is a major advantage. Deriving a bound
on the margin Natarajan dimension of the M-SVMs can be performed very simply, by extending in a
straightforward way the reasoning of the proof of the standard bound on the fat-shattering dimension
of the perceptron (or pattern recognition SVM).
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6. Almost Sure Convergence Result

The combination of Theorem 22 and Lemma 39 (applied with ε = γ/4 and n = 2m) provides us with
our master theorem.

Theorem 40 Let G be the class of functions from X into [−M,M]Q that a large margin Q-category
classifier can implement. Let δ ∈ (0,1). With probability at least 1−δ, for every value of γ in (0,M],
the risk of any function g in G is bounded from above by:

R(g) ≤ Rγ,m(g)+

√
√
√
√
√
√

2
m




ln




4

(

2m Q2(Q−1)

⌊
12M

γ

⌋2
)
⌈

d log2

(

emQ(Q−1)
(

2
⌊

12M
γ

⌋

−1
)

/d
)⌉


+ ln

(
2M
γδ

)




+

1
m

where d = N-dim(∆G ,γ/24).

With our notation, which designates by P and PDm respectively the probability measure character-
izing the classification problem of interest, and a probability over the m-sample Dm, Theorem 40
states a distribution-free bound corresponding to a one-sided convergence in probability of the form:

lim
m−→+∞

sup
P

PDm

(

sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)

= 0.

In fact, a stronger result can be obtained, since the convergence holds with probability 1.

Proposition 41 (Almost sure convergence)

lim
m−→+∞

sup
P

P

(

sup
n≥m

sup
g∈G

(
R(g)−Rγ,n(g)

)
> ε

)

= 0.

Proof For a class G of functions taking values in R
Q and a given value of γ in R

∗
+, we obtained the

following bound as a partial result in the proof of Theorem 22:

PDm

(

sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)

≤ 2N (p)
(
γ/2,∆#

γ G ,2m
)

exp

(

−m
2

(

ε− 1
m

)2
)

.

Under the restrictive assumption that the functions in G take their values in [−M,M]Q, Lemmas 32
and 39 can be applied to bound from above the covering number, which yields:

PDm

(

sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)

≤

4

(

2m Q2(Q−1)

⌊
6M
γ

⌋2
)
⌈

d log2

(

emQ(Q−1)
(

2
⌊

6M
γ

⌋

−1
)

/d
)⌉

exp

(

−m
2

(

ε− 1
m

)2
)

(12)
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where d = N-dim(∆G ,γ/12). Let us denote by um the right-hand side of (12). Obviously,

∀ε > 0, 4

(

2m Q2(Q−1)

⌊
6M
γ

⌋2
)
⌈

d log2

(

emQ(Q−1)
(

2
⌊

6M
γ

⌋

−1
)

/d
)⌉

= o

(

exp

(
mε2

4

))

.

As a consequence, um = o
(

exp
(

−mε2

4

))

. Since ∑∞
m=1 exp

(

−mε2

4

)

< ∞, by transitivity,

∞

∑
m=1

PDm

(

sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)

< ∞.

One may thus apply the Borel-Cantelli lemma (see for instance Theorem A.22. in Devroye et al.,
1996) and strengthen to almost sure convergence the convergence stated in Theorem 40.

7. Margin Natarajan Dimension of the Multi-Class SVMs

The theoretical results derived so far were dealing with general classes of functions G , from X into
R

Q or [−M,M]Q, satisfying the mild conditions exposed in Section 2.1. In short, our aim was to
establish that for those classes, the γ-Ψ-dimensions characterize learnability in the same way as
the VC dimension, the fat-shattering dimension and the Ψ-dimensions characterize learnability for
classes of functions taking values respectively in {−1,1}, R and [[ 1,Q ]]. From now on, we assess
the use of the γ-Ψ-dimensions to characterize and control the generalization capabilities of classes
of parametric functions. To that end, we focus on the main models of large margin multi-category
classifiers, the multi-class SVMs.

Support vector machines (SVMs) are learning systems which have been introduced by Vap-
nik and co-workers (Boser et al., 1992; Cortes and Vapnik, 1995) as nonlinear extensions of the
maximal margin hyperplane (Vapnik, 1982). Originally, they were designed to perform pattern
recognition (compute dichotomies). In this context, the principle on which they are based is very
simple. First, the examples are mapped into a high-dimensional Hilbert space called the feature
space thanks to a nonlinear transform, the feature map, usually denoted by Φ. Second, the max-
imal margin hyperplane is computed in that space, to separate the two categories. The problem
of performing multi-class discriminant analysis with SVMs was initially tackled through decom-
position schemes involving bi-class machines. Such possibilities as the one-against-all method
(Rifkin and Klautau, 2004), the one-against-one method (Fürnkranz, 2002) (a variant of which is the
DAGSVM of Platt et al., 2000), or those based on error correcting codes (ECOC) (Allwein et al.,
2000; Crammer and Singer, 2002) have thus been studied in depth during the last decade. Globally,
the multi-class SVMs have been proposed more recently. They are all obtained by combining a
multivariate affine model with the feature map Φ.

7.1 M-SVMs: Model and Function Selection

As in the bi-class case, the central element of a M-SVM is a symmetric positive semidefinite (Mer-
cer) kernel (Aronszajn, 1950). Such kernels correspond to positive type functions
(Berlinet and Thomas-Agnan, 2004). Let κ be a Mercer kernel on X and

(
Hκ,〈., .〉Hκ

)
the corre-

sponding reproducing kernel Hilbert space (RKHS) (Berlinet and Thomas-Agnan, 2004). Let Φ be
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any of the mappings on X satisfying:

∀(x,x′) ∈ X 2, κ(x,x′) = 〈Φ(x),Φ(x′)〉, (13)

where 〈., .〉 is the dot product of the `2 space. Let Φ(X ) = {Φ(x) : x ∈ X } and let
(
EΦ(X ),〈., .〉

)

be the Hilbert space spanned by Φ(X ). According to the usual abuse of language, in the se-
quel, “the” feature space will designate any of the spaces EΦ(X ). By definition of a RKHS, H =
((

Hκ,〈., .〉Hκ

)
+{1}

)Q
is the class of functions h = (hk)1≤k≤Q of the form:

h(.) =

(
mk

∑
i=1

βikκ(xik, .)+bk

)

1≤k≤Q

where the xik are elements of X (the βik and bk are scalars) as well as the limits of these functions
when the sets {xik : 1 ≤ i ≤ mk} become dense in X in the norm induced by the dot product (see for
instance Wahba, 1999). Due to (13), H can also be seen as a multivariate affine model on Φ(X ).
Functions h can then be rewritten as:

h(.) = (〈wk, .〉+bk)1≤k≤Q

where the vectors wk are elements of EΦ(X ). They are thus described by the pair (w,b) with w =

(wk)1≤k≤Q ∈EQ
Φ(X ) and b = (bk)1≤k≤Q ∈R

Q. Let H̄ stand for the product space HQ
κ whose functions

h̄ = (〈wk, .〉)1≤k≤Q are seen as functions on Φ(X ). Its norm ‖.‖H̄ is given by:

∀h̄ ∈ H̄ ,
∥
∥h̄
∥
∥

H̄ =

√
√
√
√

Q

∑
k=1

‖wk‖2 = ‖w‖ ,

where ‖wk‖ =
√

〈wk,wk〉. H̄ also represents the restriction of H to the functions satisfying b = 0.
For convenience, EQ

Φ(X ) is endowed with a second norm, ‖.‖∞. It is defined by ‖w‖∞ = max1≤k≤Q ‖wk‖.
With these definitions at hand, a generic definition of the M-SVMs can be formulated as follows.

