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Abstract

In order to perform object recognition it is necessary to learn representations of the underlying
components of images. Such components correspond to objects, object-parts, or features. Non-
negative matrix factorisation is a generative model that has been specifically proposed for finding
such meaningful representations of image data, through theuse of non-negativity constraints on
the factors. This article reports on an empirical investigation of the performance of non-negative
matrix factorisation algorithms. It is found that such algorithms need to impose additional con-
straints on the sparseness of the factors in order to successfully deal with occlusion. However,
these constraints can themselves result in these algorithms failing to identify image components
under certain conditions. In contrast, a recognition model(a competitive learning neural network
algorithm) reliably and accurately learns representations of elementary image features without such
constraints.

Keywords: non-negative matrix factorisation, competitive learning, dendritic inhibition, object
recognition

1. Introduction

An image usually contains a number of different objects, parts, or features and these components
can occur in different configurations to form many distinct images. Identifying the underlying com-
ponents which are combined to form images is thus essential for learning the perceptual represen-
tations necessary for performing object recognition. Non-negative matrix factorisation (NMF) has
been proposed as a method for finding such parts-based decompositionsof images (Lee and Seung,
1999; Feng et al., 2002; Liu et al., 2003; Liu and Zheng, 2004; Li et al.,2001; Hoyer, 2002, 2004).
However, the performance of this method has not been rigorously or quantitatively tested. Instead,
only a subjective assessment has been made of the quality of the components that are learnt when
this method is applied to processing images of, for example, faces (Lee and Seung, 1999; Hoyer,
2004; Li et al., 2001; Feng et al., 2002). This paper thus aims to quantitatively test, using several
variations of a simple standard test problem, the accuracy with which NMF identifies elementary
image features. Furthermore, non-negative matrix factorisation assumes that images are composed
of a linear combination of features. However, in reality the superposition ofobjects or object parts
does not always result in a linear combination of sources but, due to occlusion, results in a non-linear
combination. This paper thus also aims to investigate, empirically, how NMF performs when tested
in more realistic environments where occlusion takes place. Since competitive learning algorithms
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have previously been applied to this test problem, and neural networks are a standard technique for
learning object representations, the performance of NMF is compared to that of an unsupervised
neural network learning algorithm applied to the same set of tasks.

2. Method

This section describes the NMF algorithms, and the neural network algorithms, which are explored
in this paper. The performance of these algorithms is compared in the Results section.

2.1 Non-Negative Matrix Factorisation

Given anm by p matrix X = [~x1, . . . ,~xp], each column of which contains the pixel values of an
image (i.e., X is a set of training images), the aim is to find the factorsA andY such that

X ≈ AY,

whereA is anm by n matrix the columns of which contain basis vectors, or components, into which
the images can be decomposed, andY = [~y1, . . . ,~yp] is ann by p matrix containing the activations
of each component (i.e., the strength of each basis vector in the corresponding training image). A
training image (~xk) can therefore be reconstructed as a linear combination of the image components
contained inA, such that~xk ≈ A~yk.

A number of different learning algorithms can be defined depending on theconstraints that are
placed on the factorsA andY. For example, vector quantization (VQ) restricts each column ofY
to have only one non-zero element, principal components analysis (PCA) constrains the columns
of A to be orthonormal and the rows ofY to be mutually orthogonal, and independent components
analysis (ICA) constrains the rows ofY to be statistically independent. Non-negative matrix factori-
sation is a method that seeks to find factors (of a non-negative matrixX) under the constraint that
bothA andY contain only elements with non-negative values. It has been proposed that this method
is particularly suitable for finding the components of images, since from the physical properties of
image formation it is known that image components are non-negative and that these components are
combined additively (i.e., are not subtracted) in order to generate images. Several different algo-
rithms have been proposed for finding the factorsA andY under non-negativity constraints. Those
tested here are listed in Table 1.

Algorithms nmfdiv andnmfmse impose non-negativity constraints solely, and differ only in
the objective function that is minimised in order to find the factors. All the other algorithms ex-
tend non-negative matrix factorisation by imposing additional constraints on the factors. Algorithm
lnmf imposes constraints that require the columns ofA to contain as many non-zero elements as
possible, andY to contain as many zero elements as possible. This algorithm also requires thatbasis
vectors be orthogonal. Both algorithmssnmf andnnsc impose constraints on the sparseness ofY.
Algorithm nmfsc allows optional constraints to be imposed on the sparseness of either the basis
vectors, the activations, or both. This algorithm was used with three combinations of sparseness
constraints. Fornmfsc(A) a constraint on the sparseness of the basis vectors was applied. This
constraint required that each column ofA had a sparseness of 0.5. Valid values for the parame-
ter controlling sparseness could range from 0 (which would produce completely distributed basis
vectors) to a value of 1 (which would produce completely sparse basis vectors). Fornmfsc(Y) a
constraint on the sparseness of the activations was applied. This constraint required that each row
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nmfdiv NMF with divergence objective (Lee and Seung, 2001)
nmfmse NMF with euclidean objective (Lee and Seung, 2001)
lnmf Local NMF (Li et al., 2001; Feng

et al., 2002)
snmf Sparse NMF (α = 1) (Liu et al., 2003)
nnsc Non-negative sparse coding (λ = 1) (Hoyer, 2002)
nmfsc(A) NMF with a sparseness constraint of 0.5 on

the basis vectors
(Hoyer, 2004)

nmfsc(Y) NMF with a sparseness constraint of 0.7 on
the activations

(Hoyer, 2004)

nmfsc(A&Y) NMF with sparseness constraints of 0.5 on
the basis vectors and 0.7 on the activations

