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Abstract

In order to perform object recognition it is necessary taregpresentations of the underlying
components of images. Such components correspond to sb@iject-parts, or features. Non-
negative matrix factorisation is a generative model thattheen specifically proposed for finding
such meaningful representations of image data, througligheof non-negativity constraints on
the factors. This article reports on an empirical invesiigaof the performance of non-negative
matrix factorisation algorithms. It is found that such alfons need to impose additional con-
straints on the sparseness of the factors in order to sdattgsieal with occlusion. However,
these constraints can themselves result in these algarithiting to identify image components
under certain conditions. In contrast, a recognition mg¢delompetitive learning neural network
algorithm) reliably and accurately learns representatadrelementary image features without such
constraints.

Keywords: non-negative matrix factorisation, competitive learnidgndritic inhibition, object
recognition

1. Introduction

An image usually contains a number of different objects, parts, or featuré these components
can occur in different configurations to form many distinct images. Idgngfthe underlying com-
ponents which are combined to form images is thus essential for learningrbepgual represen-
tations necessary for performing object recognition. Non-negativeéxfattorisation (NMF) has
been proposed as a method for finding such parts-based decompasitimages (Lee and Seung,
1999; Feng et al., 2002; Liu et al., 2003; Liu and Zheng, 2004; Li e@D]1; Hoyer, 2002, 2004).
However, the performance of this method has not been rigorously otitatavely tested. Instead,
only a subjective assessment has been made of the quality of the compoaeats tlearnt when
this method is applied to processing images of, for example, faces (Leeeamnd, SL999; Hoyer,
2004; Li et al., 2001; Feng et al., 2002). This paper thus aims to quardiliatast, using several
variations of a simple standard test problem, the accuracy with which NMFfiderelementary
image features. Furthermore, non-negative matrix factorisation assuatén#ges are composed
of a linear combination of features. However, in reality the superpositiajects or object parts
does not always resultin a linear combination of sources but, due tostmtjwesults in a non-linear
combination. This paper thus also aims to investigate, empirically, how NMFrpegfahen tested
in more realistic environments where occlusion takes place. Since competitiminig algorithms
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have previously been applied to this test problem, and neural netwerkssdandard technique for
learning object representations, the performance of NMF is compareattoftian unsupervised
neural network learning algorithm applied to the same set of tasks.

2. Method

This section describes the NMF algorithms, and the neural network algoritiimch are explored
in this paper. The performance of these algorithms is compared in the Resatitss

2.1 Non-Negative Matrix Factorisation

Given anm by p matrix X = [X1,...,Xp], each column of which contains the pixel values of an
image (.e., X is a set of training images), the aim is to find the fac®dm@ndY such that

X =~AY,

whereA is anm by n matrix the columns of which contain basis vectors, or components, into which
the images can be decomposed, ang [y1,...,Yp] is ann by p matrix containing the activations
of each component.g, the strength of each basis vector in the corresponding training image). A
training image Xx) can therefore be reconstructed as a linear combination of the image centgon
contained inA, such thaky ~ AY,.

A number of different learning algorithms can be defined depending ocoifigraints that are
placed on the factora andY. For example, vector quantization (VQ) restricts each columvi of
to have only one non-zero element, principal components analysis (Ri2&jrains the columns
of A to be orthonormal and the rows ¥fto be mutually orthogonal, and independent components
analysis (ICA) constrains the rows ¥fto be statistically independent. Non-negative matrix factori-
sation is a method that seeks to find factors (of a non-negative m@tiixder the constraint that
bothA andY contain only elements with non-negative values. It has been propogedith@aethod
is particularly suitable for finding the components of images, since from thsigai properties of
image formation it is known that image components are non-negative andabatdbmponents are
combined additivelyi(e., are not subtracted) in order to generate images. Several diffdgent a
rithms have been proposed for finding the factdrandY under non-negativity constraints. Those
tested here are listed in Table 1.

Algorithms nnf di v and nnf nse impose non-negativity constraints solely, and differ only in
the objective function that is minimised in order to find the factors. All the otlgorithms ex-
tend non-negative matrix factorisation by imposing additional constraintsedia¢tors. Algorithm
| nnf imposes constraints that require the columné&db contain as many non-zero elements as
possible, and to contain as many zero elements as possible. This algorithm also requireadisat
vectors be orthogonal. Both algorithmisnf andnnsc impose constraints on the sparsenesy .of
Algorithm nnf sc allows optional constraints to be imposed on the sparseness of either the bas
vectors, the activations, or both. This algorithm was used with three cotitrisaf sparseness
constraints. Fonnf sc (A) a constraint on the sparseness of the basis vectors was applied. This
constraint required that each columnfhad a sparseness of 0.5. Valid values for the parame-
ter controlling sparseness could range from 0 (which would producgletely distributed basis
vectors) to a value of 1 (which would produce completely sparse bagigrsgcFornnfsc(Y) a
constraint on the sparseness of the activations was applied. Thisaohetquired that each row
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Acronym Description Reference

nnf di v NMF with divergence objective (Lee and Seung, 2001)

nnf mse NMF with euclidean objective (Lee and Seung, 2001)

| nnf Local NMF (Li et al., 2001; Feng
et al., 2002)

snnf Sparse NMF@ = 1) (Liu et al., 2003)

nnsc Non-negative sparse coding € 1) (Hoyer, 2002)

nnfsc (A) NMF with a sparseness constraint of 0.5 ofHoyer, 2004)
the basis vectors

nnfsc(Y) NMF with a sparseness constraint of 0.7 ofHoyer, 2004)
the activations

nnfsc (A&Y) NMF with sparseness constraints of 0.5 ofHoyer, 2004)
the basis vectors and 0.7 on the activations