Definition 42 (M-SVM) Let ((xi,yi))1≤i≤m ∈ (X × [[ 1,Q ]])m. A Q-category M-SVM is a large mar-

gin discriminant model obtained by minimizing over the hyperplane ∑Q
k=1 hk = 0 of H an objective

function J of the form:

J (h) =
m

∑
i=1

`M-SVM (yi,h(xi))+λ‖w‖2 (14)

where the data fit component, used in place of the empirical (margin) risk, involves a loss function
`M-SVM which is convex.

In accordance with the notations of Section 2.2 and Section 4.3, in what follows, H̃ will designate
the (univariate) affine model corresponding to the bi-class SVMs. The different M-SVMs only differ
in the nature of the function `M-SVM. This one is systematically built around the standard hinge loss
of bi-class SVMs. This function, from H̃ ×X ×{−1,1} into R+, maps

(
h̃,x,y

)
to
(
1− yh̃(x)

)

+
,

where (t)+ = max(0, t). Three main models of M-SVMs can be found in literature. The first one
in chronological order was introduced independently by Weston and Watkins (1998) and by Blanz
and Vapnik (Blanz, personal communication). It corresponds to a loss function `WW given by:
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`WW (y,h(x)) = ∑k 6=y (1−hy(x)+hk(x))+. Then came the model of Crammer and Singer (2001),

model built around H̄ , one advantage of which consists in the fact that it requires one single slack
variable per training example. Its loss function is `CS

(
y, h̄(x)

)
=
(
1− h̄y(x)+maxk 6=y h̄k(x)

)

+
. The

last model to date is the one of Lee et al. (2004), where `LLW (y,h(x)) = ∑k 6=y

(

hk(x)+ 1
Q−1

)

+
. Its

specificity is that asymptotically, it implements the optimal classification rule, that is, Bayes decision
rule. Indeed, this property of infinite-sample consistency is not shared by the two first M-SVMs, as
was shown by Zhang (2004) and Tewari and Bartlett (2007). For all three machines, a representer
theorem establishes that the function selected by the training procedure is of the form:

h(.) =

(
m

∑
i=1

βikκ(xi, .)+bk

)

1≤k≤Q

. (15)

The lines of reasoning highlighting the fact that a bi-class SVM is intrinsically a large margin clas-
sifier can be extended easily to the M-SVMs. This requires however to discuss the form taken by
the penalty component of the objective function. Indeed, the notion of multi-class margin given
by Definition 5 involves differences between outputs, which suggests to use such penalty terms as
maxk<l ‖wk −wl‖2 or ∑k<l ‖wk −wl‖2. However, this raises the difficulty that the function mini-
mizing (14) is then defined up to an additive constant. The solution is provided by the restriction
∑k hk = 0. Under this hypothesis, the equation ∑k<l ‖wk −wl‖2 = Q∑k ‖wk‖2 = Q‖w‖2 justifies the
use of ‖w‖2 as penalty term.

Our generalized Sauer-Shelah lemma, Lemma 39, holds for classes of functions with bounded
range (taking values in [−M,M]Q). We now introduce the standard hypotheses on X (Φ(X )) and H
which will allow us to formulate the upper bound on the margin Natarajan dimension of interest.

Hypotheses 43 To upper bound the capacity of a Q-category M-SVM, the following hypotheses and
constraints are introduced regarding its domain and its parameters:

1. Φ(X ) is included in the ball of radius ΛΦ(X ) about the origin in EΦ(X );

2. the vector w satisfies ‖w‖∞ ≤ Λw;

3. the vector b belongs to [−β,β]Q.

With these hypotheses at hand, Lemma 39 can be applied to the corresponding subset of H , by
setting M = ΛwΛΦ(X ) +β.

7.2 Switching from ∆#H to ∆#H̄

The computation of an upper bound on the margin Natarajan dimension is easier when the model is
linear than when it is affine. Exactly as in the case of the transition from the class ∆#

γ G to the class
∆#G (see Section 5.1), the corresponding change is easier to perform when working with covering
numbers. To that end, one can make use of the following lemma, the proof of which is inspired
from the proof of Lemma 2.4 in Alon et al. (1997).

Lemma 44 Let H be the class of functions that a Q-category M-SVM can implement under Hy-
potheses 43. Let H̄ be the subset of H corresponding to the functions satisfying b = 0. Let ε ∈ R

∗
+
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and n ∈ N
∗. Then

N (p)(ε,∆#H ,n) ≤
(

2

⌈
β
ε

⌉

+1

)Q

N (p)(ε/2,∆#H̄ ,n).

Proof Let B =

{

−β,−
(⌈

β
ε

⌉

−1

)

ε,−
(⌈

β
ε

⌉

−2

)

ε, . . . ,−2ε,−ε,0,ε,2ε, . . . ,
(⌈

β
ε

⌉

−2

)

ε,
(⌈

β
ε

⌉

−1

)

ε,β
}

.

By construction, BQ is a proper ε/2-net of [−β,β]Q in the `∞ norm. For xn ∈ X n, let ∆#H̄ (ε,xn)

be a proper ε/2-net of ∆#H̄ in the dxn pseudo-metric. We make the assumption that ∆#H̄ (ε,xn)

is of minimal cardinality, that is to say
∣
∣
∣∆#H̄ (ε,xn)

∣
∣
∣ = N (p)(ε/2,∆#H̄ ,dxn). Then, due to the

triangle inequality, ∆#H̄ (ε,xn)×BQ is a proper ε-net of ∆#H in the dxn pseudo-metric. Since the

cardinality of BQ is
(

2
⌈

β
ε

⌉

+1
)Q

, this ε-net is of cardinality
(

2
⌈

β
ε

⌉

+1
)Q

N (p)(ε/2,∆#H̄ ,dxn).

As a consequence, N (p)(ε,∆#H ,dxn) ≤
(

2
⌈

β
ε

⌉

+1
)Q

N (p)(ε/2,∆#H̄ ,dxn). Taking the maximum

of both sides of this inequality over all the possible sequences xn in X n thus concludes the proof.

Note that, with little additional work, a tighter bound results from exploiting the restriction ∑k hk =
0.

7.3 Upper Bounding the Margin Natarajan Dimension of ∆H̄

In this section, we follow the sketch of the proof of Theorem 4.6 in Bartlett and Shawe-Taylor
(1999).