(Hoyer, 2004)

N
eu
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l

N
et

w
or

k
A

lg
or

ith
m

s nndi Dendritic inhibition neural network with
non-negative weights

di Dendritic inhibition neural network (Spratling and Johnson,
2002, 2003)

Table 1: The algorithms tested in this article. These include a number of different algorithms for
finding matrix factorisations under non-negativity constraints and a neural network algo-
rithm for performing competitive learning through dendritic inhibition.

of Y had a sparseness of 0.7 (where sparseness is in the range[0,1], as for the constraint onA). For
nmfsc(A&Y) these same constraints were imposed on both the sparseness of basis vectors and the
activations. For thenmfsc algorithm, fixed values for the parameters controlling sparseness were
used in order to provide a fairer comparison with the other algorithms all of which used constant
parameter settings. Furthermore, since all the test cases studied are verysimilar, it is reasonable to
expect an algorithm to work across them all without having to be tuned specifically to each individ-
ual task. The particular parameter values used were selected so as to provide the best overall results
across all the tasks. The effect of changing the sparseness parameters is described in the discussion
section.

2.2 Dendritic Inhibition Neural Network

In terms of neural networks, the factoring ofX into A andY constitutes the formation of a generative
model (Hinton et al., 1995): neural activationsY reconstruct the input patternsX via a matrix of
feedback (or generative) synaptic weightsA (see Figure 1a). In contrast, traditional neural network
algorithms have attempted to learn a set of feedforward (recognition) weights W (see Figure 1b),
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Figure 1: (a) A generative neural network model: feedback connections enable neural activations
(~yk) to reconstruct an input pattern (~xk). (b) A recognition neural network model: feed-
forward connections cause neural activations (~yk) to be generated in response to an input
pattern (~xk). Nodes are shown as large circles and excitatory synapses as small open
circles.

such that
Y = f (W,X) ,

whereW is ann by m matrix of synaptic weight values,X = [~x1, . . . ,~xp] is anm by p matrix of
training images, andY = [~y1, . . . ,~yp] is ann by p matrix containing the activation of each node in
response to the corresponding image. Typically, the rows ofW form templates that match image
features, so that individual nodes become active in repose to the presence of specific components of
the image. Nodes thus act as ‘feature detectors’ (Barlow, 1990, 1995).

Many different functions are possible for calculating neural activations and many different learn-
ing rules can be defined for finding the values ofW. For example, algorithms have been proposed for
performing vector quantization (Kohonen, 1997; Ahalt et al., 1990), principal components analysis
(Oja, 1992; Fyfe, 1997b; F̈oldiák, 1989), and independent components analysis (Jutten and Herault,
1991; Charles and Fyfe, 1997; Fyfe, 1997a). Many of these algorithms impose non-negativity con-
straints on the elements ofY andW for reasons of biological plausibility, since neural firing rates
are positive and since synapses can not change between being excitatory and being inhibitory. In
general, such algorithms employ different forms of competitive learning, in which nodes compete to
be active in response to each input pattern. Such competition can be implemented using a number of
different forms of lateral inhibition. In this paper, a competitive learning algorithm in which nodes
can inhibit the inputs to other nodes is used. This form of inhibition has been termed dendritic
inhibition or pre-integration lateral inhibition. The full dendritic inhibition model (Spratling and
Johnson, 2002, 2003) allows negative synaptic weight values. However, in order to make a fairer
comparison with NMF, a version of the dendritic inhibition algorithm in which all synaptic weights
are restricted to be non-negative (by clipping the weights at zero) is also used in the experiments
described here. The full model will be referred to by the acronymdi while the non-negative version
will be referred to asnndi (see Table 1).

In a neural network model, an input image (~xk) generates activity (~yk) in the nodes of a neural
network such that~yk = f (W,~xk). In the dendritic inhibition model, the activation of each individual
node is calculated as:

y jk = W~x′k j
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where~x′k j is an inhibited version of the input activations (~xk) that can differ for each node. The
values of~x′k j are calculated as:

x′ik j = xik






1−α

n
max
r=1

(r 6= j)

{

wri

maxm
q=1

{

wrq
}

yrk

maxn
q=1
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yqk
}

}







+

,

whereα is a scale factor controlling the strength of lateral inhibition, and(v)+ is the positive half-
rectified value ofv. The steady-state values ofy jk were found by iteratively applying the above two
equations, increasing the value ofα from 0 to 6 in steps of 0.25, while keeping the input image
fixed.

The above activation function implements a form of lateral inhibition in which each neuron can
inhibit the inputs to other neurons. The strength with which a node inhibits an input to another
node is proportional to the strength of the afferent weight the inhibiting node receives from that
particular input. Hence, if a node is strongly activated by the overall stimulusand it has a strong
synaptic weight to a certain feature of that stimulus, then it will inhibit other nodes from responding
to that feature. On the other hand, if an active node receives a weak weight from a feature then it
will only weakly inhibit other nodes from responding to that feature. In thismanner, each node can
selectively ‘block’ its preferred inputs from activating other nodes, but does not inhibit other nodes
from responding to distinct stimuli.