Non-negative Matrix Factorisation
Algorithms

_ x g nndi Dendritic inhibition neural network with

g S £ non-negative weights

% © CED di Dendritic inhibition neural network (Spratling and Johnson,
<2 2002, 2003)

Table 1: The algorithms tested in this article. These include a number of diffalgorithms for
finding matrix factorisations under non-negativity constraints and a heetaork algo-
rithm for performing competitive learning through dendritic inhibition.

of Y had a sparseness of 0.7 (where sparseness is in the[eafhgeas for the constraint oft). For

nnf sc (A&Y) these same constraints were imposed on both the sparseness of basssamtthe
activations. For thanf sc algorithm, fixed values for the parameters controlling sparseness were
used in order to provide a fairer comparison with the other algorithms all afhased constant
parameter settings. Furthermore, since all the test cases studied asawiday, it is reasonable to
expect an algorithm to work across them all without having to be tunedfisadlg to each individ-

ual task. The particular parameter values used were selected so agite phe best overall results
across all the tasks. The effect of changing the sparseness paaiseiescribed in the discussion
section.

2.2 Dendritic Inhibition Neural Network

In terms of neural networks, the factoringXinto A andY constitutes the formation of a generative
model (Hinton et al., 1995): neural activatioWisreconstruct the input patterixs via a matrix of
feedback (or generative) synaptic weighAt¢see Figure 1a). In contrast, traditional neural network
algorithms have attempted to learn a set of feedforward (recognition) igeélgtisee Figure 1b),
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Figure 1: (a) A generative neural network model: feedback conmectaable neural activations
(Yk) to reconstruct an input patterigj. (b) A recognition neural network model: feed-
forward connections cause neural activatiofi {0 be generated in response to an input
pattern Kx). Nodes are shown as large circles and excitatory synapses as seall op
circles.

such that
Y =f(W,X),

whereW is ann by m matrix of synaptic weight values{ = [X1,...,Xp] is anm by p matrix of
training images, and = [y1,...,Yp| is ann by p matrix containing the activation of each node in
response to the corresponding image. Typically, the rond/ dborm templates that match image
features, so that individual nodes become active in repose to thenpeesespecific components of
the image. Nodes thus act as ‘feature detectors’ (Barlow, 1990, 1995)

Many different functions are possible for calculating neural activataord many different learn-
ing rules can be defined for finding the value$\f For example, algorithms have been proposed for
performing vector quantization (Kohonen, 1997; Ahalt et al., 199@cfral components analysis
(Oja, 1992; Fyfe, 1997b;dtdiak, 1989), and independent components analysis (Jutten and Herault,
1991; Charles and Fyfe, 1997; Fyfe, 1997a). Many of these algusitmpose non-negativity con-
straints on the elements &f andW for reasons of biological plausibility, since neural firing rates
are positive and since synapses can not change between being exctatdeing inhibitory. In
general, such algorithms employ different forms of competitive learninghinlnodes compete to
be active in response to each input pattern. Such competition can be impldmsinigga number of
different forms of lateral inhibition. In this paper, a competitive learningathm in which nodes
can inhibit the inputs to other nodes is used. This form of inhibition has besretedendritic
inhibition or pre-integration lateral inhibition. The full dendritic inhibition mod8pfatling and
Johnson, 2002, 2003) allows negative synaptic weight values. Howievorder to make a fairer
comparison with NMF, a version of the dendritic inhibition algorithm in which atiagytic weights
are restricted to be non-negative (by clipping the weights at zero) is abbin the experiments
described here. The full model will be referred to by the acrodywhile the non-negative version
will be referred to asindi (see Table 1).

In a neural network model, an input imag&) generates activityy) in the nodes of a neural
network such thayx = f (W, Xx). In the dendritic inhibition model, the activation of each individual
node is calculated as:

Yik = WXy
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whereY({(j is an inhibited version of the input activatior§) that can differ for each node. The
values of¥y; are calculated as:

+

=X 1—0(mr5X M Ik ’
Xikj ik r:l) { ma){j‘:l {qu} ma){}:l {qu}

(r#]

wherea is a scale factor controlling the strength of lateral inhibition, @nd is the positive half-
rectified value of. The steady-state valuesyk were found by iteratively applying the above two
equations, increasing the value amffrom 0 to 6 in steps of 0.25, while keeping the input image
fixed.

The above activation function implements a form of lateral inhibition in whiclm e&wron can
inhibit the inputs to other neurons. The strength with which a node inhibits an input to another
node is proportional to the strength of the afferent weight the inhibitinge medeives from that
particular input. Hence, if a node is strongly activated by the overall stimardsit has a strong
synaptic weight to a certain feature of that stimulus, then it will inhibit otheesdbm responding
to that feature. On the other hand, if an active node receives a waghtvi®m a feature then it
will only weakly inhibit other nodes from responding to that feature. In théner, each node can
selectively ‘block’ its preferred inputs from activating other nodesdaes not inhibit other nodes
from responding to distinct stimuli.