Lemma 45 Let H̄ be the class of functions that a Q-category M-SVM can implement under Hy-
potheses 43, and the additional constraint b = 0. Let ε ∈ R

∗
+ and n ∈ N

∗. If a subset sX n =

{xi : 1 ≤ i ≤ n} of X is N-shattered with margin ε by ∆H̄ , then there exists a subset sX p of sX n of

cardinality p equal to

⌈

n
(Q

2)

⌉

such that for every partition of sX p into two subsets s1 and s2, the

following bound holds true:

∥
∥
∥
∥
∥

∑
xi∈s1

Φ(xi)− ∑
xi∈s2

Φ(xi)

∥
∥
∥
∥
∥
≥

⌈

n
(Q

2)

⌉

Λw
ε. (16)

Proof Suppose that sX n = {xi : 1 ≤ i ≤ n} is a subset of X N-shattered with margin ε by ∆H̄ . Let
(I(sX n),vb) witness this shattering. Thanks to Proposition 30, without loss of generality, we can
assume that I(sX n) satisfies the constraint: ∀i ∈ [[ 1,n ]], i1(xi) < i2(xi). According to the pigeonhole
principle, there is at least one couple of indexes (k0, l0) with 1 ≤ k0 < l0 ≤ Q such that there are

at least p =

⌈

n
(Q

2)

⌉

points in sX n for which the couple (i1(xi), i2(xi)) is (k0, l0). For the sake of

simplicity, the points in sX n are reordered in such a way that the p first of them exhibit this property.
The corresponding subset of sX n is denoted sX p . This means that for all vector vy = (yi) in {−1,1}n,
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there is a function h̄y in H̄ characterized by the vector wy = (wy,k)1≤k≤Q such that:

∀i ∈ [[ 1, p ]] ,

{
if yi = 1, ∆h̄y,k0(xi)−bi ≥ ε
if yi = −1, ∆h̄y,l0(xi)+bi ≥ ε . (17)

By definition of H̄ and the margin operator ∆, this is equivalent to:

∀i ∈ [[ 1, p ]] ,

{
if yi = 1, 1

2 (〈wy,k0 ,Φ(xi)〉−maxk 6=k0 〈wy,k,Φ(xi)〉)−bi ≥ ε
if yi = −1, 1

2 (〈wy,l0 ,Φ(xi)〉−maxk 6=l0 〈wy,k,Φ(xi)〉)+bi ≥ ε

and thus implies

∀i ∈ [[ 1, p ]] ,

{
if yi = 1, 1

2〈wy,k0 −wy,l0 ,Φ(xi)〉−bi ≥ ε
if yi = −1, 1

2〈wy,l0 −wy,k0 ,Φ(xi)〉+bi ≥ ε . (18)

Consider now any partition of sX p into two subsets s1 and s2. Consider any vector vy in {−1,1}n

such that yi = 1 if xi ∈ s1 and yi = −1 if xi ∈ s2. It results from (18) that:

1
2
〈wy,k0 −wy,l0 , ∑

xi∈s1

Φ(xi)〉− ∑
xi∈s1

bi +
1
2
〈wy,l0 −wy,k0 , ∑

xi∈s2

Φ(xi)〉+ ∑
xi∈s2

bi ≥ |sX p |ε

which simplifies into

1
2
〈wy,k0 −wy,l0 , ∑

xi∈s1

Φ(xi)− ∑
xi∈s2

Φ(xi)〉− ∑
xi∈s1

bi + ∑
xi∈s2

bi ≥ pε.

Conversely, consider any vector vy such that yi = −1 if xi ∈ s1 and yi = 1 if xi ∈ s2. We have:

1
2
〈wy,l0 −wy,k0 , ∑

xi∈s1

Φ(xi)− ∑
xi∈s2

Φ(xi)〉+ ∑
xi∈s1

bi − ∑
xi∈s2

bi ≥ pε.

As a consequence, if ∑xi∈s1
bi −∑xi∈s2

bi ≥ 0, there is a function h̄y in H̄ such that

1
2
〈wy,k0 −wy,l0 , ∑

xi∈s1

Φ(xi)− ∑
xi∈s2

Φ(xi)〉 ≥
⌈

n
(Q

2

)

⌉

ε (19)

whereas if ∑xi∈s1
bi −∑xi∈s2

bi < 0, there is another function h̄y in H̄ such that

1
2
〈wy,l0 −wy,k0 , ∑

xi∈s1

Φ(xi)− ∑
xi∈s2

Φ(xi)〉 ≥
⌈

n
(Q

2

)

⌉

ε. (20)

Applying the Cauchy-Schwarz inequality to (19) and (20) yields

1
2
‖wy,k0 −wy,l0‖

∥
∥
∥
∥
∥

∑
xi∈s1

Φ(xi)− ∑
xi∈s2

Φ(xi)

∥
∥
∥
∥
∥
≥
⌈

n
(Q

2

)

⌉

ε,

which thus holds true irrespective of the value of ∑xi∈s1
bi −∑xi∈s2

bi. Finally, (16) directly springs
from this last bound, as a consequence of fact that the constraint ‖w‖∞ ≤ Λw implies
1/2max1≤k<l≤Q ‖wk −wl‖ ≤ Λw.
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Remark 46 The proof of Lemma 45 does not hold any more if one uses the ∆∗ operator in place of
the ∆ operator. Indeed, reformulating (17) with ∆∗ in place of ∆, one cannot derive (18) any more.
This is precisely the reason why it is specifically the ∆ operator which appears in the hypotheses of
Lemma 45 and, by way of consequence, the final bound on the margin Natarajan dimension (see
Theorem 48 below).

Lemma 47 (Bartlett and Shawe-Taylor, 1999, Lemma 4.3) If Φ(X ) is included in the ball of
radius ΛΦ(X ) about the origin in EΦ(X ), then for all n ∈ N

∗, all subset sX n = {xi : 1 ≤ i ≤ n} of X
can be partitioned into two subsets s1 and s2 satisfying

∥
∥
∥
∥
∥

∑
xi∈s1

Φ(xi)− ∑
xi∈s2

Φ(xi)

∥
∥
∥
∥
∥
≤
√

nΛΦ(X ). (21)

The following theorem is a direct consequence of Lemma 45 and Lemma 47.

Theorem 48 Let H̄ be the class of functions that a Q-category M-SVM can implement under Hy-
potheses 43, and the additional constraint b = 0. Then, for any positive real value ε, the following
bound holds true:

N-dim
(

∆H̄ ,ε
)

≤
(

Q
2

)(ΛwΛΦ(X )

ε

)2

. (22)

Proof Let sX n be a subset of X of cardinality n N-shattered with margin ε by ∆H̄ . According to

Lemma 45, there is at least a subset sX p of sX n of cardinality p =

⌈

n
(Q

2)

⌉

satisfying (16) for all its

partitions into two subsets s1 and s2. Since, according to Lemma 47, there is at least one of these
partitions for which (21) holds true,

p
Λw

ε ≤√
pΛΦ(X )

which implies that

p ≤
(ΛwΛΦ(X )

ε

)2

.

Since n ≤
(Q

2

)
p, one finally obtains

n ≤
(

Q
2

)(ΛwΛΦ(X )

ε

)2

which concludes the proof.