All weight values were initialised to random values chosen from a Gaussiandistribution with
a mean of1m and a standard deviation of 0.001n

m . This small degree of noise on the initial weight
values was sufficient to cause bifurcation of the activity values, and thusto cause differentiation of
the receptive fields of different nodes through activity-dependent learning. Previous results with this
algorithm have been produced using noise (with a similarly small magnitude) applied to the node
activation values. Using noise applied to the node activations, rather than the weights, produces
similar results to those reported in this article. However, noise was only appliedto the initial weight
values, and not to the node activations, here to provide a fairer comparison to the deterministic NMF
algorithms. Note that a node which still has its initial weight values (i.e., a node which has not had
its weights modified by learning) is described as ‘uncommitted’.

Synaptic weights were adjusted using the following learning rule (applied to weights with values
greater than or equal to zero):

∆w ji =
(xik − x̄k)

∑m
p=1 xpk

(

y jk − ȳk
)+

. (1)

Herex̄k is the mean value of the pixels in the training image (i.e., x̄k = 1
m ∑m

i=1 xik), and ¯yk is the mean
of the output activations (i.e., ȳk = 1

n ∑n
j=1 y jk). Following learning, synaptic weights were clipped

at zero such thatw ji = (w ji)
+ and were normalised such that∑m

i=1(w ji)
+
≤ 1.

This learning rule encourages each node to learn weights selective for aset of coactive inputs.
This is achieved since when a node is more active than average it increases its synaptic weights
to active inputs and decreases its weights to inactive inputs. Hence, only sets of inputs which
are consistently coactive will generate strong afferent weights. In addition, the learning rule is
designed to ensure that different nodes can represent stimuli which share input features in common
(i.e., to allow the network to represent overlapping patterns). This is achievedby rectifying the
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post-synaptic term of the rule so that no weight changes occur when the node is less active than
average. If learning was not restricted in this way, whenever a pattern was presented all nodes
which represented patterns with overlapping features would reduce theirweights to these features.

For the algorithmdi, but not for algorithmnndi, the following learning rule was applied to
weights with values less than or equal to zero:

∆w ji =

(

x′ik j −0.5xik

)−

∑n
p=1 ypk

(

y jk − ȳk
)

. (2)

Here (v)− is the negative half-rectified value ofv. Negative weights were clipped at zero such
that w ji = (w ji)

− and were normalised such that∑m
i=1(w ji)

−
≥ −1. Note that for programming

convenience a single synapse is allowed to take either excitatory or inhibitoryweight values. In a
more biologically plausible implementation two separate sets of afferent connections could be used:
the excitatory ones being trained using equation 1 and the inhibitory ones being trained using a rule
similar to equation 2.

The negative weight learning rule has a different form from the positive weight learning rule as
it serves a different purpose. The negative weights are used to ensure that each image component is
represented by a distinct node rather than by the partial activation of multiplenodes each of which
represents an overlapping image component. A full explanation of this learning rule is provided
together with a concrete example of its function in section 3.3.

3. Results

In each of the experiments reported below, all the algorithms listed in Table 1 were applied to
learning the components in a set ofp training images. The average number of components that were
correctly identified over the course of 25 trials was recorded. A new setof p randomly generated
images were created for each trial. In each trial the NMF algorithms were trained until the total sum
of the absolute difference in the objective function, between successive epochs, had not changed
by more than 0.1% of its average value in 100 epochs, or until 2000 epochshad been completed.
One epoch is when the method has been trained on allp training patterns. Hence, an epoch equals
one update to the factors in an NMF algorithm, andp iterations of the neural network algorithm
during which each individual image in the training set is presented once as input to the network.
The neural network algorithms were trained for 10000 iterations. Hence,the NMF algorithms were
each trained for at least 100 epochs, while the neural network algorithmswere trained for at most
100 epochs (since the value ofp was 100 or greater).

3.1 Standard Bars Problem

The bars problem (and its variations) is a benchmark task for the learning of independent image
features (F̈oldiák, 1990; Saund, 1995; Dayan and Zemel, 1995; Hinton et al., 1995; Harpur and
Prager, 1996; Hinton and Ghahramani, 1997; Frey et al., 1997; Fyfe,1997b; Charles and Fyfe, 1998;
Hochreiter and Schmidhuber, 1999; Meila and Jordan, 2000; Plumbley, 2001; O’Reilly, 2001; Ge
and Iwata, 2002; L̈ucke and von der Malsburg, 2004). In the standard version of the bars problem,
as defined by F̈oldiák (1990), training data consists of 8 by 8 pixel images in which each of the 16
possible (one-pixel wide) horizontal and vertical bars can be present with a probability of18. Typical
examples of training images are shown in Figure 2.
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Figure 2: Typical training patterns for the standard bars problem. Horizontal and vertical bars in
8x8 pixel images are independently selected to be present with a probability of 1

8. Dark
pixels indicate active inputs.

In the first experiment the algorithms were trained on the standard bars problem. Twenty-five
trials were performed withp = 100, and, withp = 400. The number of components that each
algorithm could learn (n) was set to 32. Typical examples of the (generative) weights learnt by each
NMF algorithm (i.e., the columns ofA reshaped as 8 by 8 pixel images) and of the (recognition)
weights learnt by the neural network algorithms (i.e., the rows ofW reshaped as 8 by 8 pixel
images) are shown in Figure 3. It can be seen that the NMF algorithms tend to learn a redundant
representation, since the same bar can be represented multiple times. In contrast, the neural network
algorithms learnt a much more compact code, with each bar being represented by a single node. It
can also be seen that many of the NMF algorithms learnt representations of bars in which pixels
were missing. Hence, these algorithms learnt random pieces of image components rather than the
image components themselves. In contrast, the neural network algorithms (and algorithmsnnsc,
nmfsc(A), andnmfsc(A&Y)) learnt to represent complete image components.