All weight values were initialised to random values chosen from a Gaudséibution with
a mean of: and a standard deviation ofd1". This small degree of noise on the initial weight
values was sufficient to cause bifurcation of the activity values, andithesuse differentiation of
the receptive fields of different nodes through activity-dependambieg. Previous results with this
algorithm have been produced using noise (with a similarly small magnitudégapp the node
activation values. Using noise applied to the node activations, rather thamelights, produces
similar results to those reported in this article. However, noise was only applied initial weight
values, and not to the node activations, here to provide a fairer coropanishe deterministic NMF
algorithms. Note that a node which still has its initial weight values, @ node which has not had
its weights modified by learning) is described as ‘uncommitted’.

Synaptic weights were adjusted using the following learning rule (appliedigihtgeawith values
greater than or equal to zero):

(Xik — Xk)

¥ b1 Xpk (yjk_YK)Jr' (1)

AWji =

Herexy is the mean value of the pixels in the training imaige,(xx = n%z{‘llxik), andyy is the mean
of the output activations €., yx = %z?zlyjk). Following learning, synaptic weights were clipped
at zero such thaw;; = (wji)™ and were normalised such thpff'; (w;i) ™ < 1.

This learning rule encourages each node to learn weights selectivesébiof coactive inputs.
This is achieved since when a node is more active than average it ircigasgnaptic weights
to active inputs and decreases its weights to inactive inputs. Hence, dslpfsmputs which
are consistently coactive will generate strong afferent weights. litiaddthe learning rule is
designed to ensure that different nodes can represent stimuli whach siput features in common
(i.e, to allow the network to represent overlapping patterns). This is achigyedctifying the
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post-synaptic term of the rule so that no weight changes occur wheroteeis less active than
average. If learning was not restricted in this way, whenever a pattasnpnesented all nodes
which represented patterns with overlapping features would reducenthigints to these features.

For the algorithmdi , but not for algorithmnndi , the following learning rule was applied to
weights with values less than or equal to zero:

(Xi/kj — O.5Xik) -
ZB:1 Ypk

Here (v)~ is the negative half-rectified value of Negative weights were clipped at zero such
thatw;ji = (w;ji)~ and were normalised such thgf", (w;;)” > —1. Note that for programming
convenience a single synapse is allowed to take either excitatory or inhibitaght values. In a
more biologically plausible implementation two separate sets of afferent dommecould be used:
the excitatory ones being trained using equation 1 and the inhibitory oneptbaimed using a rule
similar to equation 2.

The negative weight learning rule has a different form from the pesitigight learning rule as
it serves a different purpose. The negative weights are used tcegthsi each image component is
represented by a distinct node rather than by the partial activation of multiples each of which
represents an overlapping image component. A full explanation of thisihgamle is provided
together with a concrete example of its function in section 3.3.

Awii = (ij—)7l<)~ (2)

3. Reaults

In each of the experiments reported below, all the algorithms listed in Tablerd ayplied to
learning the components in a setpifraining images. The average number of components that were
correctly identified over the course of 25 trials was recorded. A newfsgtrandomly generated
images were created for each trial. In each trial the NMF algorithms weredraintil the total sum

of the absolute difference in the objective function, between suceespiochs, had not changed
by more than 0.1% of its average value in 100 epochs, or until 2000 epachseen completed.
One epoch is when the method has been trained gmtadining patterns. Hence, an epoch equals
one update to the factors in an NMF algorithm, gmderations of the neural network algorithm
during which each individual image in the training set is presented oncepastimthe network.
The neural network algorithms were trained for 10000 iterations. Helne@&MF algorithms were
each trained for at least 100 epochs, while the neural network algornitlemestrained for at most
100 epochs (since the value pfvas 100 or greater).

3.1 Standard Bars Problem

The bars problem (and its variations) is a benchmark task for the learhingependent image
features (Bldiak, 1990; Saund, 1995; Dayan and Zemel, 1995; Hinton et al., 199puHand
Prager, 1996; Hinton and Ghahramani, 1997; Frey et al., 1997; F¥8&b; Charles and Fyfe, 1998;
Hochreiter and Schmidhuber, 1999; Meila and Jordan, 2000; Plumtdéy, 2'Reilly, 2001; Ge
and Iwata, 2002; ticke and von der Malsburg, 2004). In the standard version of tteedvablem,

as defined by 8&ldiak (1990), training data consists of 8 by 8 pixel images in which each ofghe 1
possible (one-pixel wide) horizontal and vertical bars can be prestma probability of%. Typical
examples of training images are shown in Figure 2.
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Figure 2: Typical training patterns for the standard bars problem. Hadafzand vertical bars in
8x8 pixel images are independently selected to be present with a probabigty[lark
pixels indicate active inputs.

In the first experiment the algorithms were trained on the standard bastepro Twenty-five
trials were performed wittp = 100, and, withp = 400. The number of components that each
algorithm could learnr{) was set to 32. Typical examples of the (generative) weights learradiy e
NMF algorithm {.e., the columns ofA reshaped as 8 by 8 pixel images) and of the (recognition)
weights learnt by the neural network algorithms.( the rows ofW reshaped as 8 by 8 pixel
images) are shown in Figure 3. It can be seen that the NMF algorithms terartodeedundant
representation, since the same bar can be represented multiple times. &st;dnérneural network
algorithms learnt a much more compact code, with each bar being reptbgraesingle node. It
can also be seen that many of the NMF algorithms learnt representatioassahbwhich pixels
were missing. Hence, these algorithms learnt random pieces of image cemtpoather than the
image components themselves. In contrast, the neural network algorithchal¢emithmsnnsc,
nnf sc (A), andnnf sc (A&Y) ) learnt to represent complete image components.