7.4 Discussion

Proposition 31 states that in the bi-class case, there is only one γ-Ψ-dimension, which corresponds
to the fat-shattering dimension. Thus, it is satisfactory to notice that for Q = 2, (22) becomes

Pε-dim(Hκ) ≤
(ΛwΛΦ(X )

ε

)2
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which is precisely the bound provided by Theorem 4.6 in Bartlett and Shawe-Taylor (1999) (see
also Remark 1 in Gurvits, 2001), that is, the tightest bound on the fat-shattering dimension of a lin-
ear classifier currently available. In the general case, Theorem 48 tells us that the margin Natarajan
dimension of a Q-category M-SVM can be bounded from above by a uniform bound on the fat-
shattering dimensions of its separating hyperplanes (defined by the equation 〈wk −wl,Φ(x)〉 = 0)
times the number of those hyperplanes,

(Q
2

)
. It must be borne in mind that this expression is directly

connected with the idea at the basis of the definition of the Ψ-dimensions (see the discussion in
Section 4.1), which is to simulate the implementation of a decomposition scheme, and take benefit
of this to make use of standard bi-class results. In the case of the Natarajan dimension, this scheme
corresponds to the one-against-one method. The terms

(Q
2

)
and ‖w‖∞ then appear in (22) as a con-

sequence of the fact that all the pairs of categories are considered independently one from the other
and play an utterly symmetrical part (we need a bound on 1/2max1≤k<l≤Q ‖wk −wl‖). Obviously,
a tighter bound should result from taking into account the fact that the

(Q
2

)
binary classifiers are not

independent, since they are based on a common set of Q vectors wk. Here appears once more the
need to derive original solutions for the multi-class case, instead of simple extensions of bi-class
results.

Deriving a nontrivial bound on N-dim
(

∆H̄ ,ε
)

in terms of ‖w‖, that is, a tighter bound than

the one resulting from just replacing in the hypotheses of Theorem 48 ‖w‖∞ with ‖w‖, remains an
open problem. The fact that the norm used in the penalty term of the objective function (14) and the
one appearing in the upper bound on the margin Natarajan dimension are different is unsatisfactory.
The point is that, so far, no one has put forward a theoretical argument (guaranteed risk) to justify
the use of ‖w‖, whereas the use of ‖w‖∞ as penalty term, considered only in Guermeur (2002),
raises significant technical difficulties. Indeed, in that case, the convex programming problem cor-
responding to the training algorithm cannot be solved by means of Lagrangian duality any more,
since one cannot compute the gradient of the Lagrangian function with respect to the vectors wk. In
that sense, there remains a gap to fill between theory and practice.

8. γ-Ψ-dimensions and Implementation of the SRM Inductive Principle

In this section, we discuss the significance of the main results of the paper. We first summarize the
specificities of the multi-class case highlighted by their proofs, and then outline an application of
our bound on the risk of M-SVMs for model selection.

8.1 Characterization of Relevant Information

The main results of this article involve two distinct margin operators, ∆ and ∆∗. Theorem 22, the
basic uniform convergence result on which all this study is based, holds true for both of them. How-
ever, we pointed out in Remark 36 the reason why the generalized Sauer-Shelah lemma (Lemmas 38
and 39) requires specifically the use of ∆∗. On the contrary, Remark 46 highlights the fact that the
proof of the bound on the margin Natarajan dimension of the M-SVMs, Theorem 48, makes use of
a specific property of ∆. Fortunately, the connection between the capacities of ∆∗G and ∆G is pro-
vided by Lemmas 35 and 37. These observations highlight the fact that the link between separation
and shattering capacity is more complex in the multi-class case than in the bi-class case (for which
we simply have ∆ = ∆∗). At different steps of the reasoning, different pieces of information on the
behaviour of the functions of interest are needed. One must provide neither too many nor too few of
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them. It is a bit disappointing to notice that the computation of the bound on the margin Natarajan
dimension requires more information than simply the index of the highest output and the difference
between the two highest outputs, that is, what is relevant to determine both the classification per-
formed and the confidence one can have in the accuracy of this classification. This suggests that
some improvement could be made to our generalization of the standard bi-class results, regarding
for instance the choice of the functional pseudo-metric. However, it is difficult to figure out how
these changes could remain compatible with the whole line of reasoning leading to the bound on the
risk of the M-SVMs. Indeed, the choices we made to extend the VC theory to the case of large mar-
gin multi-category discriminant models and apply it to M-SVMs were primarily governed by one
concern: allowing a natural extension of the proof of Lemma 3.3 in Alon et al. (1997) and the proof
of Theorem 4.6 in Bartlett and Shawe-Taylor (1999) to the multi-class case. As a consequence, the
question could be now: can we develop our theory without making use of those two pillars of the
standard theory?

8.2 Application for Model Selection

When working with SVMs, performing model selection amounts to choosing the value of the “soft
margin parameter” C, the kernel κ and the values of its parameters. Cross-validation was initially
regarded as the method of choice to perform this task, although it exhibits some drawbacks, as
was first pointed out by Stone (1977). This strategy has induced many authors to derive upper
bounds on the leave-one-out error of SVMs (see Chapelle et al., 2002, for a survey). The most
widely used of them is probably the famous “radius-margin bound”, for which several multi-class
extensions have been proposed independently by Wang et al. (2005); Darcy and Guermeur (2005);
Monfrini and Guermeur (2007), as criteria for the choice of the values of the hyperparameters of
M-SVMs (or SVMs involved in decomposition schemes). Care was taken to the fact that they could
be differentiated with respect to those parameters, in order to make the optimization procedure
tractable.

With that difficulty in mind, it appears that model selection for SVMs, either bi-class or multi-
class, made a great stride when Hastie et al. (2004) introduced their algorithm fitting the entire path
of SVM solutions for every value of C (see also Lee and Cui, 2006, for an algorithm dedicated to the
M-SVM of Lee and co-authors). Indeed, with this algorithm at hand, requirements in computational
time are drastically reduced, which makes it possible to use new criteria (tighter bounds on the risk)
for the selection of C. The idea is simple: starting with a small value of C, it suffices to follow the
path, that is, increase progressively the value of C, and assess the bound at each step. Eventually, the
value selected is the one corresponding to the smallest value of the bound. This is precisely what was
done in Guermeur et al. (2005). In that paper, taking our inspiration from Williamson et al. (2000),
we used a bound on the generalization error of M-SVMs obtained as a function of a bound on
the entropy numbers of the evaluation operator. The corresponding experimental protocol provides
us with an easy way to assess the usefulness of our new bound for model selection. For a given
position in the path (a given value of C), all what has to be done is to optimize the guaranteed risk
with respect to the margin parameter γ. With the notation introduced in (15), the formula at the basis
of the computation of the upper bound on the margin Natarajan dimension is the following one:

∀(k, l) ∈ [[ 1,Q ]]2 , ‖wk −wl‖2 =
m

∑
i=1

m

∑
j=1

(βik −βil)
(
β jk −β jl

)
κ(xi,x j)
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(obviously, one benefits from using in the computations 1
4 maxk<l ‖wk −wl‖2 in place of its upper

bound ‖w‖2
∞).

9. Conclusions and Ongoing Research

In this article, the standard theories of large margin bi-class classifiers and Q-class classifiers taking
values in [[ 1,Q ]] have been unified to give birth to a VC theory of large margin multi-class classifiers.
This could be done in a straightforward way, by extending concepts and results from only four ref-
erences: Ben-David et al. (1995), Alon et al. (1997), Bartlett (1998), and Bartlett and Shawe-Taylor
(1999). The main difficulty was to identify the need to introduce two margin operators, ∆ and ∆∗.
The generalized VC dimensions at the center of the new theory are the γ-Ψ-dimensions. They can
be seen either as scale-sensitive extensions of the Ψ-dimensions, or multivariate extensions of the
fat-shattering dimension. In particular, they characterize learnability for the classes of functions of
interest.