To quantify the results, the following procedure was used to determine the number of bars
represented by each algorithm in each trial. For each node, the sum of theweights corresponding
to each row and column of the input image was calculated. A node was considered to represent a
particular bar if the total weight corresponding to that bar was twice that ofthe sum of the weights
for any other row or column and if the minimum weight in the row or column corresponding to that
bar was greater than the mean of all the (positive) weights for that node. The number of unique bars
represented by at least one basis vector, or one node of the network,was calculated, and this value
was averaged over the 25 trials. The mean number of bars (i.e., image components) represented by
each algorithm is shown in Figure 4a. Good performance requires both accuracy (finding all the
image components) and reliability (doing so across all trials). Hence, the average number of bars
represented needs to be close to 16 for an algorithm to be considered to have performed well. It can
be seen that whenp = 100, most of the NMF algorithms performed poorly on this task. However,
algorithmsnmfsc(A) andnmfsc(A&Y) produced good results, representing an average of 15.7 and
16 components respectively. This compares favourably to the neural network algorithms, withnndi
representing 14.6 anddi representing 15.9 of the 16 bars. When the number of images in the
training set was increased to 400 this improved the performance of certain NMF algorithms, but
lead to worse performance in others. Forp = 400, every image component in every trial was found
by algorithmsnnsc, nmfsc(A), nmfsc(A&Y) anddi.

In the previous experiment there were significantly more nodes, or basis vectors, than was neces-
sary to represent the 16 underlying image components. The poor performance of certain algorithms
could thus potentially be due to over-fitting. The experiment was thus repeated using 16 nodes or
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(a) nmfdiv

(b) nmfmse

(c) lnmf

(d) snmf

(e) nnsc

(f) nmfsc (A)

(g) nmfsc (Y)

(h) nmfsc (A&Y)

(i) nndi

(j) di

Figure 3: Typical generative or recognition weights learnt by 32 basis vectors or nodes when each
algorithm was trained on the standard bars problem. Dark pixels indicate strong weights.
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Figure 4: Performance of each algorithm when trained on the standard bars problem. For (a) 32,
and (b) 16 basis vectors or nodes. Each bar shows the mean number of components
correctly identified by each algorithm when tested over 25 trials. Results fordifferent
training set sizes are shown: the lighter, foreground, bars show results for p = 100, and
the darker, background, bars show results forp = 400. Error bars show best and worst
performance, across the 25 trials, whenp = 400.

basis vectors. The results of this experiment are shown in Figure 4b. It can be seen that while
the performance of some NMF algorithms is improved, the performance of others becomes slightly
worse. Only NMF algorithmsnmfsc(A) andnmfsc(A&Y) reliably find nearly all the bars with both
16 and 32 basis vectors. In contrast, the performance of the neural network algorithms is unaffected
by changing the number of nodes. Such behaviour is desirable since it is generally not known in
advance how many components there are. Hence, a robust algorithm needs to be able to correctly
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learn image components with an excess of nodes. Across both these experiment thedi version of
the neural network algorithm performs as well as or better than any of the NMF algorithms.

3.2 Bars Problems Without Occlusion

To determine the effect of occlusion on the performance of each algorithmfurther experiments were
performed using versions of the bars problem in which no occlusion occurs. Firstly, a linear version
of the standard bars problem was used. Similar tasks have been used by Plumbley (2001) and Hoyer
(2002). In this task, pixel values are combined additively at points of overlap between horizontal
and vertical bars. As with the standard bars problem, training data consisted of 8 by 8 pixel images
in which each of the 16 possible (one-pixel wide) horizontal and verticalbars could be present with
a probability of1

8. All the algorithms were trained withp = 100 and withp = 400 using 32 nodes
or basis vectors. The number of unique bars represented by at least one basis vector, or one node of
the network, was calculated, and this value was averaged over 25 trials. The mean number of bars
represented by each algorithm is shown in Figure 5a.

Another version of the bars problem in which occlusion is avoided is one in which horizontal
and vertical bars do not co-occur. Similar tasks have been used by Hinton et al. (1995); Dayan and
Zemel (1995); Frey et al. (1997); Hinton and Ghahramani (1997) andMeila and Jordan (2000). In
this task, an orientation (either horizontal or vertical) was chosen with equal probability for each
training image. The eight (one-pixel wide) bars of that orientation were then independently selected
to be present with a probability of1

8. All the algorithms were trained withp = 100 and withp = 400
using 32 nodes or basis vectors. The number of unique bars represented by at least one basis vector,
or one node of the network, was calculated, and this value was averagedover 25 trials. The mean
number of bars represented by each algorithm is shown in Figure 5b.

For both experiments using training images in which occlusion does not occur, the performance
of most of the NMF algorithms is improved considerably in comparison to the standard bars prob-
lem. The neural network algorithms also reliably learn the image components as withthe standard
bars problem.