To quantify the results, the following procedure was used to determine timderuof bars
represented by each algorithm in each trial. For each node, the sumweéitjlets corresponding
to each row and column of the input image was calculated. A node was caatsiterepresent a
particular bar if the total weight corresponding to that bar was twice thidteofum of the weights
for any other row or column and if the minimum weight in the row or column cpoeeding to that
bar was greater than the mean of all the (positive) weights for that nddendmber of unique bars
represented by at least one basis vector, or one node of the neivawkalculated, and this value
was averaged over the 25 trials. The mean number of barsfiage components) represented by
each algorithm is shown in Figure 4a. Good performance requires botinaay (finding all the
image components) and reliability (doing so across all trials). Hence, tmage/aumber of bars
represented needs to be close to 16 for an algorithm to be considerea tpdréormed well. It can
be seen that whep = 100, most of the NMF algorithms performed poorly on this task. However,
algorithmsnnt sc (A) andnnf sc ( A&Y) produced good results, representing an average of 15.7 and
16 components respectively. This compares favourably to the netvankealgorithms, witmndi
representing 14.6 andi representing 15.9 of the 16 bars. When the number of images in the
training set was increased to 400 this improved the performance of ceméinaiborithms, but
lead to worse performance in others. fpor 400, every image component in every trial was found
by algorithmsnnsc, nnf sc ( A), nnf sc (A&Y) anddi .

In the previous experiment there were significantly more nodes, or lagms, than was neces-
sary to represent the 16 underlying image components. The pooriparfoe of certain algorithms
could thus potentially be due to over-fitting. The experiment was thus repesiteg 16 nodes or
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Figure 3: Typical generative or recognition weights learnt by 32 basitovs or nodes when each

algorithm was trained on the standard bars problem. Dark pixels indicatgy stieights.
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Figure 4: Performance of each algorithm when trained on the standesghkmblem. For (a) 32,
and (b) 16 basis vectors or nodes. Each bar shows the mean numbenpbrents
correctly identified by each algorithm when tested over 25 trials. Resul@ifferent
training set sizes are shown: the lighter, foreground, bars showgésup = 100, and
the darker, background, bars show resultsges 400. Error bars show best and worst
performance, across the 25 trials, whes 400.

basis vectors. The results of this experiment are shown in Figure 4lanlbe seen that while
the performance of some NMF algorithms is improved, the performance adibeomes slightly
worse. Only NMF algorithmsnf sc (A) andnnf sc (A&Y) reliably find nearly all the bars with both
16 and 32 basis vectors. In contrast, the performance of the netinarkelgorithms is unaffected
by changing the number of nodes. Such behaviour is desirable sinceeiésadly not known in

advance how many components there are. Hence, a robust algoritdstodse able to correctly
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learn image components with an excess of hodes. Across both thesemeqdhedi version of
the neural network algorithm performs as well as or better than any ofMie &lgorithms.

3.2 BarsProblems Without Occlusion

To determine the effect of occlusion on the performance of each algdittiner experiments were
performed using versions of the bars problem in which no occlusiorrecEirstly, a linear version
of the standard bars problem was used. Similar tasks have been usiedinydgy (2001) and Hoyer
(2002). In this task, pixel values are combined additively at points ofl@yédetween horizontal
and vertical bars. As with the standard bars problem, training data caheisdeby 8 pixel images
in which each of the 16 possible (one-pixel wide) horizontal and vetiaed could be present with
a probability of%. All the algorithms were trained with = 100 and withp = 400 using 32 nodes
or basis vectors. The number of unigue bars represented by at healsasis vector, or one node of
the network, was calculated, and this value was averaged over 25 triiedan@&an number of bars
represented by each algorithm is shown in Figure 5a.

Another version of the bars problem in which occlusion is avoided is onehinhahorizontal
and vertical bars do not co-occur. Similar tasks have been used bynHinad. (1995); Dayan and
Zemel (1995); Frey et al. (1997); Hinton and Ghahramani (1997 Meith and Jordan (2000). In
this task, an orientation (either horizontal or vertical) was chosen withl ggabability for each
training image. The eight (one-pixel wide) bars of that orientation wereitidependently selected
to be present with a probability %f All the algorithms were trained with = 100 and withp = 400
using 32 nodes or basis vectors. The number of unique bars refgesgrat least one basis vector,
or one node of the network, was calculated, and this value was averaged5 trials. The mean
number of bars represented by each algorithm is shown in Figure 5b.

For both experiments using training images in which occlusion does not, dlseyrerformance
of most of the NMF algorithms is improved considerably in comparison to the atdrhrs prob-
lem. The neural network algorithms also reliably learn the image components afevgtandard
bars problem.

3.3 BarsProblem with More Occlusion

To further explore the effects of occlusion on the learning of image coemgsra version of the
bars problem with double-width bars was used. Training data consist@dpf9 pixel images

in which each of the 16 possible (two-pixel wide) horizontal and vertieas lwould be present
with a probability%. The image size was increased by one pixel to keep the number of image
components equal to 16 (as in the previous experiments). In this task, as gtatidard bars
problem, perpendicular bars overlap; however, the proportion ofagvés increased. Furthermore,
neighbouring parallel bars also overlap (by 50%). Typical examplésiwiing images are shown

in Figure 6.