It is possible to select the most appropriate of these dimensions as a function of the model
studied. In the case of the multi-class SVMs, we have found the margin Natarajan dimension to
be the easiest to bound from above making use of standard results derived with the fat-shattering
dimension. As a consequence, all the M-SVMs proposed so far can now be evaluated in the uni-
fying framework of the implementation of the SRM inductive principle. Indeed, the main practi-
cal interest of guaranteed risks based on γ-Ψ-dimensions should regard the implementation of this
learning principle. They make it possible to characterize the variation of the capacity of large mar-
gin multi-category discriminant models based on classes of parametric functions with respect to the
constraints on their domain and parameters. An obvious application of this study is in model selec-
tion, for instance to choose the values of the “soft margin parameter” C and the kernel parameters
of M-SVMs.

Readers more interested in computing sample complexities than in the characterization of
Glivenko-Cantelli classes, capacity control or model selection, should be aware of the fact that
sharper bounds should result from using different sources of inspiration, although even in that case,
the lessons drawn from the present study should still prove useful. An obvious possibility is rep-
resented by new PAC-Bayes bounds (Ambroladze et al., 2007), or, to remain nearer to the present
study, new tools of concentration theory and empirical processes (Talagrand, 1995, 1996; Ledoux,
1996; Massart, 2000; Lugosi, 2004). They make it possible, for instance, to work with data depen-
dent capacity measures such as the empirical VC entropy. A great survey of the recent advances in
this field, especially focusing on Rademacher averages, is provided by Boucheron et al. (2005). Re-
garding more specifically pattern recognition SVMs, the results the extension of which appears most
promising are those reported in Bousquet (2002), Steinwart and Scovel (2005), and Blanchard et al.
(2007). Performing these multi-class extensions is the subject of an ongoing work.
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Appendix A. Technical Lemmas

This appendix is devoted to technical lemmas that are at the basis of the proofs of the main theorems
of the paper.

Lemma 49 Jogdeo and Samuels, 1968, Theorem 3.2. Let T be a random variable described by
a binomial distribution with parameters n and p (T ↪→ B (n, p)). Then its median is either bnpc or
bnpc+1. Moreover, if np is an integer, the median is simply np.

Lemma 50 Let D2m = ((Xi,Yi))1≤i≤2m be a 2m-sample of independent copie of (X ,Y ). Let Dm =
((Xi,Yi))1≤i≤m and D̃m =

((
X̃i,Ỹi

))

1≤i≤m = ((Xm+i,Ym+i))1≤i≤m. PDm is a probability over the sam-
ple Dm, and PD2m is a probability over D2m. The distribution of the random variable
supg∈G

(
R(g)−Rγ,Dm(g)

)
is connected with the distribution of the random variable

supg∈G
(
RD̃m

(g)−Rγ,Dm(g)
)

by the inequality

PDm

(

sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)

≤ 2PD2m

(

sup
g∈G

(
RD̃m

(g)−Rγ,Dm(g)
)
≥ ε− 1

m

)

.

Proof The proof of this lemma is inspired from the proof of Vapnik’s basic lemma in Vapnik (1998,
Section 4.5.1). For n ∈ N

∗, let z2n = ((xi,yi))1≤i≤2n be an element of Z2n. In what follows, we will
use zn to designate its “first half”, whereas z̃n, will designate its “second half”. z̃n = ((x̃i, ỹi))1≤i≤n,
with (x̃i, ỹi) = (xn+i,yn+i). Since Dm and D̃m are supposed to be independent, by definition:

PD2m

(

sup
g∈G

(
RD̃m

(g)−Rγ,Dm(g)
)
≥ ε− 1

m

)

=

Z

Z2m
1l

[

sup
g∈G

(
Rz̃m(g)−Rγ,zm(g)

)
≥ ε− 1

m

]

dP2m(z2m),

and one can apply Fubini’s theorem for nonnegative measurable functions (see Rudin, 1987, Sec-
tion 8.8) to the product measure P2m, which gives:

PD2m

(

sup
g∈G

(
RD̃m

(g)−Rγ,Dm(g)
)
≥ ε− 1

m

)

=

Z

Zm
dPm(zm)

Z

Zm
1l

[

sup
g∈G

(
Rz̃m(g)−Rγ,zm(g)

)
≥ ε− 1

m

]

dPm(z̃m).

In the inner integral, zm is fixed. Let Q denote the following event:

Q =

{

zm = ((xi,yi))1≤i≤m ∈ Zm : sup
g∈G

(
R(g)−Rγ,zm(g)

)
> ε

}

.

Restricting the integration domain to Q gives

PD2m

(

sup
g∈G

(
RD̃m

(g)−Rγ,Dm(g)
)
≥ ε− 1

m

)

≥
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Z

Q
dPm(zm)

Z

Zm
1l

[

sup
g∈G

(
Rz̃m(g)−Rγ,zm(g)

)
≥ ε− 1

m

]

dPm(z̃m)

︸ ︷︷ ︸

I

. (23)

I is an integral which is calculated for a fixed zm satisfying

sup
g∈G

(
R(g)−Rγ,zm(g)

)
> ε.

Consequently, there exists a function g∗ in G such that

R(g∗)−Rγ,zm(g∗) ≥ ε.

By definition of g∗, the following inequality holds

I ≥
Z

Zm
1l

[

Rz̃m(g∗)−Rγ,zm(g∗) ≥ ε− 1
m

]

dPm(z̃m).

{
R(g∗)−Rγ,zm(g∗) ≥ ε
Rz̃m(g∗)−R(g∗) ≥− 1

m
=⇒ Rz̃m(g∗)−Rγ,zm(g∗) ≥ ε− 1

m
.

As a consequence

I ≥
Z

Zm
1l

[

Rz̃m(g∗)−R(g∗) ≥− 1
m

]

dPm(z̃m).

Furthermore
Z

Zm
1l

[

Rz̃m(g∗)−R(g∗) ≥− 1
m

]

dPm(z̃m) = PD̃m

(
mRD̃m

(g∗) ≥ mR(g∗)−1
)
. (24)

By definition of R(g∗) and RD̃m
(g∗), mRD̃m

(g∗) has a binomial distribution with parameters m and
R(g∗)

(
mRD̃m

(g∗) ↪→ B (m,R(g∗))
)
. To bound from below the right-hand side of (24), we make

use of a result on the median of random variables following a binomial distribution, Lemma 49.
According to this lemma, mR(g∗)− 1 is inferior or equal to the median of mRD̃m

(g∗), and thus, by
definition of the median, the right-hand side of (24) is superior or equal to 1/2. By transitivity, I is
also greater that 1/2. Substituting this lower bound on I into (23) yields

PD2m

(

sup
g∈G

(
RD̃m

(g)−Rγ,Dm(g)
)
≥ ε− 1

m

)

≥ 1
2

Z

Q
dPm(zm)

or equivalently, by definition of Q :

PD2m

(

sup
g∈G

(
RD̃m

(g)−Rγ,Dm(g)
)
≥ ε− 1

m

)

≥ 1
2

PDm

(

sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)

which is the result announced.
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Lemma 51 The distribution of the random variable supg∈G
(
RD̃m

(g)−Rγ,Dm(g)
)

is connected with

the distribution of the random variable maxg∈G(γ,D2m)

(

Rγ/2,D̃m
(g)−Rγ/2,Dm

(g)
)

by the inequality

PD2m

(

sup
g∈G

(
RD̃m

(g)−Rγ,Dm(g)
)
≥ ε− 1

m

)

≤

PD2m

(

max
g∈G(γ,D2m)

(

Rγ/2,D̃m
(g)−Rγ/2,Dm

(g)
)

≥ ε− 1
m

)

.