3.3 Bars Problem with More Occlusion

To further explore the effects of occlusion on the learning of image components a version of the
bars problem with double-width bars was used. Training data consisted of9 by 9 pixel images
in which each of the 16 possible (two-pixel wide) horizontal and vertical bars could be present
with a probability 1

8. The image size was increased by one pixel to keep the number of image
components equal to 16 (as in the previous experiments). In this task, as in the standard bars
problem, perpendicular bars overlap; however, the proportion of overlap is increased. Furthermore,
neighbouring parallel bars also overlap (by 50%). Typical examples oftraining images are shown
in Figure 6.

Each algorithm was trained on this double-width bars problem withp = 400. The number of
components that each algorithm could learn (n) was set to 32. Typical examples of the (generative)
weights learnt by each NMF algorithm and of the (recognition) weights learnt by the neural network
algorithms are shown in Figure 7. It can be seen that the majority of the NMF algorithms learnt
redundant encodings in which the basis vectors represent parts of image components rather than
complete components. In contrast, the neural network algorithms (and thennsc algorithm) learnt
to represent complete image components.
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Figure 5: Performance of each algorithm when trained on (a) the linear bars problem, and (b) the
one-orientation bars problem, with 32 basis vectors or nodes. Each bar shows the mean
number of components correctly identified by each algorithm when tested over 25 trials.
Results for different training set sizes are shown: the lighter, foreground, bars show results
for p = 100, and the darker, background, bars show results forp = 400. Error bars show
best and worst performance, across the 25 trials, whenp = 400.

The following procedure was used to determine the number of bars represented by each algo-
rithm in each trial. For each node, the sum of the weights corresponding to every double-width bar
was calculated. A node was considered to represent a particular bar if the total weight correspond-
ing to that bar was 1.5 times that of the sum of the weights for any other bar andif the minimum
weight of any pixel forming part of that bar was greater than the mean of all the (positive) weights
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Figure 6: Typical training patterns for the double-width bars problem. Twopixel wide horizontal
and vertical bars in a 9x9 pixel image are independently selected to be present with a
probability of 1

8. Dark pixels indicate active inputs.

for that node. The number of unique bars represented by at least onebasis vector, or one node of the
network, was calculated. The mean number of two-pixel-wide bars, over the 25 trials, represented
by each algorithm is shown in Figure 8a. This set of training images could be validly, but less ef-
ficiently, represented by18 one-pixel-wide bars. Hence, the mean number of one-pixel-wide bars,
represented by each algorithm was also calculated and this data is shown in Figure 8b. The number
of one-pixel-wide bars represented was calculated using the same procedure used to analyse the
previous results (as stated in section 3.1).

It can be seen that the majority of the NMF algorithms perform very poorly onthis task. Most
fail to reliably represent either double- or single-width bars. However,algorithmsnnsc, nmfsc(A)
andnmfsc(A&Y) do succeed in learning the image components. The dendritic inhibition algorithm,
with negative weights, also succeeds in identifying all the double-width barsin most trials. However,
the non-negative version of this algorithm performs less well. This result illustrates the need to allow
negative weight values in this algorithm in order to robustly learn image components. Negative
weights are needed to disambiguate a real image component from the simultaneous presentation of
partial components. For example, consider part of the neural network that is receiving input from
four pixels that are part of four separate, neighbouring, columns of the input image (as illustrated
in Figure 9). Assume that two nodes in the output layer (nodes 1 and 3) have learnt weights that
are selective to two neighbouring, but non-overlapping, double-width bars (bars 1 and 3). When the
double-width bar (bar 2) that overlaps these two represented bars is presented to the input, then the
network will respond by partially activating nodes 1 and 3. Such a representation is reasonable since
this input pattern could be the result of the co-activation of partially occluded versions of the two
represented bars. However, if bar 2 recurs frequently then it is unlikely to be caused by the chance
co-occurrence of multiple, partially occluded patterns, and is more likely to bean independent
image component that should be represented in a similar way to the other components (i.e., by
the activation of a specific node tuned to that feature). One way to ensurethat in such situations
the network learns all image components is to employ negative synaptic weights.These negative
weights are generated when a node is active and inputs, which are not part of the nodes’ preferred
input pattern, are inhibited. This can only occur when multiple nodes are co-active. If the pattern,
to which this set of co-active nodes are responding, re-occurs then the negative weights will grow.
When the negative weights are sufficiently large the response of these nodes to this particular pattern
will be inhibited, enabling an uncommitted node to successfully compete to represent this pattern.
On the other hand, if the pattern, to which this set of co-active nodes are responding, is just due to the
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(a) nmfdiv

(b) nmfmse

(c) lnmf

(d) snmf

(e) nnsc

(f) nmfsc (A)

(g) nmfsc (Y)

(h) nmfsc (A&Y)

(i) nndi

(j) di

Figure 7: Typical generative or recognition weights learnt by 32 basis vectors or nodes when each
algorithm was trained on the double-width bars problem. Dark pixels indicate strong
weights.
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Figure 8: Performance of each algorithm when trained on the double-widthbars problem, with 32
basis vectors or nodes, andp = 400. Each bar shows the mean number of components
correctly identified by each algorithm when tested over 25 trials. (a) Numberof double-
width bars learnt. (b) Number of single-width bars learnt. Error bars show best and worst
performance across the 25 trials. Note that algorithms that successfully learnt double-
width bars—see (a)—do not appear in (b), but space is left for these algorithms in order
to aid comparison between figures.

co-activation of independent input patterns then the weights will return toward zero on subsequent
presentations of these patterns in isolation.