Each algorithm was trained on this double-width bars problem with400. The number of
components that each algorithm could learthwas set to 32. Typical examples of the (generative)
weights learnt by each NMF algorithm and of the (recognition) weightsiégrthe neural network
algorithms are shown in Figure 7. It can be seen that the majority of the NM¥ithligns learnt
redundant encodings in which the basis vectors represent parts of icoagpoonents rather than
complete components. In contrast, the neural network algorithms (amohghealgorithm) learnt
to represent complete image components.
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Figure 5: Performance of each algorithm when trained on (a) the lineampbablem, and (b) the
one-orientation bars problem, with 32 basis vectors or nodes. Eachdnas $he mean
number of components correctly identified by each algorithm when teste@bvaals.
Results for different training set sizes are shown: the lighter, fotegtdars show results
for p= 100, and the darker, background, bars show resultp f#400. Error bars show
best and worst performance, across the 25 trials, wher00.

The following procedure was used to determine the number of bars egpeesby each algo-
rithm in each trial. For each node, the sum of the weights correspondinvgity @ouble-width bar
was calculated. A node was considered to represent a particular bardftéh weight correspond-
ing to that bar was 1.5 times that of the sum of the weights for any other baf gredminimum
weight of any pixel forming part of that bar was greater than the meal thfea(positive) weights
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Figure 6: Typical training patterns for the double-width bars problem. pixel wide horizontal
and vertical bars in a 9x9 pixel image are independently selected to benpregh a
probability of%. Dark pixels indicate active inputs.

for that node. The number of unique bars represented by at leabasigevector, or one node of the
network, was calculated. The mean number of two-pixel-wide bars, ogeét3hrials, represented

by each algorithm is shown in Figure 8a. This set of training images coulalmdyy but less ef-
ficiently, represented b8 one-pixel-wide bars. Hence, the mean number of one-pixel-wide bars,
represented by each algorithm was also calculated and this data is shoigare . The number

of one-pixel-wide bars represented was calculated using the samealpreassed to analyse the
previous results (as stated in section 3.1).

It can be seen that the majority of the NMF algorithms perform very poorlghimtask. Most
fail to reliably represent either double- or single-width bars. Howelggrithmsnnsc, nnf sc ( A)
andnnf sc (A&Y) do succeed in learning the image components. The dendritic inhibition algorithm,
with negative weights, also succeeds in identifying all the double-widthivarsst trials. However,
the non-negative version of this algorithm performs less well. This resudtidites the need to allow
negative weight values in this algorithm in order to robustly learn image compané&egative
weights are needed to disambiguate a real image component from the simutanesentation of
partial components. For example, consider part of the neural netwarlkstheceiving input from
four pixels that are part of four separate, neighbouring, columnseoinibut image (as illustrated
in Figure 9). Assume that two nodes in the output layer (nodes 1 and 8)léarnt weights that
are selective to two neighbouring, but non-overlapping, double-widts @bars 1 and 3). When the
double-width bar (bar 2) that overlaps these two represented baesismed to the input, then the
network will respond by partially activating nodes 1 and 3. Such a reptason is reasonable since
this input pattern could be the result of the co-activation of partially ocdueesions of the two
represented bars. However, if bar 2 recurs frequently then it is ipliadoe caused by the chance
co-occurrence of multiple, partially occluded patterns, and is more likely tarbsdependent
image component that should be represented in a similar way to the other cemgpdre., by
the activation of a specific node tuned to that feature). One way to etimtrén such situations
the network learns all image components is to employ negative synaptic weilgidgse negative
weights are generated when a node is active and inputs, which arerhof tiee nodes’ preferred
input pattern, are inhibited. This can only occur when multiple nodes aeetive. If the pattern,
to which this set of co-active nodes are responding, re-occurs teemetative weights will grow.
When the negative weights are sufficiently large the response of thdes tuthis particular pattern
will be inhibited, enabling an uncommitted node to successfully compete to egyriixés pattern.
Onthe other hand, if the pattern, to which this set of co-active nodesgpemding, is just due to the

804



LEARNING IMAGE COMPONENTS FOROBJECTRECOGNITION

i 0 D gd Ed O 100 DI
43 UL - gl =8 =10 O
U0 B Q0 o0 DO =00 ) DA
== e 1P 1 A T = Iy I [ A o [
Ui &4 U6 D M i =0 &0
L O OF E HE FHed [l 08
= U= LE O3 QW O3 B, JElg

HAE: B0 00 0 BE: mE L II; 0OD: 50-
08, B0, U0 E0: B0 d0fFE 80 0d- 00=

HO0 B0 O 50 B8 DD°8R0n°g8meE
DL 0 L) a4 8l OWd g HE
e Lt WL B O HD &9 D0
U Ol U B BE 88 U] -
0 == S Y I ™ e 1 N [ [
i T 5 PN ==Y 1 = 1 O Y == o
O Ul B DG e HA OW B

L0 00
0 L
i B0
8 0
00 OO
=0 1=
] DO

== O
0 B0
|8 =[]
8 00
o <0
I
00 =

Figure 7: Typical generative or recognition weights learnt by 32 basitovs or nodes when each

algorithm was trained on the double-width bars problem. Dark pixels indi¢edags

weights.
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Figure 8: Performance of each algorithm when trained on the double-bédthproblem, with 32
basis vectors or nodes, apd= 400. Each bar shows the mean number of components
correctly identified by each algorithm when tested over 25 trials. (a) Nuoflawuble-
width bars learnt. (b) Number of single-width bars learnt. Error bare/dtest and worst
performance across the 25 trials. Note that algorithms that successfulhy teauble-
width bars—see (a)—do not appear in (b), but space is left for tHgeetams in order
to aid comparison between figures.

co-activation of independent input patterns then the weights will returartbwero on subsequent
presentations of these patterns in isolation.