Proof ∀g ∈ G , ∀(xi,yi) ∈ z2m,

{
∆#gyi(xi) ≤ 0
dx2m(∆#

γ g,∆#
γ g) < γ

2
=⇒ ∆#gyi

(xi) <
γ
2
. (25)

Similarly,
{

∆#gyi
(xi) < γ

2
dx2m(∆#

γ g,∆#
γ g) < γ

2
=⇒ ∆#gyi(xi) < γ. (26)

From (25) it results that if dx2m(∆#
γ g,∆#

γ g) < γ
2 , then

Rz̃m(g) ≤ Rγ/2,z̃m (g) .

Similarly, it results from (26) that if dx2m(∆#
γ g,∆#

γ g) < γ
2 , then

Rγ/2,zm (g) ≤ Rγ,zm(g).

To sum up, for all g in G , there exists g in G(γ,x2m) such that

Rz̃m(g)−Rγ,zm(g) ≤ Rγ/2,z̃m (g)−Rγ/2,zm (g)

and thus

PD2m

(

sup
g∈G

(
RD̃m

(g)−Rγ,Dm(g)
)
≥ ε− 1

m

)

=

Z

Z2m
1l

[

sup
g∈G

(
Rz̃m (g)−Rγ,zm (g)

)
≥ ε− 1

m

]

dP2m(z2m) ≤

Z

Z2m
1l

[

max
g∈G(γ,x2m)

(
Rγ/2,z̃m (g)−Rγ/2,zm (g)

)
≥ ε− 1

m

]

dP2m(z2m) =

PD2m

(

max
g∈G(γ,D2m)

(

Rγ/2,D̃m
(g)−Rγ/2,Dm

(g)
)

≥ ε− 1
m

)

.
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Lemma 52 Let S2m be a random variable described by the uniform distribution on T2m. Then

PD2m

(

max
g∈G(γ,D2m)

(

Rγ/2,D̃m
(g)−Rγ/2,Dm

(g)
)

≥ ε− 1
m

)

≤

max
z2m∈Z2m

∑
g∈G(γ,x2m)

PS2m

(

Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1
m

)

.

Proof Since coordinate permutations preserve the product distribution P2m,

PD2m

(

max
g∈G(γ,D2m)

(

Rγ/2,D̃m
(g)−Rγ/2,Dm

(g)
)

≥ ε− 1
m

)

is not affected by a permutation σ. One thus obtains:

∀σ ∈ T2m, PD2m

(

max
g∈G(γ,D2m)

(

Rγ/2,D̃m
(g)−Rγ/2,Dm

(g)
)

≥ ε− 1
m

)

=

Z

Z2m
1l

[

max
g∈G(γ,x2m)

(
Rγ/2,σ(z̃m) (g)−Rγ/2,σ(zm) (g)

)
≥ ε− 1

m

]

dP2m(z2m).

Averaging the summand of the right-hand side over the whole set T2m gives:

PD2m

(

max
g∈G(γ,D2m)

(

Rγ/2,D̃m
(g)−Rγ/2,Dm

(g)
)

≥ ε− 1
m

)

=

1
|T2m| ∑

σ∈T2m

Z

Z2m
1l

[

max
g∈G(γ,x2m)

(
Rγ/2,σ(z̃m) (g)−Rγ/2,σ(zm) (g)

)
≥ ε− 1

m

]

dP2m(z2m).

Since the cardinality of T2m is finite, summation and integration can be interchanged as follows:

PD2m

(

max
g∈G(γ,D2m)

(

Rγ/2,D̃m
(g)−Rγ/2,Dm

(g)
)

≥ ε− 1
m

)

=

Z

Z2m

1
|T2m| ∑

σ∈T2m

1l

[

max
g∈G(γ,x2m)

(
Rγ/2,σ(z̃m) (g)−Rγ/2,σ(zm) (g)

)
≥ ε− 1

m

]

dP2m(z2m) =

Z

Z2m
PS2m

(

max
g∈G(γ,x2m)

(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g)

)
≥ ε− 1

m

)

dP2m(z2m) ≤

max
z2m∈Z2m

PS2m

(

max
g∈G(γ,x2m)

(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g)

)
≥ ε− 1

m

)

. (27)

By application of the union bound, the right-hand side of (27) can be bounded from above as follows:

max
z2m∈Z2m

PS2m

(

max
g∈G(γ,x2m)

(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g)

)
≥ ε− 1

m

)

≤
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max
z2m∈Z2m

∑
g∈G(γ,x2m)

PS2m

(

Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1
m

)

.

Lemma 53 (Hoeffding’s inequality, Hoeffding, 1963) For n ∈ N
∗, let (Ti)1≤i≤n be a sequence of

n independent random variables with zero means and bounded ranges: ai ≤ Ti ≤ bi. Then, for all
η ∈ R

∗
+,

P

(
n

∑
i=1

Ti ≥ η

)

≤ exp

(

−2η2

∑n
i=1 (bi −ai)

2

)

.

Lemma 54 Let S2m be a random variable described by the uniform distribution on T2m. For all z2m

in Z2m and for all g in G
(
γ,x2m

)
,

PS2m

(

Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1
m

)

≤ exp

(

−m
2

(

ε− 1
m

)2
)

.

Proof To bound uniformly the probabilities PS2m

(
Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1

m

)
, we ap-

peal to the classical law of large numbers. For any function g in G
(
γ,x2m

)
, let (ξi)1≤i≤m be the

sequence of losses
(

1l{∆#gyi
(xi)<γ/2}

)

1≤i≤m
(sequence of losses on zm) and

(

ξ̃i

)

1≤i≤m
the corre-

sponding sequence of losses on z̃m. Let α = (αi)1≤i≤m be a Rademacher sequence. The terms of
interest can then be rewritten as:

PS2m

(

Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1
m

)

= Pα

(

1
m

m

∑
i=1

αi

(

ξ̃i −ξi

)

≥ ε− 1
m

)

. (28)

To bound from above the right-hand side of (28), Hoeffding’s inequality (Lemma 53) can be used.

Since the random variables αi

(

ξ̃i −ξi

)

take their values in [−1,1] (more precisely in [[ −1,1 ]]), this

gives:

Pα

(

1
m

m

∑
i=1

αi

(

ξ̃i −ξi

)

≥ ε− 1
m

)

≤ exp

(

−m
2

(

ε− 1
m

)2
)

.