3.4 Bars Problem with Unequal Components

In each individual experiment reported in the previous sections, everycomponent of the training
images has been exactly equal in size to every other component and has occurred with exactly the
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1k

1k 2k 3kX

Y

X X

Y2k Y3k

X4k

bar 1
bar 2

bar 3

Figure 9: An illustration of a the role of negative weights in the dendritic inhibitionalgorithm.
Nodes are shown as large circles, excitatory synapses as small open circles and inhibitory
synapses as small filled circles. NodesY1k andY3k are selective for the double-width
bars 1 and 3 respectively. The occurrence in an image of the double-width bar ‘bar 2’
would be indicated by both nodesY1k andY3k being active at half-strength. However, if
bar 2 occurs sufficiently frequently, the negative afferent weights indicated will develop
which will suppress this response and enable the uncommitted node (Y2k) to compete to
respond to this pattern. Note that each bar would activate two columns each containing
eight input nodes, but only one input node per column is shown for clarity.

same probability. This is unlikely to be the case in real-world object recognition tasks. In the real-
world, different image features can be radically different in size and can be encountered with very
different frequency. For example, important features in face recognition include both the eyes and
the hair (Sinha and Poggio, 1996; Davies et al., 1979) which can vary significantly in relative size.
Furthermore, we effortlessly learn to recognise both immediate family members (who may be seen
many times a day) and distant relatives (who may be seen only a few times a year).

To provide a more realistic test, a new variation on the bars problem was used. In this version,
training data consisted of 16 by 16 pixel images. Image components consistedof seven one-pixel
wide bars and one nine-pixel wide bar in both the horizontal and vertical directions. Hence, as
in previous experiments, there were eight image components at each orientation and 16 in total.
Parallel bars did not overlap, however, the proportion of overlap between the nine-pixel wide bars
and all other perpendicular bars was large, while the proportion of overlap between perpendicular
one-pixel wide bars was less than in the standard bars problem. Each horizontal bar was selected to
be present in an image with a probability of1

8 while vertical bars occurred with a probability of1
32.

Hence, in this test case half the underlying image components occurred at adifferent frequency to
the other half and two of the components were a different size to the other 14.

Each algorithm was trained on this ‘unequal’ bars problem withp = 400. The number of com-
ponents that each algorithm could learn (n) was set to 32. The mean number of bars, over 25 trials,
represented by each algorithm is shown in Figure 10. It can be seen thatnone of the NMF algo-
rithms succeeded in reliably identifying all the image components in this task. Learning to represent
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Figure 10: Performance of each algorithm when trained on the unequal bars problem, with 32 basis
vectors or nodes, andp = 400. Each bar shows the mean number of components cor-
rectly identified by each algorithm when tested over 25 trials. Error bars show best and
worst performance across the 25 trials.

the two large components appears to be a particular problem for all these algorithms, but the cause
for this may differ between algorithms. For most NMF algorithms, the underlyinglinear model
fails when occlusion is significant, as is the case for the two nine-pixel wide patterns. However, for
the NMF algorithms that find non-negative factors with an additional constraint on the sparseness
of the basis vectors (i.e., nmfsc(A) andnmfsc(A&Y)) an alternative cause may be the imposition
of a constraint that requires learnt image components to be a similar size, which is not the case
for the components used in this task. The neural network algorithm with positive weights (nndi)
produced results that are only marginally better than the NMF algorithms. This algorithm also fails
to reliably learn the two large components due to the large overlap between them.In contrast, the
dendritic inhibition neural network algorithm with negative weights (di), succeeded in identifying
all the bars in most trials. As for the previous experiment with double-width bars, this result illus-
trates the need to allow negative weight values in this algorithm in order to robustly learn image
components. Algorithmdi learnt every image component in 18 of the 25 trials. In contrast, only
one NMF algorithm (nnsc) managed to find all the image components, but it only did so in a single
trial.

3.5 Face Images

Previously, NMF algorithms have been tested using a training set that consists of images of faces
(Lee and Seung, 1999; Hoyer, 2004; Li et al., 2001; Feng et al., 2002). When these training images
are taken from the CBCL face database,1 algorithmnmfdiv learns basis vectors that correspond
to localised image parts (Lee and Seung, 1999; Hoyer, 2004; Feng et al.,2002). However, when

1. CBCL Face Database #1, MIT Center For Biological and Computation Learning,
http://www.ai.mit.edu/projects/cbcl.
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(a) nndi

(b) di

Figure 11: (a) and (b) Typical recognition weights learnt by 32 nodes when both versions of the
dendritic inhibition algorithm were trained on the CBCL face database. Light pixels
indicate strong weights.

applied to the ORL face database,2 algorithmnmfmse learns global, rather than local, image fea-
tures (Li et al., 2001; Hoyer, 2004; Feng et al., 2002). In contrast, algorithm lnmf learns localised
representations of the ORL face database (Feng et al., 2002; Li et al., 2001). Algorithmnmfsc can
find either local or global representations of either set of face images withappropriate values for
the constraints on the sparseness of the basis vectors and activations. Specifically, nmfsc learns
localised image parts when constrained to produce highly sparse basis images, but learns global
image features when constrained to produce basis images with low sparseness or if constrained to
produce highly sparse activations (Hoyer, 2004). Hence, NMF algorithms can, in certain circum-
stances, learn localised image components, some of which appear to roughlycorrespond to parts of
the face, but others of which are arbitrary, but localised, blobs. Essentially the NMF algorithms se-
lect a subset of the pixels which are simultaneously active across multiple images to be represented
by a single basis vector. The same behaviour is observed in the bars problems, reported above,
where a basis vector often corresponds to a random subset of pixels along a row or column of the
image rather than representing an entire bar. Such arbitrary image components are not meaningful
representations of the image data.