3.4 BarsProblem with Unequal Components

In each individual experiment reported in the previous sections, e@mnponent of the training
images has been exactly equal in size to every other component andchasdavith exactly the
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~ o~

bar 2

T bar1  — bar3

Figure 9: An illustration of a the role of negative weights in the dendritic inhibitigorithm.
Nodes are shown as large circles, excitatory synapses as small ages aird inhibitory
synapses as small filled circles. Nodég andY g are selective for the double-width
bars 1 and 3 respectively. The occurrence in an image of the double-bad ‘bar 2’
would be indicated by both nod&sy andY 3 being active at half-strength. However, if
bar 2 occurs sufficiently frequently, the negative afferent weighticateld will develop
which will suppress this response and enable the uncommitted Noget¢ compete to
respond to this pattern. Note that each bar would activate two columns eafzining
eight input nodes, but only one input node per column is shown for clarity

same probability. This is unlikely to be the case in real-world object recognitgis.tan the real-
world, different image features can be radically different in size amdogaencountered with very
different frequency. For example, important features in face ratiognnclude both the eyes and
the hair (Sinha and Poggio, 1996; Davies et al., 1979) which can vanmifisantly in relative size.
Furthermore, we effortlessly learn to recognise both immediate family membleosniay be seen
many times a day) and distant relatives (who may be seen only a few timeg a year

To provide a more realistic test, a new variation on the bars problem was lnstis version,
training data consisted of 16 by 16 pixel images. Image components congisteden one-pixel
wide bars and one nine-pixel wide bar in both the horizontal and verticatttbns. Hence, as
in previous experiments, there were eight image components at each tiwieatad 16 in total.
Parallel bars did not overlap, however, the proportion of overlap dtvthe nine-pixel wide bars
and all other perpendicular bars was large, while the proportion ofagveetween perpendicular
one-pixel wide bars was less than in the standard bars problem. Eazbrftarbar was selected to
be present in an image with a probabilityé)f/vhile vertical bars occurred with a probability ég
Hence, in this test case half the underlying image components occurreatiffarant frequency to
the other half and two of the components were a different size to the other 14

Each algorithm was trained on this ‘unequal’ bars problem ita400. The number of com-
ponents that each algorithm could leanh \Was set to 32. The mean number of bars, over 25 trials,
represented by each algorithm is shown in Figure 10. It can be seenah@tof the NMF algo-
rithms succeeded in reliably identifying all the image components in this tasknibgdo represent
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Figure 10: Performance of each algorithm when trained on the unearsgbtoblem, with 32 basis
vectors or nodes, anp = 400. Each bar shows the mean number of components cor-
rectly identified by each algorithm when tested over 25 trials. Error bans blest and
worst performance across the 25 trials.

the two large components appears to be a particular problem for all thes#hatgs, but the cause
for this may differ between algorithms. For most NMF algorithms, the underliyimggar model
fails when occlusion is significant, as is the case for the two nine-pixel vatterps. However, for
the NMF algorithms that find non-negative factors with an additional cansira the sparseness
of the basis vectord.€., nnfsc (A) andnnf sc ( A&LY) ) an alternative cause may be the imposition
of a constraint that requires learnt image components to be a similar sizd) ishiot the case
for the components used in this task. The neural network algorithm with ymsigights indi )
produced results that are only marginally better than the NMF algorithms. [Haistam also fails

to reliably learn the two large components due to the large overlap between lineontrast, the
dendritic inhibition neural network algorithm with negative weightis)( succeeded in identifying

all the bars in most trials. As for the previous experiment with double-widts, ltlais result illus-
trates the need to allow negative weight values in this algorithm in order tatigbaarn image
components. Algorithndi learnt every image component in 18 of the 25 trials. In contrast, only
one NMF algorithmifnsc) managed to find all the image components, but it only did so in a single
trial.

3.5 Facelmages

Previously, NMF algorithms have been tested using a training set that tsookimages of faces
(Lee and Seung, 1999; Hoyer, 2004; Li et al., 2001; Feng et al2)200hen these training images
are taken from the CBCL face databasalgorithmnnf di v learns basis vectors that correspond
to localised image parts (Lee and Seung, 1999; Hoyer, 2004; Feng 20@2). However, when

1. CBCL Face Database #1, MIT Center For Biological and Computatiamiiray,
http://ww. ai.nt.edu/projects/chcl.
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Figure 11: (a) and (b) Typical recognition weights learnt by 32 nodesnaboth versions of the
dendritic inhibition algorithm were trained on the CBCL face database. Ligelg
indicate strong weights.

applied to the ORL face databasejgorithmnnf nse learns global, rather than local, image fea-
tures (Li et al., 2001; Hoyer, 2004; Feng et al., 2002). In contrégdrishm| nnf learns localised
representations of the ORL face database (Feng et al., 2002; Li ed@L).2Algorithmnnf sc can
find either local or global representations of either set of face imagesapjilopriate values for
the constraints on the sparseness of the basis vectors and activatmeficSlly, nnf sc learns
localised image parts when constrained to produce highly sparse basisjrbagéearns global
image features when constrained to produce basis images with low sEErsenieconstrained to
produce highly sparse activations (Hoyer, 2004). Hence, NMF ithgos can, in certain circum-
stances, learn localised image components, some of which appear to roagklspond to parts of
the face, but others of which are arbitrary, but localised, blobs.ris#lg the NMF algorithms se-
lect a subset of the pixels which are simultaneously active across multiplesrt@abe represented
by a single basis vector. The same behaviour is observed in the batemsolveported above,
where a basis vector often corresponds to a random subset of dixedsaarow or column of the
image rather than representing an entire bar. Such arbitrary image cortgpareenot meaningful
representations of the image data.