Lemma 55 Kroon, 2003, Theorem 68 Let (Ω,B,P) be a probability space, let K ∈ R
∗
+ and let

{E(α1,α2,δ) : 0 < α1,α2 ≤ K, δ ≤ 1}

be a set of events satisfying the following conditions:

1. for all 0 < α ≤ K and 0 < δ ≤ 1, P(E(α,α,δ)) ≤ δ;

2. for all 0 < a < 1 and 0 < δ ≤ 1,
S

α∈(0,K] E(αa,α,δα(1−a)) is measurable;
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3. for all 0 < α1 ≤ α ≤ α2 ≤ K and 0 < δ1 ≤ δ ≤ 1, E(α1,α2,δ1) ⊆ E(α,α,δ).

Then for (a,δ) ∈ (0,1)× (0,1],

P




[

α∈(0,K]

E

(

αa,α,
δα(1−a)

K

)


≤ δ.

Lemma 56 Kolmogorov and Tihomirov, 1961, Theorem IV For every pseudo-metric space (E,ρ),
every totally bounded subset E ′ of E and ε ∈ R

∗
+,

M (2ε,E ′,ρ) ≤ N (p)(ε,E ′,ρ) ≤ M (ε,E ′,ρ).

Lemma 57 For any class G of functions on X taking their values in [−M,M]Q and for any real
number η in (0,M]:

1. for every real number ε satisfying 0 < ε ≤ η/2,

SN-dim
(

(∆G)(η)
)

≤ N-dim(∆G ,ε) ;

2. for every real number ε satisfying ε ≥ 3η and every xn = (xi)1≤i≤n ∈ X n,

M (ε,∆∗G ,dxn) ≤ M
(

2,(∆∗G)(η) ,dxn

)

.

Proof To prove the first proposition, it is enough to establish that any set strongly N-shattered
by (∆G)(η) is also N-shattered with margin η/2 by ∆G . If sX n , a subset of X of cardinality n,
is strongly N-shattered by (∆G)(η), then according to Definition 34, there exists a set I(sX n) of n
couples of distinct indexes of categories and a vector vb in [[ −bM/ηc+1,bM/ηc−1 ]]n such that for
every vector vy = (yi) ∈ {−1,1}n, there is a function gy in G satisfying

∀i ∈ [[ 1,n ]] ,

{

if yi = 1,
(
∆gy,i1(xi)

)(η)
(xi)−bi ≥ 1

if yi = −1,
(
∆gy,i2(xi)

)(η)
(xi)+bi ≥ 1

.

Thus, we are looking for a vector (b′i)1≤i≤n such that
(
∆gy,i1(xi)

)(η)
(xi)−bi ≥ 1 =⇒ ∆gy,i1(xi)(xi)−

b′i ≥ η/2 and
(
∆gy,i2(xi)

)(η)
(xi)+ bi ≥ 1 =⇒ ∆gy,i2(xi)(xi)+ b′i ≥ η/2. To that end, four cases must

be considered.
1) bi ≥ 0 and yi = 1

(
∆gy,i1(xi)

)(η)
(xi) > 0 =⇒ η

(
∆gy,i1(xi)

)(η)
(xi) ≤ ∆gy,i1(xi)(xi)

thus
(
∆gy,i1(xi)

)(η)
(xi)−bi ≥ 1 =⇒ ∆gy,i1(xi)(xi)−η(bi +1/2) ≥ η/2.

2) bi ≥ 0 and yi = −1

(
∆gy,i2(xi)

)(η)
(xi)+bi ≥ 1 =⇒ ∆gy,i2(xi)(xi)+ηbi ≥ 0
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or equivalently

(
∆gy,i2(xi)

)(η)
(xi)+bi ≥ 1 =⇒ ∆gy,i2(xi)(xi)+η(bi +1/2) ≥ η/2.

3) bi < 0 and yi = 1

(
∆gy,i1(xi)

)(η)
(xi)−bi ≥ 1 =⇒ ∆gy,i1(xi)(xi)−ηbi ≥ 0

or equivalently

(
∆gy,i1(xi)

)(η)
(xi)−bi ≥ 1 =⇒ ∆gy,i1(xi)(xi)−η(bi −1/2) ≥ η/2.

4) bi < 0 and yi = −1

(
∆gy,i2(xi)

)(η)
(xi) > 0 =⇒ η

(
∆gy,i2(xi)

)(η)
(xi) ≤ ∆gy,i2(xi)(xi)

thus
(
∆gy,i2(xi)

)(η)
(xi)+bi ≥ 1 =⇒ ∆gy,i2(xi)(xi)+η(bi −1/2) ≥ η/2.

To sum up, a satisfactory solution consists in setting b′
i = η(bi +1/2) if bi ≥ 0 and b′i = η(bi −1/2)

otherwise. By definition, the set of functions ∆gy, for vy in {−1,1}n, N-shatters sX n with margin
η/2, for a set of couples of indexes and a vector of “biases” respectively equal to I(sX n) and vb′ =

(b′i)1≤i≤n. As a consequence, any set strongly N-shattered by (∆G)(η) is also N-shattered with
margin η/2 by ∆G , which is precisely our claim.

To prove the second proposition, let us first notice that:

∀(g,g′) ∈ G2, ∀x ∈ X , ∀k ∈ [[ 1,Q ]] , ∀η ∈ (0,M],

∣
∣∆∗gk(x)−∆∗g′k(x)

∣
∣≥ 3η =⇒

∣
∣
∣(∆∗gk)

(η) (x)−
(
∆∗g′k

)(η)
(x)
∣
∣
∣≥ 2.

Indeed, without loss of generality, we can make the hypothesis that ∆∗gk(x) > ∆∗g′k(x). Then,

((
∆∗g′k

)(η)
(x)−1

)

η < ∆∗g′k(x) < ∆∗gk(x) <
(

(∆∗gk)
(η) (x)+1

)

η.

Thus (

(∆∗gk)
(η) (x)+1

)

η−
((

∆∗g′k
)(η)

(x)−1
)

η > 3η

and finally

(∆∗gk)
(η) (x)−

(
∆∗g′k

)(η)
(x) > 1,

from which the desired result springs directly, keeping in mind that the η-discretizations are integer

numbers
(

(∆∗gk)
(η) (x)−

(
∆∗g′k

)(η)
(x) > 1 =⇒ (∆∗gk)

(η) (x)−
(
∆∗g′k

)(η)
(x) ≥ 2

)

.

Let s∆∗G be a 3η-separated subset of ∆∗G in the pseudo-metric dxn . It results from the definition
of the pseudo-metric that:

∀
(
∆∗g,∆∗g′

)
∈ s2

∆∗G , dxn
(
∆∗g,∆∗g′

)
≥ 3η =⇒

max
1≤i≤n

∥
∥∆∗g(xi)−∆∗g′(xi)

∥
∥

∞ ≥ 3η =⇒
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max
1≤i≤n

∥
∥
∥(∆∗g)(η) (xi)−

(
∆∗g′

)(η)
(xi)
∥
∥
∥

∞
≥ 2 =⇒

dxn

(

(∆∗gk)
(η) ,
(
∆∗g′k

)(η)
)

≥ 2.

We have thus proved the second proposition.