In contrast when the dendritic inhibition neural network is trained on face images, it learns
global representations. Figure 11a and Figure 11b show the results of training nndi anddi, for
10000 iterations, on the 2429 images in the CBCL face database. Parameterswere identical to
those used for the bars problems, except the weights were initialised to random values chosen from
a Gaussian distribution with a larger standard deviation (0.005n

m ) as this was found necessary to
cause bifurcation of activity values. In both cases, each node has learnt to represent an average (or
prototype) of a different subset of face images. When presented with highly overlapping training
images the neural network algorithm will learn a prototype consisting of the common features be-
tween the different images (Spratling and Johnson, 2006). When presented with objects that have
less overlap, the network will learn to represent the individual exemplars(Spratling and Johnson,
2006). These two forms of representation are believed to support perceptual categorisation and
object recognition (Palmeri and Gauthier, 2004).

2. The ORL Database of Faces, AT&T Laboratories Cambridge,
http://www.cl.cam.ac.uk/Research/DTG/attarchive/facedatabase.html.
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4. Discussion

The NMF algorithmlnmf imposes the constraint that the basis vectors be orthogonal. This means
that image components may not overlap and, hence, results in this algorithm’s failure across all
versions of the bars task. In all these tasks the underlying image componentsare overlapping bars
patterns (even if they do not overlap in any single training image, as is the case with the one-
orientation bars problem).

NMF algorithms which find non-negative factors without other constraints (i.e., nmfdiv and
nmfmse) generally succeed in identifying the underlying components of images whentrained us-
ing images in which there is no occlusion (i.e., on the linear and one-orientation bars problems).
However, these algorithms fail when occlusion does occur between image components, and perfor-
mance gets worse as the degree of occlusion increases. Hence, these algorithms fail to learn many
image features in the standard bars problem and produce even worse performance when tested on
the double-width bars problem.

NMF algorithms that find non-negative factors with an additional constrainton the sparseness
of the activations (i.e., snmf, nnsc, andnmfsc(Y)) require that the rows ofY have a particular
sparseness. Such a constraint causes these algorithms to learn components that are present in a cer-
tain fraction of the training images (i.e., each factor is required to appear with a similar frequency).
Such a constraint can overcome the problems caused by occlusion and enable NMF to identify
components in training images where occlusion occurs. For example,nnsc produced good results
on the double-width bars problem. Given sufficient training data,nnsc also reliably finds nearly
all the image components in all experiments except for the standard bars testwhenn = 16 and the
unequal bars problem. However,nmfsc(Y) fails to produce consistently good results across exper-
iments. This algorithm only reliably found all the image components for the standard bars problem
whenn = 16 and for the linear bars problem. Despite constraining the sparseness of the activations,
algorithmsnmf produced poor results in all experiments except for the linear bars problem.

The NMF algorithm that finds non-negative factors with an additional constraint on the sparse-
ness of the basis vectors (i.e., nmfsc(A)) requires that the columns ofA have a particular sparseness.
Such a constraint causes this algorithm to learn components that have a certain fraction of pixels
with values greater than zero (i.e., all factors are required to be a similar size). This algorithm
produces good results across all the experiments except the unequal bars problem. Constraining
the sparseness of the basis vectors thus appears to overcome the problems caused by occlusion and
enable NMF to identify components in training images where occlusion occurs.However, this con-
straint may itself prevent the algorithm from identifying image components whichare a different
size from that specified by the sparseness parameter. The NMF algorithmthat imposes constraints
on both the sparseness of the activations and the sparseness of the basis vectors (i.e., nmfsc(A&Y))
produces results similar to those produced bynmfsc(A).

The performance of thenmfsc algorithm depends critically on the particular sparseness param-
eters that are chosen. As can be seen from figure 12, performance on a specific task can vary from
finding every component in every trial, to failure to find even a single component across all trials.
While appropriate values of sparseness constraint can enable the NMF algorithm to overcome in-
herent problems associated with the non-linear superposition of image components, inappropriate
values of sparseness constraint will prevent the identification of factors that occur at a different fre-
quency, or that are a different size, to that specified by the sparseness parameter chosen. This is
particularly a problem when the frequency and size of different image components varies within a
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(a) (b) (c) (d)

Figure 12: Performance of thenmfsc algorithm across the range of possible combinations of
sparseness parameters. For (a) the standard bars problem, (b) the one-orientation bars
problem, (c) the double-width bars problem, and (d) the unequal bars problem. In each
case,n = 32 andp = 400. The sparseness ofY varies along the y-axis and the sparseness
of A varies along the x-axis of each plot. Since the sparseness constraints are optional,
’None’ indicates where no constraint was imposed. The length of the edgeof each filled
box is proportional to the mean number of bars learnt over 25 trials for thatcombination
of parameters. Perfect performance would be indicated by a box completely filling the
corresponding element of the array. ‘X’ marks combinations of parametervalues for
which the algorithm encountered a division-by-zero error and crashed.

single task. Hence, thenmfsc algorithm was unable to identify all the components in the unequal
bars problem with any combination of sparseness parameters (figure 12d). In fact, no NMF algo-
rithm succeeded in this task: either because the linear NMF model could not deal with occlusion
or because the algorithm imposed sparseness constraints that could not be satisfied for all image
components.