In contrast when the dendritic inhibition neural network is trained on facgésait learns
global representations. Figure 11a and Figure 11b show the resul@rohgrnndi anddi, for
10000 iterations, on the 2429 images in the CBCL face database. Parameter&lentical to
those used for the bars problems, except the weights were initialised wmaradues chosen from
a Gaussian distribution with a larger standard deviatioQ®%) as this was found necessary to
cause bifurcation of activity values. In both cases, each node hais teaepresent an average (or
prototype) of a different subset of face images. When presented witlyroverlapping training
images the neural network algorithm will learn a prototype consisting of themn features be-
tween the different images (Spratling and Johnson, 2006). Whennpeelse&ith objects that have
less overlap, the network will learn to represent the individual exemg&psatling and Johnson,
2006). These two forms of representation are believed to suppomrtpiaed categorisation and
object recognition (Palmeri and Gauthier, 2004).

2. The ORL Database of Faces, AT&T Laboratories Cambridge,
http://ww. cl.cam ac. uk/ Resear ch/ DTG at t ar chi ve/ f acedat abase. htm .
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4. Discussion

The NMF algorithml nnf imposes the constraint that the basis vectors be orthogonal. This means
that image components may not overlap and, hence, results in this algoritilaie facross all
versions of the bars task. In all these tasks the underlying image companermigerlapping bars
patterns (even if they do not overlap in any single training image, as is tleva#s the one-
orientation bars problem).

NMF algorithms which find non-negative factors without other constraings Gnf di v and
nnf nse) generally succeed in identifying the underlying components of images tramed us-
ing images in which there is no occlusiore(, on the linear and one-orientation bars problems).
However, these algorithms fail when occlusion does occur between invageonents, and perfor-
mance gets worse as the degree of occlusion increases. Hence |gjoeglenas fail to learn many
image features in the standard bars problem and produce even wdiGenaace when tested on
the double-width bars problem.

NMF algorithms that find non-negative factors with an additional constoairthe sparseness
of the activationsi(e., snnf, nnsc, andnnfsc(Y)) require that the rows oY have a particular
sparseness. Such a constraint causes these algorithms to learn cot®fiuateare present in a cer-
tain fraction of the training images.€., each factor is required to appear with a similar frequency).
Such a constraint can overcome the problems caused by occlusion aplé &MF to identify
components in training images where occlusion occurs. For exampsle,produced good results
on the double-width bars problem. Given sufficient training datac also reliably finds nearly
all the image components in all experiments except for the standard banghesh = 16 and the
unequal bars problem. Howevaenf sc (Y) fails to produce consistently good results across exper-
iments. This algorithm only reliably found all the image components for the stah@das problem
whenn = 16 and for the linear bars problem. Despite constraining the sparsdribesactivations,
algorithmsnnf produced poor results in all experiments except for the linear bars pnoble

The NMF algorithm that finds non-negative factors with an additionaltcaims on the sparse-
ness of the basis vectoiisg(, nnf sc ( A) ) requires that the columns Afhave a particular sparseness.
Such a constraint causes this algorithm to learn components that havaia @@ction of pixels
with values greater than zerog,, all factors are required to be a similar size). This algorithm
produces good results across all the experiments except the unegsigirbblem. Constraining
the sparseness of the basis vectors thus appears to overcome thenpredlsed by occlusion and
enable NMF to identify components in training images where occlusion oddavsever, this con-
straint may itself prevent the algorithm from identifying image components wdnieta different
size from that specified by the sparseness parameter. The NMF algthiéihimposes constraints
on both the sparseness of the activations and the sparseness ofisheebts's (.e., nnf sc ( A&Y) )
produces results similar to those produceadiiysc (A) .

The performance of thenf sc algorithm depends critically on the particular sparseness param-
eters that are chosen. As can be seen from figure 12, performarecepecific task can vary from
finding every component in every trial, to failure to find even a single compbacross all trials.
While appropriate values of sparseness constraint can enable the lgbtkhan to overcome in-
herent problems associated with the non-linear superposition of image nentppinappropriate
values of sparseness constraint will prevent the identification of fatiat occur at a different fre-
guency, or that are a different size, to that specified by the spas@aeameter chosen. This is
particularly a problem when the frequency and size of different imaggoaents varies within a
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Figure 12: Performance of thenfsc algorithm across the range of possible combinations of
sparseness parameters. For (a) the standard bars problem, (betb&esation bars
problem, (c) the double-width bars problem, and (d) the unequal babdepn. In each
casen= 32 andp = 400. The sparsenessYivaries along the y-axis and the sparseness
of A varies along the x-axis of each plot. Since the sparseness constraiojstianal,
'None’ indicates where no constraint was imposed. The length of theadageeh filled
box is proportional to the mean number of bars learnt over 25 trials foctimbination
of parameters. Perfect performance would be indicated by a box coigglileg the
corresponding element of the array. ‘X’ marks combinations of paramvataes for
which the algorithm encountered a division-by-zero error and ccashe

single task. Hence, thanf sc algorithm was unable to identify all the components in the unequal
bars problem with any combination of sparseness parameters (figurelfiddct, no NMF algo-
rithm succeeded in this task: either because the linear NMF model coulceabtvith occlusion

or because the algorithm imposed sparseness constraints that could sattdfied for all image
components.