Note that a more interesting second proposition could have resulted from using a different definition

of the η-discretization. Indeed, setting
(
∆#gk

)(η)
(x) =

⌊
∆#gk(x)

η

⌋

irrespective of the sign of ∆#gk(x),

one can easily establish that the following proposition, with a dependence between ε and η identical
to the one of Alon et al. (1997), holds true: for every ε ≥ 2η and every xn ∈ X n, M (ε,∆∗G ,dxn) ≤
M (2,(∆∗G)(η) ,dxn). The reason for our choice is to get an additional useful property, namely:

∀η ∈ (0,M], ∆#gl(x) = −∆#gk(x) =⇒
(
∆#gl

)(η)
(x) = −

(
∆#gk

)(η)
(x).

This property plays a central role in the derivation of our generalized Sauer-Shelah lemma (see for
instance the proofs of Lemmas 35 and 37).

Lemma 58 For all triplet (K1,K2,K3) of positive integers such that 1 ≤ K1 ≤ K2 and K3 ≥ 1, let

Φ(K1,K2,K3) =
K1

∑
i=0

(
K2

i

)

Ki
3.

The following bound is true:

Φ(K1,K2,K3) <

(
K2K3e

K1

)K1

,

where e is the base of the Neperian (or natural) logarithm.

Proof ∑K1
i=0

(K2
i

)
Ki

3 ≤ KK1
3 ∑K1

i=0

(K2
i

)
. By application of Theorem 13.3. in Devroye et al. (1996),

∑K1
i=0

(K2
i

)
can be bounded from above by

(
K2e
K1

)K1
, which concludes the proof.

Appendix B. Proof of Theorem 22

The proof is divided into several steps, following the structure proposed by Dudley (1978) and
Pollard (1984, chap. II), structure also described, with variants, in Devroye et al. (1996, Chap. 12),
Vapnik (1998, Chap. 4), Anthony and Bartlett (1999), and Schölkopf and Smola (2002, Chap. 5).

B.1 First Symmetrization

The first step is a symmetrization. The idea is to replace the true risk by an estimate computed on a
m-sample D̃m independent of Dm. This symmetrization corresponds to Lemma 50, and thus gives:

PDm

(

sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)

≤ 2PD2m

(

sup
g∈G

(
RD̃m

(g)−Rγ,Dm(g)
)
≥ ε− 1

m

)

. (29)

Note that at this point, the standard pathway consists in applying a second symmetrization to get
rid of the “ghost sample” D̃m (see for example Pollard, 1984; Devroye et al., 1996). For the sake
of simplicity, we do not develop this possibility here. Instead, we apply another symmetrization, to
keep one single type of empirical measure of accuracy in the bound.
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B.2 Second Symmetrization

The second symmetrization, resulting from Lemma 51, corresponds to the following upper bound :

PD2m

(

sup
g∈G

(
RD̃m

(g)−Rγ,Dm(g)
)
≥ ε− 1

m

)

≤

PD2m

(

max
g∈G(γ,D2m)

(

Rγ/2,D̃m
(g)−Rγ/2,Dm

(g)
)

≥ ε− 1
m

)

. (30)

It is useful for two reasons. First, it completes, in some sense, the first one, by replacing the
two different empirical measures of accuracy appearing in the right-hand side of (29) with two
independent copies of the same random variable. Second, it makes it possible to substitute, in the
forthcoming computations, the set G of possibly infinite cardinality with a subset of it of cardinality
no more than N (p)(γ/2,∆#

γ G ,2m). This is exploited in the next step of the proof, to apply a standard
union bound.

B.3 Maximal Inequality

To bound from above the right-hand side of (30) irrespective of P, and thus derive a distribution-free
result, we introduce an auxiliary step of randomization. Let S2m be a random variable described by
the uniform distribution on T2m. By application of Lemma 52,

PD2m

(

max
g∈G(γ,D2m)

(

Rγ/2,D̃m
(g)−Rγ/2,Dm

(g)
)

≥ ε− 1
m

)

≤

max
z2m∈Z2m

∑
g∈G(γ,x2m)

PS2m

(

Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1
m

)

. (31)

B.4 Exponential Bound

Using Lemma 54, the probabilities in the right-hand side of (31) are bounded uniformly by

exp
(

−m
2

(
ε− 1

m

)2
)

. As a consequence,

max
z2m∈Z2m

∑
g∈G(γ,x2m)

PS2m

(

Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1
m

)

≤

max
x2m∈X 2m

∣
∣G
(
γ,x2m)

∣
∣exp

(

−m
2

(

ε− 1
m

)2
)

.

According to Definitions 15 and 19, maxx2m∈X 2m

∣
∣G
(
γ,x2m

)∣
∣= N (p)

(
γ/2,∆#

γ G ,2m
)
, and thus

max
z2m∈Z2m

∑
g∈G(γ,x2m)

PS2m

(

Rγ/2,S2m(z̃m) (g)−Rγ/2,S2m(zm) (g) ≥ ε− 1
m

)

≤

N (p)
(
γ/2,∆#

γ G ,2m
)

exp

(

−m
2

(

ε− 1
m

)2
)

. (32)
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The combination of (29), (30), (31), and (32) provides us with the following bound:

PDm

(

sup
g∈G

(
R(g)−Rγ,Dm(g)

)
> ε

)

≤ 2N (p)
(
γ/2,∆#

γ G ,2m
)

exp

(

−m
2

(

ε− 1
m

)2
)

. (33)

Setting the right-hand side of (33) to δ and solving for ε finally gives:

R(g) ≤ Rγ,m(g)+

√

2
m

(
ln
(
2N (p)

(
γ/2,∆#

γ G ,2m
))

− ln(δ)
)
+

1
m

.

B.5 Uniform Bound Over the Margin Parameter γ

This last bound holds for a value of γ specified in advance. To make the bound useful, we would
like to be able to select γ after observation of the trained machine on the training set. This can be
done thanks to Lemma 55, extending Proposition 8 in Bartlett (1998), which allows us to produce a
result that stands uniformly for all values of the margin parameter γ in the interval (0,Γ]. To apply
Lemma 55 to the case of interest, let us define the function Θ as follows:

Θ(t,u) =

√

2
m

(
ln
(
2N (p)

(
t,∆#

γ G ,2m
))

− ln(u)
)
.

One can readily verify that the measure PDm and the set of events E(α1,α2,δ) given by:

sup
g∈G

(R(g)−Rα2,Dm(g)) ≥ Θ
(α1

2
,δ
)

+
1
m

satisfy the hypotheses of Lemma 55. Its application gives, for all choice of the couple (a,δ) in
(0,1)× (0,1],

PDm




[

α∈(0,K]

(

sup
g∈G

(R(g)−Rα,Dm(g)) ≥ Θ
(

αa
2

,
δα(1−a)

K

)

+
1
m

)

≤ δ.

Setting α = γ, K = Γ and choosing a = 1/2 yields to:

PDm




[

γ∈(0,Γ]

(

sup
g∈G

(
R(g)−Rγ,Dm(g)

)
≥ Θ

(
γ
4
,

γδ
2Γ

)

+
1
m

)

≤ δ

and finally, by definition of Θ,

PDm




[

γ∈(0,Γ]

(

sup
g∈G

(
R(g)−Rγ,Dm(g)

)
≥

√

2
m

(

ln
(
2N (p)

(
γ/4,∆#

γ G ,2m
))

− ln

(
γδ
2Γ

))

+
1
m

)]

≤ δ,

which concludes the proof of Theorem 22.
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