The parameter search shown in figure 12 was performed in order to select the parameter val-
ues that would produce the best overall results across all the tasks used in this paper for algorithms
nmfsc(A), nmfsc(Y), andnmfsc(A&Y). However, in many real-world tasks the user may not know
what the image components should look like, and hence, it would be impossible tosearch for the
appropriate parameter values. Thenmfsc algorithm is thus best suited to tasks in which all compo-
nents are either a similar size or occur at a similar frequency, and for whichthis size/frequency is
either knowna priori or the user knows what the components should look like and is prepared to
search for parameters that enable these components to be ‘discovered’by the algorithm.

Sparseness constraints are also often employed in neural network algorithms. However, in such
recognition models, sparseness constraints usually limit the number of nodesthat are simultane-
ously active in response to an input image (Földiák and Young, 1995; Olshausen and Field, 2004).
This is equivalent to constraining the sparseness in thecolumns of Y (rather than the rows ofY,
or the columns ofA, as has been constrained in the NMF algorithms). Any constraints that im-
pose restrictions on the number of active nodes will prevent a neural network from accurately and
completely representing stimuli (Spratling and Johnson, 2004). Hence, such sparseness constraints
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should be avoided. The dendritic inhibition model succeeds in learning representations of elemen-
tary image features without such constraints. However, to accurately represent image features that
overlap, it is necessary for negative weight values to be allowed. This algorithm (di) produced the
best overall performance across all the experiments performed here.This is achieved because this
algorithm does not falsely assume that image composition is a linear process, nor does it impose
constraints on the expected size or frequency of occurrence of image components. The dendritic
inhibition algorithm thus provides an efficient, on-line, algorithm for finding image components.

When trained on images that are composed of elementary features, such asthose used in the
bars problems, algorithmdi reliably and accurately learns representations of the underlying image
features. However, when trained on images of faces, algorithmdi learns holistic representations.
In this case, large subsets of the training images contain virtually identical patterns of pixel values.
These re-occurring, holistic patterns, are learnt by the dendritic inhibitionalgorithm. In contrast,
the NMF algorithms (in certain circumstances) form distinct basis vectors to represent pieces of
these recurring patterns. The separate representation of sub-patterns is due to constraints imposed
by the algorithms and is not based on evidence contained in the training images.Hence, while
these constraints make it appear that NMF algorithms have learnt face parts, these algorithms are
representing arbitrary parts of larger image features. This is demonstrated by the results generated
when the NMF algorithms are applied to the bars problems. In these cases, each basis vector
often corresponds to a random subset of pixels along a row or column ofthe image rather than
representing an entire bar. Such arbitrary image components are not meaningful representations of
the image data. Rather than relying on a subjective assessment of the quality of the components that
are learnt, the bars problems that are the main focus of this paper, providea quantitative test of the
accuracy and reliability with which elementary image features are discovered. Since the underlying
image components are known, it is possible to compare the components learnt withthe known
features from which the training images were created. These results demonstrate that when the
training images are actually composed of elementary features, NMF algorithms can fail to learn the
underlying image components, whereas, the dendritic inhibition algorithm reliably and accurately
does so.

Intuitively, the dendritic inhibition algorithm works because the learning rule causes nodes to
learn re-occurring patterns of pre-synaptic activity. As an afferentweight to a node increases, so
does the strength with which that node can inhibit the corresponding input activity received by all
other nodes. This provides strong competition for specific patterns of inputs and forces different
nodes to learn distinct image components. However, because the inhibition is specific to a partic-
ular set of inputs, nodes do not interfere with the learning of distinct image components by other
nodes. Unfortunately, the operation of this algorithm has not so far beenformulated in terms of the
optimisation of an objective function. It is hoped that the empirical performance of this algorithm
will prompt the development of such a mathematical analysis.

5. Conclusions

Non-negative matrix factorisation employs non-negativity constraints in order to model the physics
of image formation, and it has been claimed that this makes NMF particularly suitedto learning
meaningful representations of image data (Lee and Seung, 1999; Feng et al., 2002; Liu et al., 2003;
Liu and Zheng, 2004; Li et al., 2001). However, by employing a linear model, NMF fails to take into
account another important factor of image composition, namely the presenceof occlusion. Hence,
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despite the claims, most NMF algorithms fail to reliably identify the underlying components of im-
ages, even in simple, artificial, tasks like those investigated here. These limitations can be overcome
by imposing additional constraints on the sparseness of the factors that are found. However, to
employ such constraints requiresa priori knowledge, or trial-and-error, to find appropriate param-
eter values and can result in failure to identify components that violate the imposed constraint. In
contrast, a neural network algorithm, employing a non-linear activation function, can reliably and
accurately learn image components. This neural network algorithm is thus more likely to provide a
robust method of learning image components suitable for object recognition.
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