The parameter search shown in figure 12 was performed in order td¢ seeggarameter val-
ues that would produce the best overall results across all the tagksubés paper for algorithms
nnfsc (A),nnfsc(Y),andnnf sc (A&Y) . However, in many real-world tasks the user may not know
what the image components should look like, and hence, it would be impossixéaitch for the
appropriate parameter values. Timé sc algorithm is thus best suited to tasks in which all compo-
nents are either a similar size or occur at a similar frequency, and for whgkize/frequency is
either knowna priori or the user knows what the components should look like and is prepared to
search for parameters that enable these components to be ‘discdwethd’algorithm.

Sparseness constraints are also often employed in neural networikhatggorHowever, in such
recognition models, sparseness constraints usually limit the number of tiedesre simultane-
ously active in response to an input imageél@tak and Young, 1995; Olshausen and Field, 2004).
This is equivalent to constraining the sparseness ircthemns of Y (rather than the rows of,
or the columns ofA, as has been constrained in the NMF algorithms). Any constraints that im-
pose restrictions on the number of active nodes will prevent a neusabriefrom accurately and
completely representing stimuli (Spratling and Johnson, 2004). Hendle sparseness constraints
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should be avoided. The dendritic inhibition model succeeds in learninggepiations of elemen-
tary image features without such constraints. However, to accuratelyseq image features that
overlap, it is necessary for negative weight values to be allowed. Tgusitam (di ) produced the
best overall performance across all the experiments performed Tieieis achieved because this
algorithm does not falsely assume that image composition is a linear prooesines it impose
constraints on the expected size or frequency of occurrence of inmgeonients. The dendritic
inhibition algorithm thus provides an efficient, on-line, algorithm for findinggemaomponents.

When trained on images that are composed of elementary features, sindsesised in the
bars problems, algorithiii reliably and accurately learns representations of the underlying image
features. However, when trained on images of faces, algodihiearns holistic representations.
In this case, large subsets of the training images contain virtually identicainsatiepixel values.
These re-occurring, holistic patterns, are learnt by the dendritic inhikafigorithm. In contrast,
the NMF algorithms (in certain circumstances) form distinct basis vectorsptesent pieces of
these recurring patterns. The separate representation of sub-padtdure to constraints imposed
by the algorithms and is not based on evidence contained in the training imegese, while
these constraints make it appear that NMF algorithms have learnt facetheds algorithms are
representing arbitrary parts of larger image features. This is demoistnatbe results generated
when the NMF algorithms are applied to the bars problems. In these casbsha&sis vector
often corresponds to a random subset of pixels along a row or colurtitredmage rather than
representing an entire bar. Such arbitrary image components are nahgfabrepresentations of
the image data. Rather than relying on a subjective assessment of the duaktgomponents that
are learnt, the bars problems that are the main focus of this paper, peogigentitative test of the
accuracy and reliability with which elementary image features are discov@iece the underlying
image components are known, it is possible to compare the components learihavikhown
features from which the training images were created. These results sigaterthat when the
training images are actually composed of elementary features, NMF algoritmiaitto learn the
underlying image components, whereas, the dendritic inhibition algorithm Isebalol accurately
does so.

Intuitively, the dendritic inhibition algorithm works because the learning ralgses nodes to
learn re-occurring patterns of pre-synaptic activity. As an affeneight to a node increases, so
does the strength with which that node can inhibit the corresponding icfvityareceived by all
other nodes. This provides strong competition for specific patterns ofsignd forces different
nodes to learn distinct image components. However, because the inhibitipecificto a partic-
ular set of inputs, nodes do not interfere with the learning of distinct imaggonents by other
nodes. Unfortunately, the operation of this algorithm has not so far foeemlated in terms of the
optimisation of an objective function. It is hoped that the empirical performafthis algorithm
will prompt the development of such a mathematical analysis.

5. Conclusions

Non-negative matrix factorisation employs non-negativity constraints ieraocdmodel the physics
of image formation, and it has been claimed that this makes NMF particularly soitedrning
meaningful representations of image data (Lee and Seung, 1999; Fand®602; Liu et al., 2003;
Liu and Zheng, 2004; Li et al., 2001). However, by employing a linear ldidF fails to take into
account another important factor of image composition, namely the preséncelusion. Hence,
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despite the claims, most NMF algorithms fail to reliably identify the underlying corapts of im-
ages, even in simple, artificial, tasks like those investigated here. These linstesiofte overcome
by imposing additional constraints on the sparseness of the factors ¢hédwnd. However, to
employ such constraints requiragriori knowledge, or trial-and-error, to find appropriate param-
eter values and can result in failure to identify components that violate the @dposistraint. In
contrast, a neural network algorithm, employing a non-linear activatioctium can reliably and
accurately learn image components. This neural network algorithm is thuslikely to provide a
robust method of learning image components suitable for object recognition.
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